spi: spi_bfin: handle multiple spi_masters
[pv_ops_mirror.git] / drivers / rtc / rtc-sh.c
blob8e8c8b8e81ee8ae934a0966380de7e2de1e68cd0
1 /*
2 * SuperH On-Chip RTC Support
4 * Copyright (C) 2006, 2007 Paul Mundt
5 * Copyright (C) 2006 Jamie Lenehan
7 * Based on the old arch/sh/kernel/cpu/rtc.c by:
9 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
10 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file "COPYING" in the main directory of this archive
14 * for more details.
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/bcd.h>
19 #include <linux/rtc.h>
20 #include <linux/init.h>
21 #include <linux/platform_device.h>
22 #include <linux/seq_file.h>
23 #include <linux/interrupt.h>
24 #include <linux/spinlock.h>
25 #include <linux/io.h>
26 #include <asm/rtc.h>
28 #define DRV_NAME "sh-rtc"
29 #define DRV_VERSION "0.1.3"
31 #ifdef CONFIG_CPU_SH3
32 #define rtc_reg_size sizeof(u16)
33 #define RTC_BIT_INVERTED 0 /* No bug on SH7708, SH7709A */
34 #define RTC_DEF_CAPABILITIES 0UL
35 #elif defined(CONFIG_CPU_SH4)
36 #define rtc_reg_size sizeof(u32)
37 #define RTC_BIT_INVERTED 0x40 /* bug on SH7750, SH7750S */
38 #define RTC_DEF_CAPABILITIES RTC_CAP_4_DIGIT_YEAR
39 #endif
41 #define RTC_REG(r) ((r) * rtc_reg_size)
43 #define R64CNT RTC_REG(0)
45 #define RSECCNT RTC_REG(1) /* RTC sec */
46 #define RMINCNT RTC_REG(2) /* RTC min */
47 #define RHRCNT RTC_REG(3) /* RTC hour */
48 #define RWKCNT RTC_REG(4) /* RTC week */
49 #define RDAYCNT RTC_REG(5) /* RTC day */
50 #define RMONCNT RTC_REG(6) /* RTC month */
51 #define RYRCNT RTC_REG(7) /* RTC year */
52 #define RSECAR RTC_REG(8) /* ALARM sec */
53 #define RMINAR RTC_REG(9) /* ALARM min */
54 #define RHRAR RTC_REG(10) /* ALARM hour */
55 #define RWKAR RTC_REG(11) /* ALARM week */
56 #define RDAYAR RTC_REG(12) /* ALARM day */
57 #define RMONAR RTC_REG(13) /* ALARM month */
58 #define RCR1 RTC_REG(14) /* Control */
59 #define RCR2 RTC_REG(15) /* Control */
61 /* ALARM Bits - or with BCD encoded value */
62 #define AR_ENB 0x80 /* Enable for alarm cmp */
64 /* RCR1 Bits */
65 #define RCR1_CF 0x80 /* Carry Flag */
66 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
67 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
68 #define RCR1_AF 0x01 /* Alarm Flag */
70 /* RCR2 Bits */
71 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
72 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
73 #define RCR2_RTCEN 0x08 /* ENable RTC */
74 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
75 #define RCR2_RESET 0x02 /* Reset bit */
76 #define RCR2_START 0x01 /* Start bit */
78 struct sh_rtc {
79 void __iomem *regbase;
80 unsigned long regsize;
81 struct resource *res;
82 unsigned int alarm_irq, periodic_irq, carry_irq;
83 struct rtc_device *rtc_dev;
84 spinlock_t lock;
85 int rearm_aie;
86 unsigned long capabilities; /* See asm-sh/rtc.h for cap bits */
89 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
91 struct platform_device *pdev = to_platform_device(dev_id);
92 struct sh_rtc *rtc = platform_get_drvdata(pdev);
93 unsigned int tmp, events = 0;
95 spin_lock(&rtc->lock);
97 tmp = readb(rtc->regbase + RCR1);
98 tmp &= ~RCR1_CF;
100 if (rtc->rearm_aie) {
101 if (tmp & RCR1_AF)
102 tmp &= ~RCR1_AF; /* try to clear AF again */
103 else {
104 tmp |= RCR1_AIE; /* AF has cleared, rearm IRQ */
105 rtc->rearm_aie = 0;
109 writeb(tmp, rtc->regbase + RCR1);
111 rtc_update_irq(rtc->rtc_dev, 1, events);
113 spin_unlock(&rtc->lock);
115 return IRQ_HANDLED;
118 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
120 struct platform_device *pdev = to_platform_device(dev_id);
121 struct sh_rtc *rtc = platform_get_drvdata(pdev);
122 unsigned int tmp, events = 0;
124 spin_lock(&rtc->lock);
126 tmp = readb(rtc->regbase + RCR1);
129 * If AF is set then the alarm has triggered. If we clear AF while
130 * the alarm time still matches the RTC time then AF will
131 * immediately be set again, and if AIE is enabled then the alarm
132 * interrupt will immediately be retrigger. So we clear AIE here
133 * and use rtc->rearm_aie so that the carry interrupt will keep
134 * trying to clear AF and once it stays cleared it'll re-enable
135 * AIE.
137 if (tmp & RCR1_AF) {
138 events |= RTC_AF | RTC_IRQF;
140 tmp &= ~(RCR1_AF|RCR1_AIE);
142 writeb(tmp, rtc->regbase + RCR1);
144 rtc->rearm_aie = 1;
146 rtc_update_irq(rtc->rtc_dev, 1, events);
149 spin_unlock(&rtc->lock);
150 return IRQ_HANDLED;
153 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
155 struct platform_device *pdev = to_platform_device(dev_id);
156 struct sh_rtc *rtc = platform_get_drvdata(pdev);
158 spin_lock(&rtc->lock);
160 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
162 spin_unlock(&rtc->lock);
164 return IRQ_HANDLED;
167 static inline void sh_rtc_setpie(struct device *dev, unsigned int enable)
169 struct sh_rtc *rtc = dev_get_drvdata(dev);
170 unsigned int tmp;
172 spin_lock_irq(&rtc->lock);
174 tmp = readb(rtc->regbase + RCR2);
176 if (enable) {
177 tmp &= ~RCR2_PESMASK;
178 tmp |= RCR2_PEF | (2 << 4);
179 } else
180 tmp &= ~(RCR2_PESMASK | RCR2_PEF);
182 writeb(tmp, rtc->regbase + RCR2);
184 spin_unlock_irq(&rtc->lock);
187 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
189 struct sh_rtc *rtc = dev_get_drvdata(dev);
190 unsigned int tmp;
192 spin_lock_irq(&rtc->lock);
194 tmp = readb(rtc->regbase + RCR1);
196 if (!enable) {
197 tmp &= ~RCR1_AIE;
198 rtc->rearm_aie = 0;
199 } else if (rtc->rearm_aie == 0)
200 tmp |= RCR1_AIE;
202 writeb(tmp, rtc->regbase + RCR1);
204 spin_unlock_irq(&rtc->lock);
207 static int sh_rtc_open(struct device *dev)
209 struct sh_rtc *rtc = dev_get_drvdata(dev);
210 unsigned int tmp;
211 int ret;
213 tmp = readb(rtc->regbase + RCR1);
214 tmp &= ~RCR1_CF;
215 tmp |= RCR1_CIE;
216 writeb(tmp, rtc->regbase + RCR1);
218 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, IRQF_DISABLED,
219 "sh-rtc period", dev);
220 if (unlikely(ret)) {
221 dev_err(dev, "request period IRQ failed with %d, IRQ %d\n",
222 ret, rtc->periodic_irq);
223 return ret;
226 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, IRQF_DISABLED,
227 "sh-rtc carry", dev);
228 if (unlikely(ret)) {
229 dev_err(dev, "request carry IRQ failed with %d, IRQ %d\n",
230 ret, rtc->carry_irq);
231 free_irq(rtc->periodic_irq, dev);
232 goto err_bad_carry;
235 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, IRQF_DISABLED,
236 "sh-rtc alarm", dev);
237 if (unlikely(ret)) {
238 dev_err(dev, "request alarm IRQ failed with %d, IRQ %d\n",
239 ret, rtc->alarm_irq);
240 goto err_bad_alarm;
243 return 0;
245 err_bad_alarm:
246 free_irq(rtc->carry_irq, dev);
247 err_bad_carry:
248 free_irq(rtc->periodic_irq, dev);
250 return ret;
253 static void sh_rtc_release(struct device *dev)
255 struct sh_rtc *rtc = dev_get_drvdata(dev);
257 sh_rtc_setpie(dev, 0);
258 sh_rtc_setaie(dev, 0);
260 free_irq(rtc->periodic_irq, dev);
261 free_irq(rtc->carry_irq, dev);
262 free_irq(rtc->alarm_irq, dev);
265 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
267 struct sh_rtc *rtc = dev_get_drvdata(dev);
268 unsigned int tmp;
270 tmp = readb(rtc->regbase + RCR1);
271 seq_printf(seq, "carry_IRQ\t: %s\n",
272 (tmp & RCR1_CIE) ? "yes" : "no");
274 tmp = readb(rtc->regbase + RCR2);
275 seq_printf(seq, "periodic_IRQ\t: %s\n",
276 (tmp & RCR2_PEF) ? "yes" : "no");
278 return 0;
281 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
283 unsigned int ret = -ENOIOCTLCMD;
285 switch (cmd) {
286 case RTC_PIE_OFF:
287 case RTC_PIE_ON:
288 sh_rtc_setpie(dev, cmd == RTC_PIE_ON);
289 ret = 0;
290 break;
291 case RTC_AIE_OFF:
292 case RTC_AIE_ON:
293 sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
294 ret = 0;
295 break;
298 return ret;
301 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
303 struct platform_device *pdev = to_platform_device(dev);
304 struct sh_rtc *rtc = platform_get_drvdata(pdev);
305 unsigned int sec128, sec2, yr, yr100, cf_bit;
307 do {
308 unsigned int tmp;
310 spin_lock_irq(&rtc->lock);
312 tmp = readb(rtc->regbase + RCR1);
313 tmp &= ~RCR1_CF; /* Clear CF-bit */
314 tmp |= RCR1_CIE;
315 writeb(tmp, rtc->regbase + RCR1);
317 sec128 = readb(rtc->regbase + R64CNT);
319 tm->tm_sec = BCD2BIN(readb(rtc->regbase + RSECCNT));
320 tm->tm_min = BCD2BIN(readb(rtc->regbase + RMINCNT));
321 tm->tm_hour = BCD2BIN(readb(rtc->regbase + RHRCNT));
322 tm->tm_wday = BCD2BIN(readb(rtc->regbase + RWKCNT));
323 tm->tm_mday = BCD2BIN(readb(rtc->regbase + RDAYCNT));
324 tm->tm_mon = BCD2BIN(readb(rtc->regbase + RMONCNT)) - 1;
326 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
327 yr = readw(rtc->regbase + RYRCNT);
328 yr100 = BCD2BIN(yr >> 8);
329 yr &= 0xff;
330 } else {
331 yr = readb(rtc->regbase + RYRCNT);
332 yr100 = BCD2BIN((yr == 0x99) ? 0x19 : 0x20);
335 tm->tm_year = (yr100 * 100 + BCD2BIN(yr)) - 1900;
337 sec2 = readb(rtc->regbase + R64CNT);
338 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
340 spin_unlock_irq(&rtc->lock);
341 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
343 #if RTC_BIT_INVERTED != 0
344 if ((sec128 & RTC_BIT_INVERTED))
345 tm->tm_sec--;
346 #endif
348 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
349 "mday=%d, mon=%d, year=%d, wday=%d\n",
350 __FUNCTION__,
351 tm->tm_sec, tm->tm_min, tm->tm_hour,
352 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
354 if (rtc_valid_tm(tm) < 0) {
355 dev_err(dev, "invalid date\n");
356 rtc_time_to_tm(0, tm);
359 return 0;
362 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
364 struct platform_device *pdev = to_platform_device(dev);
365 struct sh_rtc *rtc = platform_get_drvdata(pdev);
366 unsigned int tmp;
367 int year;
369 spin_lock_irq(&rtc->lock);
371 /* Reset pre-scaler & stop RTC */
372 tmp = readb(rtc->regbase + RCR2);
373 tmp |= RCR2_RESET;
374 tmp &= ~RCR2_START;
375 writeb(tmp, rtc->regbase + RCR2);
377 writeb(BIN2BCD(tm->tm_sec), rtc->regbase + RSECCNT);
378 writeb(BIN2BCD(tm->tm_min), rtc->regbase + RMINCNT);
379 writeb(BIN2BCD(tm->tm_hour), rtc->regbase + RHRCNT);
380 writeb(BIN2BCD(tm->tm_wday), rtc->regbase + RWKCNT);
381 writeb(BIN2BCD(tm->tm_mday), rtc->regbase + RDAYCNT);
382 writeb(BIN2BCD(tm->tm_mon + 1), rtc->regbase + RMONCNT);
384 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
385 year = (BIN2BCD((tm->tm_year + 1900) / 100) << 8) |
386 BIN2BCD(tm->tm_year % 100);
387 writew(year, rtc->regbase + RYRCNT);
388 } else {
389 year = tm->tm_year % 100;
390 writeb(BIN2BCD(year), rtc->regbase + RYRCNT);
393 /* Start RTC */
394 tmp = readb(rtc->regbase + RCR2);
395 tmp &= ~RCR2_RESET;
396 tmp |= RCR2_RTCEN | RCR2_START;
397 writeb(tmp, rtc->regbase + RCR2);
399 spin_unlock_irq(&rtc->lock);
401 return 0;
404 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
406 unsigned int byte;
407 int value = 0xff; /* return 0xff for ignored values */
409 byte = readb(rtc->regbase + reg_off);
410 if (byte & AR_ENB) {
411 byte &= ~AR_ENB; /* strip the enable bit */
412 value = BCD2BIN(byte);
415 return value;
418 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
420 struct platform_device *pdev = to_platform_device(dev);
421 struct sh_rtc *rtc = platform_get_drvdata(pdev);
422 struct rtc_time* tm = &wkalrm->time;
424 spin_lock_irq(&rtc->lock);
426 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
427 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
428 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
429 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
430 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
431 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
432 if (tm->tm_mon > 0)
433 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
434 tm->tm_year = 0xffff;
436 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
438 spin_unlock_irq(&rtc->lock);
440 return 0;
443 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
444 int value, int reg_off)
446 /* < 0 for a value that is ignored */
447 if (value < 0)
448 writeb(0, rtc->regbase + reg_off);
449 else
450 writeb(BIN2BCD(value) | AR_ENB, rtc->regbase + reg_off);
453 static int sh_rtc_check_alarm(struct rtc_time* tm)
456 * The original rtc says anything > 0xc0 is "don't care" or "match
457 * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
458 * The original rtc doesn't support years - some things use -1 and
459 * some 0xffff. We use -1 to make out tests easier.
461 if (tm->tm_year == 0xffff)
462 tm->tm_year = -1;
463 if (tm->tm_mon >= 0xff)
464 tm->tm_mon = -1;
465 if (tm->tm_mday >= 0xff)
466 tm->tm_mday = -1;
467 if (tm->tm_wday >= 0xff)
468 tm->tm_wday = -1;
469 if (tm->tm_hour >= 0xff)
470 tm->tm_hour = -1;
471 if (tm->tm_min >= 0xff)
472 tm->tm_min = -1;
473 if (tm->tm_sec >= 0xff)
474 tm->tm_sec = -1;
476 if (tm->tm_year > 9999 ||
477 tm->tm_mon >= 12 ||
478 tm->tm_mday == 0 || tm->tm_mday >= 32 ||
479 tm->tm_wday >= 7 ||
480 tm->tm_hour >= 24 ||
481 tm->tm_min >= 60 ||
482 tm->tm_sec >= 60)
483 return -EINVAL;
485 return 0;
488 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
490 struct platform_device *pdev = to_platform_device(dev);
491 struct sh_rtc *rtc = platform_get_drvdata(pdev);
492 unsigned int rcr1;
493 struct rtc_time *tm = &wkalrm->time;
494 int mon, err;
496 err = sh_rtc_check_alarm(tm);
497 if (unlikely(err < 0))
498 return err;
500 spin_lock_irq(&rtc->lock);
502 /* disable alarm interrupt and clear the alarm flag */
503 rcr1 = readb(rtc->regbase + RCR1);
504 rcr1 &= ~(RCR1_AF|RCR1_AIE);
505 writeb(rcr1, rtc->regbase + RCR1);
507 rtc->rearm_aie = 0;
509 /* set alarm time */
510 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR);
511 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR);
512 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
513 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
514 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
515 mon = tm->tm_mon;
516 if (mon >= 0)
517 mon += 1;
518 sh_rtc_write_alarm_value(rtc, mon, RMONAR);
520 if (wkalrm->enabled) {
521 rcr1 |= RCR1_AIE;
522 writeb(rcr1, rtc->regbase + RCR1);
525 spin_unlock_irq(&rtc->lock);
527 return 0;
530 static struct rtc_class_ops sh_rtc_ops = {
531 .open = sh_rtc_open,
532 .release = sh_rtc_release,
533 .ioctl = sh_rtc_ioctl,
534 .read_time = sh_rtc_read_time,
535 .set_time = sh_rtc_set_time,
536 .read_alarm = sh_rtc_read_alarm,
537 .set_alarm = sh_rtc_set_alarm,
538 .proc = sh_rtc_proc,
541 static int __devinit sh_rtc_probe(struct platform_device *pdev)
543 struct sh_rtc *rtc;
544 struct resource *res;
545 int ret = -ENOENT;
547 rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
548 if (unlikely(!rtc))
549 return -ENOMEM;
551 spin_lock_init(&rtc->lock);
553 rtc->periodic_irq = platform_get_irq(pdev, 0);
554 if (unlikely(rtc->periodic_irq < 0)) {
555 dev_err(&pdev->dev, "No IRQ for period\n");
556 goto err_badres;
559 rtc->carry_irq = platform_get_irq(pdev, 1);
560 if (unlikely(rtc->carry_irq < 0)) {
561 dev_err(&pdev->dev, "No IRQ for carry\n");
562 goto err_badres;
565 rtc->alarm_irq = platform_get_irq(pdev, 2);
566 if (unlikely(rtc->alarm_irq < 0)) {
567 dev_err(&pdev->dev, "No IRQ for alarm\n");
568 goto err_badres;
571 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
572 if (unlikely(res == NULL)) {
573 dev_err(&pdev->dev, "No IO resource\n");
574 goto err_badres;
577 rtc->regsize = res->end - res->start + 1;
579 rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
580 if (unlikely(!rtc->res)) {
581 ret = -EBUSY;
582 goto err_badres;
585 rtc->regbase = (void __iomem *)rtc->res->start;
586 if (unlikely(!rtc->regbase)) {
587 ret = -EINVAL;
588 goto err_badmap;
591 rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
592 &sh_rtc_ops, THIS_MODULE);
593 if (IS_ERR(rtc->rtc_dev)) {
594 ret = PTR_ERR(rtc->rtc_dev);
595 goto err_badmap;
598 rtc->capabilities = RTC_DEF_CAPABILITIES;
599 if (pdev->dev.platform_data) {
600 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
603 * Some CPUs have special capabilities in addition to the
604 * default set. Add those in here.
606 rtc->capabilities |= pinfo->capabilities;
609 platform_set_drvdata(pdev, rtc);
611 return 0;
613 err_badmap:
614 release_resource(rtc->res);
615 err_badres:
616 kfree(rtc);
618 return ret;
621 static int __devexit sh_rtc_remove(struct platform_device *pdev)
623 struct sh_rtc *rtc = platform_get_drvdata(pdev);
625 if (likely(rtc->rtc_dev))
626 rtc_device_unregister(rtc->rtc_dev);
628 sh_rtc_setpie(&pdev->dev, 0);
629 sh_rtc_setaie(&pdev->dev, 0);
631 release_resource(rtc->res);
633 platform_set_drvdata(pdev, NULL);
635 kfree(rtc);
637 return 0;
639 static struct platform_driver sh_rtc_platform_driver = {
640 .driver = {
641 .name = DRV_NAME,
642 .owner = THIS_MODULE,
644 .probe = sh_rtc_probe,
645 .remove = __devexit_p(sh_rtc_remove),
648 static int __init sh_rtc_init(void)
650 return platform_driver_register(&sh_rtc_platform_driver);
653 static void __exit sh_rtc_exit(void)
655 platform_driver_unregister(&sh_rtc_platform_driver);
658 module_init(sh_rtc_init);
659 module_exit(sh_rtc_exit);
661 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
662 MODULE_VERSION(DRV_VERSION);
663 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, Jamie Lenehan <lenehan@twibble.org>");
664 MODULE_LICENSE("GPL");