2 * Copyright (C) 2004-2006 Atmel Corporation
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
10 #include <linux/init.h>
11 #include <linux/initrd.h>
12 #include <linux/sched.h>
13 #include <linux/console.h>
14 #include <linux/ioport.h>
15 #include <linux/bootmem.h>
17 #include <linux/module.h>
18 #include <linux/pfn.h>
19 #include <linux/root_dev.h>
20 #include <linux/cpu.h>
21 #include <linux/kernel.h>
23 #include <asm/sections.h>
24 #include <asm/processor.h>
25 #include <asm/pgtable.h>
26 #include <asm/setup.h>
27 #include <asm/sysreg.h>
29 #include <asm/arch/board.h>
30 #include <asm/arch/init.h>
32 extern int root_mountflags
;
35 * Initialize loops_per_jiffy as 5000000 (500MIPS).
36 * Better make it too large than too small...
38 struct avr32_cpuinfo boot_cpu_data
= {
39 .loops_per_jiffy
= 5000000
41 EXPORT_SYMBOL(boot_cpu_data
);
43 static char __initdata command_line
[COMMAND_LINE_SIZE
];
46 * Standard memory resources
48 static struct resource __initdata kernel_data
= {
49 .name
= "Kernel data",
52 .flags
= IORESOURCE_MEM
,
54 static struct resource __initdata kernel_code
= {
55 .name
= "Kernel code",
58 .flags
= IORESOURCE_MEM
,
59 .sibling
= &kernel_data
,
63 * Available system RAM and reserved regions as singly linked
64 * lists. These lists are traversed using the sibling pointer in
65 * struct resource and are kept sorted at all times.
67 static struct resource
*__initdata system_ram
;
68 static struct resource
*__initdata reserved
= &kernel_code
;
71 * We need to allocate these before the bootmem allocator is up and
72 * running, so we need this "cache". 32 entries are probably enough
73 * for all but the most insanely complex systems.
75 static struct resource __initdata res_cache
[32];
76 static unsigned int __initdata res_cache_next_free
;
78 static void __init
resource_init(void)
80 struct resource
*mem
, *res
;
83 kernel_code
.start
= __pa(init_mm
.start_code
);
85 for (mem
= system_ram
; mem
; mem
= mem
->sibling
) {
86 new = alloc_bootmem_low(sizeof(struct resource
));
87 memcpy(new, mem
, sizeof(struct resource
));
90 if (request_resource(&iomem_resource
, new))
91 printk(KERN_WARNING
"Bad RAM resource %08x-%08x\n",
92 mem
->start
, mem
->end
);
95 for (res
= reserved
; res
; res
= res
->sibling
) {
96 new = alloc_bootmem_low(sizeof(struct resource
));
97 memcpy(new, res
, sizeof(struct resource
));
100 if (insert_resource(&iomem_resource
, new))
102 "Bad reserved resource %s (%08x-%08x)\n",
103 res
->name
, res
->start
, res
->end
);
108 add_physical_memory(resource_size_t start
, resource_size_t end
)
110 struct resource
*new, *next
, **pprev
;
112 for (pprev
= &system_ram
, next
= system_ram
; next
;
113 pprev
= &next
->sibling
, next
= next
->sibling
) {
114 if (end
< next
->start
)
116 if (start
<= next
->end
) {
118 "Warning: Physical memory map is broken\n");
120 "Warning: %08x-%08x overlaps %08x-%08x\n",
121 start
, end
, next
->start
, next
->end
);
126 if (res_cache_next_free
>= ARRAY_SIZE(res_cache
)) {
128 "Warning: Failed to add physical memory %08x-%08x\n",
133 new = &res_cache
[res_cache_next_free
++];
136 new->name
= "System RAM";
137 new->flags
= IORESOURCE_MEM
;
143 add_reserved_region(resource_size_t start
, resource_size_t end
,
146 struct resource
*new, *next
, **pprev
;
151 if (res_cache_next_free
>= ARRAY_SIZE(res_cache
))
154 for (pprev
= &reserved
, next
= reserved
; next
;
155 pprev
= &next
->sibling
, next
= next
->sibling
) {
156 if (end
< next
->start
)
158 if (start
<= next
->end
)
162 new = &res_cache
[res_cache_next_free
++];
166 new->flags
= IORESOURCE_MEM
;
173 static unsigned long __init
174 find_free_region(const struct resource
*mem
, resource_size_t size
,
175 resource_size_t align
)
177 struct resource
*res
;
178 unsigned long target
;
180 target
= ALIGN(mem
->start
, align
);
181 for (res
= reserved
; res
; res
= res
->sibling
) {
182 if ((target
+ size
) <= res
->start
)
184 if (target
<= res
->end
)
185 target
= ALIGN(res
->end
+ 1, align
);
188 if ((target
+ size
) > (mem
->end
+ 1))
195 alloc_reserved_region(resource_size_t
*start
, resource_size_t size
,
196 resource_size_t align
, const char *name
)
198 struct resource
*mem
;
199 resource_size_t target
;
202 for (mem
= system_ram
; mem
; mem
= mem
->sibling
) {
203 target
= find_free_region(mem
, size
, align
);
204 if (target
<= mem
->end
) {
205 ret
= add_reserved_region(target
, target
+ size
- 1,
217 * Early framebuffer allocation. Works as follows:
218 * - If fbmem_size is zero, nothing will be allocated or reserved.
219 * - If fbmem_start is zero when setup_bootmem() is called,
220 * a block of fbmem_size bytes will be reserved before bootmem
221 * initialization. It will be aligned to the largest page size
222 * that fbmem_size is a multiple of.
223 * - If fbmem_start is nonzero, an area of size fbmem_size will be
224 * reserved at the physical address fbmem_start if possible. If
225 * it collides with other reserved memory, a different block of
226 * same size will be allocated, just as if fbmem_start was zero.
228 * Board-specific code may use these variables to set up platform data
229 * for the framebuffer driver if fbmem_size is nonzero.
231 resource_size_t __initdata fbmem_start
;
232 resource_size_t __initdata fbmem_size
;
235 * "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for
236 * use as framebuffer.
238 * "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and
239 * starting at yyy to be reserved for use as framebuffer.
241 * The kernel won't verify that the memory region starting at yyy
242 * actually contains usable RAM.
244 static int __init
early_parse_fbmem(char *p
)
249 fbmem_size
= memparse(p
, &p
);
251 fbmem_start
= memparse(p
, &p
);
252 ret
= add_reserved_region(fbmem_start
,
253 fbmem_start
+ fbmem_size
- 1,
257 "Failed to reserve framebuffer memory\n");
263 if ((fbmem_size
& 0x000fffffUL
) == 0)
264 align
= 0x100000; /* 1 MiB */
265 else if ((fbmem_size
& 0x0000ffffUL
) == 0)
266 align
= 0x10000; /* 64 KiB */
268 align
= 0x1000; /* 4 KiB */
270 ret
= alloc_reserved_region(&fbmem_start
, fbmem_size
,
271 align
, "Framebuffer");
274 "Failed to allocate framebuffer memory\n");
281 early_param("fbmem", early_parse_fbmem
);
283 static int __init
parse_tag_core(struct tag
*tag
)
285 if (tag
->hdr
.size
> 2) {
286 if ((tag
->u
.core
.flags
& 1) == 0)
287 root_mountflags
&= ~MS_RDONLY
;
288 ROOT_DEV
= new_decode_dev(tag
->u
.core
.rootdev
);
292 __tagtable(ATAG_CORE
, parse_tag_core
);
294 static int __init
parse_tag_mem(struct tag
*tag
)
296 unsigned long start
, end
;
299 * Ignore zero-sized entries. If we're running standalone, the
300 * SDRAM code may emit such entries if something goes
303 if (tag
->u
.mem_range
.size
== 0)
306 start
= tag
->u
.mem_range
.addr
;
307 end
= tag
->u
.mem_range
.addr
+ tag
->u
.mem_range
.size
- 1;
309 add_physical_memory(start
, end
);
312 __tagtable(ATAG_MEM
, parse_tag_mem
);
314 static int __init
parse_tag_rdimg(struct tag
*tag
)
317 struct tag_mem_range
*mem
= &tag
->u
.mem_range
;
322 "Warning: Only the first initrd image will be used\n");
326 ret
= add_reserved_region(mem
->start
, mem
->start
+ mem
->size
- 1,
330 "Warning: Failed to reserve initrd memory\n");
334 initrd_start
= (unsigned long)__va(mem
->addr
);
335 initrd_end
= initrd_start
+ mem
->size
;
337 printk(KERN_WARNING
"RAM disk image present, but "
338 "no initrd support in kernel, ignoring\n");
343 __tagtable(ATAG_RDIMG
, parse_tag_rdimg
);
345 static int __init
parse_tag_rsvd_mem(struct tag
*tag
)
347 struct tag_mem_range
*mem
= &tag
->u
.mem_range
;
349 return add_reserved_region(mem
->addr
, mem
->addr
+ mem
->size
- 1,
352 __tagtable(ATAG_RSVD_MEM
, parse_tag_rsvd_mem
);
354 static int __init
parse_tag_cmdline(struct tag
*tag
)
356 strlcpy(boot_command_line
, tag
->u
.cmdline
.cmdline
, COMMAND_LINE_SIZE
);
359 __tagtable(ATAG_CMDLINE
, parse_tag_cmdline
);
361 static int __init
parse_tag_clock(struct tag
*tag
)
364 * We'll figure out the clocks by peeking at the system
365 * manager regs directly.
369 __tagtable(ATAG_CLOCK
, parse_tag_clock
);
372 * Scan the tag table for this tag, and call its parse function. The
373 * tag table is built by the linker from all the __tagtable
376 static int __init
parse_tag(struct tag
*tag
)
378 extern struct tagtable __tagtable_begin
, __tagtable_end
;
381 for (t
= &__tagtable_begin
; t
< &__tagtable_end
; t
++)
382 if (tag
->hdr
.tag
== t
->tag
) {
387 return t
< &__tagtable_end
;
391 * Parse all tags in the list we got from the boot loader
393 static void __init
parse_tags(struct tag
*t
)
395 for (; t
->hdr
.tag
!= ATAG_NONE
; t
= tag_next(t
))
398 "Ignoring unrecognised tag 0x%08x\n",
403 * Find a free memory region large enough for storing the
406 static unsigned long __init
407 find_bootmap_pfn(const struct resource
*mem
)
409 unsigned long bootmap_pages
, bootmap_len
;
410 unsigned long node_pages
= PFN_UP(mem
->end
- mem
->start
+ 1);
411 unsigned long bootmap_start
;
413 bootmap_pages
= bootmem_bootmap_pages(node_pages
);
414 bootmap_len
= bootmap_pages
<< PAGE_SHIFT
;
417 * Find a large enough region without reserved pages for
418 * storing the bootmem bitmap. We can take advantage of the
419 * fact that all lists have been sorted.
421 * We have to check that we don't collide with any reserved
422 * regions, which includes the kernel image and any RAMDISK
425 bootmap_start
= find_free_region(mem
, bootmap_len
, PAGE_SIZE
);
427 return bootmap_start
>> PAGE_SHIFT
;
430 #define MAX_LOWMEM HIGHMEM_START
431 #define MAX_LOWMEM_PFN PFN_DOWN(MAX_LOWMEM)
433 static void __init
setup_bootmem(void)
435 unsigned bootmap_size
;
436 unsigned long first_pfn
, bootmap_pfn
, pages
;
437 unsigned long max_pfn
, max_low_pfn
;
439 struct resource
*res
;
441 printk(KERN_INFO
"Physical memory:\n");
442 for (res
= system_ram
; res
; res
= res
->sibling
)
443 printk(" %08x-%08x\n", res
->start
, res
->end
);
444 printk(KERN_INFO
"Reserved memory:\n");
445 for (res
= reserved
; res
; res
= res
->sibling
)
446 printk(" %08x-%08x: %s\n",
447 res
->start
, res
->end
, res
->name
);
449 nodes_clear(node_online_map
);
451 if (system_ram
->sibling
)
452 printk(KERN_WARNING
"Only using first memory bank\n");
454 for (res
= system_ram
; res
; res
= NULL
) {
455 first_pfn
= PFN_UP(res
->start
);
456 max_low_pfn
= max_pfn
= PFN_DOWN(res
->end
+ 1);
457 bootmap_pfn
= find_bootmap_pfn(res
);
458 if (bootmap_pfn
> max_pfn
)
459 panic("No space for bootmem bitmap!\n");
461 if (max_low_pfn
> MAX_LOWMEM_PFN
) {
462 max_low_pfn
= MAX_LOWMEM_PFN
;
463 #ifndef CONFIG_HIGHMEM
465 * Lowmem is memory that can be addressed
466 * directly through P1/P2
469 "Node %u: Only %ld MiB of memory will be used.\n",
470 node
, MAX_LOWMEM
>> 20);
471 printk(KERN_WARNING
"Use a HIGHMEM enabled kernel.\n");
473 #error HIGHMEM is not supported by AVR32 yet
477 /* Initialize the boot-time allocator with low memory only. */
478 bootmap_size
= init_bootmem_node(NODE_DATA(node
), bootmap_pfn
,
479 first_pfn
, max_low_pfn
);
482 * Register fully available RAM pages with the bootmem
485 pages
= max_low_pfn
- first_pfn
;
486 free_bootmem_node (NODE_DATA(node
), PFN_PHYS(first_pfn
),
489 /* Reserve space for the bootmem bitmap... */
490 reserve_bootmem_node(NODE_DATA(node
),
491 PFN_PHYS(bootmap_pfn
),
494 /* ...and any other reserved regions. */
495 for (res
= reserved
; res
; res
= res
->sibling
) {
496 if (res
->start
> PFN_PHYS(max_pfn
))
500 * resource_init will complain about partial
501 * overlaps, so we'll just ignore such
504 if (res
->start
>= PFN_PHYS(first_pfn
)
505 && res
->end
< PFN_PHYS(max_pfn
))
506 reserve_bootmem_node(
507 NODE_DATA(node
), res
->start
,
508 res
->end
- res
->start
+ 1);
511 node_set_online(node
);
515 void __init
setup_arch (char **cmdline_p
)
519 init_mm
.start_code
= (unsigned long)_text
;
520 init_mm
.end_code
= (unsigned long)_etext
;
521 init_mm
.end_data
= (unsigned long)_edata
;
522 init_mm
.brk
= (unsigned long)_end
;
525 * Include .init section to make allocations easier. It will
526 * be removed before the resource is actually requested.
528 kernel_code
.start
= __pa(__init_begin
);
529 kernel_code
.end
= __pa(init_mm
.end_code
- 1);
530 kernel_data
.start
= __pa(init_mm
.end_code
);
531 kernel_data
.end
= __pa(init_mm
.brk
- 1);
533 parse_tags(bootloader_tags
);
539 cpu_clk
= clk_get(NULL
, "cpu");
540 if (IS_ERR(cpu_clk
)) {
541 printk(KERN_WARNING
"Warning: Unable to get CPU clock\n");
543 unsigned long cpu_hz
= clk_get_rate(cpu_clk
);
546 * Well, duh, but it's probably a good idea to
547 * increment the use count.
551 boot_cpu_data
.clk
= cpu_clk
;
552 boot_cpu_data
.loops_per_jiffy
= cpu_hz
* 4;
553 printk("CPU: Running at %lu.%03lu MHz\n",
554 ((cpu_hz
+ 500) / 1000) / 1000,
555 ((cpu_hz
+ 500) / 1000) % 1000);
558 strlcpy(command_line
, boot_command_line
, COMMAND_LINE_SIZE
);
559 *cmdline_p
= command_line
;
565 conswitchp
= &dummy_con
;