PCI: add ICH7/8 ACPI/GPIO io resource quirks
[pv_ops_mirror.git] / net / ipv4 / fib_trie.c
blobd17990ec724f68d30fa6987e8c61fd7dc21fdd5d
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally descibed in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
28 * Code from fib_hash has been reused which includes the following header:
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
35 * IPv4 FIB: lookup engine and maintenance routines.
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
45 * Substantial contributions to this work comes from:
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
53 #define VERSION "0.407"
55 #include <asm/uaccess.h>
56 #include <asm/system.h>
57 #include <asm/bitops.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60 #include <linux/sched.h>
61 #include <linux/mm.h>
62 #include <linux/string.h>
63 #include <linux/socket.h>
64 #include <linux/sockios.h>
65 #include <linux/errno.h>
66 #include <linux/in.h>
67 #include <linux/inet.h>
68 #include <linux/inetdevice.h>
69 #include <linux/netdevice.h>
70 #include <linux/if_arp.h>
71 #include <linux/proc_fs.h>
72 #include <linux/rcupdate.h>
73 #include <linux/skbuff.h>
74 #include <linux/netlink.h>
75 #include <linux/init.h>
76 #include <linux/list.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include "fib_lookup.h"
85 #undef CONFIG_IP_FIB_TRIE_STATS
86 #define MAX_STAT_DEPTH 32
88 #define KEYLENGTH (8*sizeof(t_key))
89 #define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
90 #define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
92 typedef unsigned int t_key;
94 #define T_TNODE 0
95 #define T_LEAF 1
96 #define NODE_TYPE_MASK 0x1UL
97 #define NODE_PARENT(node) \
98 ((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK)))
100 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
102 #define NODE_SET_PARENT(node, ptr) \
103 rcu_assign_pointer((node)->parent, \
104 ((unsigned long)(ptr)) | NODE_TYPE(node))
106 #define IS_TNODE(n) (!(n->parent & T_LEAF))
107 #define IS_LEAF(n) (n->parent & T_LEAF)
109 struct node {
110 t_key key;
111 unsigned long parent;
114 struct leaf {
115 t_key key;
116 unsigned long parent;
117 struct hlist_head list;
118 struct rcu_head rcu;
121 struct leaf_info {
122 struct hlist_node hlist;
123 struct rcu_head rcu;
124 int plen;
125 struct list_head falh;
128 struct tnode {
129 t_key key;
130 unsigned long parent;
131 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
132 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
133 unsigned short full_children; /* KEYLENGTH bits needed */
134 unsigned short empty_children; /* KEYLENGTH bits needed */
135 struct rcu_head rcu;
136 struct node *child[0];
139 #ifdef CONFIG_IP_FIB_TRIE_STATS
140 struct trie_use_stats {
141 unsigned int gets;
142 unsigned int backtrack;
143 unsigned int semantic_match_passed;
144 unsigned int semantic_match_miss;
145 unsigned int null_node_hit;
146 unsigned int resize_node_skipped;
148 #endif
150 struct trie_stat {
151 unsigned int totdepth;
152 unsigned int maxdepth;
153 unsigned int tnodes;
154 unsigned int leaves;
155 unsigned int nullpointers;
156 unsigned int nodesizes[MAX_STAT_DEPTH];
159 struct trie {
160 struct node *trie;
161 #ifdef CONFIG_IP_FIB_TRIE_STATS
162 struct trie_use_stats stats;
163 #endif
164 int size;
165 unsigned int revision;
168 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
169 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
170 static struct node *resize(struct trie *t, struct tnode *tn);
171 static struct tnode *inflate(struct trie *t, struct tnode *tn);
172 static struct tnode *halve(struct trie *t, struct tnode *tn);
173 static void tnode_free(struct tnode *tn);
175 static kmem_cache_t *fn_alias_kmem __read_mostly;
176 static struct trie *trie_local = NULL, *trie_main = NULL;
179 /* rcu_read_lock needs to be hold by caller from readside */
181 static inline struct node *tnode_get_child(struct tnode *tn, int i)
183 BUG_ON(i >= 1 << tn->bits);
185 return rcu_dereference(tn->child[i]);
188 static inline int tnode_child_length(const struct tnode *tn)
190 return 1 << tn->bits;
193 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
195 if (offset < KEYLENGTH)
196 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
197 else
198 return 0;
201 static inline int tkey_equals(t_key a, t_key b)
203 return a == b;
206 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
208 if (bits == 0 || offset >= KEYLENGTH)
209 return 1;
210 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
211 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
214 static inline int tkey_mismatch(t_key a, int offset, t_key b)
216 t_key diff = a ^ b;
217 int i = offset;
219 if (!diff)
220 return 0;
221 while ((diff << i) >> (KEYLENGTH-1) == 0)
222 i++;
223 return i;
227 To understand this stuff, an understanding of keys and all their bits is
228 necessary. Every node in the trie has a key associated with it, but not
229 all of the bits in that key are significant.
231 Consider a node 'n' and its parent 'tp'.
233 If n is a leaf, every bit in its key is significant. Its presence is
234 necessitated by path compression, since during a tree traversal (when
235 searching for a leaf - unless we are doing an insertion) we will completely
236 ignore all skipped bits we encounter. Thus we need to verify, at the end of
237 a potentially successful search, that we have indeed been walking the
238 correct key path.
240 Note that we can never "miss" the correct key in the tree if present by
241 following the wrong path. Path compression ensures that segments of the key
242 that are the same for all keys with a given prefix are skipped, but the
243 skipped part *is* identical for each node in the subtrie below the skipped
244 bit! trie_insert() in this implementation takes care of that - note the
245 call to tkey_sub_equals() in trie_insert().
247 if n is an internal node - a 'tnode' here, the various parts of its key
248 have many different meanings.
250 Example:
251 _________________________________________________________________
252 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
253 -----------------------------------------------------------------
254 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
256 _________________________________________________________________
257 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
258 -----------------------------------------------------------------
259 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
261 tp->pos = 7
262 tp->bits = 3
263 n->pos = 15
264 n->bits = 4
266 First, let's just ignore the bits that come before the parent tp, that is
267 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
268 not use them for anything.
270 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
271 index into the parent's child array. That is, they will be used to find
272 'n' among tp's children.
274 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
275 for the node n.
277 All the bits we have seen so far are significant to the node n. The rest
278 of the bits are really not needed or indeed known in n->key.
280 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
281 n's child array, and will of course be different for each child.
284 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
285 at this point.
289 static inline void check_tnode(const struct tnode *tn)
291 WARN_ON(tn && tn->pos+tn->bits > 32);
294 static int halve_threshold = 25;
295 static int inflate_threshold = 50;
296 static int halve_threshold_root = 15;
297 static int inflate_threshold_root = 25;
300 static void __alias_free_mem(struct rcu_head *head)
302 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
303 kmem_cache_free(fn_alias_kmem, fa);
306 static inline void alias_free_mem_rcu(struct fib_alias *fa)
308 call_rcu(&fa->rcu, __alias_free_mem);
311 static void __leaf_free_rcu(struct rcu_head *head)
313 kfree(container_of(head, struct leaf, rcu));
316 static void __leaf_info_free_rcu(struct rcu_head *head)
318 kfree(container_of(head, struct leaf_info, rcu));
321 static inline void free_leaf_info(struct leaf_info *leaf)
323 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
326 static struct tnode *tnode_alloc(unsigned int size)
328 struct page *pages;
330 if (size <= PAGE_SIZE)
331 return kcalloc(size, 1, GFP_KERNEL);
333 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
334 if (!pages)
335 return NULL;
337 return page_address(pages);
340 static void __tnode_free_rcu(struct rcu_head *head)
342 struct tnode *tn = container_of(head, struct tnode, rcu);
343 unsigned int size = sizeof(struct tnode) +
344 (1 << tn->bits) * sizeof(struct node *);
346 if (size <= PAGE_SIZE)
347 kfree(tn);
348 else
349 free_pages((unsigned long)tn, get_order(size));
352 static inline void tnode_free(struct tnode *tn)
354 if(IS_LEAF(tn)) {
355 struct leaf *l = (struct leaf *) tn;
356 call_rcu_bh(&l->rcu, __leaf_free_rcu);
358 else
359 call_rcu(&tn->rcu, __tnode_free_rcu);
362 static struct leaf *leaf_new(void)
364 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
365 if (l) {
366 l->parent = T_LEAF;
367 INIT_HLIST_HEAD(&l->list);
369 return l;
372 static struct leaf_info *leaf_info_new(int plen)
374 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
375 if (li) {
376 li->plen = plen;
377 INIT_LIST_HEAD(&li->falh);
379 return li;
382 static struct tnode* tnode_new(t_key key, int pos, int bits)
384 int nchildren = 1<<bits;
385 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
386 struct tnode *tn = tnode_alloc(sz);
388 if (tn) {
389 memset(tn, 0, sz);
390 tn->parent = T_TNODE;
391 tn->pos = pos;
392 tn->bits = bits;
393 tn->key = key;
394 tn->full_children = 0;
395 tn->empty_children = 1<<bits;
398 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
399 (unsigned int) (sizeof(struct node) * 1<<bits));
400 return tn;
404 * Check whether a tnode 'n' is "full", i.e. it is an internal node
405 * and no bits are skipped. See discussion in dyntree paper p. 6
408 static inline int tnode_full(const struct tnode *tn, const struct node *n)
410 if (n == NULL || IS_LEAF(n))
411 return 0;
413 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
416 static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
418 tnode_put_child_reorg(tn, i, n, -1);
422 * Add a child at position i overwriting the old value.
423 * Update the value of full_children and empty_children.
426 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
428 struct node *chi = tn->child[i];
429 int isfull;
431 BUG_ON(i >= 1<<tn->bits);
434 /* update emptyChildren */
435 if (n == NULL && chi != NULL)
436 tn->empty_children++;
437 else if (n != NULL && chi == NULL)
438 tn->empty_children--;
440 /* update fullChildren */
441 if (wasfull == -1)
442 wasfull = tnode_full(tn, chi);
444 isfull = tnode_full(tn, n);
445 if (wasfull && !isfull)
446 tn->full_children--;
447 else if (!wasfull && isfull)
448 tn->full_children++;
450 if (n)
451 NODE_SET_PARENT(n, tn);
453 rcu_assign_pointer(tn->child[i], n);
456 static struct node *resize(struct trie *t, struct tnode *tn)
458 int i;
459 int err = 0;
460 struct tnode *old_tn;
461 int inflate_threshold_use;
462 int halve_threshold_use;
464 if (!tn)
465 return NULL;
467 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
468 tn, inflate_threshold, halve_threshold);
470 /* No children */
471 if (tn->empty_children == tnode_child_length(tn)) {
472 tnode_free(tn);
473 return NULL;
475 /* One child */
476 if (tn->empty_children == tnode_child_length(tn) - 1)
477 for (i = 0; i < tnode_child_length(tn); i++) {
478 struct node *n;
480 n = tn->child[i];
481 if (!n)
482 continue;
484 /* compress one level */
485 NODE_SET_PARENT(n, NULL);
486 tnode_free(tn);
487 return n;
490 * Double as long as the resulting node has a number of
491 * nonempty nodes that are above the threshold.
495 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
496 * the Helsinki University of Technology and Matti Tikkanen of Nokia
497 * Telecommunications, page 6:
498 * "A node is doubled if the ratio of non-empty children to all
499 * children in the *doubled* node is at least 'high'."
501 * 'high' in this instance is the variable 'inflate_threshold'. It
502 * is expressed as a percentage, so we multiply it with
503 * tnode_child_length() and instead of multiplying by 2 (since the
504 * child array will be doubled by inflate()) and multiplying
505 * the left-hand side by 100 (to handle the percentage thing) we
506 * multiply the left-hand side by 50.
508 * The left-hand side may look a bit weird: tnode_child_length(tn)
509 * - tn->empty_children is of course the number of non-null children
510 * in the current node. tn->full_children is the number of "full"
511 * children, that is non-null tnodes with a skip value of 0.
512 * All of those will be doubled in the resulting inflated tnode, so
513 * we just count them one extra time here.
515 * A clearer way to write this would be:
517 * to_be_doubled = tn->full_children;
518 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
519 * tn->full_children;
521 * new_child_length = tnode_child_length(tn) * 2;
523 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
524 * new_child_length;
525 * if (new_fill_factor >= inflate_threshold)
527 * ...and so on, tho it would mess up the while () loop.
529 * anyway,
530 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
531 * inflate_threshold
533 * avoid a division:
534 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
535 * inflate_threshold * new_child_length
537 * expand not_to_be_doubled and to_be_doubled, and shorten:
538 * 100 * (tnode_child_length(tn) - tn->empty_children +
539 * tn->full_children) >= inflate_threshold * new_child_length
541 * expand new_child_length:
542 * 100 * (tnode_child_length(tn) - tn->empty_children +
543 * tn->full_children) >=
544 * inflate_threshold * tnode_child_length(tn) * 2
546 * shorten again:
547 * 50 * (tn->full_children + tnode_child_length(tn) -
548 * tn->empty_children) >= inflate_threshold *
549 * tnode_child_length(tn)
553 check_tnode(tn);
555 /* Keep root node larger */
557 if(!tn->parent)
558 inflate_threshold_use = inflate_threshold_root;
559 else
560 inflate_threshold_use = inflate_threshold;
562 err = 0;
563 while ((tn->full_children > 0 &&
564 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
565 inflate_threshold_use * tnode_child_length(tn))) {
567 old_tn = tn;
568 tn = inflate(t, tn);
569 if (IS_ERR(tn)) {
570 tn = old_tn;
571 #ifdef CONFIG_IP_FIB_TRIE_STATS
572 t->stats.resize_node_skipped++;
573 #endif
574 break;
578 check_tnode(tn);
581 * Halve as long as the number of empty children in this
582 * node is above threshold.
586 /* Keep root node larger */
588 if(!tn->parent)
589 halve_threshold_use = halve_threshold_root;
590 else
591 halve_threshold_use = halve_threshold;
593 err = 0;
594 while (tn->bits > 1 &&
595 100 * (tnode_child_length(tn) - tn->empty_children) <
596 halve_threshold_use * tnode_child_length(tn)) {
598 old_tn = tn;
599 tn = halve(t, tn);
600 if (IS_ERR(tn)) {
601 tn = old_tn;
602 #ifdef CONFIG_IP_FIB_TRIE_STATS
603 t->stats.resize_node_skipped++;
604 #endif
605 break;
610 /* Only one child remains */
611 if (tn->empty_children == tnode_child_length(tn) - 1)
612 for (i = 0; i < tnode_child_length(tn); i++) {
613 struct node *n;
615 n = tn->child[i];
616 if (!n)
617 continue;
619 /* compress one level */
621 NODE_SET_PARENT(n, NULL);
622 tnode_free(tn);
623 return n;
626 return (struct node *) tn;
629 static struct tnode *inflate(struct trie *t, struct tnode *tn)
631 struct tnode *inode;
632 struct tnode *oldtnode = tn;
633 int olen = tnode_child_length(tn);
634 int i;
636 pr_debug("In inflate\n");
638 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
640 if (!tn)
641 return ERR_PTR(-ENOMEM);
644 * Preallocate and store tnodes before the actual work so we
645 * don't get into an inconsistent state if memory allocation
646 * fails. In case of failure we return the oldnode and inflate
647 * of tnode is ignored.
650 for (i = 0; i < olen; i++) {
651 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
653 if (inode &&
654 IS_TNODE(inode) &&
655 inode->pos == oldtnode->pos + oldtnode->bits &&
656 inode->bits > 1) {
657 struct tnode *left, *right;
658 t_key m = TKEY_GET_MASK(inode->pos, 1);
660 left = tnode_new(inode->key&(~m), inode->pos + 1,
661 inode->bits - 1);
662 if (!left)
663 goto nomem;
665 right = tnode_new(inode->key|m, inode->pos + 1,
666 inode->bits - 1);
668 if (!right) {
669 tnode_free(left);
670 goto nomem;
673 put_child(t, tn, 2*i, (struct node *) left);
674 put_child(t, tn, 2*i+1, (struct node *) right);
678 for (i = 0; i < olen; i++) {
679 struct node *node = tnode_get_child(oldtnode, i);
680 struct tnode *left, *right;
681 int size, j;
683 /* An empty child */
684 if (node == NULL)
685 continue;
687 /* A leaf or an internal node with skipped bits */
689 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
690 tn->pos + tn->bits - 1) {
691 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
692 1) == 0)
693 put_child(t, tn, 2*i, node);
694 else
695 put_child(t, tn, 2*i+1, node);
696 continue;
699 /* An internal node with two children */
700 inode = (struct tnode *) node;
702 if (inode->bits == 1) {
703 put_child(t, tn, 2*i, inode->child[0]);
704 put_child(t, tn, 2*i+1, inode->child[1]);
706 tnode_free(inode);
707 continue;
710 /* An internal node with more than two children */
712 /* We will replace this node 'inode' with two new
713 * ones, 'left' and 'right', each with half of the
714 * original children. The two new nodes will have
715 * a position one bit further down the key and this
716 * means that the "significant" part of their keys
717 * (see the discussion near the top of this file)
718 * will differ by one bit, which will be "0" in
719 * left's key and "1" in right's key. Since we are
720 * moving the key position by one step, the bit that
721 * we are moving away from - the bit at position
722 * (inode->pos) - is the one that will differ between
723 * left and right. So... we synthesize that bit in the
724 * two new keys.
725 * The mask 'm' below will be a single "one" bit at
726 * the position (inode->pos)
729 /* Use the old key, but set the new significant
730 * bit to zero.
733 left = (struct tnode *) tnode_get_child(tn, 2*i);
734 put_child(t, tn, 2*i, NULL);
736 BUG_ON(!left);
738 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
739 put_child(t, tn, 2*i+1, NULL);
741 BUG_ON(!right);
743 size = tnode_child_length(left);
744 for (j = 0; j < size; j++) {
745 put_child(t, left, j, inode->child[j]);
746 put_child(t, right, j, inode->child[j + size]);
748 put_child(t, tn, 2*i, resize(t, left));
749 put_child(t, tn, 2*i+1, resize(t, right));
751 tnode_free(inode);
753 tnode_free(oldtnode);
754 return tn;
755 nomem:
757 int size = tnode_child_length(tn);
758 int j;
760 for (j = 0; j < size; j++)
761 if (tn->child[j])
762 tnode_free((struct tnode *)tn->child[j]);
764 tnode_free(tn);
766 return ERR_PTR(-ENOMEM);
770 static struct tnode *halve(struct trie *t, struct tnode *tn)
772 struct tnode *oldtnode = tn;
773 struct node *left, *right;
774 int i;
775 int olen = tnode_child_length(tn);
777 pr_debug("In halve\n");
779 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
781 if (!tn)
782 return ERR_PTR(-ENOMEM);
785 * Preallocate and store tnodes before the actual work so we
786 * don't get into an inconsistent state if memory allocation
787 * fails. In case of failure we return the oldnode and halve
788 * of tnode is ignored.
791 for (i = 0; i < olen; i += 2) {
792 left = tnode_get_child(oldtnode, i);
793 right = tnode_get_child(oldtnode, i+1);
795 /* Two nonempty children */
796 if (left && right) {
797 struct tnode *newn;
799 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
801 if (!newn)
802 goto nomem;
804 put_child(t, tn, i/2, (struct node *)newn);
809 for (i = 0; i < olen; i += 2) {
810 struct tnode *newBinNode;
812 left = tnode_get_child(oldtnode, i);
813 right = tnode_get_child(oldtnode, i+1);
815 /* At least one of the children is empty */
816 if (left == NULL) {
817 if (right == NULL) /* Both are empty */
818 continue;
819 put_child(t, tn, i/2, right);
820 continue;
823 if (right == NULL) {
824 put_child(t, tn, i/2, left);
825 continue;
828 /* Two nonempty children */
829 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
830 put_child(t, tn, i/2, NULL);
831 put_child(t, newBinNode, 0, left);
832 put_child(t, newBinNode, 1, right);
833 put_child(t, tn, i/2, resize(t, newBinNode));
835 tnode_free(oldtnode);
836 return tn;
837 nomem:
839 int size = tnode_child_length(tn);
840 int j;
842 for (j = 0; j < size; j++)
843 if (tn->child[j])
844 tnode_free((struct tnode *)tn->child[j]);
846 tnode_free(tn);
848 return ERR_PTR(-ENOMEM);
852 static void trie_init(struct trie *t)
854 if (!t)
855 return;
857 t->size = 0;
858 rcu_assign_pointer(t->trie, NULL);
859 t->revision = 0;
860 #ifdef CONFIG_IP_FIB_TRIE_STATS
861 memset(&t->stats, 0, sizeof(struct trie_use_stats));
862 #endif
865 /* readside must use rcu_read_lock currently dump routines
866 via get_fa_head and dump */
868 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
870 struct hlist_head *head = &l->list;
871 struct hlist_node *node;
872 struct leaf_info *li;
874 hlist_for_each_entry_rcu(li, node, head, hlist)
875 if (li->plen == plen)
876 return li;
878 return NULL;
881 static inline struct list_head * get_fa_head(struct leaf *l, int plen)
883 struct leaf_info *li = find_leaf_info(l, plen);
885 if (!li)
886 return NULL;
888 return &li->falh;
891 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
893 struct leaf_info *li = NULL, *last = NULL;
894 struct hlist_node *node;
896 if (hlist_empty(head)) {
897 hlist_add_head_rcu(&new->hlist, head);
898 } else {
899 hlist_for_each_entry(li, node, head, hlist) {
900 if (new->plen > li->plen)
901 break;
903 last = li;
905 if (last)
906 hlist_add_after_rcu(&last->hlist, &new->hlist);
907 else
908 hlist_add_before_rcu(&new->hlist, &li->hlist);
912 /* rcu_read_lock needs to be hold by caller from readside */
914 static struct leaf *
915 fib_find_node(struct trie *t, u32 key)
917 int pos;
918 struct tnode *tn;
919 struct node *n;
921 pos = 0;
922 n = rcu_dereference(t->trie);
924 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
925 tn = (struct tnode *) n;
927 check_tnode(tn);
929 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
930 pos = tn->pos + tn->bits;
931 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
932 } else
933 break;
935 /* Case we have found a leaf. Compare prefixes */
937 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
938 return (struct leaf *)n;
940 return NULL;
943 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
945 int wasfull;
946 t_key cindex, key;
947 struct tnode *tp = NULL;
949 key = tn->key;
951 while (tn != NULL && NODE_PARENT(tn) != NULL) {
953 tp = NODE_PARENT(tn);
954 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
955 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
956 tn = (struct tnode *) resize (t, (struct tnode *)tn);
957 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
959 if (!NODE_PARENT(tn))
960 break;
962 tn = NODE_PARENT(tn);
964 /* Handle last (top) tnode */
965 if (IS_TNODE(tn))
966 tn = (struct tnode*) resize(t, (struct tnode *)tn);
968 return (struct node*) tn;
971 /* only used from updater-side */
973 static struct list_head *
974 fib_insert_node(struct trie *t, int *err, u32 key, int plen)
976 int pos, newpos;
977 struct tnode *tp = NULL, *tn = NULL;
978 struct node *n;
979 struct leaf *l;
980 int missbit;
981 struct list_head *fa_head = NULL;
982 struct leaf_info *li;
983 t_key cindex;
985 pos = 0;
986 n = t->trie;
988 /* If we point to NULL, stop. Either the tree is empty and we should
989 * just put a new leaf in if, or we have reached an empty child slot,
990 * and we should just put our new leaf in that.
991 * If we point to a T_TNODE, check if it matches our key. Note that
992 * a T_TNODE might be skipping any number of bits - its 'pos' need
993 * not be the parent's 'pos'+'bits'!
995 * If it does match the current key, get pos/bits from it, extract
996 * the index from our key, push the T_TNODE and walk the tree.
998 * If it doesn't, we have to replace it with a new T_TNODE.
1000 * If we point to a T_LEAF, it might or might not have the same key
1001 * as we do. If it does, just change the value, update the T_LEAF's
1002 * value, and return it.
1003 * If it doesn't, we need to replace it with a T_TNODE.
1006 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1007 tn = (struct tnode *) n;
1009 check_tnode(tn);
1011 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1012 tp = tn;
1013 pos = tn->pos + tn->bits;
1014 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
1016 BUG_ON(n && NODE_PARENT(n) != tn);
1017 } else
1018 break;
1022 * n ----> NULL, LEAF or TNODE
1024 * tp is n's (parent) ----> NULL or TNODE
1027 BUG_ON(tp && IS_LEAF(tp));
1029 /* Case 1: n is a leaf. Compare prefixes */
1031 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1032 struct leaf *l = (struct leaf *) n;
1034 li = leaf_info_new(plen);
1036 if (!li) {
1037 *err = -ENOMEM;
1038 goto err;
1041 fa_head = &li->falh;
1042 insert_leaf_info(&l->list, li);
1043 goto done;
1045 t->size++;
1046 l = leaf_new();
1048 if (!l) {
1049 *err = -ENOMEM;
1050 goto err;
1053 l->key = key;
1054 li = leaf_info_new(plen);
1056 if (!li) {
1057 tnode_free((struct tnode *) l);
1058 *err = -ENOMEM;
1059 goto err;
1062 fa_head = &li->falh;
1063 insert_leaf_info(&l->list, li);
1065 if (t->trie && n == NULL) {
1066 /* Case 2: n is NULL, and will just insert a new leaf */
1068 NODE_SET_PARENT(l, tp);
1070 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1071 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1072 } else {
1073 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1075 * Add a new tnode here
1076 * first tnode need some special handling
1079 if (tp)
1080 pos = tp->pos+tp->bits;
1081 else
1082 pos = 0;
1084 if (n) {
1085 newpos = tkey_mismatch(key, pos, n->key);
1086 tn = tnode_new(n->key, newpos, 1);
1087 } else {
1088 newpos = 0;
1089 tn = tnode_new(key, newpos, 1); /* First tnode */
1092 if (!tn) {
1093 free_leaf_info(li);
1094 tnode_free((struct tnode *) l);
1095 *err = -ENOMEM;
1096 goto err;
1099 NODE_SET_PARENT(tn, tp);
1101 missbit = tkey_extract_bits(key, newpos, 1);
1102 put_child(t, tn, missbit, (struct node *)l);
1103 put_child(t, tn, 1-missbit, n);
1105 if (tp) {
1106 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1107 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
1108 } else {
1109 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
1110 tp = tn;
1114 if (tp && tp->pos + tp->bits > 32)
1115 printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1116 tp, tp->pos, tp->bits, key, plen);
1118 /* Rebalance the trie */
1120 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1121 done:
1122 t->revision++;
1123 err:
1124 return fa_head;
1127 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1129 struct trie *t = (struct trie *) tb->tb_data;
1130 struct fib_alias *fa, *new_fa;
1131 struct list_head *fa_head = NULL;
1132 struct fib_info *fi;
1133 int plen = cfg->fc_dst_len;
1134 u8 tos = cfg->fc_tos;
1135 u32 key, mask;
1136 int err;
1137 struct leaf *l;
1139 if (plen > 32)
1140 return -EINVAL;
1142 key = ntohl(cfg->fc_dst);
1144 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1146 mask = ntohl(inet_make_mask(plen));
1148 if (key & ~mask)
1149 return -EINVAL;
1151 key = key & mask;
1153 fi = fib_create_info(cfg);
1154 if (IS_ERR(fi)) {
1155 err = PTR_ERR(fi);
1156 goto err;
1159 l = fib_find_node(t, key);
1160 fa = NULL;
1162 if (l) {
1163 fa_head = get_fa_head(l, plen);
1164 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1167 /* Now fa, if non-NULL, points to the first fib alias
1168 * with the same keys [prefix,tos,priority], if such key already
1169 * exists or to the node before which we will insert new one.
1171 * If fa is NULL, we will need to allocate a new one and
1172 * insert to the head of f.
1174 * If f is NULL, no fib node matched the destination key
1175 * and we need to allocate a new one of those as well.
1178 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
1179 struct fib_alias *fa_orig;
1181 err = -EEXIST;
1182 if (cfg->fc_nlflags & NLM_F_EXCL)
1183 goto out;
1185 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1186 struct fib_info *fi_drop;
1187 u8 state;
1189 err = -ENOBUFS;
1190 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1191 if (new_fa == NULL)
1192 goto out;
1194 fi_drop = fa->fa_info;
1195 new_fa->fa_tos = fa->fa_tos;
1196 new_fa->fa_info = fi;
1197 new_fa->fa_type = cfg->fc_type;
1198 new_fa->fa_scope = cfg->fc_scope;
1199 state = fa->fa_state;
1200 new_fa->fa_state &= ~FA_S_ACCESSED;
1202 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1203 alias_free_mem_rcu(fa);
1205 fib_release_info(fi_drop);
1206 if (state & FA_S_ACCESSED)
1207 rt_cache_flush(-1);
1209 goto succeeded;
1211 /* Error if we find a perfect match which
1212 * uses the same scope, type, and nexthop
1213 * information.
1215 fa_orig = fa;
1216 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1217 if (fa->fa_tos != tos)
1218 break;
1219 if (fa->fa_info->fib_priority != fi->fib_priority)
1220 break;
1221 if (fa->fa_type == cfg->fc_type &&
1222 fa->fa_scope == cfg->fc_scope &&
1223 fa->fa_info == fi) {
1224 goto out;
1227 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1228 fa = fa_orig;
1230 err = -ENOENT;
1231 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1232 goto out;
1234 err = -ENOBUFS;
1235 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1236 if (new_fa == NULL)
1237 goto out;
1239 new_fa->fa_info = fi;
1240 new_fa->fa_tos = tos;
1241 new_fa->fa_type = cfg->fc_type;
1242 new_fa->fa_scope = cfg->fc_scope;
1243 new_fa->fa_state = 0;
1245 * Insert new entry to the list.
1248 if (!fa_head) {
1249 err = 0;
1250 fa_head = fib_insert_node(t, &err, key, plen);
1251 if (err)
1252 goto out_free_new_fa;
1255 list_add_tail_rcu(&new_fa->fa_list,
1256 (fa ? &fa->fa_list : fa_head));
1258 rt_cache_flush(-1);
1259 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1260 &cfg->fc_nlinfo);
1261 succeeded:
1262 return 0;
1264 out_free_new_fa:
1265 kmem_cache_free(fn_alias_kmem, new_fa);
1266 out:
1267 fib_release_info(fi);
1268 err:
1269 return err;
1273 /* should be called with rcu_read_lock */
1274 static inline int check_leaf(struct trie *t, struct leaf *l,
1275 t_key key, int *plen, const struct flowi *flp,
1276 struct fib_result *res)
1278 int err, i;
1279 __be32 mask;
1280 struct leaf_info *li;
1281 struct hlist_head *hhead = &l->list;
1282 struct hlist_node *node;
1284 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1285 i = li->plen;
1286 mask = inet_make_mask(i);
1287 if (l->key != (key & ntohl(mask)))
1288 continue;
1290 if ((err = fib_semantic_match(&li->falh, flp, res, htonl(l->key), mask, i)) <= 0) {
1291 *plen = i;
1292 #ifdef CONFIG_IP_FIB_TRIE_STATS
1293 t->stats.semantic_match_passed++;
1294 #endif
1295 return err;
1297 #ifdef CONFIG_IP_FIB_TRIE_STATS
1298 t->stats.semantic_match_miss++;
1299 #endif
1301 return 1;
1304 static int
1305 fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1307 struct trie *t = (struct trie *) tb->tb_data;
1308 int plen, ret = 0;
1309 struct node *n;
1310 struct tnode *pn;
1311 int pos, bits;
1312 t_key key = ntohl(flp->fl4_dst);
1313 int chopped_off;
1314 t_key cindex = 0;
1315 int current_prefix_length = KEYLENGTH;
1316 struct tnode *cn;
1317 t_key node_prefix, key_prefix, pref_mismatch;
1318 int mp;
1320 rcu_read_lock();
1322 n = rcu_dereference(t->trie);
1323 if (!n)
1324 goto failed;
1326 #ifdef CONFIG_IP_FIB_TRIE_STATS
1327 t->stats.gets++;
1328 #endif
1330 /* Just a leaf? */
1331 if (IS_LEAF(n)) {
1332 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1333 goto found;
1334 goto failed;
1336 pn = (struct tnode *) n;
1337 chopped_off = 0;
1339 while (pn) {
1340 pos = pn->pos;
1341 bits = pn->bits;
1343 if (!chopped_off)
1344 cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);
1346 n = tnode_get_child(pn, cindex);
1348 if (n == NULL) {
1349 #ifdef CONFIG_IP_FIB_TRIE_STATS
1350 t->stats.null_node_hit++;
1351 #endif
1352 goto backtrace;
1355 if (IS_LEAF(n)) {
1356 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1357 goto found;
1358 else
1359 goto backtrace;
1362 #define HL_OPTIMIZE
1363 #ifdef HL_OPTIMIZE
1364 cn = (struct tnode *)n;
1367 * It's a tnode, and we can do some extra checks here if we
1368 * like, to avoid descending into a dead-end branch.
1369 * This tnode is in the parent's child array at index
1370 * key[p_pos..p_pos+p_bits] but potentially with some bits
1371 * chopped off, so in reality the index may be just a
1372 * subprefix, padded with zero at the end.
1373 * We can also take a look at any skipped bits in this
1374 * tnode - everything up to p_pos is supposed to be ok,
1375 * and the non-chopped bits of the index (se previous
1376 * paragraph) are also guaranteed ok, but the rest is
1377 * considered unknown.
1379 * The skipped bits are key[pos+bits..cn->pos].
1382 /* If current_prefix_length < pos+bits, we are already doing
1383 * actual prefix matching, which means everything from
1384 * pos+(bits-chopped_off) onward must be zero along some
1385 * branch of this subtree - otherwise there is *no* valid
1386 * prefix present. Here we can only check the skipped
1387 * bits. Remember, since we have already indexed into the
1388 * parent's child array, we know that the bits we chopped of
1389 * *are* zero.
1392 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
1394 if (current_prefix_length < pos+bits) {
1395 if (tkey_extract_bits(cn->key, current_prefix_length,
1396 cn->pos - current_prefix_length) != 0 ||
1397 !(cn->child[0]))
1398 goto backtrace;
1402 * If chopped_off=0, the index is fully validated and we
1403 * only need to look at the skipped bits for this, the new,
1404 * tnode. What we actually want to do is to find out if
1405 * these skipped bits match our key perfectly, or if we will
1406 * have to count on finding a matching prefix further down,
1407 * because if we do, we would like to have some way of
1408 * verifying the existence of such a prefix at this point.
1411 /* The only thing we can do at this point is to verify that
1412 * any such matching prefix can indeed be a prefix to our
1413 * key, and if the bits in the node we are inspecting that
1414 * do not match our key are not ZERO, this cannot be true.
1415 * Thus, find out where there is a mismatch (before cn->pos)
1416 * and verify that all the mismatching bits are zero in the
1417 * new tnode's key.
1420 /* Note: We aren't very concerned about the piece of the key
1421 * that precede pn->pos+pn->bits, since these have already been
1422 * checked. The bits after cn->pos aren't checked since these are
1423 * by definition "unknown" at this point. Thus, what we want to
1424 * see is if we are about to enter the "prefix matching" state,
1425 * and in that case verify that the skipped bits that will prevail
1426 * throughout this subtree are zero, as they have to be if we are
1427 * to find a matching prefix.
1430 node_prefix = MASK_PFX(cn->key, cn->pos);
1431 key_prefix = MASK_PFX(key, cn->pos);
1432 pref_mismatch = key_prefix^node_prefix;
1433 mp = 0;
1435 /* In short: If skipped bits in this node do not match the search
1436 * key, enter the "prefix matching" state.directly.
1438 if (pref_mismatch) {
1439 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1440 mp++;
1441 pref_mismatch = pref_mismatch <<1;
1443 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1445 if (key_prefix != 0)
1446 goto backtrace;
1448 if (current_prefix_length >= cn->pos)
1449 current_prefix_length = mp;
1451 #endif
1452 pn = (struct tnode *)n; /* Descend */
1453 chopped_off = 0;
1454 continue;
1456 backtrace:
1457 chopped_off++;
1459 /* As zero don't change the child key (cindex) */
1460 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
1461 chopped_off++;
1463 /* Decrease current_... with bits chopped off */
1464 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1465 current_prefix_length = pn->pos + pn->bits - chopped_off;
1468 * Either we do the actual chop off according or if we have
1469 * chopped off all bits in this tnode walk up to our parent.
1472 if (chopped_off <= pn->bits) {
1473 cindex &= ~(1 << (chopped_off-1));
1474 } else {
1475 if (NODE_PARENT(pn) == NULL)
1476 goto failed;
1478 /* Get Child's index */
1479 cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
1480 pn = NODE_PARENT(pn);
1481 chopped_off = 0;
1483 #ifdef CONFIG_IP_FIB_TRIE_STATS
1484 t->stats.backtrack++;
1485 #endif
1486 goto backtrace;
1489 failed:
1490 ret = 1;
1491 found:
1492 rcu_read_unlock();
1493 return ret;
1496 /* only called from updater side */
1497 static int trie_leaf_remove(struct trie *t, t_key key)
1499 t_key cindex;
1500 struct tnode *tp = NULL;
1501 struct node *n = t->trie;
1502 struct leaf *l;
1504 pr_debug("entering trie_leaf_remove(%p)\n", n);
1506 /* Note that in the case skipped bits, those bits are *not* checked!
1507 * When we finish this, we will have NULL or a T_LEAF, and the
1508 * T_LEAF may or may not match our key.
1511 while (n != NULL && IS_TNODE(n)) {
1512 struct tnode *tn = (struct tnode *) n;
1513 check_tnode(tn);
1514 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1516 BUG_ON(n && NODE_PARENT(n) != tn);
1518 l = (struct leaf *) n;
1520 if (!n || !tkey_equals(l->key, key))
1521 return 0;
1524 * Key found.
1525 * Remove the leaf and rebalance the tree
1528 t->revision++;
1529 t->size--;
1531 preempt_disable();
1532 tp = NODE_PARENT(n);
1533 tnode_free((struct tnode *) n);
1535 if (tp) {
1536 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1537 put_child(t, (struct tnode *)tp, cindex, NULL);
1538 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1539 } else
1540 rcu_assign_pointer(t->trie, NULL);
1541 preempt_enable();
1543 return 1;
1546 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1548 struct trie *t = (struct trie *) tb->tb_data;
1549 u32 key, mask;
1550 int plen = cfg->fc_dst_len;
1551 u8 tos = cfg->fc_tos;
1552 struct fib_alias *fa, *fa_to_delete;
1553 struct list_head *fa_head;
1554 struct leaf *l;
1555 struct leaf_info *li;
1557 if (plen > 32)
1558 return -EINVAL;
1560 key = ntohl(cfg->fc_dst);
1561 mask = ntohl(inet_make_mask(plen));
1563 if (key & ~mask)
1564 return -EINVAL;
1566 key = key & mask;
1567 l = fib_find_node(t, key);
1569 if (!l)
1570 return -ESRCH;
1572 fa_head = get_fa_head(l, plen);
1573 fa = fib_find_alias(fa_head, tos, 0);
1575 if (!fa)
1576 return -ESRCH;
1578 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1580 fa_to_delete = NULL;
1581 fa_head = fa->fa_list.prev;
1583 list_for_each_entry(fa, fa_head, fa_list) {
1584 struct fib_info *fi = fa->fa_info;
1586 if (fa->fa_tos != tos)
1587 break;
1589 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1590 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1591 fa->fa_scope == cfg->fc_scope) &&
1592 (!cfg->fc_protocol ||
1593 fi->fib_protocol == cfg->fc_protocol) &&
1594 fib_nh_match(cfg, fi) == 0) {
1595 fa_to_delete = fa;
1596 break;
1600 if (!fa_to_delete)
1601 return -ESRCH;
1603 fa = fa_to_delete;
1604 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1605 &cfg->fc_nlinfo);
1607 l = fib_find_node(t, key);
1608 li = find_leaf_info(l, plen);
1610 list_del_rcu(&fa->fa_list);
1612 if (list_empty(fa_head)) {
1613 hlist_del_rcu(&li->hlist);
1614 free_leaf_info(li);
1617 if (hlist_empty(&l->list))
1618 trie_leaf_remove(t, key);
1620 if (fa->fa_state & FA_S_ACCESSED)
1621 rt_cache_flush(-1);
1623 fib_release_info(fa->fa_info);
1624 alias_free_mem_rcu(fa);
1625 return 0;
1628 static int trie_flush_list(struct trie *t, struct list_head *head)
1630 struct fib_alias *fa, *fa_node;
1631 int found = 0;
1633 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1634 struct fib_info *fi = fa->fa_info;
1636 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1637 list_del_rcu(&fa->fa_list);
1638 fib_release_info(fa->fa_info);
1639 alias_free_mem_rcu(fa);
1640 found++;
1643 return found;
1646 static int trie_flush_leaf(struct trie *t, struct leaf *l)
1648 int found = 0;
1649 struct hlist_head *lih = &l->list;
1650 struct hlist_node *node, *tmp;
1651 struct leaf_info *li = NULL;
1653 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1654 found += trie_flush_list(t, &li->falh);
1656 if (list_empty(&li->falh)) {
1657 hlist_del_rcu(&li->hlist);
1658 free_leaf_info(li);
1661 return found;
1664 /* rcu_read_lock needs to be hold by caller from readside */
1666 static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1668 struct node *c = (struct node *) thisleaf;
1669 struct tnode *p;
1670 int idx;
1671 struct node *trie = rcu_dereference(t->trie);
1673 if (c == NULL) {
1674 if (trie == NULL)
1675 return NULL;
1677 if (IS_LEAF(trie)) /* trie w. just a leaf */
1678 return (struct leaf *) trie;
1680 p = (struct tnode*) trie; /* Start */
1681 } else
1682 p = (struct tnode *) NODE_PARENT(c);
1684 while (p) {
1685 int pos, last;
1687 /* Find the next child of the parent */
1688 if (c)
1689 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1690 else
1691 pos = 0;
1693 last = 1 << p->bits;
1694 for (idx = pos; idx < last ; idx++) {
1695 c = rcu_dereference(p->child[idx]);
1697 if (!c)
1698 continue;
1700 /* Decend if tnode */
1701 while (IS_TNODE(c)) {
1702 p = (struct tnode *) c;
1703 idx = 0;
1705 /* Rightmost non-NULL branch */
1706 if (p && IS_TNODE(p))
1707 while (!(c = rcu_dereference(p->child[idx]))
1708 && idx < (1<<p->bits)) idx++;
1710 /* Done with this tnode? */
1711 if (idx >= (1 << p->bits) || !c)
1712 goto up;
1714 return (struct leaf *) c;
1717 /* No more children go up one step */
1718 c = (struct node *) p;
1719 p = (struct tnode *) NODE_PARENT(p);
1721 return NULL; /* Ready. Root of trie */
1724 static int fn_trie_flush(struct fib_table *tb)
1726 struct trie *t = (struct trie *) tb->tb_data;
1727 struct leaf *ll = NULL, *l = NULL;
1728 int found = 0, h;
1730 t->revision++;
1732 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1733 found += trie_flush_leaf(t, l);
1735 if (ll && hlist_empty(&ll->list))
1736 trie_leaf_remove(t, ll->key);
1737 ll = l;
1740 if (ll && hlist_empty(&ll->list))
1741 trie_leaf_remove(t, ll->key);
1743 pr_debug("trie_flush found=%d\n", found);
1744 return found;
1747 static int trie_last_dflt = -1;
1749 static void
1750 fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1752 struct trie *t = (struct trie *) tb->tb_data;
1753 int order, last_idx;
1754 struct fib_info *fi = NULL;
1755 struct fib_info *last_resort;
1756 struct fib_alias *fa = NULL;
1757 struct list_head *fa_head;
1758 struct leaf *l;
1760 last_idx = -1;
1761 last_resort = NULL;
1762 order = -1;
1764 rcu_read_lock();
1766 l = fib_find_node(t, 0);
1767 if (!l)
1768 goto out;
1770 fa_head = get_fa_head(l, 0);
1771 if (!fa_head)
1772 goto out;
1774 if (list_empty(fa_head))
1775 goto out;
1777 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1778 struct fib_info *next_fi = fa->fa_info;
1780 if (fa->fa_scope != res->scope ||
1781 fa->fa_type != RTN_UNICAST)
1782 continue;
1784 if (next_fi->fib_priority > res->fi->fib_priority)
1785 break;
1786 if (!next_fi->fib_nh[0].nh_gw ||
1787 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1788 continue;
1789 fa->fa_state |= FA_S_ACCESSED;
1791 if (fi == NULL) {
1792 if (next_fi != res->fi)
1793 break;
1794 } else if (!fib_detect_death(fi, order, &last_resort,
1795 &last_idx, &trie_last_dflt)) {
1796 if (res->fi)
1797 fib_info_put(res->fi);
1798 res->fi = fi;
1799 atomic_inc(&fi->fib_clntref);
1800 trie_last_dflt = order;
1801 goto out;
1803 fi = next_fi;
1804 order++;
1806 if (order <= 0 || fi == NULL) {
1807 trie_last_dflt = -1;
1808 goto out;
1811 if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
1812 if (res->fi)
1813 fib_info_put(res->fi);
1814 res->fi = fi;
1815 atomic_inc(&fi->fib_clntref);
1816 trie_last_dflt = order;
1817 goto out;
1819 if (last_idx >= 0) {
1820 if (res->fi)
1821 fib_info_put(res->fi);
1822 res->fi = last_resort;
1823 if (last_resort)
1824 atomic_inc(&last_resort->fib_clntref);
1826 trie_last_dflt = last_idx;
1827 out:;
1828 rcu_read_unlock();
1831 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
1832 struct sk_buff *skb, struct netlink_callback *cb)
1834 int i, s_i;
1835 struct fib_alias *fa;
1837 __be32 xkey = htonl(key);
1839 s_i = cb->args[4];
1840 i = 0;
1842 /* rcu_read_lock is hold by caller */
1844 list_for_each_entry_rcu(fa, fah, fa_list) {
1845 if (i < s_i) {
1846 i++;
1847 continue;
1849 BUG_ON(!fa->fa_info);
1851 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1852 cb->nlh->nlmsg_seq,
1853 RTM_NEWROUTE,
1854 tb->tb_id,
1855 fa->fa_type,
1856 fa->fa_scope,
1857 xkey,
1858 plen,
1859 fa->fa_tos,
1860 fa->fa_info, 0) < 0) {
1861 cb->args[4] = i;
1862 return -1;
1864 i++;
1866 cb->args[4] = i;
1867 return skb->len;
1870 static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
1871 struct netlink_callback *cb)
1873 int h, s_h;
1874 struct list_head *fa_head;
1875 struct leaf *l = NULL;
1877 s_h = cb->args[3];
1879 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1880 if (h < s_h)
1881 continue;
1882 if (h > s_h)
1883 memset(&cb->args[4], 0,
1884 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1886 fa_head = get_fa_head(l, plen);
1888 if (!fa_head)
1889 continue;
1891 if (list_empty(fa_head))
1892 continue;
1894 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1895 cb->args[3] = h;
1896 return -1;
1899 cb->args[3] = h;
1900 return skb->len;
1903 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1905 int m, s_m;
1906 struct trie *t = (struct trie *) tb->tb_data;
1908 s_m = cb->args[2];
1910 rcu_read_lock();
1911 for (m = 0; m <= 32; m++) {
1912 if (m < s_m)
1913 continue;
1914 if (m > s_m)
1915 memset(&cb->args[3], 0,
1916 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1918 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1919 cb->args[2] = m;
1920 goto out;
1923 rcu_read_unlock();
1924 cb->args[2] = m;
1925 return skb->len;
1926 out:
1927 rcu_read_unlock();
1928 return -1;
1931 /* Fix more generic FIB names for init later */
1933 #ifdef CONFIG_IP_MULTIPLE_TABLES
1934 struct fib_table * fib_hash_init(u32 id)
1935 #else
1936 struct fib_table * __init fib_hash_init(u32 id)
1937 #endif
1939 struct fib_table *tb;
1940 struct trie *t;
1942 if (fn_alias_kmem == NULL)
1943 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1944 sizeof(struct fib_alias),
1945 0, SLAB_HWCACHE_ALIGN,
1946 NULL, NULL);
1948 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1949 GFP_KERNEL);
1950 if (tb == NULL)
1951 return NULL;
1953 tb->tb_id = id;
1954 tb->tb_lookup = fn_trie_lookup;
1955 tb->tb_insert = fn_trie_insert;
1956 tb->tb_delete = fn_trie_delete;
1957 tb->tb_flush = fn_trie_flush;
1958 tb->tb_select_default = fn_trie_select_default;
1959 tb->tb_dump = fn_trie_dump;
1960 memset(tb->tb_data, 0, sizeof(struct trie));
1962 t = (struct trie *) tb->tb_data;
1964 trie_init(t);
1966 if (id == RT_TABLE_LOCAL)
1967 trie_local = t;
1968 else if (id == RT_TABLE_MAIN)
1969 trie_main = t;
1971 if (id == RT_TABLE_LOCAL)
1972 printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION);
1974 return tb;
1977 #ifdef CONFIG_PROC_FS
1978 /* Depth first Trie walk iterator */
1979 struct fib_trie_iter {
1980 struct tnode *tnode;
1981 struct trie *trie;
1982 unsigned index;
1983 unsigned depth;
1986 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
1988 struct tnode *tn = iter->tnode;
1989 unsigned cindex = iter->index;
1990 struct tnode *p;
1992 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1993 iter->tnode, iter->index, iter->depth);
1994 rescan:
1995 while (cindex < (1<<tn->bits)) {
1996 struct node *n = tnode_get_child(tn, cindex);
1998 if (n) {
1999 if (IS_LEAF(n)) {
2000 iter->tnode = tn;
2001 iter->index = cindex + 1;
2002 } else {
2003 /* push down one level */
2004 iter->tnode = (struct tnode *) n;
2005 iter->index = 0;
2006 ++iter->depth;
2008 return n;
2011 ++cindex;
2014 /* Current node exhausted, pop back up */
2015 p = NODE_PARENT(tn);
2016 if (p) {
2017 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2018 tn = p;
2019 --iter->depth;
2020 goto rescan;
2023 /* got root? */
2024 return NULL;
2027 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2028 struct trie *t)
2030 struct node *n ;
2032 if(!t)
2033 return NULL;
2035 n = rcu_dereference(t->trie);
2037 if(!iter)
2038 return NULL;
2040 if (n && IS_TNODE(n)) {
2041 iter->tnode = (struct tnode *) n;
2042 iter->trie = t;
2043 iter->index = 0;
2044 iter->depth = 1;
2045 return n;
2047 return NULL;
2050 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2052 struct node *n;
2053 struct fib_trie_iter iter;
2055 memset(s, 0, sizeof(*s));
2057 rcu_read_lock();
2058 for (n = fib_trie_get_first(&iter, t); n;
2059 n = fib_trie_get_next(&iter)) {
2060 if (IS_LEAF(n)) {
2061 s->leaves++;
2062 s->totdepth += iter.depth;
2063 if (iter.depth > s->maxdepth)
2064 s->maxdepth = iter.depth;
2065 } else {
2066 const struct tnode *tn = (const struct tnode *) n;
2067 int i;
2069 s->tnodes++;
2070 if(tn->bits < MAX_STAT_DEPTH)
2071 s->nodesizes[tn->bits]++;
2073 for (i = 0; i < (1<<tn->bits); i++)
2074 if (!tn->child[i])
2075 s->nullpointers++;
2078 rcu_read_unlock();
2082 * This outputs /proc/net/fib_triestats
2084 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2086 unsigned i, max, pointers, bytes, avdepth;
2088 if (stat->leaves)
2089 avdepth = stat->totdepth*100 / stat->leaves;
2090 else
2091 avdepth = 0;
2093 seq_printf(seq, "\tAver depth: %d.%02d\n", avdepth / 100, avdepth % 100 );
2094 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2096 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2098 bytes = sizeof(struct leaf) * stat->leaves;
2099 seq_printf(seq, "\tInternal nodes: %d\n\t", stat->tnodes);
2100 bytes += sizeof(struct tnode) * stat->tnodes;
2102 max = MAX_STAT_DEPTH;
2103 while (max > 0 && stat->nodesizes[max-1] == 0)
2104 max--;
2106 pointers = 0;
2107 for (i = 1; i <= max; i++)
2108 if (stat->nodesizes[i] != 0) {
2109 seq_printf(seq, " %d: %d", i, stat->nodesizes[i]);
2110 pointers += (1<<i) * stat->nodesizes[i];
2112 seq_putc(seq, '\n');
2113 seq_printf(seq, "\tPointers: %d\n", pointers);
2115 bytes += sizeof(struct node *) * pointers;
2116 seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
2117 seq_printf(seq, "Total size: %d kB\n", (bytes + 1023) / 1024);
2119 #ifdef CONFIG_IP_FIB_TRIE_STATS
2120 seq_printf(seq, "Counters:\n---------\n");
2121 seq_printf(seq,"gets = %d\n", t->stats.gets);
2122 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2123 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2124 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2125 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2126 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2127 #ifdef CLEAR_STATS
2128 memset(&(t->stats), 0, sizeof(t->stats));
2129 #endif
2130 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2133 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2135 struct trie_stat *stat;
2137 stat = kmalloc(sizeof(*stat), GFP_KERNEL);
2138 if (!stat)
2139 return -ENOMEM;
2141 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2142 sizeof(struct leaf), sizeof(struct tnode));
2144 if (trie_local) {
2145 seq_printf(seq, "Local:\n");
2146 trie_collect_stats(trie_local, stat);
2147 trie_show_stats(seq, stat);
2150 if (trie_main) {
2151 seq_printf(seq, "Main:\n");
2152 trie_collect_stats(trie_main, stat);
2153 trie_show_stats(seq, stat);
2155 kfree(stat);
2157 return 0;
2160 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2162 return single_open(file, fib_triestat_seq_show, NULL);
2165 static struct file_operations fib_triestat_fops = {
2166 .owner = THIS_MODULE,
2167 .open = fib_triestat_seq_open,
2168 .read = seq_read,
2169 .llseek = seq_lseek,
2170 .release = single_release,
2173 static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2174 loff_t pos)
2176 loff_t idx = 0;
2177 struct node *n;
2179 for (n = fib_trie_get_first(iter, trie_local);
2180 n; ++idx, n = fib_trie_get_next(iter)) {
2181 if (pos == idx)
2182 return n;
2185 for (n = fib_trie_get_first(iter, trie_main);
2186 n; ++idx, n = fib_trie_get_next(iter)) {
2187 if (pos == idx)
2188 return n;
2190 return NULL;
2193 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2195 rcu_read_lock();
2196 if (*pos == 0)
2197 return SEQ_START_TOKEN;
2198 return fib_trie_get_idx(seq->private, *pos - 1);
2201 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2203 struct fib_trie_iter *iter = seq->private;
2204 void *l = v;
2206 ++*pos;
2207 if (v == SEQ_START_TOKEN)
2208 return fib_trie_get_idx(iter, 0);
2210 v = fib_trie_get_next(iter);
2211 BUG_ON(v == l);
2212 if (v)
2213 return v;
2215 /* continue scan in next trie */
2216 if (iter->trie == trie_local)
2217 return fib_trie_get_first(iter, trie_main);
2219 return NULL;
2222 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2224 rcu_read_unlock();
2227 static void seq_indent(struct seq_file *seq, int n)
2229 while (n-- > 0) seq_puts(seq, " ");
2232 static inline const char *rtn_scope(enum rt_scope_t s)
2234 static char buf[32];
2236 switch(s) {
2237 case RT_SCOPE_UNIVERSE: return "universe";
2238 case RT_SCOPE_SITE: return "site";
2239 case RT_SCOPE_LINK: return "link";
2240 case RT_SCOPE_HOST: return "host";
2241 case RT_SCOPE_NOWHERE: return "nowhere";
2242 default:
2243 snprintf(buf, sizeof(buf), "scope=%d", s);
2244 return buf;
2248 static const char *rtn_type_names[__RTN_MAX] = {
2249 [RTN_UNSPEC] = "UNSPEC",
2250 [RTN_UNICAST] = "UNICAST",
2251 [RTN_LOCAL] = "LOCAL",
2252 [RTN_BROADCAST] = "BROADCAST",
2253 [RTN_ANYCAST] = "ANYCAST",
2254 [RTN_MULTICAST] = "MULTICAST",
2255 [RTN_BLACKHOLE] = "BLACKHOLE",
2256 [RTN_UNREACHABLE] = "UNREACHABLE",
2257 [RTN_PROHIBIT] = "PROHIBIT",
2258 [RTN_THROW] = "THROW",
2259 [RTN_NAT] = "NAT",
2260 [RTN_XRESOLVE] = "XRESOLVE",
2263 static inline const char *rtn_type(unsigned t)
2265 static char buf[32];
2267 if (t < __RTN_MAX && rtn_type_names[t])
2268 return rtn_type_names[t];
2269 snprintf(buf, sizeof(buf), "type %d", t);
2270 return buf;
2273 /* Pretty print the trie */
2274 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2276 const struct fib_trie_iter *iter = seq->private;
2277 struct node *n = v;
2279 if (v == SEQ_START_TOKEN)
2280 return 0;
2282 if (IS_TNODE(n)) {
2283 struct tnode *tn = (struct tnode *) n;
2284 __be32 prf = htonl(MASK_PFX(tn->key, tn->pos));
2286 if (!NODE_PARENT(n)) {
2287 if (iter->trie == trie_local)
2288 seq_puts(seq, "<local>:\n");
2289 else
2290 seq_puts(seq, "<main>:\n");
2292 seq_indent(seq, iter->depth-1);
2293 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
2294 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2295 tn->empty_children);
2297 } else {
2298 struct leaf *l = (struct leaf *) n;
2299 int i;
2300 __be32 val = htonl(l->key);
2302 seq_indent(seq, iter->depth);
2303 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2304 for (i = 32; i >= 0; i--) {
2305 struct leaf_info *li = find_leaf_info(l, i);
2306 if (li) {
2307 struct fib_alias *fa;
2308 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2309 seq_indent(seq, iter->depth+1);
2310 seq_printf(seq, " /%d %s %s", i,
2311 rtn_scope(fa->fa_scope),
2312 rtn_type(fa->fa_type));
2313 if (fa->fa_tos)
2314 seq_printf(seq, "tos =%d\n",
2315 fa->fa_tos);
2316 seq_putc(seq, '\n');
2322 return 0;
2325 static struct seq_operations fib_trie_seq_ops = {
2326 .start = fib_trie_seq_start,
2327 .next = fib_trie_seq_next,
2328 .stop = fib_trie_seq_stop,
2329 .show = fib_trie_seq_show,
2332 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2334 struct seq_file *seq;
2335 int rc = -ENOMEM;
2336 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
2338 if (!s)
2339 goto out;
2341 rc = seq_open(file, &fib_trie_seq_ops);
2342 if (rc)
2343 goto out_kfree;
2345 seq = file->private_data;
2346 seq->private = s;
2347 memset(s, 0, sizeof(*s));
2348 out:
2349 return rc;
2350 out_kfree:
2351 kfree(s);
2352 goto out;
2355 static struct file_operations fib_trie_fops = {
2356 .owner = THIS_MODULE,
2357 .open = fib_trie_seq_open,
2358 .read = seq_read,
2359 .llseek = seq_lseek,
2360 .release = seq_release_private,
2363 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2365 static unsigned type2flags[RTN_MAX + 1] = {
2366 [7] = RTF_REJECT, [8] = RTF_REJECT,
2368 unsigned flags = type2flags[type];
2370 if (fi && fi->fib_nh->nh_gw)
2371 flags |= RTF_GATEWAY;
2372 if (mask == htonl(0xFFFFFFFF))
2373 flags |= RTF_HOST;
2374 flags |= RTF_UP;
2375 return flags;
2379 * This outputs /proc/net/route.
2380 * The format of the file is not supposed to be changed
2381 * and needs to be same as fib_hash output to avoid breaking
2382 * legacy utilities
2384 static int fib_route_seq_show(struct seq_file *seq, void *v)
2386 const struct fib_trie_iter *iter = seq->private;
2387 struct leaf *l = v;
2388 int i;
2389 char bf[128];
2391 if (v == SEQ_START_TOKEN) {
2392 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2393 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2394 "\tWindow\tIRTT");
2395 return 0;
2398 if (iter->trie == trie_local)
2399 return 0;
2400 if (IS_TNODE(l))
2401 return 0;
2403 for (i=32; i>=0; i--) {
2404 struct leaf_info *li = find_leaf_info(l, i);
2405 struct fib_alias *fa;
2406 __be32 mask, prefix;
2408 if (!li)
2409 continue;
2411 mask = inet_make_mask(li->plen);
2412 prefix = htonl(l->key);
2414 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2415 const struct fib_info *fi = fa->fa_info;
2416 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2418 if (fa->fa_type == RTN_BROADCAST
2419 || fa->fa_type == RTN_MULTICAST)
2420 continue;
2422 if (fi)
2423 snprintf(bf, sizeof(bf),
2424 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2425 fi->fib_dev ? fi->fib_dev->name : "*",
2426 prefix,
2427 fi->fib_nh->nh_gw, flags, 0, 0,
2428 fi->fib_priority,
2429 mask,
2430 (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
2431 fi->fib_window,
2432 fi->fib_rtt >> 3);
2433 else
2434 snprintf(bf, sizeof(bf),
2435 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2436 prefix, 0, flags, 0, 0, 0,
2437 mask, 0, 0, 0);
2439 seq_printf(seq, "%-127s\n", bf);
2443 return 0;
2446 static struct seq_operations fib_route_seq_ops = {
2447 .start = fib_trie_seq_start,
2448 .next = fib_trie_seq_next,
2449 .stop = fib_trie_seq_stop,
2450 .show = fib_route_seq_show,
2453 static int fib_route_seq_open(struct inode *inode, struct file *file)
2455 struct seq_file *seq;
2456 int rc = -ENOMEM;
2457 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
2459 if (!s)
2460 goto out;
2462 rc = seq_open(file, &fib_route_seq_ops);
2463 if (rc)
2464 goto out_kfree;
2466 seq = file->private_data;
2467 seq->private = s;
2468 memset(s, 0, sizeof(*s));
2469 out:
2470 return rc;
2471 out_kfree:
2472 kfree(s);
2473 goto out;
2476 static struct file_operations fib_route_fops = {
2477 .owner = THIS_MODULE,
2478 .open = fib_route_seq_open,
2479 .read = seq_read,
2480 .llseek = seq_lseek,
2481 .release = seq_release_private,
2484 int __init fib_proc_init(void)
2486 if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_fops))
2487 goto out1;
2489 if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_fops))
2490 goto out2;
2492 if (!proc_net_fops_create("route", S_IRUGO, &fib_route_fops))
2493 goto out3;
2495 return 0;
2497 out3:
2498 proc_net_remove("fib_triestat");
2499 out2:
2500 proc_net_remove("fib_trie");
2501 out1:
2502 return -ENOMEM;
2505 void __init fib_proc_exit(void)
2507 proc_net_remove("fib_trie");
2508 proc_net_remove("fib_triestat");
2509 proc_net_remove("route");
2512 #endif /* CONFIG_PROC_FS */