ps3fb: kill superfluous zero initializations
[pv_ops_mirror.git] / drivers / scsi / wd33c93.c
blobfa4e08e508ad68b35c7c2d490e0639c64f7c4384
1 /*
2 * Copyright (c) 1996 John Shifflett, GeoLog Consulting
3 * john@geolog.com
4 * jshiffle@netcom.com
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2, or (at your option)
9 * any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
18 * Drew Eckhardt's excellent 'Generic NCR5380' sources from Linux-PC
19 * provided much of the inspiration and some of the code for this
20 * driver. Everything I know about Amiga DMA was gleaned from careful
21 * reading of Hamish Mcdonald's original wd33c93 driver; in fact, I
22 * borrowed shamelessly from all over that source. Thanks Hamish!
24 * _This_ driver is (I feel) an improvement over the old one in
25 * several respects:
27 * - Target Disconnection/Reconnection is now supported. Any
28 * system with more than one device active on the SCSI bus
29 * will benefit from this. The driver defaults to what I
30 * call 'adaptive disconnect' - meaning that each command
31 * is evaluated individually as to whether or not it should
32 * be run with the option to disconnect/reselect (if the
33 * device chooses), or as a "SCSI-bus-hog".
35 * - Synchronous data transfers are now supported. Because of
36 * a few devices that choke after telling the driver that
37 * they can do sync transfers, we don't automatically use
38 * this faster protocol - it can be enabled via the command-
39 * line on a device-by-device basis.
41 * - Runtime operating parameters can now be specified through
42 * the 'amiboot' or the 'insmod' command line. For amiboot do:
43 * "amiboot [usual stuff] wd33c93=blah,blah,blah"
44 * The defaults should be good for most people. See the comment
45 * for 'setup_strings' below for more details.
47 * - The old driver relied exclusively on what the Western Digital
48 * docs call "Combination Level 2 Commands", which are a great
49 * idea in that the CPU is relieved of a lot of interrupt
50 * overhead. However, by accepting a certain (user-settable)
51 * amount of additional interrupts, this driver achieves
52 * better control over the SCSI bus, and data transfers are
53 * almost as fast while being much easier to define, track,
54 * and debug.
57 * TODO:
58 * more speed. linked commands.
61 * People with bug reports, wish-lists, complaints, comments,
62 * or improvements are asked to pah-leeez email me (John Shifflett)
63 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
64 * this thing into as good a shape as possible, and I'm positive
65 * there are lots of lurking bugs and "Stupid Places".
67 * Updates:
69 * Added support for pre -A chips, which don't have advanced features
70 * and will generate CSR_RESEL rather than CSR_RESEL_AM.
71 * Richard Hirst <richard@sleepie.demon.co.uk> August 2000
73 * Added support for Burst Mode DMA and Fast SCSI. Enabled the use of
74 * default_sx_per for asynchronous data transfers. Added adjustment
75 * of transfer periods in sx_table to the actual input-clock.
76 * peter fuerst <post@pfrst.de> February 2007
79 #include <linux/module.h>
81 #include <linux/string.h>
82 #include <linux/delay.h>
83 #include <linux/init.h>
84 #include <linux/interrupt.h>
85 #include <linux/blkdev.h>
87 #include <scsi/scsi.h>
88 #include <scsi/scsi_cmnd.h>
89 #include <scsi/scsi_device.h>
90 #include <scsi/scsi_host.h>
92 #include "wd33c93.h"
94 #define optimum_sx_per(hostdata) (hostdata)->sx_table[1].period_ns
97 #define WD33C93_VERSION "1.26++"
98 #define WD33C93_DATE "10/Feb/2007"
100 MODULE_AUTHOR("John Shifflett");
101 MODULE_DESCRIPTION("Generic WD33C93 SCSI driver");
102 MODULE_LICENSE("GPL");
105 * 'setup_strings' is a single string used to pass operating parameters and
106 * settings from the kernel/module command-line to the driver. 'setup_args[]'
107 * is an array of strings that define the compile-time default values for
108 * these settings. If Linux boots with an amiboot or insmod command-line,
109 * those settings are combined with 'setup_args[]'. Note that amiboot
110 * command-lines are prefixed with "wd33c93=" while insmod uses a
111 * "setup_strings=" prefix. The driver recognizes the following keywords
112 * (lower case required) and arguments:
114 * - nosync:bitmask -bitmask is a byte where the 1st 7 bits correspond with
115 * the 7 possible SCSI devices. Set a bit to negotiate for
116 * asynchronous transfers on that device. To maintain
117 * backwards compatibility, a command-line such as
118 * "wd33c93=255" will be automatically translated to
119 * "wd33c93=nosync:0xff".
120 * - nodma:x -x = 1 to disable DMA, x = 0 to enable it. Argument is
121 * optional - if not present, same as "nodma:1".
122 * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer
123 * period. Default is 500; acceptable values are 250 - 1000.
124 * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them.
125 * x = 1 does 'adaptive' disconnects, which is the default
126 * and generally the best choice.
127 * - debug:x -If 'DEBUGGING_ON' is defined, x is a bit mask that causes
128 * various types of debug output to printed - see the DB_xxx
129 * defines in wd33c93.h
130 * - clock:x -x = clock input in MHz for WD33c93 chip. Normal values
131 * would be from 8 through 20. Default is 8.
132 * - burst:x -x = 1 to use Burst Mode (or Demand-Mode) DMA, x = 0 to use
133 * Single Byte DMA, which is the default. Argument is
134 * optional - if not present, same as "burst:1".
135 * - fast:x -x = 1 to enable Fast SCSI, which is only effective with
136 * input-clock divisor 4 (WD33C93_FS_16_20), x = 0 to disable
137 * it, which is the default. Argument is optional - if not
138 * present, same as "fast:1".
139 * - next -No argument. Used to separate blocks of keywords when
140 * there's more than one host adapter in the system.
142 * Syntax Notes:
143 * - Numeric arguments can be decimal or the '0x' form of hex notation. There
144 * _must_ be a colon between a keyword and its numeric argument, with no
145 * spaces.
146 * - Keywords are separated by commas, no spaces, in the standard kernel
147 * command-line manner.
148 * - A keyword in the 'nth' comma-separated command-line member will overwrite
149 * the 'nth' element of setup_args[]. A blank command-line member (in
150 * other words, a comma with no preceding keyword) will _not_ overwrite
151 * the corresponding setup_args[] element.
152 * - If a keyword is used more than once, the first one applies to the first
153 * SCSI host found, the second to the second card, etc, unless the 'next'
154 * keyword is used to change the order.
156 * Some amiboot examples (for insmod, use 'setup_strings' instead of 'wd33c93'):
157 * - wd33c93=nosync:255
158 * - wd33c93=nodma
159 * - wd33c93=nodma:1
160 * - wd33c93=disconnect:2,nosync:0x08,period:250
161 * - wd33c93=debug:0x1c
164 /* Normally, no defaults are specified */
165 static char *setup_args[] = { "", "", "", "", "", "", "", "", "", "" };
167 static char *setup_strings;
168 module_param(setup_strings, charp, 0);
170 static void wd33c93_execute(struct Scsi_Host *instance);
172 #ifdef CONFIG_WD33C93_PIO
173 static inline uchar
174 read_wd33c93(const wd33c93_regs regs, uchar reg_num)
176 uchar data;
178 outb(reg_num, regs.SASR);
179 data = inb(regs.SCMD);
180 return data;
183 static inline unsigned long
184 read_wd33c93_count(const wd33c93_regs regs)
186 unsigned long value;
188 outb(WD_TRANSFER_COUNT_MSB, regs.SASR);
189 value = inb(regs.SCMD) << 16;
190 value |= inb(regs.SCMD) << 8;
191 value |= inb(regs.SCMD);
192 return value;
195 static inline uchar
196 read_aux_stat(const wd33c93_regs regs)
198 return inb(regs.SASR);
201 static inline void
202 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
204 outb(reg_num, regs.SASR);
205 outb(value, regs.SCMD);
208 static inline void
209 write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
211 outb(WD_TRANSFER_COUNT_MSB, regs.SASR);
212 outb((value >> 16) & 0xff, regs.SCMD);
213 outb((value >> 8) & 0xff, regs.SCMD);
214 outb( value & 0xff, regs.SCMD);
217 #define write_wd33c93_cmd(regs, cmd) \
218 write_wd33c93((regs), WD_COMMAND, (cmd))
220 static inline void
221 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
223 int i;
225 outb(WD_CDB_1, regs.SASR);
226 for (i=0; i<len; i++)
227 outb(cmnd[i], regs.SCMD);
230 #else /* CONFIG_WD33C93_PIO */
231 static inline uchar
232 read_wd33c93(const wd33c93_regs regs, uchar reg_num)
234 *regs.SASR = reg_num;
235 mb();
236 return (*regs.SCMD);
239 static unsigned long
240 read_wd33c93_count(const wd33c93_regs regs)
242 unsigned long value;
244 *regs.SASR = WD_TRANSFER_COUNT_MSB;
245 mb();
246 value = *regs.SCMD << 16;
247 value |= *regs.SCMD << 8;
248 value |= *regs.SCMD;
249 mb();
250 return value;
253 static inline uchar
254 read_aux_stat(const wd33c93_regs regs)
256 return *regs.SASR;
259 static inline void
260 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
262 *regs.SASR = reg_num;
263 mb();
264 *regs.SCMD = value;
265 mb();
268 static void
269 write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
271 *regs.SASR = WD_TRANSFER_COUNT_MSB;
272 mb();
273 *regs.SCMD = value >> 16;
274 *regs.SCMD = value >> 8;
275 *regs.SCMD = value;
276 mb();
279 static inline void
280 write_wd33c93_cmd(const wd33c93_regs regs, uchar cmd)
282 *regs.SASR = WD_COMMAND;
283 mb();
284 *regs.SCMD = cmd;
285 mb();
288 static inline void
289 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
291 int i;
293 *regs.SASR = WD_CDB_1;
294 for (i = 0; i < len; i++)
295 *regs.SCMD = cmnd[i];
297 #endif /* CONFIG_WD33C93_PIO */
299 static inline uchar
300 read_1_byte(const wd33c93_regs regs)
302 uchar asr;
303 uchar x = 0;
305 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
306 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO | 0x80);
307 do {
308 asr = read_aux_stat(regs);
309 if (asr & ASR_DBR)
310 x = read_wd33c93(regs, WD_DATA);
311 } while (!(asr & ASR_INT));
312 return x;
315 static int
316 round_period(unsigned int period, const struct sx_period *sx_table)
318 int x;
320 for (x = 1; sx_table[x].period_ns; x++) {
321 if ((period <= sx_table[x - 0].period_ns) &&
322 (period > sx_table[x - 1].period_ns)) {
323 return x;
326 return 7;
330 * Calculate Synchronous Transfer Register value from SDTR code.
332 static uchar
333 calc_sync_xfer(unsigned int period, unsigned int offset, unsigned int fast,
334 const struct sx_period *sx_table)
336 /* When doing Fast SCSI synchronous data transfers, the corresponding
337 * value in 'sx_table' is two times the actually used transfer period.
339 uchar result;
341 if (offset && fast) {
342 fast = STR_FSS;
343 period *= 2;
344 } else {
345 fast = 0;
347 period *= 4; /* convert SDTR code to ns */
348 result = sx_table[round_period(period,sx_table)].reg_value;
349 result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF;
350 result |= fast;
351 return result;
355 * Calculate SDTR code bytes [3],[4] from period and offset.
357 static inline void
358 calc_sync_msg(unsigned int period, unsigned int offset, unsigned int fast,
359 uchar msg[2])
361 /* 'period' is a "normal"-mode value, like the ones in 'sx_table'. The
362 * actually used transfer period for Fast SCSI synchronous data
363 * transfers is half that value.
365 period /= 4;
366 if (offset && fast)
367 period /= 2;
368 msg[0] = period;
369 msg[1] = offset;
373 wd33c93_queuecommand(struct scsi_cmnd *cmd,
374 void (*done)(struct scsi_cmnd *))
376 struct WD33C93_hostdata *hostdata;
377 struct scsi_cmnd *tmp;
379 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;
381 DB(DB_QUEUE_COMMAND,
382 printk("Q-%d-%02x-%ld( ", cmd->device->id, cmd->cmnd[0], cmd->pid))
384 /* Set up a few fields in the scsi_cmnd structure for our own use:
385 * - host_scribble is the pointer to the next cmd in the input queue
386 * - scsi_done points to the routine we call when a cmd is finished
387 * - result is what you'd expect
389 cmd->host_scribble = NULL;
390 cmd->scsi_done = done;
391 cmd->result = 0;
393 /* We use the Scsi_Pointer structure that's included with each command
394 * as a scratchpad (as it's intended to be used!). The handy thing about
395 * the SCp.xxx fields is that they're always associated with a given
396 * cmd, and are preserved across disconnect-reselect. This means we
397 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
398 * if we keep all the critical pointers and counters in SCp:
399 * - SCp.ptr is the pointer into the RAM buffer
400 * - SCp.this_residual is the size of that buffer
401 * - SCp.buffer points to the current scatter-gather buffer
402 * - SCp.buffers_residual tells us how many S.G. buffers there are
403 * - SCp.have_data_in is not used
404 * - SCp.sent_command is not used
405 * - SCp.phase records this command's SRCID_ER bit setting
408 if (cmd->use_sg) {
409 cmd->SCp.buffer = (struct scatterlist *) cmd->request_buffer;
410 cmd->SCp.buffers_residual = cmd->use_sg - 1;
411 cmd->SCp.ptr = page_address(cmd->SCp.buffer->page) +
412 cmd->SCp.buffer->offset;
413 cmd->SCp.this_residual = cmd->SCp.buffer->length;
414 } else {
415 cmd->SCp.buffer = NULL;
416 cmd->SCp.buffers_residual = 0;
417 cmd->SCp.ptr = (char *) cmd->request_buffer;
418 cmd->SCp.this_residual = cmd->request_bufflen;
421 /* WD docs state that at the conclusion of a "LEVEL2" command, the
422 * status byte can be retrieved from the LUN register. Apparently,
423 * this is the case only for *uninterrupted* LEVEL2 commands! If
424 * there are any unexpected phases entered, even if they are 100%
425 * legal (different devices may choose to do things differently),
426 * the LEVEL2 command sequence is exited. This often occurs prior
427 * to receiving the status byte, in which case the driver does a
428 * status phase interrupt and gets the status byte on its own.
429 * While such a command can then be "resumed" (ie restarted to
430 * finish up as a LEVEL2 command), the LUN register will NOT be
431 * a valid status byte at the command's conclusion, and we must
432 * use the byte obtained during the earlier interrupt. Here, we
433 * preset SCp.Status to an illegal value (0xff) so that when
434 * this command finally completes, we can tell where the actual
435 * status byte is stored.
438 cmd->SCp.Status = ILLEGAL_STATUS_BYTE;
441 * Add the cmd to the end of 'input_Q'. Note that REQUEST SENSE
442 * commands are added to the head of the queue so that the desired
443 * sense data is not lost before REQUEST_SENSE executes.
446 spin_lock_irq(&hostdata->lock);
448 if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
449 cmd->host_scribble = (uchar *) hostdata->input_Q;
450 hostdata->input_Q = cmd;
451 } else { /* find the end of the queue */
452 for (tmp = (struct scsi_cmnd *) hostdata->input_Q;
453 tmp->host_scribble;
454 tmp = (struct scsi_cmnd *) tmp->host_scribble) ;
455 tmp->host_scribble = (uchar *) cmd;
458 /* We know that there's at least one command in 'input_Q' now.
459 * Go see if any of them are runnable!
462 wd33c93_execute(cmd->device->host);
464 DB(DB_QUEUE_COMMAND, printk(")Q-%ld ", cmd->pid))
466 spin_unlock_irq(&hostdata->lock);
467 return 0;
471 * This routine attempts to start a scsi command. If the host_card is
472 * already connected, we give up immediately. Otherwise, look through
473 * the input_Q, using the first command we find that's intended
474 * for a currently non-busy target/lun.
476 * wd33c93_execute() is always called with interrupts disabled or from
477 * the wd33c93_intr itself, which means that a wd33c93 interrupt
478 * cannot occur while we are in here.
480 static void
481 wd33c93_execute(struct Scsi_Host *instance)
483 struct WD33C93_hostdata *hostdata =
484 (struct WD33C93_hostdata *) instance->hostdata;
485 const wd33c93_regs regs = hostdata->regs;
486 struct scsi_cmnd *cmd, *prev;
488 DB(DB_EXECUTE, printk("EX("))
489 if (hostdata->selecting || hostdata->connected) {
490 DB(DB_EXECUTE, printk(")EX-0 "))
491 return;
495 * Search through the input_Q for a command destined
496 * for an idle target/lun.
499 cmd = (struct scsi_cmnd *) hostdata->input_Q;
500 prev = NULL;
501 while (cmd) {
502 if (!(hostdata->busy[cmd->device->id] & (1 << cmd->device->lun)))
503 break;
504 prev = cmd;
505 cmd = (struct scsi_cmnd *) cmd->host_scribble;
508 /* quit if queue empty or all possible targets are busy */
510 if (!cmd) {
511 DB(DB_EXECUTE, printk(")EX-1 "))
512 return;
515 /* remove command from queue */
517 if (prev)
518 prev->host_scribble = cmd->host_scribble;
519 else
520 hostdata->input_Q = (struct scsi_cmnd *) cmd->host_scribble;
522 #ifdef PROC_STATISTICS
523 hostdata->cmd_cnt[cmd->device->id]++;
524 #endif
527 * Start the selection process
530 if (cmd->sc_data_direction == DMA_TO_DEVICE)
531 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
532 else
533 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
535 /* Now we need to figure out whether or not this command is a good
536 * candidate for disconnect/reselect. We guess to the best of our
537 * ability, based on a set of hierarchical rules. When several
538 * devices are operating simultaneously, disconnects are usually
539 * an advantage. In a single device system, or if only 1 device
540 * is being accessed, transfers usually go faster if disconnects
541 * are not allowed:
543 * + Commands should NEVER disconnect if hostdata->disconnect =
544 * DIS_NEVER (this holds for tape drives also), and ALWAYS
545 * disconnect if hostdata->disconnect = DIS_ALWAYS.
546 * + Tape drive commands should always be allowed to disconnect.
547 * + Disconnect should be allowed if disconnected_Q isn't empty.
548 * + Commands should NOT disconnect if input_Q is empty.
549 * + Disconnect should be allowed if there are commands in input_Q
550 * for a different target/lun. In this case, the other commands
551 * should be made disconnect-able, if not already.
553 * I know, I know - this code would flunk me out of any
554 * "C Programming 101" class ever offered. But it's easy
555 * to change around and experiment with for now.
558 cmd->SCp.phase = 0; /* assume no disconnect */
559 if (hostdata->disconnect == DIS_NEVER)
560 goto no;
561 if (hostdata->disconnect == DIS_ALWAYS)
562 goto yes;
563 if (cmd->device->type == 1) /* tape drive? */
564 goto yes;
565 if (hostdata->disconnected_Q) /* other commands disconnected? */
566 goto yes;
567 if (!(hostdata->input_Q)) /* input_Q empty? */
568 goto no;
569 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
570 prev = (struct scsi_cmnd *) prev->host_scribble) {
571 if ((prev->device->id != cmd->device->id) ||
572 (prev->device->lun != cmd->device->lun)) {
573 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
574 prev = (struct scsi_cmnd *) prev->host_scribble)
575 prev->SCp.phase = 1;
576 goto yes;
580 goto no;
582 yes:
583 cmd->SCp.phase = 1;
585 #ifdef PROC_STATISTICS
586 hostdata->disc_allowed_cnt[cmd->device->id]++;
587 #endif
591 write_wd33c93(regs, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0));
593 write_wd33c93(regs, WD_TARGET_LUN, cmd->device->lun);
594 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
595 hostdata->sync_xfer[cmd->device->id]);
596 hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun);
598 if ((hostdata->level2 == L2_NONE) ||
599 (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) {
602 * Do a 'Select-With-ATN' command. This will end with
603 * one of the following interrupts:
604 * CSR_RESEL_AM: failure - can try again later.
605 * CSR_TIMEOUT: failure - give up.
606 * CSR_SELECT: success - proceed.
609 hostdata->selecting = cmd;
611 /* Every target has its own synchronous transfer setting, kept in the
612 * sync_xfer array, and a corresponding status byte in sync_stat[].
613 * Each target's sync_stat[] entry is initialized to SX_UNSET, and its
614 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
615 * means that the parameters are undetermined as yet, and that we
616 * need to send an SDTR message to this device after selection is
617 * complete: We set SS_FIRST to tell the interrupt routine to do so.
618 * If we've been asked not to try synchronous transfers on this
619 * target (and _all_ luns within it), we'll still send the SDTR message
620 * later, but at that time we'll negotiate for async by specifying a
621 * sync fifo depth of 0.
623 if (hostdata->sync_stat[cmd->device->id] == SS_UNSET)
624 hostdata->sync_stat[cmd->device->id] = SS_FIRST;
625 hostdata->state = S_SELECTING;
626 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
627 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN);
628 } else {
631 * Do a 'Select-With-ATN-Xfer' command. This will end with
632 * one of the following interrupts:
633 * CSR_RESEL_AM: failure - can try again later.
634 * CSR_TIMEOUT: failure - give up.
635 * anything else: success - proceed.
638 hostdata->connected = cmd;
639 write_wd33c93(regs, WD_COMMAND_PHASE, 0);
641 /* copy command_descriptor_block into WD chip
642 * (take advantage of auto-incrementing)
645 write_wd33c93_cdb(regs, cmd->cmd_len, cmd->cmnd);
647 /* The wd33c93 only knows about Group 0, 1, and 5 commands when
648 * it's doing a 'select-and-transfer'. To be safe, we write the
649 * size of the CDB into the OWN_ID register for every case. This
650 * way there won't be problems with vendor-unique, audio, etc.
653 write_wd33c93(regs, WD_OWN_ID, cmd->cmd_len);
655 /* When doing a non-disconnect command with DMA, we can save
656 * ourselves a DATA phase interrupt later by setting everything
657 * up ahead of time.
660 if ((cmd->SCp.phase == 0) && (hostdata->no_dma == 0)) {
661 if (hostdata->dma_setup(cmd,
662 (cmd->sc_data_direction == DMA_TO_DEVICE) ?
663 DATA_OUT_DIR : DATA_IN_DIR))
664 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
665 else {
666 write_wd33c93_count(regs,
667 cmd->SCp.this_residual);
668 write_wd33c93(regs, WD_CONTROL,
669 CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
670 hostdata->dma = D_DMA_RUNNING;
672 } else
673 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
675 hostdata->state = S_RUNNING_LEVEL2;
676 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
680 * Since the SCSI bus can handle only 1 connection at a time,
681 * we get out of here now. If the selection fails, or when
682 * the command disconnects, we'll come back to this routine
683 * to search the input_Q again...
686 DB(DB_EXECUTE,
687 printk("%s%ld)EX-2 ", (cmd->SCp.phase) ? "d:" : "", cmd->pid))
690 static void
691 transfer_pio(const wd33c93_regs regs, uchar * buf, int cnt,
692 int data_in_dir, struct WD33C93_hostdata *hostdata)
694 uchar asr;
696 DB(DB_TRANSFER,
697 printk("(%p,%d,%s:", buf, cnt, data_in_dir ? "in" : "out"))
699 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
700 write_wd33c93_count(regs, cnt);
701 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
702 if (data_in_dir) {
703 do {
704 asr = read_aux_stat(regs);
705 if (asr & ASR_DBR)
706 *buf++ = read_wd33c93(regs, WD_DATA);
707 } while (!(asr & ASR_INT));
708 } else {
709 do {
710 asr = read_aux_stat(regs);
711 if (asr & ASR_DBR)
712 write_wd33c93(regs, WD_DATA, *buf++);
713 } while (!(asr & ASR_INT));
716 /* Note: we are returning with the interrupt UN-cleared.
717 * Since (presumably) an entire I/O operation has
718 * completed, the bus phase is probably different, and
719 * the interrupt routine will discover this when it
720 * responds to the uncleared int.
725 static void
726 transfer_bytes(const wd33c93_regs regs, struct scsi_cmnd *cmd,
727 int data_in_dir)
729 struct WD33C93_hostdata *hostdata;
730 unsigned long length;
732 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;
734 /* Normally, you'd expect 'this_residual' to be non-zero here.
735 * In a series of scatter-gather transfers, however, this
736 * routine will usually be called with 'this_residual' equal
737 * to 0 and 'buffers_residual' non-zero. This means that a
738 * previous transfer completed, clearing 'this_residual', and
739 * now we need to setup the next scatter-gather buffer as the
740 * source or destination for THIS transfer.
742 if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) {
743 ++cmd->SCp.buffer;
744 --cmd->SCp.buffers_residual;
745 cmd->SCp.this_residual = cmd->SCp.buffer->length;
746 cmd->SCp.ptr = page_address(cmd->SCp.buffer->page) +
747 cmd->SCp.buffer->offset;
749 if (!cmd->SCp.this_residual) /* avoid bogus setups */
750 return;
752 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
753 hostdata->sync_xfer[cmd->device->id]);
755 /* 'hostdata->no_dma' is TRUE if we don't even want to try DMA.
756 * Update 'this_residual' and 'ptr' after 'transfer_pio()' returns.
759 if (hostdata->no_dma || hostdata->dma_setup(cmd, data_in_dir)) {
760 #ifdef PROC_STATISTICS
761 hostdata->pio_cnt++;
762 #endif
763 transfer_pio(regs, (uchar *) cmd->SCp.ptr,
764 cmd->SCp.this_residual, data_in_dir, hostdata);
765 length = cmd->SCp.this_residual;
766 cmd->SCp.this_residual = read_wd33c93_count(regs);
767 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
770 /* We are able to do DMA (in fact, the Amiga hardware is
771 * already going!), so start up the wd33c93 in DMA mode.
772 * We set 'hostdata->dma' = D_DMA_RUNNING so that when the
773 * transfer completes and causes an interrupt, we're
774 * reminded to tell the Amiga to shut down its end. We'll
775 * postpone the updating of 'this_residual' and 'ptr'
776 * until then.
779 else {
780 #ifdef PROC_STATISTICS
781 hostdata->dma_cnt++;
782 #endif
783 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
784 write_wd33c93_count(regs, cmd->SCp.this_residual);
786 if ((hostdata->level2 >= L2_DATA) ||
787 (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
788 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
789 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
790 hostdata->state = S_RUNNING_LEVEL2;
791 } else
792 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
794 hostdata->dma = D_DMA_RUNNING;
798 void
799 wd33c93_intr(struct Scsi_Host *instance)
801 struct WD33C93_hostdata *hostdata =
802 (struct WD33C93_hostdata *) instance->hostdata;
803 const wd33c93_regs regs = hostdata->regs;
804 struct scsi_cmnd *patch, *cmd;
805 uchar asr, sr, phs, id, lun, *ucp, msg;
806 unsigned long length, flags;
808 asr = read_aux_stat(regs);
809 if (!(asr & ASR_INT) || (asr & ASR_BSY))
810 return;
812 spin_lock_irqsave(&hostdata->lock, flags);
814 #ifdef PROC_STATISTICS
815 hostdata->int_cnt++;
816 #endif
818 cmd = (struct scsi_cmnd *) hostdata->connected; /* assume we're connected */
819 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear the interrupt */
820 phs = read_wd33c93(regs, WD_COMMAND_PHASE);
822 DB(DB_INTR, printk("{%02x:%02x-", asr, sr))
824 /* After starting a DMA transfer, the next interrupt
825 * is guaranteed to be in response to completion of
826 * the transfer. Since the Amiga DMA hardware runs in
827 * in an open-ended fashion, it needs to be told when
828 * to stop; do that here if D_DMA_RUNNING is true.
829 * Also, we have to update 'this_residual' and 'ptr'
830 * based on the contents of the TRANSFER_COUNT register,
831 * in case the device decided to do an intermediate
832 * disconnect (a device may do this if it has to do a
833 * seek, or just to be nice and let other devices have
834 * some bus time during long transfers). After doing
835 * whatever is needed, we go on and service the WD3393
836 * interrupt normally.
838 if (hostdata->dma == D_DMA_RUNNING) {
839 DB(DB_TRANSFER,
840 printk("[%p/%d:", cmd->SCp.ptr, cmd->SCp.this_residual))
841 hostdata->dma_stop(cmd->device->host, cmd, 1);
842 hostdata->dma = D_DMA_OFF;
843 length = cmd->SCp.this_residual;
844 cmd->SCp.this_residual = read_wd33c93_count(regs);
845 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
846 DB(DB_TRANSFER,
847 printk("%p/%d]", cmd->SCp.ptr, cmd->SCp.this_residual))
850 /* Respond to the specific WD3393 interrupt - there are quite a few! */
851 switch (sr) {
852 case CSR_TIMEOUT:
853 DB(DB_INTR, printk("TIMEOUT"))
855 if (hostdata->state == S_RUNNING_LEVEL2)
856 hostdata->connected = NULL;
857 else {
858 cmd = (struct scsi_cmnd *) hostdata->selecting; /* get a valid cmd */
859 hostdata->selecting = NULL;
862 cmd->result = DID_NO_CONNECT << 16;
863 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
864 hostdata->state = S_UNCONNECTED;
865 cmd->scsi_done(cmd);
867 /* From esp.c:
868 * There is a window of time within the scsi_done() path
869 * of execution where interrupts are turned back on full
870 * blast and left that way. During that time we could
871 * reconnect to a disconnected command, then we'd bomb
872 * out below. We could also end up executing two commands
873 * at _once_. ...just so you know why the restore_flags()
874 * is here...
877 spin_unlock_irqrestore(&hostdata->lock, flags);
879 /* We are not connected to a target - check to see if there
880 * are commands waiting to be executed.
883 wd33c93_execute(instance);
884 break;
886 /* Note: this interrupt should not occur in a LEVEL2 command */
888 case CSR_SELECT:
889 DB(DB_INTR, printk("SELECT"))
890 hostdata->connected = cmd =
891 (struct scsi_cmnd *) hostdata->selecting;
892 hostdata->selecting = NULL;
894 /* construct an IDENTIFY message with correct disconnect bit */
896 hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->device->lun);
897 if (cmd->SCp.phase)
898 hostdata->outgoing_msg[0] |= 0x40;
900 if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) {
902 hostdata->sync_stat[cmd->device->id] = SS_WAITING;
904 /* Tack on a 2nd message to ask about synchronous transfers. If we've
905 * been asked to do only asynchronous transfers on this device, we
906 * request a fifo depth of 0, which is equivalent to async - should
907 * solve the problems some people have had with GVP's Guru ROM.
910 hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
911 hostdata->outgoing_msg[2] = 3;
912 hostdata->outgoing_msg[3] = EXTENDED_SDTR;
913 if (hostdata->no_sync & (1 << cmd->device->id)) {
914 calc_sync_msg(hostdata->default_sx_per, 0,
915 0, hostdata->outgoing_msg + 4);
916 } else {
917 calc_sync_msg(optimum_sx_per(hostdata),
918 OPTIMUM_SX_OFF,
919 hostdata->fast,
920 hostdata->outgoing_msg + 4);
922 hostdata->outgoing_len = 6;
923 #ifdef SYNC_DEBUG
924 ucp = hostdata->outgoing_msg + 1;
925 printk(" sending SDTR %02x03%02x%02x%02x ",
926 ucp[0], ucp[2], ucp[3], ucp[4]);
927 #endif
928 } else
929 hostdata->outgoing_len = 1;
931 hostdata->state = S_CONNECTED;
932 spin_unlock_irqrestore(&hostdata->lock, flags);
933 break;
935 case CSR_XFER_DONE | PHS_DATA_IN:
936 case CSR_UNEXP | PHS_DATA_IN:
937 case CSR_SRV_REQ | PHS_DATA_IN:
938 DB(DB_INTR,
939 printk("IN-%d.%d", cmd->SCp.this_residual,
940 cmd->SCp.buffers_residual))
941 transfer_bytes(regs, cmd, DATA_IN_DIR);
942 if (hostdata->state != S_RUNNING_LEVEL2)
943 hostdata->state = S_CONNECTED;
944 spin_unlock_irqrestore(&hostdata->lock, flags);
945 break;
947 case CSR_XFER_DONE | PHS_DATA_OUT:
948 case CSR_UNEXP | PHS_DATA_OUT:
949 case CSR_SRV_REQ | PHS_DATA_OUT:
950 DB(DB_INTR,
951 printk("OUT-%d.%d", cmd->SCp.this_residual,
952 cmd->SCp.buffers_residual))
953 transfer_bytes(regs, cmd, DATA_OUT_DIR);
954 if (hostdata->state != S_RUNNING_LEVEL2)
955 hostdata->state = S_CONNECTED;
956 spin_unlock_irqrestore(&hostdata->lock, flags);
957 break;
959 /* Note: this interrupt should not occur in a LEVEL2 command */
961 case CSR_XFER_DONE | PHS_COMMAND:
962 case CSR_UNEXP | PHS_COMMAND:
963 case CSR_SRV_REQ | PHS_COMMAND:
964 DB(DB_INTR, printk("CMND-%02x,%ld", cmd->cmnd[0], cmd->pid))
965 transfer_pio(regs, cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR,
966 hostdata);
967 hostdata->state = S_CONNECTED;
968 spin_unlock_irqrestore(&hostdata->lock, flags);
969 break;
971 case CSR_XFER_DONE | PHS_STATUS:
972 case CSR_UNEXP | PHS_STATUS:
973 case CSR_SRV_REQ | PHS_STATUS:
974 DB(DB_INTR, printk("STATUS="))
975 cmd->SCp.Status = read_1_byte(regs);
976 DB(DB_INTR, printk("%02x", cmd->SCp.Status))
977 if (hostdata->level2 >= L2_BASIC) {
978 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */
979 udelay(7);
980 hostdata->state = S_RUNNING_LEVEL2;
981 write_wd33c93(regs, WD_COMMAND_PHASE, 0x50);
982 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
983 } else {
984 hostdata->state = S_CONNECTED;
986 spin_unlock_irqrestore(&hostdata->lock, flags);
987 break;
989 case CSR_XFER_DONE | PHS_MESS_IN:
990 case CSR_UNEXP | PHS_MESS_IN:
991 case CSR_SRV_REQ | PHS_MESS_IN:
992 DB(DB_INTR, printk("MSG_IN="))
994 msg = read_1_byte(regs);
995 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */
996 udelay(7);
998 hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
999 if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
1000 msg = EXTENDED_MESSAGE;
1001 else
1002 hostdata->incoming_ptr = 0;
1004 cmd->SCp.Message = msg;
1005 switch (msg) {
1007 case COMMAND_COMPLETE:
1008 DB(DB_INTR, printk("CCMP-%ld", cmd->pid))
1009 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1010 hostdata->state = S_PRE_CMP_DISC;
1011 break;
1013 case SAVE_POINTERS:
1014 DB(DB_INTR, printk("SDP"))
1015 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1016 hostdata->state = S_CONNECTED;
1017 break;
1019 case RESTORE_POINTERS:
1020 DB(DB_INTR, printk("RDP"))
1021 if (hostdata->level2 >= L2_BASIC) {
1022 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
1023 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1024 hostdata->state = S_RUNNING_LEVEL2;
1025 } else {
1026 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1027 hostdata->state = S_CONNECTED;
1029 break;
1031 case DISCONNECT:
1032 DB(DB_INTR, printk("DIS"))
1033 cmd->device->disconnect = 1;
1034 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1035 hostdata->state = S_PRE_TMP_DISC;
1036 break;
1038 case MESSAGE_REJECT:
1039 DB(DB_INTR, printk("REJ"))
1040 #ifdef SYNC_DEBUG
1041 printk("-REJ-");
1042 #endif
1043 if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) {
1044 hostdata->sync_stat[cmd->device->id] = SS_SET;
1045 /* we want default_sx_per, not DEFAULT_SX_PER */
1046 hostdata->sync_xfer[cmd->device->id] =
1047 calc_sync_xfer(hostdata->default_sx_per
1048 / 4, 0, 0, hostdata->sx_table);
1050 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1051 hostdata->state = S_CONNECTED;
1052 break;
1054 case EXTENDED_MESSAGE:
1055 DB(DB_INTR, printk("EXT"))
1057 ucp = hostdata->incoming_msg;
1059 #ifdef SYNC_DEBUG
1060 printk("%02x", ucp[hostdata->incoming_ptr]);
1061 #endif
1062 /* Is this the last byte of the extended message? */
1064 if ((hostdata->incoming_ptr >= 2) &&
1065 (hostdata->incoming_ptr == (ucp[1] + 1))) {
1067 switch (ucp[2]) { /* what's the EXTENDED code? */
1068 case EXTENDED_SDTR:
1069 /* default to default async period */
1070 id = calc_sync_xfer(hostdata->
1071 default_sx_per / 4, 0,
1072 0, hostdata->sx_table);
1073 if (hostdata->sync_stat[cmd->device->id] !=
1074 SS_WAITING) {
1076 /* A device has sent an unsolicited SDTR message; rather than go
1077 * through the effort of decoding it and then figuring out what
1078 * our reply should be, we're just gonna say that we have a
1079 * synchronous fifo depth of 0. This will result in asynchronous
1080 * transfers - not ideal but so much easier.
1081 * Actually, this is OK because it assures us that if we don't
1082 * specifically ask for sync transfers, we won't do any.
1085 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1086 hostdata->outgoing_msg[0] =
1087 EXTENDED_MESSAGE;
1088 hostdata->outgoing_msg[1] = 3;
1089 hostdata->outgoing_msg[2] =
1090 EXTENDED_SDTR;
1091 calc_sync_msg(hostdata->
1092 default_sx_per, 0,
1093 0, hostdata->outgoing_msg + 3);
1094 hostdata->outgoing_len = 5;
1095 } else {
1096 if (ucp[4]) /* well, sync transfer */
1097 id = calc_sync_xfer(ucp[3], ucp[4],
1098 hostdata->fast,
1099 hostdata->sx_table);
1100 else if (ucp[3]) /* very unlikely... */
1101 id = calc_sync_xfer(ucp[3], ucp[4],
1102 0, hostdata->sx_table);
1104 hostdata->sync_xfer[cmd->device->id] = id;
1105 #ifdef SYNC_DEBUG
1106 printk(" sync_xfer=%02x\n",
1107 hostdata->sync_xfer[cmd->device->id]);
1108 #endif
1109 hostdata->sync_stat[cmd->device->id] =
1110 SS_SET;
1111 write_wd33c93_cmd(regs,
1112 WD_CMD_NEGATE_ACK);
1113 hostdata->state = S_CONNECTED;
1114 break;
1115 case EXTENDED_WDTR:
1116 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1117 printk("sending WDTR ");
1118 hostdata->outgoing_msg[0] =
1119 EXTENDED_MESSAGE;
1120 hostdata->outgoing_msg[1] = 2;
1121 hostdata->outgoing_msg[2] =
1122 EXTENDED_WDTR;
1123 hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */
1124 hostdata->outgoing_len = 4;
1125 write_wd33c93_cmd(regs,
1126 WD_CMD_NEGATE_ACK);
1127 hostdata->state = S_CONNECTED;
1128 break;
1129 default:
1130 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1131 printk
1132 ("Rejecting Unknown Extended Message(%02x). ",
1133 ucp[2]);
1134 hostdata->outgoing_msg[0] =
1135 MESSAGE_REJECT;
1136 hostdata->outgoing_len = 1;
1137 write_wd33c93_cmd(regs,
1138 WD_CMD_NEGATE_ACK);
1139 hostdata->state = S_CONNECTED;
1140 break;
1142 hostdata->incoming_ptr = 0;
1145 /* We need to read more MESS_IN bytes for the extended message */
1147 else {
1148 hostdata->incoming_ptr++;
1149 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1150 hostdata->state = S_CONNECTED;
1152 break;
1154 default:
1155 printk("Rejecting Unknown Message(%02x) ", msg);
1156 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1157 hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1158 hostdata->outgoing_len = 1;
1159 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1160 hostdata->state = S_CONNECTED;
1162 spin_unlock_irqrestore(&hostdata->lock, flags);
1163 break;
1165 /* Note: this interrupt will occur only after a LEVEL2 command */
1167 case CSR_SEL_XFER_DONE:
1169 /* Make sure that reselection is enabled at this point - it may
1170 * have been turned off for the command that just completed.
1173 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1174 if (phs == 0x60) {
1175 DB(DB_INTR, printk("SX-DONE-%ld", cmd->pid))
1176 cmd->SCp.Message = COMMAND_COMPLETE;
1177 lun = read_wd33c93(regs, WD_TARGET_LUN);
1178 DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun))
1179 hostdata->connected = NULL;
1180 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1181 hostdata->state = S_UNCONNECTED;
1182 if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE)
1183 cmd->SCp.Status = lun;
1184 if (cmd->cmnd[0] == REQUEST_SENSE
1185 && cmd->SCp.Status != GOOD)
1186 cmd->result =
1187 (cmd->
1188 result & 0x00ffff) | (DID_ERROR << 16);
1189 else
1190 cmd->result =
1191 cmd->SCp.Status | (cmd->SCp.Message << 8);
1192 cmd->scsi_done(cmd);
1194 /* We are no longer connected to a target - check to see if
1195 * there are commands waiting to be executed.
1197 spin_unlock_irqrestore(&hostdata->lock, flags);
1198 wd33c93_execute(instance);
1199 } else {
1200 printk
1201 ("%02x:%02x:%02x-%ld: Unknown SEL_XFER_DONE phase!!---",
1202 asr, sr, phs, cmd->pid);
1203 spin_unlock_irqrestore(&hostdata->lock, flags);
1205 break;
1207 /* Note: this interrupt will occur only after a LEVEL2 command */
1209 case CSR_SDP:
1210 DB(DB_INTR, printk("SDP"))
1211 hostdata->state = S_RUNNING_LEVEL2;
1212 write_wd33c93(regs, WD_COMMAND_PHASE, 0x41);
1213 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1214 spin_unlock_irqrestore(&hostdata->lock, flags);
1215 break;
1217 case CSR_XFER_DONE | PHS_MESS_OUT:
1218 case CSR_UNEXP | PHS_MESS_OUT:
1219 case CSR_SRV_REQ | PHS_MESS_OUT:
1220 DB(DB_INTR, printk("MSG_OUT="))
1222 /* To get here, we've probably requested MESSAGE_OUT and have
1223 * already put the correct bytes in outgoing_msg[] and filled
1224 * in outgoing_len. We simply send them out to the SCSI bus.
1225 * Sometimes we get MESSAGE_OUT phase when we're not expecting
1226 * it - like when our SDTR message is rejected by a target. Some
1227 * targets send the REJECT before receiving all of the extended
1228 * message, and then seem to go back to MESSAGE_OUT for a byte
1229 * or two. Not sure why, or if I'm doing something wrong to
1230 * cause this to happen. Regardless, it seems that sending
1231 * NOP messages in these situations results in no harm and
1232 * makes everyone happy.
1234 if (hostdata->outgoing_len == 0) {
1235 hostdata->outgoing_len = 1;
1236 hostdata->outgoing_msg[0] = NOP;
1238 transfer_pio(regs, hostdata->outgoing_msg,
1239 hostdata->outgoing_len, DATA_OUT_DIR, hostdata);
1240 DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0]))
1241 hostdata->outgoing_len = 0;
1242 hostdata->state = S_CONNECTED;
1243 spin_unlock_irqrestore(&hostdata->lock, flags);
1244 break;
1246 case CSR_UNEXP_DISC:
1248 /* I think I've seen this after a request-sense that was in response
1249 * to an error condition, but not sure. We certainly need to do
1250 * something when we get this interrupt - the question is 'what?'.
1251 * Let's think positively, and assume some command has finished
1252 * in a legal manner (like a command that provokes a request-sense),
1253 * so we treat it as a normal command-complete-disconnect.
1256 /* Make sure that reselection is enabled at this point - it may
1257 * have been turned off for the command that just completed.
1260 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1261 if (cmd == NULL) {
1262 printk(" - Already disconnected! ");
1263 hostdata->state = S_UNCONNECTED;
1264 spin_unlock_irqrestore(&hostdata->lock, flags);
1265 return;
1267 DB(DB_INTR, printk("UNEXP_DISC-%ld", cmd->pid))
1268 hostdata->connected = NULL;
1269 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1270 hostdata->state = S_UNCONNECTED;
1271 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1272 cmd->result =
1273 (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1274 else
1275 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1276 cmd->scsi_done(cmd);
1278 /* We are no longer connected to a target - check to see if
1279 * there are commands waiting to be executed.
1281 /* look above for comments on scsi_done() */
1282 spin_unlock_irqrestore(&hostdata->lock, flags);
1283 wd33c93_execute(instance);
1284 break;
1286 case CSR_DISC:
1288 /* Make sure that reselection is enabled at this point - it may
1289 * have been turned off for the command that just completed.
1292 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1293 DB(DB_INTR, printk("DISC-%ld", cmd->pid))
1294 if (cmd == NULL) {
1295 printk(" - Already disconnected! ");
1296 hostdata->state = S_UNCONNECTED;
1298 switch (hostdata->state) {
1299 case S_PRE_CMP_DISC:
1300 hostdata->connected = NULL;
1301 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1302 hostdata->state = S_UNCONNECTED;
1303 DB(DB_INTR, printk(":%d", cmd->SCp.Status))
1304 if (cmd->cmnd[0] == REQUEST_SENSE
1305 && cmd->SCp.Status != GOOD)
1306 cmd->result =
1307 (cmd->
1308 result & 0x00ffff) | (DID_ERROR << 16);
1309 else
1310 cmd->result =
1311 cmd->SCp.Status | (cmd->SCp.Message << 8);
1312 cmd->scsi_done(cmd);
1313 break;
1314 case S_PRE_TMP_DISC:
1315 case S_RUNNING_LEVEL2:
1316 cmd->host_scribble = (uchar *) hostdata->disconnected_Q;
1317 hostdata->disconnected_Q = cmd;
1318 hostdata->connected = NULL;
1319 hostdata->state = S_UNCONNECTED;
1321 #ifdef PROC_STATISTICS
1322 hostdata->disc_done_cnt[cmd->device->id]++;
1323 #endif
1325 break;
1326 default:
1327 printk("*** Unexpected DISCONNECT interrupt! ***");
1328 hostdata->state = S_UNCONNECTED;
1331 /* We are no longer connected to a target - check to see if
1332 * there are commands waiting to be executed.
1334 spin_unlock_irqrestore(&hostdata->lock, flags);
1335 wd33c93_execute(instance);
1336 break;
1338 case CSR_RESEL_AM:
1339 case CSR_RESEL:
1340 DB(DB_INTR, printk("RESEL%s", sr == CSR_RESEL_AM ? "_AM" : ""))
1342 /* Old chips (pre -A ???) don't have advanced features and will
1343 * generate CSR_RESEL. In that case we have to extract the LUN the
1344 * hard way (see below).
1345 * First we have to make sure this reselection didn't
1346 * happen during Arbitration/Selection of some other device.
1347 * If yes, put losing command back on top of input_Q.
1349 if (hostdata->level2 <= L2_NONE) {
1351 if (hostdata->selecting) {
1352 cmd = (struct scsi_cmnd *) hostdata->selecting;
1353 hostdata->selecting = NULL;
1354 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1355 cmd->host_scribble =
1356 (uchar *) hostdata->input_Q;
1357 hostdata->input_Q = cmd;
1361 else {
1363 if (cmd) {
1364 if (phs == 0x00) {
1365 hostdata->busy[cmd->device->id] &=
1366 ~(1 << cmd->device->lun);
1367 cmd->host_scribble =
1368 (uchar *) hostdata->input_Q;
1369 hostdata->input_Q = cmd;
1370 } else {
1371 printk
1372 ("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---",
1373 asr, sr, phs);
1374 while (1)
1375 printk("\r");
1381 /* OK - find out which device reselected us. */
1383 id = read_wd33c93(regs, WD_SOURCE_ID);
1384 id &= SRCID_MASK;
1386 /* and extract the lun from the ID message. (Note that we don't
1387 * bother to check for a valid message here - I guess this is
1388 * not the right way to go, but...)
1391 if (sr == CSR_RESEL_AM) {
1392 lun = read_wd33c93(regs, WD_DATA);
1393 if (hostdata->level2 < L2_RESELECT)
1394 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1395 lun &= 7;
1396 } else {
1397 /* Old chip; wait for msgin phase to pick up the LUN. */
1398 for (lun = 255; lun; lun--) {
1399 if ((asr = read_aux_stat(regs)) & ASR_INT)
1400 break;
1401 udelay(10);
1403 if (!(asr & ASR_INT)) {
1404 printk
1405 ("wd33c93: Reselected without IDENTIFY\n");
1406 lun = 0;
1407 } else {
1408 /* Verify this is a change to MSG_IN and read the message */
1409 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1410 udelay(7);
1411 if (sr == (CSR_ABORT | PHS_MESS_IN) ||
1412 sr == (CSR_UNEXP | PHS_MESS_IN) ||
1413 sr == (CSR_SRV_REQ | PHS_MESS_IN)) {
1414 /* Got MSG_IN, grab target LUN */
1415 lun = read_1_byte(regs);
1416 /* Now we expect a 'paused with ACK asserted' int.. */
1417 asr = read_aux_stat(regs);
1418 if (!(asr & ASR_INT)) {
1419 udelay(10);
1420 asr = read_aux_stat(regs);
1421 if (!(asr & ASR_INT))
1422 printk
1423 ("wd33c93: No int after LUN on RESEL (%02x)\n",
1424 asr);
1426 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1427 udelay(7);
1428 if (sr != CSR_MSGIN)
1429 printk
1430 ("wd33c93: Not paused with ACK on RESEL (%02x)\n",
1431 sr);
1432 lun &= 7;
1433 write_wd33c93_cmd(regs,
1434 WD_CMD_NEGATE_ACK);
1435 } else {
1436 printk
1437 ("wd33c93: Not MSG_IN on reselect (%02x)\n",
1438 sr);
1439 lun = 0;
1444 /* Now we look for the command that's reconnecting. */
1446 cmd = (struct scsi_cmnd *) hostdata->disconnected_Q;
1447 patch = NULL;
1448 while (cmd) {
1449 if (id == cmd->device->id && lun == cmd->device->lun)
1450 break;
1451 patch = cmd;
1452 cmd = (struct scsi_cmnd *) cmd->host_scribble;
1455 /* Hmm. Couldn't find a valid command.... What to do? */
1457 if (!cmd) {
1458 printk
1459 ("---TROUBLE: target %d.%d not in disconnect queue---",
1460 id, lun);
1461 spin_unlock_irqrestore(&hostdata->lock, flags);
1462 return;
1465 /* Ok, found the command - now start it up again. */
1467 if (patch)
1468 patch->host_scribble = cmd->host_scribble;
1469 else
1470 hostdata->disconnected_Q =
1471 (struct scsi_cmnd *) cmd->host_scribble;
1472 hostdata->connected = cmd;
1474 /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
1475 * because these things are preserved over a disconnect.
1476 * But we DO need to fix the DPD bit so it's correct for this command.
1479 if (cmd->sc_data_direction == DMA_TO_DEVICE)
1480 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
1481 else
1482 write_wd33c93(regs, WD_DESTINATION_ID,
1483 cmd->device->id | DSTID_DPD);
1484 if (hostdata->level2 >= L2_RESELECT) {
1485 write_wd33c93_count(regs, 0); /* we want a DATA_PHASE interrupt */
1486 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
1487 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1488 hostdata->state = S_RUNNING_LEVEL2;
1489 } else
1490 hostdata->state = S_CONNECTED;
1492 DB(DB_INTR, printk("-%ld", cmd->pid))
1493 spin_unlock_irqrestore(&hostdata->lock, flags);
1494 break;
1496 default:
1497 printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs);
1498 spin_unlock_irqrestore(&hostdata->lock, flags);
1501 DB(DB_INTR, printk("} "))
1505 static void
1506 reset_wd33c93(struct Scsi_Host *instance)
1508 struct WD33C93_hostdata *hostdata =
1509 (struct WD33C93_hostdata *) instance->hostdata;
1510 const wd33c93_regs regs = hostdata->regs;
1511 uchar sr;
1513 #ifdef CONFIG_SGI_IP22
1515 int busycount = 0;
1516 extern void sgiwd93_reset(unsigned long);
1517 /* wait 'til the chip gets some time for us */
1518 while ((read_aux_stat(regs) & ASR_BSY) && busycount++ < 100)
1519 udelay (10);
1521 * there are scsi devices out there, which manage to lock up
1522 * the wd33c93 in a busy condition. In this state it won't
1523 * accept the reset command. The only way to solve this is to
1524 * give the chip a hardware reset (if possible). The code below
1525 * does this for the SGI Indy, where this is possible
1527 /* still busy ? */
1528 if (read_aux_stat(regs) & ASR_BSY)
1529 sgiwd93_reset(instance->base); /* yeah, give it the hard one */
1531 #endif
1533 write_wd33c93(regs, WD_OWN_ID, OWNID_EAF | OWNID_RAF |
1534 instance->this_id | hostdata->clock_freq);
1535 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1536 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
1537 calc_sync_xfer(hostdata->default_sx_per / 4,
1538 DEFAULT_SX_OFF, 0, hostdata->sx_table));
1539 write_wd33c93(regs, WD_COMMAND, WD_CMD_RESET);
1542 #ifdef CONFIG_MVME147_SCSI
1543 udelay(25); /* The old wd33c93 on MVME147 needs this, at least */
1544 #endif
1546 while (!(read_aux_stat(regs) & ASR_INT))
1548 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1550 hostdata->microcode = read_wd33c93(regs, WD_CDB_1);
1551 if (sr == 0x00)
1552 hostdata->chip = C_WD33C93;
1553 else if (sr == 0x01) {
1554 write_wd33c93(regs, WD_QUEUE_TAG, 0xa5); /* any random number */
1555 sr = read_wd33c93(regs, WD_QUEUE_TAG);
1556 if (sr == 0xa5) {
1557 hostdata->chip = C_WD33C93B;
1558 write_wd33c93(regs, WD_QUEUE_TAG, 0);
1559 } else
1560 hostdata->chip = C_WD33C93A;
1561 } else
1562 hostdata->chip = C_UNKNOWN_CHIP;
1564 if (hostdata->chip != C_WD33C93B) /* Fast SCSI unavailable */
1565 hostdata->fast = 0;
1567 write_wd33c93(regs, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
1568 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1572 wd33c93_host_reset(struct scsi_cmnd * SCpnt)
1574 struct Scsi_Host *instance;
1575 struct WD33C93_hostdata *hostdata;
1576 int i;
1578 instance = SCpnt->device->host;
1579 hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1581 printk("scsi%d: reset. ", instance->host_no);
1582 disable_irq(instance->irq);
1584 hostdata->dma_stop(instance, NULL, 0);
1585 for (i = 0; i < 8; i++) {
1586 hostdata->busy[i] = 0;
1587 hostdata->sync_xfer[i] =
1588 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
1589 0, hostdata->sx_table);
1590 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */
1592 hostdata->input_Q = NULL;
1593 hostdata->selecting = NULL;
1594 hostdata->connected = NULL;
1595 hostdata->disconnected_Q = NULL;
1596 hostdata->state = S_UNCONNECTED;
1597 hostdata->dma = D_DMA_OFF;
1598 hostdata->incoming_ptr = 0;
1599 hostdata->outgoing_len = 0;
1601 reset_wd33c93(instance);
1602 SCpnt->result = DID_RESET << 16;
1603 enable_irq(instance->irq);
1604 return SUCCESS;
1608 wd33c93_abort(struct scsi_cmnd * cmd)
1610 struct Scsi_Host *instance;
1611 struct WD33C93_hostdata *hostdata;
1612 wd33c93_regs regs;
1613 struct scsi_cmnd *tmp, *prev;
1615 disable_irq(cmd->device->host->irq);
1617 instance = cmd->device->host;
1618 hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1619 regs = hostdata->regs;
1622 * Case 1 : If the command hasn't been issued yet, we simply remove it
1623 * from the input_Q.
1626 tmp = (struct scsi_cmnd *) hostdata->input_Q;
1627 prev = NULL;
1628 while (tmp) {
1629 if (tmp == cmd) {
1630 if (prev)
1631 prev->host_scribble = cmd->host_scribble;
1632 else
1633 hostdata->input_Q =
1634 (struct scsi_cmnd *) cmd->host_scribble;
1635 cmd->host_scribble = NULL;
1636 cmd->result = DID_ABORT << 16;
1637 printk
1638 ("scsi%d: Abort - removing command %ld from input_Q. ",
1639 instance->host_no, cmd->pid);
1640 enable_irq(cmd->device->host->irq);
1641 cmd->scsi_done(cmd);
1642 return SUCCESS;
1644 prev = tmp;
1645 tmp = (struct scsi_cmnd *) tmp->host_scribble;
1649 * Case 2 : If the command is connected, we're going to fail the abort
1650 * and let the high level SCSI driver retry at a later time or
1651 * issue a reset.
1653 * Timeouts, and therefore aborted commands, will be highly unlikely
1654 * and handling them cleanly in this situation would make the common
1655 * case of noresets less efficient, and would pollute our code. So,
1656 * we fail.
1659 if (hostdata->connected == cmd) {
1660 uchar sr, asr;
1661 unsigned long timeout;
1663 printk("scsi%d: Aborting connected command %ld - ",
1664 instance->host_no, cmd->pid);
1666 printk("stopping DMA - ");
1667 if (hostdata->dma == D_DMA_RUNNING) {
1668 hostdata->dma_stop(instance, cmd, 0);
1669 hostdata->dma = D_DMA_OFF;
1672 printk("sending wd33c93 ABORT command - ");
1673 write_wd33c93(regs, WD_CONTROL,
1674 CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1675 write_wd33c93_cmd(regs, WD_CMD_ABORT);
1677 /* Now we have to attempt to flush out the FIFO... */
1679 printk("flushing fifo - ");
1680 timeout = 1000000;
1681 do {
1682 asr = read_aux_stat(regs);
1683 if (asr & ASR_DBR)
1684 read_wd33c93(regs, WD_DATA);
1685 } while (!(asr & ASR_INT) && timeout-- > 0);
1686 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1687 printk
1688 ("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ",
1689 asr, sr, read_wd33c93_count(regs), timeout);
1692 * Abort command processed.
1693 * Still connected.
1694 * We must disconnect.
1697 printk("sending wd33c93 DISCONNECT command - ");
1698 write_wd33c93_cmd(regs, WD_CMD_DISCONNECT);
1700 timeout = 1000000;
1701 asr = read_aux_stat(regs);
1702 while ((asr & ASR_CIP) && timeout-- > 0)
1703 asr = read_aux_stat(regs);
1704 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1705 printk("asr=%02x, sr=%02x.", asr, sr);
1707 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1708 hostdata->connected = NULL;
1709 hostdata->state = S_UNCONNECTED;
1710 cmd->result = DID_ABORT << 16;
1712 /* sti();*/
1713 wd33c93_execute(instance);
1715 enable_irq(cmd->device->host->irq);
1716 cmd->scsi_done(cmd);
1717 return SUCCESS;
1721 * Case 3: If the command is currently disconnected from the bus,
1722 * we're not going to expend much effort here: Let's just return
1723 * an ABORT_SNOOZE and hope for the best...
1726 tmp = (struct scsi_cmnd *) hostdata->disconnected_Q;
1727 while (tmp) {
1728 if (tmp == cmd) {
1729 printk
1730 ("scsi%d: Abort - command %ld found on disconnected_Q - ",
1731 instance->host_no, cmd->pid);
1732 printk("Abort SNOOZE. ");
1733 enable_irq(cmd->device->host->irq);
1734 return FAILED;
1736 tmp = (struct scsi_cmnd *) tmp->host_scribble;
1740 * Case 4 : If we reached this point, the command was not found in any of
1741 * the queues.
1743 * We probably reached this point because of an unlikely race condition
1744 * between the command completing successfully and the abortion code,
1745 * so we won't panic, but we will notify the user in case something really
1746 * broke.
1749 /* sti();*/
1750 wd33c93_execute(instance);
1752 enable_irq(cmd->device->host->irq);
1753 printk("scsi%d: warning : SCSI command probably completed successfully"
1754 " before abortion. ", instance->host_no);
1755 return FAILED;
1758 #define MAX_WD33C93_HOSTS 4
1759 #define MAX_SETUP_ARGS ARRAY_SIZE(setup_args)
1760 #define SETUP_BUFFER_SIZE 200
1761 static char setup_buffer[SETUP_BUFFER_SIZE];
1762 static char setup_used[MAX_SETUP_ARGS];
1763 static int done_setup = 0;
1766 wd33c93_setup(char *str)
1768 int i;
1769 char *p1, *p2;
1771 /* The kernel does some processing of the command-line before calling
1772 * this function: If it begins with any decimal or hex number arguments,
1773 * ints[0] = how many numbers found and ints[1] through [n] are the values
1774 * themselves. str points to where the non-numeric arguments (if any)
1775 * start: We do our own parsing of those. We construct synthetic 'nosync'
1776 * keywords out of numeric args (to maintain compatibility with older
1777 * versions) and then add the rest of the arguments.
1780 p1 = setup_buffer;
1781 *p1 = '\0';
1782 if (str)
1783 strncpy(p1, str, SETUP_BUFFER_SIZE - strlen(setup_buffer));
1784 setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0';
1785 p1 = setup_buffer;
1786 i = 0;
1787 while (*p1 && (i < MAX_SETUP_ARGS)) {
1788 p2 = strchr(p1, ',');
1789 if (p2) {
1790 *p2 = '\0';
1791 if (p1 != p2)
1792 setup_args[i] = p1;
1793 p1 = p2 + 1;
1794 i++;
1795 } else {
1796 setup_args[i] = p1;
1797 break;
1800 for (i = 0; i < MAX_SETUP_ARGS; i++)
1801 setup_used[i] = 0;
1802 done_setup = 1;
1804 return 1;
1806 __setup("wd33c93=", wd33c93_setup);
1808 /* check_setup_args() returns index if key found, 0 if not
1810 static int
1811 check_setup_args(char *key, int *flags, int *val, char *buf)
1813 int x;
1814 char *cp;
1816 for (x = 0; x < MAX_SETUP_ARGS; x++) {
1817 if (setup_used[x])
1818 continue;
1819 if (!strncmp(setup_args[x], key, strlen(key)))
1820 break;
1821 if (!strncmp(setup_args[x], "next", strlen("next")))
1822 return 0;
1824 if (x == MAX_SETUP_ARGS)
1825 return 0;
1826 setup_used[x] = 1;
1827 cp = setup_args[x] + strlen(key);
1828 *val = -1;
1829 if (*cp != ':')
1830 return ++x;
1831 cp++;
1832 if ((*cp >= '0') && (*cp <= '9')) {
1833 *val = simple_strtoul(cp, NULL, 0);
1835 return ++x;
1839 * Calculate internal data-transfer-clock cycle from input-clock
1840 * frequency (/MHz) and fill 'sx_table'.
1842 * The original driver used to rely on a fixed sx_table, containing periods
1843 * for (only) the lower limits of the respective input-clock-frequency ranges
1844 * (8-10/12-15/16-20 MHz). Although it seems, that no problems ocurred with
1845 * this setting so far, it might be desirable to adjust the transfer periods
1846 * closer to the really attached, possibly 25% higher, input-clock, since
1847 * - the wd33c93 may really use a significant shorter period, than it has
1848 * negotiated (eg. thrashing the target, which expects 4/8MHz, with 5/10MHz
1849 * instead).
1850 * - the wd33c93 may ask the target for a lower transfer rate, than the target
1851 * is capable of (eg. negotiating for an assumed minimum of 252ns instead of
1852 * possible 200ns, which indeed shows up in tests as an approx. 10% lower
1853 * transfer rate).
1855 static inline unsigned int
1856 round_4(unsigned int x)
1858 switch (x & 3) {
1859 case 1: --x;
1860 break;
1861 case 2: ++x;
1862 case 3: ++x;
1864 return x;
1867 static void
1868 calc_sx_table(unsigned int mhz, struct sx_period sx_table[9])
1870 unsigned int d, i;
1871 if (mhz < 11)
1872 d = 2; /* divisor for 8-10 MHz input-clock */
1873 else if (mhz < 16)
1874 d = 3; /* divisor for 12-15 MHz input-clock */
1875 else
1876 d = 4; /* divisor for 16-20 MHz input-clock */
1878 d = (100000 * d) / 2 / mhz; /* 100 x DTCC / nanosec */
1880 sx_table[0].period_ns = 1;
1881 sx_table[0].reg_value = 0x20;
1882 for (i = 1; i < 8; i++) {
1883 sx_table[i].period_ns = round_4((i+1)*d / 100);
1884 sx_table[i].reg_value = (i+1)*0x10;
1886 sx_table[7].reg_value = 0;
1887 sx_table[8].period_ns = 0;
1888 sx_table[8].reg_value = 0;
1892 * check and, maybe, map an init- or "clock:"- argument.
1894 static uchar
1895 set_clk_freq(int freq, int *mhz)
1897 int x = freq;
1898 if (WD33C93_FS_8_10 == freq)
1899 freq = 8;
1900 else if (WD33C93_FS_12_15 == freq)
1901 freq = 12;
1902 else if (WD33C93_FS_16_20 == freq)
1903 freq = 16;
1904 else if (freq > 7 && freq < 11)
1905 x = WD33C93_FS_8_10;
1906 else if (freq > 11 && freq < 16)
1907 x = WD33C93_FS_12_15;
1908 else if (freq > 15 && freq < 21)
1909 x = WD33C93_FS_16_20;
1910 else {
1911 /* Hmm, wouldn't it be safer to assume highest freq here? */
1912 x = WD33C93_FS_8_10;
1913 freq = 8;
1915 *mhz = freq;
1916 return x;
1920 * to be used with the resync: fast: ... options
1922 static inline void set_resync ( struct WD33C93_hostdata *hd, int mask )
1924 int i;
1925 for (i = 0; i < 8; i++)
1926 if (mask & (1 << i))
1927 hd->sync_stat[i] = SS_UNSET;
1930 void
1931 wd33c93_init(struct Scsi_Host *instance, const wd33c93_regs regs,
1932 dma_setup_t setup, dma_stop_t stop, int clock_freq)
1934 struct WD33C93_hostdata *hostdata;
1935 int i;
1936 int flags;
1937 int val;
1938 char buf[32];
1940 if (!done_setup && setup_strings)
1941 wd33c93_setup(setup_strings);
1943 hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1945 hostdata->regs = regs;
1946 hostdata->clock_freq = set_clk_freq(clock_freq, &i);
1947 calc_sx_table(i, hostdata->sx_table);
1948 hostdata->dma_setup = setup;
1949 hostdata->dma_stop = stop;
1950 hostdata->dma_bounce_buffer = NULL;
1951 hostdata->dma_bounce_len = 0;
1952 for (i = 0; i < 8; i++) {
1953 hostdata->busy[i] = 0;
1954 hostdata->sync_xfer[i] =
1955 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
1956 0, hostdata->sx_table);
1957 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */
1958 #ifdef PROC_STATISTICS
1959 hostdata->cmd_cnt[i] = 0;
1960 hostdata->disc_allowed_cnt[i] = 0;
1961 hostdata->disc_done_cnt[i] = 0;
1962 #endif
1964 hostdata->input_Q = NULL;
1965 hostdata->selecting = NULL;
1966 hostdata->connected = NULL;
1967 hostdata->disconnected_Q = NULL;
1968 hostdata->state = S_UNCONNECTED;
1969 hostdata->dma = D_DMA_OFF;
1970 hostdata->level2 = L2_BASIC;
1971 hostdata->disconnect = DIS_ADAPTIVE;
1972 hostdata->args = DEBUG_DEFAULTS;
1973 hostdata->incoming_ptr = 0;
1974 hostdata->outgoing_len = 0;
1975 hostdata->default_sx_per = DEFAULT_SX_PER;
1976 hostdata->no_sync = 0xff; /* sync defaults to off */
1977 hostdata->no_dma = 0; /* default is DMA enabled */
1978 hostdata->fast = 0; /* default is Fast SCSI transfers disabled */
1979 hostdata->dma_mode = CTRL_DMA; /* default is Single Byte DMA */
1981 #ifdef PROC_INTERFACE
1982 hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS |
1983 PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP;
1984 #ifdef PROC_STATISTICS
1985 hostdata->dma_cnt = 0;
1986 hostdata->pio_cnt = 0;
1987 hostdata->int_cnt = 0;
1988 #endif
1989 #endif
1991 if (check_setup_args("clock", &flags, &val, buf)) {
1992 hostdata->clock_freq = set_clk_freq(val, &val);
1993 calc_sx_table(val, hostdata->sx_table);
1996 if (check_setup_args("nosync", &flags, &val, buf))
1997 hostdata->no_sync = val;
1999 if (check_setup_args("nodma", &flags, &val, buf))
2000 hostdata->no_dma = (val == -1) ? 1 : val;
2002 if (check_setup_args("period", &flags, &val, buf))
2003 hostdata->default_sx_per =
2004 hostdata->sx_table[round_period((unsigned int) val,
2005 hostdata->sx_table)].period_ns;
2007 if (check_setup_args("disconnect", &flags, &val, buf)) {
2008 if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
2009 hostdata->disconnect = val;
2010 else
2011 hostdata->disconnect = DIS_ADAPTIVE;
2014 if (check_setup_args("level2", &flags, &val, buf))
2015 hostdata->level2 = val;
2017 if (check_setup_args("debug", &flags, &val, buf))
2018 hostdata->args = val & DB_MASK;
2020 if (check_setup_args("burst", &flags, &val, buf))
2021 hostdata->dma_mode = val ? CTRL_BURST:CTRL_DMA;
2023 if (WD33C93_FS_16_20 == hostdata->clock_freq /* divisor 4 */
2024 && check_setup_args("fast", &flags, &val, buf))
2025 hostdata->fast = !!val;
2027 if ((i = check_setup_args("next", &flags, &val, buf))) {
2028 while (i)
2029 setup_used[--i] = 1;
2031 #ifdef PROC_INTERFACE
2032 if (check_setup_args("proc", &flags, &val, buf))
2033 hostdata->proc = val;
2034 #endif
2036 spin_lock_irq(&hostdata->lock);
2037 reset_wd33c93(instance);
2038 spin_unlock_irq(&hostdata->lock);
2040 printk("wd33c93-%d: chip=%s/%d no_sync=0x%x no_dma=%d",
2041 instance->host_no,
2042 (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip ==
2043 C_WD33C93A) ?
2044 "WD33c93A" : (hostdata->chip ==
2045 C_WD33C93B) ? "WD33c93B" : "unknown",
2046 hostdata->microcode, hostdata->no_sync, hostdata->no_dma);
2047 #ifdef DEBUGGING_ON
2048 printk(" debug_flags=0x%02x\n", hostdata->args);
2049 #else
2050 printk(" debugging=OFF\n");
2051 #endif
2052 printk(" setup_args=");
2053 for (i = 0; i < MAX_SETUP_ARGS; i++)
2054 printk("%s,", setup_args[i]);
2055 printk("\n");
2056 printk(" Version %s - %s, Compiled %s at %s\n",
2057 WD33C93_VERSION, WD33C93_DATE, __DATE__, __TIME__);
2061 wd33c93_proc_info(struct Scsi_Host *instance, char *buf, char **start, off_t off, int len, int in)
2064 #ifdef PROC_INTERFACE
2066 char *bp;
2067 char tbuf[128];
2068 struct WD33C93_hostdata *hd;
2069 struct scsi_cmnd *cmd;
2070 int x;
2071 static int stop = 0;
2073 hd = (struct WD33C93_hostdata *) instance->hostdata;
2075 /* If 'in' is TRUE we need to _read_ the proc file. We accept the following
2076 * keywords (same format as command-line, but arguments are not optional):
2077 * debug
2078 * disconnect
2079 * period
2080 * resync
2081 * proc
2082 * nodma
2083 * level2
2084 * burst
2085 * fast
2086 * nosync
2089 if (in) {
2090 buf[len] = '\0';
2091 for (bp = buf; *bp; ) {
2092 while (',' == *bp || ' ' == *bp)
2093 ++bp;
2094 if (!strncmp(bp, "debug:", 6)) {
2095 hd->args = simple_strtoul(bp+6, &bp, 0) & DB_MASK;
2096 } else if (!strncmp(bp, "disconnect:", 11)) {
2097 x = simple_strtoul(bp+11, &bp, 0);
2098 if (x < DIS_NEVER || x > DIS_ALWAYS)
2099 x = DIS_ADAPTIVE;
2100 hd->disconnect = x;
2101 } else if (!strncmp(bp, "period:", 7)) {
2102 x = simple_strtoul(bp+7, &bp, 0);
2103 hd->default_sx_per =
2104 hd->sx_table[round_period((unsigned int) x,
2105 hd->sx_table)].period_ns;
2106 } else if (!strncmp(bp, "resync:", 7)) {
2107 set_resync(hd, (int)simple_strtoul(bp+7, &bp, 0));
2108 } else if (!strncmp(bp, "proc:", 5)) {
2109 hd->proc = simple_strtoul(bp+5, &bp, 0);
2110 } else if (!strncmp(bp, "nodma:", 6)) {
2111 hd->no_dma = simple_strtoul(bp+6, &bp, 0);
2112 } else if (!strncmp(bp, "level2:", 7)) {
2113 hd->level2 = simple_strtoul(bp+7, &bp, 0);
2114 } else if (!strncmp(bp, "burst:", 6)) {
2115 hd->dma_mode =
2116 simple_strtol(bp+6, &bp, 0) ? CTRL_BURST:CTRL_DMA;
2117 } else if (!strncmp(bp, "fast:", 5)) {
2118 x = !!simple_strtol(bp+5, &bp, 0);
2119 if (x != hd->fast)
2120 set_resync(hd, 0xff);
2121 hd->fast = x;
2122 } else if (!strncmp(bp, "nosync:", 7)) {
2123 x = simple_strtoul(bp+7, &bp, 0);
2124 set_resync(hd, x ^ hd->no_sync);
2125 hd->no_sync = x;
2126 } else {
2127 break; /* unknown keyword,syntax-error,... */
2130 return len;
2133 spin_lock_irq(&hd->lock);
2134 bp = buf;
2135 *bp = '\0';
2136 if (hd->proc & PR_VERSION) {
2137 sprintf(tbuf, "\nVersion %s - %s. Compiled %s %s",
2138 WD33C93_VERSION, WD33C93_DATE, __DATE__, __TIME__);
2139 strcat(bp, tbuf);
2141 if (hd->proc & PR_INFO) {
2142 sprintf(tbuf, "\nclock_freq=%02x no_sync=%02x no_dma=%d"
2143 " dma_mode=%02x fast=%d",
2144 hd->clock_freq, hd->no_sync, hd->no_dma, hd->dma_mode, hd->fast);
2145 strcat(bp, tbuf);
2146 strcat(bp, "\nsync_xfer[] = ");
2147 for (x = 0; x < 7; x++) {
2148 sprintf(tbuf, "\t%02x", hd->sync_xfer[x]);
2149 strcat(bp, tbuf);
2151 strcat(bp, "\nsync_stat[] = ");
2152 for (x = 0; x < 7; x++) {
2153 sprintf(tbuf, "\t%02x", hd->sync_stat[x]);
2154 strcat(bp, tbuf);
2157 #ifdef PROC_STATISTICS
2158 if (hd->proc & PR_STATISTICS) {
2159 strcat(bp, "\ncommands issued: ");
2160 for (x = 0; x < 7; x++) {
2161 sprintf(tbuf, "\t%ld", hd->cmd_cnt[x]);
2162 strcat(bp, tbuf);
2164 strcat(bp, "\ndisconnects allowed:");
2165 for (x = 0; x < 7; x++) {
2166 sprintf(tbuf, "\t%ld", hd->disc_allowed_cnt[x]);
2167 strcat(bp, tbuf);
2169 strcat(bp, "\ndisconnects done: ");
2170 for (x = 0; x < 7; x++) {
2171 sprintf(tbuf, "\t%ld", hd->disc_done_cnt[x]);
2172 strcat(bp, tbuf);
2174 sprintf(tbuf,
2175 "\ninterrupts: %ld, DATA_PHASE ints: %ld DMA, %ld PIO",
2176 hd->int_cnt, hd->dma_cnt, hd->pio_cnt);
2177 strcat(bp, tbuf);
2179 #endif
2180 if (hd->proc & PR_CONNECTED) {
2181 strcat(bp, "\nconnected: ");
2182 if (hd->connected) {
2183 cmd = (struct scsi_cmnd *) hd->connected;
2184 sprintf(tbuf, " %ld-%d:%d(%02x)",
2185 cmd->pid, cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2186 strcat(bp, tbuf);
2189 if (hd->proc & PR_INPUTQ) {
2190 strcat(bp, "\ninput_Q: ");
2191 cmd = (struct scsi_cmnd *) hd->input_Q;
2192 while (cmd) {
2193 sprintf(tbuf, " %ld-%d:%d(%02x)",
2194 cmd->pid, cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2195 strcat(bp, tbuf);
2196 cmd = (struct scsi_cmnd *) cmd->host_scribble;
2199 if (hd->proc & PR_DISCQ) {
2200 strcat(bp, "\ndisconnected_Q:");
2201 cmd = (struct scsi_cmnd *) hd->disconnected_Q;
2202 while (cmd) {
2203 sprintf(tbuf, " %ld-%d:%d(%02x)",
2204 cmd->pid, cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2205 strcat(bp, tbuf);
2206 cmd = (struct scsi_cmnd *) cmd->host_scribble;
2209 strcat(bp, "\n");
2210 spin_unlock_irq(&hd->lock);
2211 *start = buf;
2212 if (stop) {
2213 stop = 0;
2214 return 0;
2216 if (off > 0x40000) /* ALWAYS stop after 256k bytes have been read */
2217 stop = 1;
2218 if (hd->proc & PR_STOP) /* stop every other time */
2219 stop = 1;
2220 return strlen(bp);
2222 #else /* PROC_INTERFACE */
2224 return 0;
2226 #endif /* PROC_INTERFACE */
2230 void
2231 wd33c93_release(void)
2235 EXPORT_SYMBOL(wd33c93_host_reset);
2236 EXPORT_SYMBOL(wd33c93_init);
2237 EXPORT_SYMBOL(wd33c93_release);
2238 EXPORT_SYMBOL(wd33c93_abort);
2239 EXPORT_SYMBOL(wd33c93_queuecommand);
2240 EXPORT_SYMBOL(wd33c93_intr);
2241 EXPORT_SYMBOL(wd33c93_proc_info);