3 * Purpose: Generic MCA handling layer
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
52 * 2005-08-12 Keith Owens <kaos@sgi.com>
53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
55 * 2005-10-07 Keith Owens <kaos@sgi.com>
56 * Add notify_die() hooks.
58 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
59 * Add printing support for MCA/INIT.
61 #include <linux/types.h>
62 #include <linux/init.h>
63 #include <linux/sched.h>
64 #include <linux/interrupt.h>
65 #include <linux/irq.h>
66 #include <linux/bootmem.h>
67 #include <linux/acpi.h>
68 #include <linux/timer.h>
69 #include <linux/module.h>
70 #include <linux/kernel.h>
71 #include <linux/smp.h>
72 #include <linux/workqueue.h>
73 #include <linux/cpumask.h>
74 #include <linux/kdebug.h>
76 #include <asm/delay.h>
77 #include <asm/machvec.h>
78 #include <asm/meminit.h>
80 #include <asm/ptrace.h>
81 #include <asm/system.h>
84 #include <asm/kexec.h>
87 #include <asm/hw_irq.h>
92 #if defined(IA64_MCA_DEBUG_INFO)
93 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
95 # define IA64_MCA_DEBUG(fmt...)
98 /* Used by mca_asm.S */
99 u32 ia64_mca_serialize
;
100 DEFINE_PER_CPU(u64
, ia64_mca_data
); /* == __per_cpu_mca[smp_processor_id()] */
101 DEFINE_PER_CPU(u64
, ia64_mca_per_cpu_pte
); /* PTE to map per-CPU area */
102 DEFINE_PER_CPU(u64
, ia64_mca_pal_pte
); /* PTE to map PAL code */
103 DEFINE_PER_CPU(u64
, ia64_mca_pal_base
); /* vaddr PAL code granule */
105 unsigned long __per_cpu_mca
[NR_CPUS
];
108 extern void ia64_os_init_dispatch_monarch (void);
109 extern void ia64_os_init_dispatch_slave (void);
111 static int monarch_cpu
= -1;
113 static ia64_mc_info_t ia64_mc_info
;
115 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
116 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
117 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
118 #define CPE_HISTORY_LENGTH 5
119 #define CMC_HISTORY_LENGTH 5
122 static struct timer_list cpe_poll_timer
;
124 static struct timer_list cmc_poll_timer
;
126 * This variable tells whether we are currently in polling mode.
127 * Start with this in the wrong state so we won't play w/ timers
128 * before the system is ready.
130 static int cmc_polling_enabled
= 1;
133 * Clearing this variable prevents CPE polling from getting activated
134 * in mca_late_init. Use it if your system doesn't provide a CPEI,
135 * but encounters problems retrieving CPE logs. This should only be
136 * necessary for debugging.
138 static int cpe_poll_enabled
= 1;
140 extern void salinfo_log_wakeup(int type
, u8
*buffer
, u64 size
, int irqsafe
);
142 static int mca_init __initdata
;
145 * limited & delayed printing support for MCA/INIT handler
148 #define mprintk(fmt...) ia64_mca_printk(fmt)
150 #define MLOGBUF_SIZE (512+256*NR_CPUS)
151 #define MLOGBUF_MSGMAX 256
152 static char mlogbuf
[MLOGBUF_SIZE
];
153 static DEFINE_SPINLOCK(mlogbuf_wlock
); /* mca context only */
154 static DEFINE_SPINLOCK(mlogbuf_rlock
); /* normal context only */
155 static unsigned long mlogbuf_start
;
156 static unsigned long mlogbuf_end
;
157 static unsigned int mlogbuf_finished
= 0;
158 static unsigned long mlogbuf_timestamp
= 0;
160 static int loglevel_save
= -1;
161 #define BREAK_LOGLEVEL(__console_loglevel) \
162 oops_in_progress = 1; \
163 if (loglevel_save < 0) \
164 loglevel_save = __console_loglevel; \
165 __console_loglevel = 15;
167 #define RESTORE_LOGLEVEL(__console_loglevel) \
168 if (loglevel_save >= 0) { \
169 __console_loglevel = loglevel_save; \
170 loglevel_save = -1; \
172 mlogbuf_finished = 0; \
173 oops_in_progress = 0;
176 * Push messages into buffer, print them later if not urgent.
178 void ia64_mca_printk(const char *fmt
, ...)
182 char temp_buf
[MLOGBUF_MSGMAX
];
186 printed_len
= vscnprintf(temp_buf
, sizeof(temp_buf
), fmt
, args
);
189 /* Copy the output into mlogbuf */
190 if (oops_in_progress
) {
191 /* mlogbuf was abandoned, use printk directly instead. */
194 spin_lock(&mlogbuf_wlock
);
195 for (p
= temp_buf
; *p
; p
++) {
196 unsigned long next
= (mlogbuf_end
+ 1) % MLOGBUF_SIZE
;
197 if (next
!= mlogbuf_start
) {
198 mlogbuf
[mlogbuf_end
] = *p
;
205 mlogbuf
[mlogbuf_end
] = '\0';
206 spin_unlock(&mlogbuf_wlock
);
209 EXPORT_SYMBOL(ia64_mca_printk
);
212 * Print buffered messages.
213 * NOTE: call this after returning normal context. (ex. from salinfod)
215 void ia64_mlogbuf_dump(void)
217 char temp_buf
[MLOGBUF_MSGMAX
];
221 unsigned int printed_len
;
223 /* Get output from mlogbuf */
224 while (mlogbuf_start
!= mlogbuf_end
) {
229 spin_lock_irqsave(&mlogbuf_rlock
, flags
);
231 index
= mlogbuf_start
;
232 while (index
!= mlogbuf_end
) {
234 index
= (index
+ 1) % MLOGBUF_SIZE
;
238 if (++printed_len
>= MLOGBUF_MSGMAX
- 1)
244 mlogbuf_start
= index
;
246 mlogbuf_timestamp
= 0;
247 spin_unlock_irqrestore(&mlogbuf_rlock
, flags
);
250 EXPORT_SYMBOL(ia64_mlogbuf_dump
);
253 * Call this if system is going to down or if immediate flushing messages to
254 * console is required. (ex. recovery was failed, crash dump is going to be
255 * invoked, long-wait rendezvous etc.)
256 * NOTE: this should be called from monarch.
258 static void ia64_mlogbuf_finish(int wait
)
260 BREAK_LOGLEVEL(console_loglevel
);
262 spin_lock_init(&mlogbuf_rlock
);
264 printk(KERN_EMERG
"mlogbuf_finish: printing switched to urgent mode, "
265 "MCA/INIT might be dodgy or fail.\n");
270 /* wait for console */
271 printk("Delaying for 5 seconds...\n");
274 mlogbuf_finished
= 1;
278 * Print buffered messages from INIT context.
280 static void ia64_mlogbuf_dump_from_init(void)
282 if (mlogbuf_finished
)
285 if (mlogbuf_timestamp
&& (mlogbuf_timestamp
+ 30*HZ
> jiffies
)) {
286 printk(KERN_ERR
"INIT: mlogbuf_dump is interrupted by INIT "
287 " and the system seems to be messed up.\n");
288 ia64_mlogbuf_finish(0);
292 if (!spin_trylock(&mlogbuf_rlock
)) {
293 printk(KERN_ERR
"INIT: mlogbuf_dump is interrupted by INIT. "
294 "Generated messages other than stack dump will be "
295 "buffered to mlogbuf and will be printed later.\n");
296 printk(KERN_ERR
"INIT: If messages would not printed after "
297 "this INIT, wait 30sec and assert INIT again.\n");
298 if (!mlogbuf_timestamp
)
299 mlogbuf_timestamp
= jiffies
;
302 spin_unlock(&mlogbuf_rlock
);
307 ia64_mca_spin(const char *func
)
309 if (monarch_cpu
== smp_processor_id())
310 ia64_mlogbuf_finish(0);
311 mprintk(KERN_EMERG
"%s: spinning here, not returning to SAL\n", func
);
316 * IA64_MCA log support
318 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
319 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
321 typedef struct ia64_state_log_s
325 unsigned long isl_count
;
326 ia64_err_rec_t
*isl_log
[IA64_MAX_LOGS
]; /* need space to store header + error log */
329 static ia64_state_log_t ia64_state_log
[IA64_MAX_LOG_TYPES
];
331 #define IA64_LOG_ALLOCATE(it, size) \
332 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
333 (ia64_err_rec_t *)alloc_bootmem(size); \
334 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
335 (ia64_err_rec_t *)alloc_bootmem(size);}
336 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
337 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
338 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
339 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
340 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
341 #define IA64_LOG_INDEX_INC(it) \
342 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
343 ia64_state_log[it].isl_count++;}
344 #define IA64_LOG_INDEX_DEC(it) \
345 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
346 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
347 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
348 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
352 * Reset the OS ia64 log buffer
353 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
357 ia64_log_init(int sal_info_type
)
361 IA64_LOG_NEXT_INDEX(sal_info_type
) = 0;
362 IA64_LOG_LOCK_INIT(sal_info_type
);
364 // SAL will tell us the maximum size of any error record of this type
365 max_size
= ia64_sal_get_state_info_size(sal_info_type
);
367 /* alloc_bootmem() doesn't like zero-sized allocations! */
370 // set up OS data structures to hold error info
371 IA64_LOG_ALLOCATE(sal_info_type
, max_size
);
372 memset(IA64_LOG_CURR_BUFFER(sal_info_type
), 0, max_size
);
373 memset(IA64_LOG_NEXT_BUFFER(sal_info_type
), 0, max_size
);
379 * Get the current MCA log from SAL and copy it into the OS log buffer.
381 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
382 * irq_safe whether you can use printk at this point
383 * Outputs : size (total record length)
384 * *buffer (ptr to error record)
388 ia64_log_get(int sal_info_type
, u8
**buffer
, int irq_safe
)
390 sal_log_record_header_t
*log_buffer
;
394 IA64_LOG_LOCK(sal_info_type
);
396 /* Get the process state information */
397 log_buffer
= IA64_LOG_NEXT_BUFFER(sal_info_type
);
399 total_len
= ia64_sal_get_state_info(sal_info_type
, (u64
*)log_buffer
);
402 IA64_LOG_INDEX_INC(sal_info_type
);
403 IA64_LOG_UNLOCK(sal_info_type
);
405 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
406 "Record length = %ld\n", __FUNCTION__
, sal_info_type
, total_len
);
408 *buffer
= (u8
*) log_buffer
;
411 IA64_LOG_UNLOCK(sal_info_type
);
417 * ia64_mca_log_sal_error_record
419 * This function retrieves a specified error record type from SAL
420 * and wakes up any processes waiting for error records.
422 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
423 * FIXME: remove MCA and irq_safe.
426 ia64_mca_log_sal_error_record(int sal_info_type
)
429 sal_log_record_header_t
*rh
;
431 int irq_safe
= sal_info_type
!= SAL_INFO_TYPE_MCA
;
432 #ifdef IA64_MCA_DEBUG_INFO
433 static const char * const rec_name
[] = { "MCA", "INIT", "CMC", "CPE" };
436 size
= ia64_log_get(sal_info_type
, &buffer
, irq_safe
);
440 salinfo_log_wakeup(sal_info_type
, buffer
, size
, irq_safe
);
443 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
445 sal_info_type
< ARRAY_SIZE(rec_name
) ? rec_name
[sal_info_type
] : "UNKNOWN");
447 /* Clear logs from corrected errors in case there's no user-level logger */
448 rh
= (sal_log_record_header_t
*)buffer
;
449 if (rh
->severity
== sal_log_severity_corrected
)
450 ia64_sal_clear_state_info(sal_info_type
);
455 * See if the MCA surfaced in an instruction range
456 * that has been tagged as recoverable.
459 * first First address range to check
460 * last Last address range to check
461 * ip Instruction pointer, address we are looking for
464 * 1 on Success (in the table)/ 0 on Failure (not in the table)
467 search_mca_table (const struct mca_table_entry
*first
,
468 const struct mca_table_entry
*last
,
471 const struct mca_table_entry
*curr
;
472 u64 curr_start
, curr_end
;
475 while (curr
<= last
) {
476 curr_start
= (u64
) &curr
->start_addr
+ curr
->start_addr
;
477 curr_end
= (u64
) &curr
->end_addr
+ curr
->end_addr
;
479 if ((ip
>= curr_start
) && (ip
<= curr_end
)) {
487 /* Given an address, look for it in the mca tables. */
488 int mca_recover_range(unsigned long addr
)
490 extern struct mca_table_entry __start___mca_table
[];
491 extern struct mca_table_entry __stop___mca_table
[];
493 return search_mca_table(__start___mca_table
, __stop___mca_table
-1, addr
);
495 EXPORT_SYMBOL_GPL(mca_recover_range
);
500 int ia64_cpe_irq
= -1;
503 ia64_mca_cpe_int_handler (int cpe_irq
, void *arg
)
505 static unsigned long cpe_history
[CPE_HISTORY_LENGTH
];
507 static DEFINE_SPINLOCK(cpe_history_lock
);
509 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
510 __FUNCTION__
, cpe_irq
, smp_processor_id());
512 /* SAL spec states this should run w/ interrupts enabled */
515 spin_lock(&cpe_history_lock
);
516 if (!cpe_poll_enabled
&& cpe_vector
>= 0) {
518 int i
, count
= 1; /* we know 1 happened now */
519 unsigned long now
= jiffies
;
521 for (i
= 0; i
< CPE_HISTORY_LENGTH
; i
++) {
522 if (now
- cpe_history
[i
] <= HZ
)
526 IA64_MCA_DEBUG(KERN_INFO
"CPE threshold %d/%d\n", count
, CPE_HISTORY_LENGTH
);
527 if (count
>= CPE_HISTORY_LENGTH
) {
529 cpe_poll_enabled
= 1;
530 spin_unlock(&cpe_history_lock
);
531 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR
));
534 * Corrected errors will still be corrected, but
535 * make sure there's a log somewhere that indicates
536 * something is generating more than we can handle.
538 printk(KERN_WARNING
"WARNING: Switching to polling CPE handler; error records may be lost\n");
540 mod_timer(&cpe_poll_timer
, jiffies
+ MIN_CPE_POLL_INTERVAL
);
542 /* lock already released, get out now */
545 cpe_history
[index
++] = now
;
546 if (index
== CPE_HISTORY_LENGTH
)
550 spin_unlock(&cpe_history_lock
);
552 /* Get the CPE error record and log it */
553 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE
);
558 #endif /* CONFIG_ACPI */
562 * ia64_mca_register_cpev
564 * Register the corrected platform error vector with SAL.
567 * cpev Corrected Platform Error Vector number
573 ia64_mca_register_cpev (int cpev
)
575 /* Register the CPE interrupt vector with SAL */
576 struct ia64_sal_retval isrv
;
578 isrv
= ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT
, SAL_MC_PARAM_MECHANISM_INT
, cpev
, 0, 0);
580 printk(KERN_ERR
"Failed to register Corrected Platform "
581 "Error interrupt vector with SAL (status %ld)\n", isrv
.status
);
585 IA64_MCA_DEBUG("%s: corrected platform error "
586 "vector %#x registered\n", __FUNCTION__
, cpev
);
588 #endif /* CONFIG_ACPI */
591 * ia64_mca_cmc_vector_setup
593 * Setup the corrected machine check vector register in the processor.
594 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
595 * This function is invoked on a per-processor basis.
604 ia64_mca_cmc_vector_setup (void)
608 cmcv
.cmcv_regval
= 0;
609 cmcv
.cmcv_mask
= 1; /* Mask/disable interrupt at first */
610 cmcv
.cmcv_vector
= IA64_CMC_VECTOR
;
611 ia64_setreg(_IA64_REG_CR_CMCV
, cmcv
.cmcv_regval
);
613 IA64_MCA_DEBUG("%s: CPU %d corrected "
614 "machine check vector %#x registered.\n",
615 __FUNCTION__
, smp_processor_id(), IA64_CMC_VECTOR
);
617 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
618 __FUNCTION__
, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV
));
622 * ia64_mca_cmc_vector_disable
624 * Mask the corrected machine check vector register in the processor.
625 * This function is invoked on a per-processor basis.
634 ia64_mca_cmc_vector_disable (void *dummy
)
638 cmcv
.cmcv_regval
= ia64_getreg(_IA64_REG_CR_CMCV
);
640 cmcv
.cmcv_mask
= 1; /* Mask/disable interrupt */
641 ia64_setreg(_IA64_REG_CR_CMCV
, cmcv
.cmcv_regval
);
643 IA64_MCA_DEBUG("%s: CPU %d corrected "
644 "machine check vector %#x disabled.\n",
645 __FUNCTION__
, smp_processor_id(), cmcv
.cmcv_vector
);
649 * ia64_mca_cmc_vector_enable
651 * Unmask the corrected machine check vector register in the processor.
652 * This function is invoked on a per-processor basis.
661 ia64_mca_cmc_vector_enable (void *dummy
)
665 cmcv
.cmcv_regval
= ia64_getreg(_IA64_REG_CR_CMCV
);
667 cmcv
.cmcv_mask
= 0; /* Unmask/enable interrupt */
668 ia64_setreg(_IA64_REG_CR_CMCV
, cmcv
.cmcv_regval
);
670 IA64_MCA_DEBUG("%s: CPU %d corrected "
671 "machine check vector %#x enabled.\n",
672 __FUNCTION__
, smp_processor_id(), cmcv
.cmcv_vector
);
676 * ia64_mca_cmc_vector_disable_keventd
678 * Called via keventd (smp_call_function() is not safe in interrupt context) to
679 * disable the cmc interrupt vector.
682 ia64_mca_cmc_vector_disable_keventd(struct work_struct
*unused
)
684 on_each_cpu(ia64_mca_cmc_vector_disable
, NULL
, 1, 0);
688 * ia64_mca_cmc_vector_enable_keventd
690 * Called via keventd (smp_call_function() is not safe in interrupt context) to
691 * enable the cmc interrupt vector.
694 ia64_mca_cmc_vector_enable_keventd(struct work_struct
*unused
)
696 on_each_cpu(ia64_mca_cmc_vector_enable
, NULL
, 1, 0);
702 * Send an inter-cpu interrupt to wake-up a particular cpu
703 * and mark that cpu to be out of rendez.
709 ia64_mca_wakeup(int cpu
)
711 platform_send_ipi(cpu
, IA64_MCA_WAKEUP_VECTOR
, IA64_IPI_DM_INT
, 0);
712 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
717 * ia64_mca_wakeup_all
719 * Wakeup all the cpus which have rendez'ed previously.
725 ia64_mca_wakeup_all(void)
729 /* Clear the Rendez checkin flag for all cpus */
730 for_each_online_cpu(cpu
) {
731 if (ia64_mc_info
.imi_rendez_checkin
[cpu
] == IA64_MCA_RENDEZ_CHECKIN_DONE
)
732 ia64_mca_wakeup(cpu
);
738 * ia64_mca_rendez_interrupt_handler
740 * This is handler used to put slave processors into spinloop
741 * while the monarch processor does the mca handling and later
742 * wake each slave up once the monarch is done.
748 ia64_mca_rendez_int_handler(int rendez_irq
, void *arg
)
751 int cpu
= smp_processor_id();
752 struct ia64_mca_notify_die nd
=
753 { .sos
= NULL
, .monarch_cpu
= &monarch_cpu
};
755 /* Mask all interrupts */
756 local_irq_save(flags
);
757 if (notify_die(DIE_MCA_RENDZVOUS_ENTER
, "MCA", get_irq_regs(),
758 (long)&nd
, 0, 0) == NOTIFY_STOP
)
759 ia64_mca_spin(__FUNCTION__
);
761 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_DONE
;
762 /* Register with the SAL monarch that the slave has
765 ia64_sal_mc_rendez();
767 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS
, "MCA", get_irq_regs(),
768 (long)&nd
, 0, 0) == NOTIFY_STOP
)
769 ia64_mca_spin(__FUNCTION__
);
771 /* Wait for the monarch cpu to exit. */
772 while (monarch_cpu
!= -1)
773 cpu_relax(); /* spin until monarch leaves */
775 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE
, "MCA", get_irq_regs(),
776 (long)&nd
, 0, 0) == NOTIFY_STOP
)
777 ia64_mca_spin(__FUNCTION__
);
779 /* Enable all interrupts */
780 local_irq_restore(flags
);
785 * ia64_mca_wakeup_int_handler
787 * The interrupt handler for processing the inter-cpu interrupt to the
788 * slave cpu which was spinning in the rendez loop.
789 * Since this spinning is done by turning off the interrupts and
790 * polling on the wakeup-interrupt bit in the IRR, there is
791 * nothing useful to be done in the handler.
793 * Inputs : wakeup_irq (Wakeup-interrupt bit)
794 * arg (Interrupt handler specific argument)
799 ia64_mca_wakeup_int_handler(int wakeup_irq
, void *arg
)
804 /* Function pointer for extra MCA recovery */
805 int (*ia64_mca_ucmc_extension
)
806 (void*,struct ia64_sal_os_state
*)
810 ia64_reg_MCA_extension(int (*fn
)(void *, struct ia64_sal_os_state
*))
812 if (ia64_mca_ucmc_extension
)
815 ia64_mca_ucmc_extension
= fn
;
820 ia64_unreg_MCA_extension(void)
822 if (ia64_mca_ucmc_extension
)
823 ia64_mca_ucmc_extension
= NULL
;
826 EXPORT_SYMBOL(ia64_reg_MCA_extension
);
827 EXPORT_SYMBOL(ia64_unreg_MCA_extension
);
831 copy_reg(const u64
*fr
, u64 fnat
, u64
*tr
, u64
*tnat
)
833 u64 fslot
, tslot
, nat
;
835 fslot
= ((unsigned long)fr
>> 3) & 63;
836 tslot
= ((unsigned long)tr
>> 3) & 63;
837 *tnat
&= ~(1UL << tslot
);
838 nat
= (fnat
>> fslot
) & 1;
839 *tnat
|= (nat
<< tslot
);
842 /* Change the comm field on the MCA/INT task to include the pid that
843 * was interrupted, it makes for easier debugging. If that pid was 0
844 * (swapper or nested MCA/INIT) then use the start of the previous comm
845 * field suffixed with its cpu.
849 ia64_mca_modify_comm(const struct task_struct
*previous_current
)
851 char *p
, comm
[sizeof(current
->comm
)];
852 if (previous_current
->pid
)
853 snprintf(comm
, sizeof(comm
), "%s %d",
854 current
->comm
, previous_current
->pid
);
857 if ((p
= strchr(previous_current
->comm
, ' ')))
858 l
= p
- previous_current
->comm
;
860 l
= strlen(previous_current
->comm
);
861 snprintf(comm
, sizeof(comm
), "%s %*s %d",
862 current
->comm
, l
, previous_current
->comm
,
863 task_thread_info(previous_current
)->cpu
);
865 memcpy(current
->comm
, comm
, sizeof(current
->comm
));
868 /* On entry to this routine, we are running on the per cpu stack, see
869 * mca_asm.h. The original stack has not been touched by this event. Some of
870 * the original stack's registers will be in the RBS on this stack. This stack
871 * also contains a partial pt_regs and switch_stack, the rest of the data is in
874 * The first thing to do is modify the original stack to look like a blocked
875 * task so we can run backtrace on the original task. Also mark the per cpu
876 * stack as current to ensure that we use the correct task state, it also means
877 * that we can do backtrace on the MCA/INIT handler code itself.
880 static struct task_struct
*
881 ia64_mca_modify_original_stack(struct pt_regs
*regs
,
882 const struct switch_stack
*sw
,
883 struct ia64_sal_os_state
*sos
,
888 extern char ia64_leave_kernel
[]; /* Need asm address, not function descriptor */
889 const pal_min_state_area_t
*ms
= sos
->pal_min_state
;
890 struct task_struct
*previous_current
;
891 struct pt_regs
*old_regs
;
892 struct switch_stack
*old_sw
;
893 unsigned size
= sizeof(struct pt_regs
) +
894 sizeof(struct switch_stack
) + 16;
895 u64
*old_bspstore
, *old_bsp
;
896 u64
*new_bspstore
, *new_bsp
;
897 u64 old_unat
, old_rnat
, new_rnat
, nat
;
898 u64 slots
, loadrs
= regs
->loadrs
;
899 u64 r12
= ms
->pmsa_gr
[12-1], r13
= ms
->pmsa_gr
[13-1];
900 u64 ar_bspstore
= regs
->ar_bspstore
;
901 u64 ar_bsp
= regs
->ar_bspstore
+ (loadrs
>> 16);
904 int cpu
= smp_processor_id();
906 previous_current
= curr_task(cpu
);
907 set_curr_task(cpu
, current
);
908 if ((p
= strchr(current
->comm
, ' ')))
911 /* Best effort attempt to cope with MCA/INIT delivered while in
914 regs
->cr_ipsr
= ms
->pmsa_ipsr
;
915 if (ia64_psr(regs
)->dt
== 0) {
927 if (ia64_psr(regs
)->rt
== 0) {
940 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
941 * have been copied to the old stack, the old stack may fail the
942 * validation tests below. So ia64_old_stack() must restore the dirty
943 * registers from the new stack. The old and new bspstore probably
944 * have different alignments, so loadrs calculated on the old bsp
945 * cannot be used to restore from the new bsp. Calculate a suitable
946 * loadrs for the new stack and save it in the new pt_regs, where
947 * ia64_old_stack() can get it.
949 old_bspstore
= (u64
*)ar_bspstore
;
950 old_bsp
= (u64
*)ar_bsp
;
951 slots
= ia64_rse_num_regs(old_bspstore
, old_bsp
);
952 new_bspstore
= (u64
*)((u64
)current
+ IA64_RBS_OFFSET
);
953 new_bsp
= ia64_rse_skip_regs(new_bspstore
, slots
);
954 regs
->loadrs
= (new_bsp
- new_bspstore
) * 8 << 16;
956 /* Verify the previous stack state before we change it */
957 if (user_mode(regs
)) {
958 msg
= "occurred in user space";
959 /* previous_current is guaranteed to be valid when the task was
960 * in user space, so ...
962 ia64_mca_modify_comm(previous_current
);
966 if (!mca_recover_range(ms
->pmsa_iip
)) {
967 if (r13
!= sos
->prev_IA64_KR_CURRENT
) {
968 msg
= "inconsistent previous current and r13";
971 if ((r12
- r13
) >= KERNEL_STACK_SIZE
) {
972 msg
= "inconsistent r12 and r13";
975 if ((ar_bspstore
- r13
) >= KERNEL_STACK_SIZE
) {
976 msg
= "inconsistent ar.bspstore and r13";
981 msg
= "old_bspstore is in the wrong region";
984 if ((ar_bsp
- r13
) >= KERNEL_STACK_SIZE
) {
985 msg
= "inconsistent ar.bsp and r13";
988 size
+= (ia64_rse_skip_regs(old_bspstore
, slots
) - old_bspstore
) * 8;
989 if (ar_bspstore
+ size
> r12
) {
990 msg
= "no room for blocked state";
995 ia64_mca_modify_comm(previous_current
);
997 /* Make the original task look blocked. First stack a struct pt_regs,
998 * describing the state at the time of interrupt. mca_asm.S built a
999 * partial pt_regs, copy it and fill in the blanks using minstate.
1001 p
= (char *)r12
- sizeof(*regs
);
1002 old_regs
= (struct pt_regs
*)p
;
1003 memcpy(old_regs
, regs
, sizeof(*regs
));
1004 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1005 * pmsa_{xip,xpsr,xfs}
1007 if (ia64_psr(regs
)->ic
) {
1008 old_regs
->cr_iip
= ms
->pmsa_iip
;
1009 old_regs
->cr_ipsr
= ms
->pmsa_ipsr
;
1010 old_regs
->cr_ifs
= ms
->pmsa_ifs
;
1012 old_regs
->cr_iip
= ms
->pmsa_xip
;
1013 old_regs
->cr_ipsr
= ms
->pmsa_xpsr
;
1014 old_regs
->cr_ifs
= ms
->pmsa_xfs
;
1016 old_regs
->pr
= ms
->pmsa_pr
;
1017 old_regs
->b0
= ms
->pmsa_br0
;
1018 old_regs
->loadrs
= loadrs
;
1019 old_regs
->ar_rsc
= ms
->pmsa_rsc
;
1020 old_unat
= old_regs
->ar_unat
;
1021 copy_reg(&ms
->pmsa_gr
[1-1], ms
->pmsa_nat_bits
, &old_regs
->r1
, &old_unat
);
1022 copy_reg(&ms
->pmsa_gr
[2-1], ms
->pmsa_nat_bits
, &old_regs
->r2
, &old_unat
);
1023 copy_reg(&ms
->pmsa_gr
[3-1], ms
->pmsa_nat_bits
, &old_regs
->r3
, &old_unat
);
1024 copy_reg(&ms
->pmsa_gr
[8-1], ms
->pmsa_nat_bits
, &old_regs
->r8
, &old_unat
);
1025 copy_reg(&ms
->pmsa_gr
[9-1], ms
->pmsa_nat_bits
, &old_regs
->r9
, &old_unat
);
1026 copy_reg(&ms
->pmsa_gr
[10-1], ms
->pmsa_nat_bits
, &old_regs
->r10
, &old_unat
);
1027 copy_reg(&ms
->pmsa_gr
[11-1], ms
->pmsa_nat_bits
, &old_regs
->r11
, &old_unat
);
1028 copy_reg(&ms
->pmsa_gr
[12-1], ms
->pmsa_nat_bits
, &old_regs
->r12
, &old_unat
);
1029 copy_reg(&ms
->pmsa_gr
[13-1], ms
->pmsa_nat_bits
, &old_regs
->r13
, &old_unat
);
1030 copy_reg(&ms
->pmsa_gr
[14-1], ms
->pmsa_nat_bits
, &old_regs
->r14
, &old_unat
);
1031 copy_reg(&ms
->pmsa_gr
[15-1], ms
->pmsa_nat_bits
, &old_regs
->r15
, &old_unat
);
1032 if (ia64_psr(old_regs
)->bn
)
1033 bank
= ms
->pmsa_bank1_gr
;
1035 bank
= ms
->pmsa_bank0_gr
;
1036 copy_reg(&bank
[16-16], ms
->pmsa_nat_bits
, &old_regs
->r16
, &old_unat
);
1037 copy_reg(&bank
[17-16], ms
->pmsa_nat_bits
, &old_regs
->r17
, &old_unat
);
1038 copy_reg(&bank
[18-16], ms
->pmsa_nat_bits
, &old_regs
->r18
, &old_unat
);
1039 copy_reg(&bank
[19-16], ms
->pmsa_nat_bits
, &old_regs
->r19
, &old_unat
);
1040 copy_reg(&bank
[20-16], ms
->pmsa_nat_bits
, &old_regs
->r20
, &old_unat
);
1041 copy_reg(&bank
[21-16], ms
->pmsa_nat_bits
, &old_regs
->r21
, &old_unat
);
1042 copy_reg(&bank
[22-16], ms
->pmsa_nat_bits
, &old_regs
->r22
, &old_unat
);
1043 copy_reg(&bank
[23-16], ms
->pmsa_nat_bits
, &old_regs
->r23
, &old_unat
);
1044 copy_reg(&bank
[24-16], ms
->pmsa_nat_bits
, &old_regs
->r24
, &old_unat
);
1045 copy_reg(&bank
[25-16], ms
->pmsa_nat_bits
, &old_regs
->r25
, &old_unat
);
1046 copy_reg(&bank
[26-16], ms
->pmsa_nat_bits
, &old_regs
->r26
, &old_unat
);
1047 copy_reg(&bank
[27-16], ms
->pmsa_nat_bits
, &old_regs
->r27
, &old_unat
);
1048 copy_reg(&bank
[28-16], ms
->pmsa_nat_bits
, &old_regs
->r28
, &old_unat
);
1049 copy_reg(&bank
[29-16], ms
->pmsa_nat_bits
, &old_regs
->r29
, &old_unat
);
1050 copy_reg(&bank
[30-16], ms
->pmsa_nat_bits
, &old_regs
->r30
, &old_unat
);
1051 copy_reg(&bank
[31-16], ms
->pmsa_nat_bits
, &old_regs
->r31
, &old_unat
);
1053 /* Next stack a struct switch_stack. mca_asm.S built a partial
1054 * switch_stack, copy it and fill in the blanks using pt_regs and
1057 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1058 * ar.pfs is set to 0.
1060 * unwind.c::unw_unwind() does special processing for interrupt frames.
1061 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1062 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1063 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1064 * switch_stack on the original stack so it will unwind correctly when
1065 * unwind.c reads pt_regs.
1067 * thread.ksp is updated to point to the synthesized switch_stack.
1069 p
-= sizeof(struct switch_stack
);
1070 old_sw
= (struct switch_stack
*)p
;
1071 memcpy(old_sw
, sw
, sizeof(*sw
));
1072 old_sw
->caller_unat
= old_unat
;
1073 old_sw
->ar_fpsr
= old_regs
->ar_fpsr
;
1074 copy_reg(&ms
->pmsa_gr
[4-1], ms
->pmsa_nat_bits
, &old_sw
->r4
, &old_unat
);
1075 copy_reg(&ms
->pmsa_gr
[5-1], ms
->pmsa_nat_bits
, &old_sw
->r5
, &old_unat
);
1076 copy_reg(&ms
->pmsa_gr
[6-1], ms
->pmsa_nat_bits
, &old_sw
->r6
, &old_unat
);
1077 copy_reg(&ms
->pmsa_gr
[7-1], ms
->pmsa_nat_bits
, &old_sw
->r7
, &old_unat
);
1078 old_sw
->b0
= (u64
)ia64_leave_kernel
;
1079 old_sw
->b1
= ms
->pmsa_br1
;
1081 old_sw
->ar_unat
= old_unat
;
1082 old_sw
->pr
= old_regs
->pr
| (1UL << PRED_NON_SYSCALL
);
1083 previous_current
->thread
.ksp
= (u64
)p
- 16;
1085 /* Finally copy the original stack's registers back to its RBS.
1086 * Registers from ar.bspstore through ar.bsp at the time of the event
1087 * are in the current RBS, copy them back to the original stack. The
1088 * copy must be done register by register because the original bspstore
1089 * and the current one have different alignments, so the saved RNAT
1090 * data occurs at different places.
1092 * mca_asm does cover, so the old_bsp already includes all registers at
1093 * the time of MCA/INIT. It also does flushrs, so all registers before
1094 * this function have been written to backing store on the MCA/INIT
1097 new_rnat
= ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore
));
1098 old_rnat
= regs
->ar_rnat
;
1100 if (ia64_rse_is_rnat_slot(new_bspstore
)) {
1101 new_rnat
= ia64_get_rnat(new_bspstore
++);
1103 if (ia64_rse_is_rnat_slot(old_bspstore
)) {
1104 *old_bspstore
++ = old_rnat
;
1107 nat
= (new_rnat
>> ia64_rse_slot_num(new_bspstore
)) & 1UL;
1108 old_rnat
&= ~(1UL << ia64_rse_slot_num(old_bspstore
));
1109 old_rnat
|= (nat
<< ia64_rse_slot_num(old_bspstore
));
1110 *old_bspstore
++ = *new_bspstore
++;
1112 old_sw
->ar_bspstore
= (unsigned long)old_bspstore
;
1113 old_sw
->ar_rnat
= old_rnat
;
1115 sos
->prev_task
= previous_current
;
1116 return previous_current
;
1119 printk(KERN_INFO
"cpu %d, %s %s, original stack not modified\n",
1120 smp_processor_id(), type
, msg
);
1121 return previous_current
;
1124 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1125 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1126 * not entered rendezvous yet then wait a bit. The assumption is that any
1127 * slave that has not rendezvoused after a reasonable time is never going to do
1128 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1129 * interrupt, as well as cpus that receive the INIT slave event.
1133 ia64_wait_for_slaves(int monarch
, const char *type
)
1135 int c
, wait
= 0, missing
= 0;
1136 for_each_online_cpu(c
) {
1139 if (ia64_mc_info
.imi_rendez_checkin
[c
] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE
) {
1140 udelay(1000); /* short wait first */
1147 for_each_online_cpu(c
) {
1150 if (ia64_mc_info
.imi_rendez_checkin
[c
] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE
) {
1151 udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */
1152 if (ia64_mc_info
.imi_rendez_checkin
[c
] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE
)
1160 * Maybe slave(s) dead. Print buffered messages immediately.
1162 ia64_mlogbuf_finish(0);
1163 mprintk(KERN_INFO
"OS %s slave did not rendezvous on cpu", type
);
1164 for_each_online_cpu(c
) {
1167 if (ia64_mc_info
.imi_rendez_checkin
[c
] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE
)
1174 mprintk(KERN_INFO
"All OS %s slaves have reached rendezvous\n", type
);
1181 * This is uncorrectable machine check handler called from OS_MCA
1182 * dispatch code which is in turn called from SAL_CHECK().
1183 * This is the place where the core of OS MCA handling is done.
1184 * Right now the logs are extracted and displayed in a well-defined
1185 * format. This handler code is supposed to be run only on the
1186 * monarch processor. Once the monarch is done with MCA handling
1187 * further MCA logging is enabled by clearing logs.
1188 * Monarch also has the duty of sending wakeup-IPIs to pull the
1189 * slave processors out of rendezvous spinloop.
1192 ia64_mca_handler(struct pt_regs
*regs
, struct switch_stack
*sw
,
1193 struct ia64_sal_os_state
*sos
)
1195 int recover
, cpu
= smp_processor_id();
1196 struct task_struct
*previous_current
;
1197 struct ia64_mca_notify_die nd
=
1198 { .sos
= sos
, .monarch_cpu
= &monarch_cpu
};
1200 mprintk(KERN_INFO
"Entered OS MCA handler. PSP=%lx cpu=%d "
1201 "monarch=%ld\n", sos
->proc_state_param
, cpu
, sos
->monarch
);
1203 previous_current
= ia64_mca_modify_original_stack(regs
, sw
, sos
, "MCA");
1205 if (notify_die(DIE_MCA_MONARCH_ENTER
, "MCA", regs
, (long)&nd
, 0, 0)
1207 ia64_mca_spin(__FUNCTION__
);
1208 ia64_wait_for_slaves(cpu
, "MCA");
1210 /* Wakeup all the processors which are spinning in the rendezvous loop.
1211 * They will leave SAL, then spin in the OS with interrupts disabled
1212 * until this monarch cpu leaves the MCA handler. That gets control
1213 * back to the OS so we can backtrace the other cpus, backtrace when
1214 * spinning in SAL does not work.
1216 ia64_mca_wakeup_all();
1217 if (notify_die(DIE_MCA_MONARCH_PROCESS
, "MCA", regs
, (long)&nd
, 0, 0)
1219 ia64_mca_spin(__FUNCTION__
);
1221 /* Get the MCA error record and log it */
1222 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA
);
1224 /* MCA error recovery */
1225 recover
= (ia64_mca_ucmc_extension
1226 && ia64_mca_ucmc_extension(
1227 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA
),
1231 sal_log_record_header_t
*rh
= IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA
);
1232 rh
->severity
= sal_log_severity_corrected
;
1233 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA
);
1234 sos
->os_status
= IA64_MCA_CORRECTED
;
1236 /* Dump buffered message to console */
1237 ia64_mlogbuf_finish(1);
1239 atomic_set(&kdump_in_progress
, 1);
1243 if (notify_die(DIE_MCA_MONARCH_LEAVE
, "MCA", regs
, (long)&nd
, 0, recover
)
1245 ia64_mca_spin(__FUNCTION__
);
1247 set_curr_task(cpu
, previous_current
);
1251 static DECLARE_WORK(cmc_disable_work
, ia64_mca_cmc_vector_disable_keventd
);
1252 static DECLARE_WORK(cmc_enable_work
, ia64_mca_cmc_vector_enable_keventd
);
1255 * ia64_mca_cmc_int_handler
1257 * This is corrected machine check interrupt handler.
1258 * Right now the logs are extracted and displayed in a well-defined
1263 * client data arg ptr
1269 ia64_mca_cmc_int_handler(int cmc_irq
, void *arg
)
1271 static unsigned long cmc_history
[CMC_HISTORY_LENGTH
];
1273 static DEFINE_SPINLOCK(cmc_history_lock
);
1275 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1276 __FUNCTION__
, cmc_irq
, smp_processor_id());
1278 /* SAL spec states this should run w/ interrupts enabled */
1281 spin_lock(&cmc_history_lock
);
1282 if (!cmc_polling_enabled
) {
1283 int i
, count
= 1; /* we know 1 happened now */
1284 unsigned long now
= jiffies
;
1286 for (i
= 0; i
< CMC_HISTORY_LENGTH
; i
++) {
1287 if (now
- cmc_history
[i
] <= HZ
)
1291 IA64_MCA_DEBUG(KERN_INFO
"CMC threshold %d/%d\n", count
, CMC_HISTORY_LENGTH
);
1292 if (count
>= CMC_HISTORY_LENGTH
) {
1294 cmc_polling_enabled
= 1;
1295 spin_unlock(&cmc_history_lock
);
1296 /* If we're being hit with CMC interrupts, we won't
1297 * ever execute the schedule_work() below. Need to
1298 * disable CMC interrupts on this processor now.
1300 ia64_mca_cmc_vector_disable(NULL
);
1301 schedule_work(&cmc_disable_work
);
1304 * Corrected errors will still be corrected, but
1305 * make sure there's a log somewhere that indicates
1306 * something is generating more than we can handle.
1308 printk(KERN_WARNING
"WARNING: Switching to polling CMC handler; error records may be lost\n");
1310 mod_timer(&cmc_poll_timer
, jiffies
+ CMC_POLL_INTERVAL
);
1312 /* lock already released, get out now */
1315 cmc_history
[index
++] = now
;
1316 if (index
== CMC_HISTORY_LENGTH
)
1320 spin_unlock(&cmc_history_lock
);
1322 /* Get the CMC error record and log it */
1323 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC
);
1329 * ia64_mca_cmc_int_caller
1331 * Triggered by sw interrupt from CMC polling routine. Calls
1332 * real interrupt handler and either triggers a sw interrupt
1333 * on the next cpu or does cleanup at the end.
1337 * client data arg ptr
1342 ia64_mca_cmc_int_caller(int cmc_irq
, void *arg
)
1344 static int start_count
= -1;
1347 cpuid
= smp_processor_id();
1349 /* If first cpu, update count */
1350 if (start_count
== -1)
1351 start_count
= IA64_LOG_COUNT(SAL_INFO_TYPE_CMC
);
1353 ia64_mca_cmc_int_handler(cmc_irq
, arg
);
1355 for (++cpuid
; cpuid
< NR_CPUS
&& !cpu_online(cpuid
) ; cpuid
++);
1357 if (cpuid
< NR_CPUS
) {
1358 platform_send_ipi(cpuid
, IA64_CMCP_VECTOR
, IA64_IPI_DM_INT
, 0);
1360 /* If no log record, switch out of polling mode */
1361 if (start_count
== IA64_LOG_COUNT(SAL_INFO_TYPE_CMC
)) {
1363 printk(KERN_WARNING
"Returning to interrupt driven CMC handler\n");
1364 schedule_work(&cmc_enable_work
);
1365 cmc_polling_enabled
= 0;
1369 mod_timer(&cmc_poll_timer
, jiffies
+ CMC_POLL_INTERVAL
);
1381 * Poll for Corrected Machine Checks (CMCs)
1383 * Inputs : dummy(unused)
1388 ia64_mca_cmc_poll (unsigned long dummy
)
1390 /* Trigger a CMC interrupt cascade */
1391 platform_send_ipi(first_cpu(cpu_online_map
), IA64_CMCP_VECTOR
, IA64_IPI_DM_INT
, 0);
1395 * ia64_mca_cpe_int_caller
1397 * Triggered by sw interrupt from CPE polling routine. Calls
1398 * real interrupt handler and either triggers a sw interrupt
1399 * on the next cpu or does cleanup at the end.
1403 * client data arg ptr
1410 ia64_mca_cpe_int_caller(int cpe_irq
, void *arg
)
1412 static int start_count
= -1;
1413 static int poll_time
= MIN_CPE_POLL_INTERVAL
;
1416 cpuid
= smp_processor_id();
1418 /* If first cpu, update count */
1419 if (start_count
== -1)
1420 start_count
= IA64_LOG_COUNT(SAL_INFO_TYPE_CPE
);
1422 ia64_mca_cpe_int_handler(cpe_irq
, arg
);
1424 for (++cpuid
; cpuid
< NR_CPUS
&& !cpu_online(cpuid
) ; cpuid
++);
1426 if (cpuid
< NR_CPUS
) {
1427 platform_send_ipi(cpuid
, IA64_CPEP_VECTOR
, IA64_IPI_DM_INT
, 0);
1430 * If a log was recorded, increase our polling frequency,
1431 * otherwise, backoff or return to interrupt mode.
1433 if (start_count
!= IA64_LOG_COUNT(SAL_INFO_TYPE_CPE
)) {
1434 poll_time
= max(MIN_CPE_POLL_INTERVAL
, poll_time
/ 2);
1435 } else if (cpe_vector
< 0) {
1436 poll_time
= min(MAX_CPE_POLL_INTERVAL
, poll_time
* 2);
1438 poll_time
= MIN_CPE_POLL_INTERVAL
;
1440 printk(KERN_WARNING
"Returning to interrupt driven CPE handler\n");
1441 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR
));
1442 cpe_poll_enabled
= 0;
1445 if (cpe_poll_enabled
)
1446 mod_timer(&cpe_poll_timer
, jiffies
+ poll_time
);
1456 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1457 * on first cpu, from there it will trickle through all the cpus.
1459 * Inputs : dummy(unused)
1464 ia64_mca_cpe_poll (unsigned long dummy
)
1466 /* Trigger a CPE interrupt cascade */
1467 platform_send_ipi(first_cpu(cpu_online_map
), IA64_CPEP_VECTOR
, IA64_IPI_DM_INT
, 0);
1470 #endif /* CONFIG_ACPI */
1473 default_monarch_init_process(struct notifier_block
*self
, unsigned long val
, void *data
)
1476 struct task_struct
*g
, *t
;
1477 if (val
!= DIE_INIT_MONARCH_PROCESS
)
1480 if (atomic_read(&kdump_in_progress
))
1485 * FIXME: mlogbuf will brim over with INIT stack dumps.
1486 * To enable show_stack from INIT, we use oops_in_progress which should
1487 * be used in real oops. This would cause something wrong after INIT.
1489 BREAK_LOGLEVEL(console_loglevel
);
1490 ia64_mlogbuf_dump_from_init();
1492 printk(KERN_ERR
"Processes interrupted by INIT -");
1493 for_each_online_cpu(c
) {
1494 struct ia64_sal_os_state
*s
;
1495 t
= __va(__per_cpu_mca
[c
] + IA64_MCA_CPU_INIT_STACK_OFFSET
);
1496 s
= (struct ia64_sal_os_state
*)((char *)t
+ MCA_SOS_OFFSET
);
1500 printk(" %d", g
->pid
);
1502 printk(" %d (cpu %d task 0x%p)", g
->pid
, task_cpu(g
), g
);
1506 if (read_trylock(&tasklist_lock
)) {
1507 do_each_thread (g
, t
) {
1508 printk("\nBacktrace of pid %d (%s)\n", t
->pid
, t
->comm
);
1509 show_stack(t
, NULL
);
1510 } while_each_thread (g
, t
);
1511 read_unlock(&tasklist_lock
);
1513 /* FIXME: This will not restore zapped printk locks. */
1514 RESTORE_LOGLEVEL(console_loglevel
);
1519 * C portion of the OS INIT handler
1521 * Called from ia64_os_init_dispatch
1523 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1524 * this event. This code is used for both monarch and slave INIT events, see
1527 * All INIT events switch to the INIT stack and change the previous process to
1528 * blocked status. If one of the INIT events is the monarch then we are
1529 * probably processing the nmi button/command. Use the monarch cpu to dump all
1530 * the processes. The slave INIT events all spin until the monarch cpu
1531 * returns. We can also get INIT slave events for MCA, in which case the MCA
1532 * process is the monarch.
1536 ia64_init_handler(struct pt_regs
*regs
, struct switch_stack
*sw
,
1537 struct ia64_sal_os_state
*sos
)
1539 static atomic_t slaves
;
1540 static atomic_t monarchs
;
1541 struct task_struct
*previous_current
;
1542 int cpu
= smp_processor_id();
1543 struct ia64_mca_notify_die nd
=
1544 { .sos
= sos
, .monarch_cpu
= &monarch_cpu
};
1546 (void) notify_die(DIE_INIT_ENTER
, "INIT", regs
, (long)&nd
, 0, 0);
1548 mprintk(KERN_INFO
"Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1549 sos
->proc_state_param
, cpu
, sos
->monarch
);
1550 salinfo_log_wakeup(SAL_INFO_TYPE_INIT
, NULL
, 0, 0);
1552 previous_current
= ia64_mca_modify_original_stack(regs
, sw
, sos
, "INIT");
1553 sos
->os_status
= IA64_INIT_RESUME
;
1555 /* FIXME: Workaround for broken proms that drive all INIT events as
1556 * slaves. The last slave that enters is promoted to be a monarch.
1557 * Remove this code in September 2006, that gives platforms a year to
1558 * fix their proms and get their customers updated.
1560 if (!sos
->monarch
&& atomic_add_return(1, &slaves
) == num_online_cpus()) {
1561 mprintk(KERN_WARNING
"%s: Promoting cpu %d to monarch.\n",
1563 atomic_dec(&slaves
);
1567 /* FIXME: Workaround for broken proms that drive all INIT events as
1568 * monarchs. Second and subsequent monarchs are demoted to slaves.
1569 * Remove this code in September 2006, that gives platforms a year to
1570 * fix their proms and get their customers updated.
1572 if (sos
->monarch
&& atomic_add_return(1, &monarchs
) > 1) {
1573 mprintk(KERN_WARNING
"%s: Demoting cpu %d to slave.\n",
1575 atomic_dec(&monarchs
);
1579 if (!sos
->monarch
) {
1580 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_INIT
;
1581 while (monarch_cpu
== -1)
1582 cpu_relax(); /* spin until monarch enters */
1583 if (notify_die(DIE_INIT_SLAVE_ENTER
, "INIT", regs
, (long)&nd
, 0, 0)
1585 ia64_mca_spin(__FUNCTION__
);
1586 if (notify_die(DIE_INIT_SLAVE_PROCESS
, "INIT", regs
, (long)&nd
, 0, 0)
1588 ia64_mca_spin(__FUNCTION__
);
1589 while (monarch_cpu
!= -1)
1590 cpu_relax(); /* spin until monarch leaves */
1591 if (notify_die(DIE_INIT_SLAVE_LEAVE
, "INIT", regs
, (long)&nd
, 0, 0)
1593 ia64_mca_spin(__FUNCTION__
);
1594 mprintk("Slave on cpu %d returning to normal service.\n", cpu
);
1595 set_curr_task(cpu
, previous_current
);
1596 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
1597 atomic_dec(&slaves
);
1602 if (notify_die(DIE_INIT_MONARCH_ENTER
, "INIT", regs
, (long)&nd
, 0, 0)
1604 ia64_mca_spin(__FUNCTION__
);
1607 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1608 * generated via the BMC's command-line interface, but since the console is on the
1609 * same serial line, the user will need some time to switch out of the BMC before
1612 mprintk("Delaying for 5 seconds...\n");
1614 ia64_wait_for_slaves(cpu
, "INIT");
1615 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1616 * to default_monarch_init_process() above and just print all the
1619 if (notify_die(DIE_INIT_MONARCH_PROCESS
, "INIT", regs
, (long)&nd
, 0, 0)
1621 ia64_mca_spin(__FUNCTION__
);
1622 if (notify_die(DIE_INIT_MONARCH_LEAVE
, "INIT", regs
, (long)&nd
, 0, 0)
1624 ia64_mca_spin(__FUNCTION__
);
1625 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu
);
1626 atomic_dec(&monarchs
);
1627 set_curr_task(cpu
, previous_current
);
1633 ia64_mca_disable_cpe_polling(char *str
)
1635 cpe_poll_enabled
= 0;
1639 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling
);
1641 static struct irqaction cmci_irqaction
= {
1642 .handler
= ia64_mca_cmc_int_handler
,
1643 .flags
= IRQF_DISABLED
,
1647 static struct irqaction cmcp_irqaction
= {
1648 .handler
= ia64_mca_cmc_int_caller
,
1649 .flags
= IRQF_DISABLED
,
1653 static struct irqaction mca_rdzv_irqaction
= {
1654 .handler
= ia64_mca_rendez_int_handler
,
1655 .flags
= IRQF_DISABLED
,
1659 static struct irqaction mca_wkup_irqaction
= {
1660 .handler
= ia64_mca_wakeup_int_handler
,
1661 .flags
= IRQF_DISABLED
,
1666 static struct irqaction mca_cpe_irqaction
= {
1667 .handler
= ia64_mca_cpe_int_handler
,
1668 .flags
= IRQF_DISABLED
,
1672 static struct irqaction mca_cpep_irqaction
= {
1673 .handler
= ia64_mca_cpe_int_caller
,
1674 .flags
= IRQF_DISABLED
,
1677 #endif /* CONFIG_ACPI */
1679 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1680 * these stacks can never sleep, they cannot return from the kernel to user
1681 * space, they do not appear in a normal ps listing. So there is no need to
1682 * format most of the fields.
1685 static void __cpuinit
1686 format_mca_init_stack(void *mca_data
, unsigned long offset
,
1687 const char *type
, int cpu
)
1689 struct task_struct
*p
= (struct task_struct
*)((char *)mca_data
+ offset
);
1690 struct thread_info
*ti
;
1691 memset(p
, 0, KERNEL_STACK_SIZE
);
1692 ti
= task_thread_info(p
);
1693 ti
->flags
= _TIF_MCA_INIT
;
1694 ti
->preempt_count
= 1;
1698 p
->state
= TASK_UNINTERRUPTIBLE
;
1699 cpu_set(cpu
, p
->cpus_allowed
);
1700 INIT_LIST_HEAD(&p
->tasks
);
1701 p
->parent
= p
->real_parent
= p
->group_leader
= p
;
1702 INIT_LIST_HEAD(&p
->children
);
1703 INIT_LIST_HEAD(&p
->sibling
);
1704 strncpy(p
->comm
, type
, sizeof(p
->comm
)-1);
1707 /* Do per-CPU MCA-related initialization. */
1710 ia64_mca_cpu_init(void *cpu_data
)
1713 static int first_time
= 1;
1720 mca_data
= alloc_bootmem(sizeof(struct ia64_mca_cpu
)
1721 * NR_CPUS
+ KERNEL_STACK_SIZE
);
1722 mca_data
= (void *)(((unsigned long)mca_data
+
1723 KERNEL_STACK_SIZE
- 1) &
1724 (-KERNEL_STACK_SIZE
));
1725 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
1726 format_mca_init_stack(mca_data
,
1727 offsetof(struct ia64_mca_cpu
, mca_stack
),
1729 format_mca_init_stack(mca_data
,
1730 offsetof(struct ia64_mca_cpu
, init_stack
),
1732 __per_cpu_mca
[cpu
] = __pa(mca_data
);
1733 mca_data
+= sizeof(struct ia64_mca_cpu
);
1738 * The MCA info structure was allocated earlier and its
1739 * physical address saved in __per_cpu_mca[cpu]. Copy that
1740 * address * to ia64_mca_data so we can access it as a per-CPU
1743 __get_cpu_var(ia64_mca_data
) = __per_cpu_mca
[smp_processor_id()];
1746 * Stash away a copy of the PTE needed to map the per-CPU page.
1747 * We may need it during MCA recovery.
1749 __get_cpu_var(ia64_mca_per_cpu_pte
) =
1750 pte_val(mk_pte_phys(__pa(cpu_data
), PAGE_KERNEL
));
1753 * Also, stash away a copy of the PAL address and the PTE
1756 pal_vaddr
= efi_get_pal_addr();
1759 __get_cpu_var(ia64_mca_pal_base
) =
1760 GRANULEROUNDDOWN((unsigned long) pal_vaddr
);
1761 __get_cpu_var(ia64_mca_pal_pte
) = pte_val(mk_pte_phys(__pa(pal_vaddr
),
1768 * Do all the system level mca specific initialization.
1770 * 1. Register spinloop and wakeup request interrupt vectors
1772 * 2. Register OS_MCA handler entry point
1774 * 3. Register OS_INIT handler entry point
1776 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1778 * Note that this initialization is done very early before some kernel
1779 * services are available.
1788 ia64_fptr_t
*init_hldlr_ptr_monarch
= (ia64_fptr_t
*)ia64_os_init_dispatch_monarch
;
1789 ia64_fptr_t
*init_hldlr_ptr_slave
= (ia64_fptr_t
*)ia64_os_init_dispatch_slave
;
1790 ia64_fptr_t
*mca_hldlr_ptr
= (ia64_fptr_t
*)ia64_os_mca_dispatch
;
1793 struct ia64_sal_retval isrv
;
1794 u64 timeout
= IA64_MCA_RENDEZ_TIMEOUT
; /* platform specific */
1795 static struct notifier_block default_init_monarch_nb
= {
1796 .notifier_call
= default_monarch_init_process
,
1797 .priority
= 0/* we need to notified last */
1800 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__
);
1802 /* Clear the Rendez checkin flag for all cpus */
1803 for(i
= 0 ; i
< NR_CPUS
; i
++)
1804 ia64_mc_info
.imi_rendez_checkin
[i
] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
1807 * Register the rendezvous spinloop and wakeup mechanism with SAL
1810 /* Register the rendezvous interrupt vector with SAL */
1812 isrv
= ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT
,
1813 SAL_MC_PARAM_MECHANISM_INT
,
1814 IA64_MCA_RENDEZ_VECTOR
,
1816 SAL_MC_PARAM_RZ_ALWAYS
);
1821 printk(KERN_INFO
"Increasing MCA rendezvous timeout from "
1822 "%ld to %ld milliseconds\n", timeout
, isrv
.v0
);
1824 (void) notify_die(DIE_MCA_NEW_TIMEOUT
, "MCA", NULL
, timeout
, 0, 0);
1827 printk(KERN_ERR
"Failed to register rendezvous interrupt "
1828 "with SAL (status %ld)\n", rc
);
1832 /* Register the wakeup interrupt vector with SAL */
1833 isrv
= ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP
,
1834 SAL_MC_PARAM_MECHANISM_INT
,
1835 IA64_MCA_WAKEUP_VECTOR
,
1839 printk(KERN_ERR
"Failed to register wakeup interrupt with SAL "
1840 "(status %ld)\n", rc
);
1844 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__
);
1846 ia64_mc_info
.imi_mca_handler
= ia64_tpa(mca_hldlr_ptr
->fp
);
1848 * XXX - disable SAL checksum by setting size to 0; should be
1849 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1851 ia64_mc_info
.imi_mca_handler_size
= 0;
1853 /* Register the os mca handler with SAL */
1854 if ((rc
= ia64_sal_set_vectors(SAL_VECTOR_OS_MCA
,
1855 ia64_mc_info
.imi_mca_handler
,
1856 ia64_tpa(mca_hldlr_ptr
->gp
),
1857 ia64_mc_info
.imi_mca_handler_size
,
1860 printk(KERN_ERR
"Failed to register OS MCA handler with SAL "
1861 "(status %ld)\n", rc
);
1865 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__
,
1866 ia64_mc_info
.imi_mca_handler
, ia64_tpa(mca_hldlr_ptr
->gp
));
1869 * XXX - disable SAL checksum by setting size to 0, should be
1870 * size of the actual init handler in mca_asm.S.
1872 ia64_mc_info
.imi_monarch_init_handler
= ia64_tpa(init_hldlr_ptr_monarch
->fp
);
1873 ia64_mc_info
.imi_monarch_init_handler_size
= 0;
1874 ia64_mc_info
.imi_slave_init_handler
= ia64_tpa(init_hldlr_ptr_slave
->fp
);
1875 ia64_mc_info
.imi_slave_init_handler_size
= 0;
1877 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__
,
1878 ia64_mc_info
.imi_monarch_init_handler
);
1880 /* Register the os init handler with SAL */
1881 if ((rc
= ia64_sal_set_vectors(SAL_VECTOR_OS_INIT
,
1882 ia64_mc_info
.imi_monarch_init_handler
,
1883 ia64_tpa(ia64_getreg(_IA64_REG_GP
)),
1884 ia64_mc_info
.imi_monarch_init_handler_size
,
1885 ia64_mc_info
.imi_slave_init_handler
,
1886 ia64_tpa(ia64_getreg(_IA64_REG_GP
)),
1887 ia64_mc_info
.imi_slave_init_handler_size
)))
1889 printk(KERN_ERR
"Failed to register m/s INIT handlers with SAL "
1890 "(status %ld)\n", rc
);
1893 if (register_die_notifier(&default_init_monarch_nb
)) {
1894 printk(KERN_ERR
"Failed to register default monarch INIT process\n");
1898 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__
);
1901 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1902 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1904 register_percpu_irq(IA64_CMC_VECTOR
, &cmci_irqaction
);
1905 register_percpu_irq(IA64_CMCP_VECTOR
, &cmcp_irqaction
);
1906 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1908 /* Setup the MCA rendezvous interrupt vector */
1909 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR
, &mca_rdzv_irqaction
);
1911 /* Setup the MCA wakeup interrupt vector */
1912 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR
, &mca_wkup_irqaction
);
1915 /* Setup the CPEI/P handler */
1916 register_percpu_irq(IA64_CPEP_VECTOR
, &mca_cpep_irqaction
);
1919 /* Initialize the areas set aside by the OS to buffer the
1920 * platform/processor error states for MCA/INIT/CMC
1923 ia64_log_init(SAL_INFO_TYPE_MCA
);
1924 ia64_log_init(SAL_INFO_TYPE_INIT
);
1925 ia64_log_init(SAL_INFO_TYPE_CMC
);
1926 ia64_log_init(SAL_INFO_TYPE_CPE
);
1929 printk(KERN_INFO
"MCA related initialization done\n");
1933 * ia64_mca_late_init
1935 * Opportunity to setup things that require initialization later
1936 * than ia64_mca_init. Setup a timer to poll for CPEs if the
1937 * platform doesn't support an interrupt driven mechanism.
1943 ia64_mca_late_init(void)
1948 /* Setup the CMCI/P vector and handler */
1949 init_timer(&cmc_poll_timer
);
1950 cmc_poll_timer
.function
= ia64_mca_cmc_poll
;
1952 /* Unmask/enable the vector */
1953 cmc_polling_enabled
= 0;
1954 schedule_work(&cmc_enable_work
);
1956 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__
);
1959 /* Setup the CPEI/P vector and handler */
1960 cpe_vector
= acpi_request_vector(ACPI_INTERRUPT_CPEI
);
1961 init_timer(&cpe_poll_timer
);
1962 cpe_poll_timer
.function
= ia64_mca_cpe_poll
;
1968 if (cpe_vector
>= 0) {
1969 /* If platform supports CPEI, enable the irq. */
1970 cpe_poll_enabled
= 0;
1971 for (irq
= 0; irq
< NR_IRQS
; ++irq
)
1972 if (irq_to_vector(irq
) == cpe_vector
) {
1973 desc
= irq_desc
+ irq
;
1974 desc
->status
|= IRQ_PER_CPU
;
1975 setup_irq(irq
, &mca_cpe_irqaction
);
1978 ia64_mca_register_cpev(cpe_vector
);
1979 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__
);
1981 /* If platform doesn't support CPEI, get the timer going. */
1982 if (cpe_poll_enabled
) {
1983 ia64_mca_cpe_poll(0UL);
1984 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__
);
1993 device_initcall(ia64_mca_late_init
);