2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
44 #include <asm/errno.h>
45 #include <asm/intrinsics.h>
47 #include <asm/perfmon.h>
48 #include <asm/processor.h>
49 #include <asm/signal.h>
50 #include <asm/system.h>
51 #include <asm/uaccess.h>
52 #include <asm/delay.h>
56 * perfmon context state
58 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
59 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
60 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
61 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
63 #define PFM_INVALID_ACTIVATION (~0UL)
65 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
66 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
69 * depth of message queue
71 #define PFM_MAX_MSGS 32
72 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
75 * type of a PMU register (bitmask).
77 * bit0 : register implemented
80 * bit4 : pmc has pmc.pm
81 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
82 * bit6-7 : register type
85 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
86 #define PFM_REG_IMPL 0x1 /* register implemented */
87 #define PFM_REG_END 0x2 /* end marker */
88 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
89 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
90 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
91 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
92 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
94 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
95 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
97 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
99 /* i assumed unsigned */
100 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
101 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
103 /* XXX: these assume that register i is implemented */
104 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
105 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
107 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
109 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
110 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
111 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
112 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
114 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
115 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
117 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
118 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
119 #define PFM_CTX_TASK(h) (h)->ctx_task
121 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
123 /* XXX: does not support more than 64 PMDs */
124 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
125 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
127 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
129 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
130 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
131 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
132 #define PFM_CODE_RR 0 /* requesting code range restriction */
133 #define PFM_DATA_RR 1 /* requestion data range restriction */
135 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
136 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
137 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
139 #define RDEP(x) (1UL<<(x))
142 * context protection macros
144 * - we need to protect against CPU concurrency (spin_lock)
145 * - we need to protect against PMU overflow interrupts (local_irq_disable)
147 * - we need to protect against PMU overflow interrupts (local_irq_disable)
149 * spin_lock_irqsave()/spin_unlock_irqrestore():
150 * in SMP: local_irq_disable + spin_lock
151 * in UP : local_irq_disable
153 * spin_lock()/spin_lock():
154 * in UP : removed automatically
155 * in SMP: protect against context accesses from other CPU. interrupts
156 * are not masked. This is useful for the PMU interrupt handler
157 * because we know we will not get PMU concurrency in that code.
159 #define PROTECT_CTX(c, f) \
161 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
162 spin_lock_irqsave(&(c)->ctx_lock, f); \
163 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
166 #define UNPROTECT_CTX(c, f) \
168 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
169 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
172 #define PROTECT_CTX_NOPRINT(c, f) \
174 spin_lock_irqsave(&(c)->ctx_lock, f); \
178 #define UNPROTECT_CTX_NOPRINT(c, f) \
180 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
184 #define PROTECT_CTX_NOIRQ(c) \
186 spin_lock(&(c)->ctx_lock); \
189 #define UNPROTECT_CTX_NOIRQ(c) \
191 spin_unlock(&(c)->ctx_lock); \
197 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
198 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
199 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
201 #else /* !CONFIG_SMP */
202 #define SET_ACTIVATION(t) do {} while(0)
203 #define GET_ACTIVATION(t) do {} while(0)
204 #define INC_ACTIVATION(t) do {} while(0)
205 #endif /* CONFIG_SMP */
207 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
208 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
209 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
211 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
212 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
214 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
217 * cmp0 must be the value of pmc0
219 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
221 #define PFMFS_MAGIC 0xa0b4d889
226 #define PFM_DEBUGGING 1
230 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
233 #define DPRINT_ovfl(a) \
235 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
240 * 64-bit software counter structure
242 * the next_reset_type is applied to the next call to pfm_reset_regs()
245 unsigned long val
; /* virtual 64bit counter value */
246 unsigned long lval
; /* last reset value */
247 unsigned long long_reset
; /* reset value on sampling overflow */
248 unsigned long short_reset
; /* reset value on overflow */
249 unsigned long reset_pmds
[4]; /* which other pmds to reset when this counter overflows */
250 unsigned long smpl_pmds
[4]; /* which pmds are accessed when counter overflow */
251 unsigned long seed
; /* seed for random-number generator */
252 unsigned long mask
; /* mask for random-number generator */
253 unsigned int flags
; /* notify/do not notify */
254 unsigned long eventid
; /* overflow event identifier */
261 unsigned int block
:1; /* when 1, task will blocked on user notifications */
262 unsigned int system
:1; /* do system wide monitoring */
263 unsigned int using_dbreg
:1; /* using range restrictions (debug registers) */
264 unsigned int is_sampling
:1; /* true if using a custom format */
265 unsigned int excl_idle
:1; /* exclude idle task in system wide session */
266 unsigned int going_zombie
:1; /* context is zombie (MASKED+blocking) */
267 unsigned int trap_reason
:2; /* reason for going into pfm_handle_work() */
268 unsigned int no_msg
:1; /* no message sent on overflow */
269 unsigned int can_restart
:1; /* allowed to issue a PFM_RESTART */
270 unsigned int reserved
:22;
271 } pfm_context_flags_t
;
273 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
274 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
275 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
279 * perfmon context: encapsulates all the state of a monitoring session
282 typedef struct pfm_context
{
283 spinlock_t ctx_lock
; /* context protection */
285 pfm_context_flags_t ctx_flags
; /* bitmask of flags (block reason incl.) */
286 unsigned int ctx_state
; /* state: active/inactive (no bitfield) */
288 struct task_struct
*ctx_task
; /* task to which context is attached */
290 unsigned long ctx_ovfl_regs
[4]; /* which registers overflowed (notification) */
292 struct completion ctx_restart_done
; /* use for blocking notification mode */
294 unsigned long ctx_used_pmds
[4]; /* bitmask of PMD used */
295 unsigned long ctx_all_pmds
[4]; /* bitmask of all accessible PMDs */
296 unsigned long ctx_reload_pmds
[4]; /* bitmask of force reload PMD on ctxsw in */
298 unsigned long ctx_all_pmcs
[4]; /* bitmask of all accessible PMCs */
299 unsigned long ctx_reload_pmcs
[4]; /* bitmask of force reload PMC on ctxsw in */
300 unsigned long ctx_used_monitors
[4]; /* bitmask of monitor PMC being used */
302 unsigned long ctx_pmcs
[PFM_NUM_PMC_REGS
]; /* saved copies of PMC values */
304 unsigned int ctx_used_ibrs
[1]; /* bitmask of used IBR (speedup ctxsw in) */
305 unsigned int ctx_used_dbrs
[1]; /* bitmask of used DBR (speedup ctxsw in) */
306 unsigned long ctx_dbrs
[IA64_NUM_DBG_REGS
]; /* DBR values (cache) when not loaded */
307 unsigned long ctx_ibrs
[IA64_NUM_DBG_REGS
]; /* IBR values (cache) when not loaded */
309 pfm_counter_t ctx_pmds
[PFM_NUM_PMD_REGS
]; /* software state for PMDS */
311 unsigned long th_pmcs
[PFM_NUM_PMC_REGS
]; /* PMC thread save state */
312 unsigned long th_pmds
[PFM_NUM_PMD_REGS
]; /* PMD thread save state */
314 u64 ctx_saved_psr_up
; /* only contains psr.up value */
316 unsigned long ctx_last_activation
; /* context last activation number for last_cpu */
317 unsigned int ctx_last_cpu
; /* CPU id of current or last CPU used (SMP only) */
318 unsigned int ctx_cpu
; /* cpu to which perfmon is applied (system wide) */
320 int ctx_fd
; /* file descriptor used my this context */
321 pfm_ovfl_arg_t ctx_ovfl_arg
; /* argument to custom buffer format handler */
323 pfm_buffer_fmt_t
*ctx_buf_fmt
; /* buffer format callbacks */
324 void *ctx_smpl_hdr
; /* points to sampling buffer header kernel vaddr */
325 unsigned long ctx_smpl_size
; /* size of sampling buffer */
326 void *ctx_smpl_vaddr
; /* user level virtual address of smpl buffer */
328 wait_queue_head_t ctx_msgq_wait
;
329 pfm_msg_t ctx_msgq
[PFM_MAX_MSGS
];
332 struct fasync_struct
*ctx_async_queue
;
334 wait_queue_head_t ctx_zombieq
; /* termination cleanup wait queue */
338 * magic number used to verify that structure is really
341 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
343 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
346 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
347 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
349 #define SET_LAST_CPU(ctx, v) do {} while(0)
350 #define GET_LAST_CPU(ctx) do {} while(0)
354 #define ctx_fl_block ctx_flags.block
355 #define ctx_fl_system ctx_flags.system
356 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
357 #define ctx_fl_is_sampling ctx_flags.is_sampling
358 #define ctx_fl_excl_idle ctx_flags.excl_idle
359 #define ctx_fl_going_zombie ctx_flags.going_zombie
360 #define ctx_fl_trap_reason ctx_flags.trap_reason
361 #define ctx_fl_no_msg ctx_flags.no_msg
362 #define ctx_fl_can_restart ctx_flags.can_restart
364 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
365 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
368 * global information about all sessions
369 * mostly used to synchronize between system wide and per-process
372 spinlock_t pfs_lock
; /* lock the structure */
374 unsigned int pfs_task_sessions
; /* number of per task sessions */
375 unsigned int pfs_sys_sessions
; /* number of per system wide sessions */
376 unsigned int pfs_sys_use_dbregs
; /* incremented when a system wide session uses debug regs */
377 unsigned int pfs_ptrace_use_dbregs
; /* incremented when a process uses debug regs */
378 struct task_struct
*pfs_sys_session
[NR_CPUS
]; /* point to task owning a system-wide session */
382 * information about a PMC or PMD.
383 * dep_pmd[]: a bitmask of dependent PMD registers
384 * dep_pmc[]: a bitmask of dependent PMC registers
386 typedef int (*pfm_reg_check_t
)(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned int cnum
, unsigned long *val
, struct pt_regs
*regs
);
390 unsigned long default_value
; /* power-on default value */
391 unsigned long reserved_mask
; /* bitmask of reserved bits */
392 pfm_reg_check_t read_check
;
393 pfm_reg_check_t write_check
;
394 unsigned long dep_pmd
[4];
395 unsigned long dep_pmc
[4];
398 /* assume cnum is a valid monitor */
399 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
402 * This structure is initialized at boot time and contains
403 * a description of the PMU main characteristics.
405 * If the probe function is defined, detection is based
406 * on its return value:
407 * - 0 means recognized PMU
408 * - anything else means not supported
409 * When the probe function is not defined, then the pmu_family field
410 * is used and it must match the host CPU family such that:
411 * - cpu->family & config->pmu_family != 0
414 unsigned long ovfl_val
; /* overflow value for counters */
416 pfm_reg_desc_t
*pmc_desc
; /* detailed PMC register dependencies descriptions */
417 pfm_reg_desc_t
*pmd_desc
; /* detailed PMD register dependencies descriptions */
419 unsigned int num_pmcs
; /* number of PMCS: computed at init time */
420 unsigned int num_pmds
; /* number of PMDS: computed at init time */
421 unsigned long impl_pmcs
[4]; /* bitmask of implemented PMCS */
422 unsigned long impl_pmds
[4]; /* bitmask of implemented PMDS */
424 char *pmu_name
; /* PMU family name */
425 unsigned int pmu_family
; /* cpuid family pattern used to identify pmu */
426 unsigned int flags
; /* pmu specific flags */
427 unsigned int num_ibrs
; /* number of IBRS: computed at init time */
428 unsigned int num_dbrs
; /* number of DBRS: computed at init time */
429 unsigned int num_counters
; /* PMC/PMD counting pairs : computed at init time */
430 int (*probe
)(void); /* customized probe routine */
431 unsigned int use_rr_dbregs
:1; /* set if debug registers used for range restriction */
436 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
439 * debug register related type definitions
442 unsigned long ibr_mask
:56;
443 unsigned long ibr_plm
:4;
444 unsigned long ibr_ig
:3;
445 unsigned long ibr_x
:1;
449 unsigned long dbr_mask
:56;
450 unsigned long dbr_plm
:4;
451 unsigned long dbr_ig
:2;
452 unsigned long dbr_w
:1;
453 unsigned long dbr_r
:1;
464 * perfmon command descriptions
467 int (*cmd_func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
470 unsigned int cmd_narg
;
472 int (*cmd_getsize
)(void *arg
, size_t *sz
);
475 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
476 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
477 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
478 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
481 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
482 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
483 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
484 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
485 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
487 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
490 unsigned long pfm_spurious_ovfl_intr_count
; /* keep track of spurious ovfl interrupts */
491 unsigned long pfm_replay_ovfl_intr_count
; /* keep track of replayed ovfl interrupts */
492 unsigned long pfm_ovfl_intr_count
; /* keep track of ovfl interrupts */
493 unsigned long pfm_ovfl_intr_cycles
; /* cycles spent processing ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles_min
; /* min cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_max
; /* max cycles spent processing ovfl interrupts */
496 unsigned long pfm_smpl_handler_calls
;
497 unsigned long pfm_smpl_handler_cycles
;
498 char pad
[SMP_CACHE_BYTES
] ____cacheline_aligned
;
502 * perfmon internal variables
504 static pfm_stats_t pfm_stats
[NR_CPUS
];
505 static pfm_session_t pfm_sessions
; /* global sessions information */
507 static DEFINE_SPINLOCK(pfm_alt_install_check
);
508 static pfm_intr_handler_desc_t
*pfm_alt_intr_handler
;
510 static struct proc_dir_entry
*perfmon_dir
;
511 static pfm_uuid_t pfm_null_uuid
= {0,};
513 static spinlock_t pfm_buffer_fmt_lock
;
514 static LIST_HEAD(pfm_buffer_fmt_list
);
516 static pmu_config_t
*pmu_conf
;
518 /* sysctl() controls */
519 pfm_sysctl_t pfm_sysctl
;
520 EXPORT_SYMBOL(pfm_sysctl
);
522 static ctl_table pfm_ctl_table
[]={
524 .ctl_name
= CTL_UNNUMBERED
,
526 .data
= &pfm_sysctl
.debug
,
527 .maxlen
= sizeof(int),
529 .proc_handler
= &proc_dointvec
,
532 .ctl_name
= CTL_UNNUMBERED
,
533 .procname
= "debug_ovfl",
534 .data
= &pfm_sysctl
.debug_ovfl
,
535 .maxlen
= sizeof(int),
537 .proc_handler
= &proc_dointvec
,
540 .ctl_name
= CTL_UNNUMBERED
,
541 .procname
= "fastctxsw",
542 .data
= &pfm_sysctl
.fastctxsw
,
543 .maxlen
= sizeof(int),
545 .proc_handler
= &proc_dointvec
,
548 .ctl_name
= CTL_UNNUMBERED
,
549 .procname
= "expert_mode",
550 .data
= &pfm_sysctl
.expert_mode
,
551 .maxlen
= sizeof(int),
553 .proc_handler
= &proc_dointvec
,
557 static ctl_table pfm_sysctl_dir
[] = {
559 .ctl_name
= CTL_UNNUMBERED
,
560 .procname
= "perfmon",
562 .child
= pfm_ctl_table
,
566 static ctl_table pfm_sysctl_root
[] = {
568 .ctl_name
= CTL_KERN
,
569 .procname
= "kernel",
571 .child
= pfm_sysctl_dir
,
575 static struct ctl_table_header
*pfm_sysctl_header
;
577 static int pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
579 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
580 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
583 pfm_put_task(struct task_struct
*task
)
585 if (task
!= current
) put_task_struct(task
);
589 pfm_set_task_notify(struct task_struct
*task
)
591 struct thread_info
*info
;
593 info
= (struct thread_info
*) ((char *) task
+ IA64_TASK_SIZE
);
594 set_bit(TIF_NOTIFY_RESUME
, &info
->flags
);
598 pfm_clear_task_notify(void)
600 clear_thread_flag(TIF_NOTIFY_RESUME
);
604 pfm_reserve_page(unsigned long a
)
606 SetPageReserved(vmalloc_to_page((void *)a
));
609 pfm_unreserve_page(unsigned long a
)
611 ClearPageReserved(vmalloc_to_page((void*)a
));
614 static inline unsigned long
615 pfm_protect_ctx_ctxsw(pfm_context_t
*x
)
617 spin_lock(&(x
)->ctx_lock
);
622 pfm_unprotect_ctx_ctxsw(pfm_context_t
*x
, unsigned long f
)
624 spin_unlock(&(x
)->ctx_lock
);
627 static inline unsigned int
628 pfm_do_munmap(struct mm_struct
*mm
, unsigned long addr
, size_t len
, int acct
)
630 return do_munmap(mm
, addr
, len
);
633 static inline unsigned long
634 pfm_get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
, unsigned long pgoff
, unsigned long flags
, unsigned long exec
)
636 return get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
641 pfmfs_get_sb(struct file_system_type
*fs_type
, int flags
, const char *dev_name
, void *data
,
642 struct vfsmount
*mnt
)
644 return get_sb_pseudo(fs_type
, "pfm:", NULL
, PFMFS_MAGIC
, mnt
);
647 static struct file_system_type pfm_fs_type
= {
649 .get_sb
= pfmfs_get_sb
,
650 .kill_sb
= kill_anon_super
,
653 DEFINE_PER_CPU(unsigned long, pfm_syst_info
);
654 DEFINE_PER_CPU(struct task_struct
*, pmu_owner
);
655 DEFINE_PER_CPU(pfm_context_t
*, pmu_ctx
);
656 DEFINE_PER_CPU(unsigned long, pmu_activation_number
);
657 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info
);
660 /* forward declaration */
661 static const struct file_operations pfm_file_ops
;
664 * forward declarations
667 static void pfm_lazy_save_regs (struct task_struct
*ta
);
670 void dump_pmu_state(const char *);
671 static int pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
673 #include "perfmon_itanium.h"
674 #include "perfmon_mckinley.h"
675 #include "perfmon_montecito.h"
676 #include "perfmon_generic.h"
678 static pmu_config_t
*pmu_confs
[]={
682 &pmu_conf_gen
, /* must be last */
687 static int pfm_end_notify_user(pfm_context_t
*ctx
);
690 pfm_clear_psr_pp(void)
692 ia64_rsm(IA64_PSR_PP
);
699 ia64_ssm(IA64_PSR_PP
);
704 pfm_clear_psr_up(void)
706 ia64_rsm(IA64_PSR_UP
);
713 ia64_ssm(IA64_PSR_UP
);
717 static inline unsigned long
721 tmp
= ia64_getreg(_IA64_REG_PSR
);
727 pfm_set_psr_l(unsigned long val
)
729 ia64_setreg(_IA64_REG_PSR_L
, val
);
741 pfm_unfreeze_pmu(void)
748 pfm_restore_ibrs(unsigned long *ibrs
, unsigned int nibrs
)
752 for (i
=0; i
< nibrs
; i
++) {
753 ia64_set_ibr(i
, ibrs
[i
]);
754 ia64_dv_serialize_instruction();
760 pfm_restore_dbrs(unsigned long *dbrs
, unsigned int ndbrs
)
764 for (i
=0; i
< ndbrs
; i
++) {
765 ia64_set_dbr(i
, dbrs
[i
]);
766 ia64_dv_serialize_data();
772 * PMD[i] must be a counter. no check is made
774 static inline unsigned long
775 pfm_read_soft_counter(pfm_context_t
*ctx
, int i
)
777 return ctx
->ctx_pmds
[i
].val
+ (ia64_get_pmd(i
) & pmu_conf
->ovfl_val
);
781 * PMD[i] must be a counter. no check is made
784 pfm_write_soft_counter(pfm_context_t
*ctx
, int i
, unsigned long val
)
786 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
788 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
790 * writing to unimplemented part is ignore, so we do not need to
793 ia64_set_pmd(i
, val
& ovfl_val
);
797 pfm_get_new_msg(pfm_context_t
*ctx
)
801 next
= (ctx
->ctx_msgq_tail
+1) % PFM_MAX_MSGS
;
803 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
804 if (next
== ctx
->ctx_msgq_head
) return NULL
;
806 idx
= ctx
->ctx_msgq_tail
;
807 ctx
->ctx_msgq_tail
= next
;
809 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, idx
));
811 return ctx
->ctx_msgq
+idx
;
815 pfm_get_next_msg(pfm_context_t
*ctx
)
819 DPRINT(("ctx=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
821 if (PFM_CTXQ_EMPTY(ctx
)) return NULL
;
826 msg
= ctx
->ctx_msgq
+ctx
->ctx_msgq_head
;
831 ctx
->ctx_msgq_head
= (ctx
->ctx_msgq_head
+1) % PFM_MAX_MSGS
;
833 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, msg
->pfm_gen_msg
.msg_type
));
839 pfm_reset_msgq(pfm_context_t
*ctx
)
841 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
842 DPRINT(("ctx=%p msgq reset\n", ctx
));
846 pfm_rvmalloc(unsigned long size
)
851 size
= PAGE_ALIGN(size
);
854 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
855 memset(mem
, 0, size
);
856 addr
= (unsigned long)mem
;
858 pfm_reserve_page(addr
);
867 pfm_rvfree(void *mem
, unsigned long size
)
872 DPRINT(("freeing physical buffer @%p size=%lu\n", mem
, size
));
873 addr
= (unsigned long) mem
;
874 while ((long) size
> 0) {
875 pfm_unreserve_page(addr
);
884 static pfm_context_t
*
885 pfm_context_alloc(void)
890 * allocate context descriptor
891 * must be able to free with interrupts disabled
893 ctx
= kzalloc(sizeof(pfm_context_t
), GFP_KERNEL
);
895 DPRINT(("alloc ctx @%p\n", ctx
));
901 pfm_context_free(pfm_context_t
*ctx
)
904 DPRINT(("free ctx @%p\n", ctx
));
910 pfm_mask_monitoring(struct task_struct
*task
)
912 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
913 unsigned long mask
, val
, ovfl_mask
;
916 DPRINT_ovfl(("masking monitoring for [%d]\n", task
->pid
));
918 ovfl_mask
= pmu_conf
->ovfl_val
;
920 * monitoring can only be masked as a result of a valid
921 * counter overflow. In UP, it means that the PMU still
922 * has an owner. Note that the owner can be different
923 * from the current task. However the PMU state belongs
925 * In SMP, a valid overflow only happens when task is
926 * current. Therefore if we come here, we know that
927 * the PMU state belongs to the current task, therefore
928 * we can access the live registers.
930 * So in both cases, the live register contains the owner's
931 * state. We can ONLY touch the PMU registers and NOT the PSR.
933 * As a consequence to this call, the ctx->th_pmds[] array
934 * contains stale information which must be ignored
935 * when context is reloaded AND monitoring is active (see
938 mask
= ctx
->ctx_used_pmds
[0];
939 for (i
= 0; mask
; i
++, mask
>>=1) {
940 /* skip non used pmds */
941 if ((mask
& 0x1) == 0) continue;
942 val
= ia64_get_pmd(i
);
944 if (PMD_IS_COUNTING(i
)) {
946 * we rebuild the full 64 bit value of the counter
948 ctx
->ctx_pmds
[i
].val
+= (val
& ovfl_mask
);
950 ctx
->ctx_pmds
[i
].val
= val
;
952 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
954 ctx
->ctx_pmds
[i
].val
,
958 * mask monitoring by setting the privilege level to 0
959 * we cannot use psr.pp/psr.up for this, it is controlled by
962 * if task is current, modify actual registers, otherwise modify
963 * thread save state, i.e., what will be restored in pfm_load_regs()
965 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
966 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
967 if ((mask
& 0x1) == 0UL) continue;
968 ia64_set_pmc(i
, ctx
->th_pmcs
[i
] & ~0xfUL
);
969 ctx
->th_pmcs
[i
] &= ~0xfUL
;
970 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
973 * make all of this visible
979 * must always be done with task == current
981 * context must be in MASKED state when calling
984 pfm_restore_monitoring(struct task_struct
*task
)
986 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
987 unsigned long mask
, ovfl_mask
;
988 unsigned long psr
, val
;
991 is_system
= ctx
->ctx_fl_system
;
992 ovfl_mask
= pmu_conf
->ovfl_val
;
994 if (task
!= current
) {
995 printk(KERN_ERR
"perfmon.%d: invalid task[%d] current[%d]\n", __LINE__
, task
->pid
, current
->pid
);
998 if (ctx
->ctx_state
!= PFM_CTX_MASKED
) {
999 printk(KERN_ERR
"perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__
,
1000 task
->pid
, current
->pid
, ctx
->ctx_state
);
1003 psr
= pfm_get_psr();
1005 * monitoring is masked via the PMC.
1006 * As we restore their value, we do not want each counter to
1007 * restart right away. We stop monitoring using the PSR,
1008 * restore the PMC (and PMD) and then re-establish the psr
1009 * as it was. Note that there can be no pending overflow at
1010 * this point, because monitoring was MASKED.
1012 * system-wide session are pinned and self-monitoring
1014 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1015 /* disable dcr pp */
1016 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
1022 * first, we restore the PMD
1024 mask
= ctx
->ctx_used_pmds
[0];
1025 for (i
= 0; mask
; i
++, mask
>>=1) {
1026 /* skip non used pmds */
1027 if ((mask
& 0x1) == 0) continue;
1029 if (PMD_IS_COUNTING(i
)) {
1031 * we split the 64bit value according to
1034 val
= ctx
->ctx_pmds
[i
].val
& ovfl_mask
;
1035 ctx
->ctx_pmds
[i
].val
&= ~ovfl_mask
;
1037 val
= ctx
->ctx_pmds
[i
].val
;
1039 ia64_set_pmd(i
, val
);
1041 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1043 ctx
->ctx_pmds
[i
].val
,
1049 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
1050 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
1051 if ((mask
& 0x1) == 0UL) continue;
1052 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1053 ia64_set_pmc(i
, ctx
->th_pmcs
[i
]);
1054 DPRINT(("[%d] pmc[%d]=0x%lx\n", task
->pid
, i
, ctx
->th_pmcs
[i
]));
1059 * must restore DBR/IBR because could be modified while masked
1060 * XXX: need to optimize
1062 if (ctx
->ctx_fl_using_dbreg
) {
1063 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
1064 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
1070 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1072 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
1079 pfm_save_pmds(unsigned long *pmds
, unsigned long mask
)
1085 for (i
=0; mask
; i
++, mask
>>=1) {
1086 if (mask
& 0x1) pmds
[i
] = ia64_get_pmd(i
);
1091 * reload from thread state (used for ctxw only)
1094 pfm_restore_pmds(unsigned long *pmds
, unsigned long mask
)
1097 unsigned long val
, ovfl_val
= pmu_conf
->ovfl_val
;
1099 for (i
=0; mask
; i
++, mask
>>=1) {
1100 if ((mask
& 0x1) == 0) continue;
1101 val
= PMD_IS_COUNTING(i
) ? pmds
[i
] & ovfl_val
: pmds
[i
];
1102 ia64_set_pmd(i
, val
);
1108 * propagate PMD from context to thread-state
1111 pfm_copy_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
1113 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
1114 unsigned long mask
= ctx
->ctx_all_pmds
[0];
1118 DPRINT(("mask=0x%lx\n", mask
));
1120 for (i
=0; mask
; i
++, mask
>>=1) {
1122 val
= ctx
->ctx_pmds
[i
].val
;
1125 * We break up the 64 bit value into 2 pieces
1126 * the lower bits go to the machine state in the
1127 * thread (will be reloaded on ctxsw in).
1128 * The upper part stays in the soft-counter.
1130 if (PMD_IS_COUNTING(i
)) {
1131 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
1134 ctx
->th_pmds
[i
] = val
;
1136 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1139 ctx
->ctx_pmds
[i
].val
));
1144 * propagate PMC from context to thread-state
1147 pfm_copy_pmcs(struct task_struct
*task
, pfm_context_t
*ctx
)
1149 unsigned long mask
= ctx
->ctx_all_pmcs
[0];
1152 DPRINT(("mask=0x%lx\n", mask
));
1154 for (i
=0; mask
; i
++, mask
>>=1) {
1155 /* masking 0 with ovfl_val yields 0 */
1156 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1157 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
1164 pfm_restore_pmcs(unsigned long *pmcs
, unsigned long mask
)
1168 for (i
=0; mask
; i
++, mask
>>=1) {
1169 if ((mask
& 0x1) == 0) continue;
1170 ia64_set_pmc(i
, pmcs
[i
]);
1176 pfm_uuid_cmp(pfm_uuid_t a
, pfm_uuid_t b
)
1178 return memcmp(a
, b
, sizeof(pfm_uuid_t
));
1182 pfm_buf_fmt_exit(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, struct pt_regs
*regs
)
1185 if (fmt
->fmt_exit
) ret
= (*fmt
->fmt_exit
)(task
, buf
, regs
);
1190 pfm_buf_fmt_getsize(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
, int cpu
, void *arg
, unsigned long *size
)
1193 if (fmt
->fmt_getsize
) ret
= (*fmt
->fmt_getsize
)(task
, flags
, cpu
, arg
, size
);
1199 pfm_buf_fmt_validate(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
,
1203 if (fmt
->fmt_validate
) ret
= (*fmt
->fmt_validate
)(task
, flags
, cpu
, arg
);
1208 pfm_buf_fmt_init(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, unsigned int flags
,
1212 if (fmt
->fmt_init
) ret
= (*fmt
->fmt_init
)(task
, buf
, flags
, cpu
, arg
);
1217 pfm_buf_fmt_restart(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1220 if (fmt
->fmt_restart
) ret
= (*fmt
->fmt_restart
)(task
, ctrl
, buf
, regs
);
1225 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1228 if (fmt
->fmt_restart_active
) ret
= (*fmt
->fmt_restart_active
)(task
, ctrl
, buf
, regs
);
1232 static pfm_buffer_fmt_t
*
1233 __pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1235 struct list_head
* pos
;
1236 pfm_buffer_fmt_t
* entry
;
1238 list_for_each(pos
, &pfm_buffer_fmt_list
) {
1239 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
1240 if (pfm_uuid_cmp(uuid
, entry
->fmt_uuid
) == 0)
1247 * find a buffer format based on its uuid
1249 static pfm_buffer_fmt_t
*
1250 pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1252 pfm_buffer_fmt_t
* fmt
;
1253 spin_lock(&pfm_buffer_fmt_lock
);
1254 fmt
= __pfm_find_buffer_fmt(uuid
);
1255 spin_unlock(&pfm_buffer_fmt_lock
);
1260 pfm_register_buffer_fmt(pfm_buffer_fmt_t
*fmt
)
1264 /* some sanity checks */
1265 if (fmt
== NULL
|| fmt
->fmt_name
== NULL
) return -EINVAL
;
1267 /* we need at least a handler */
1268 if (fmt
->fmt_handler
== NULL
) return -EINVAL
;
1271 * XXX: need check validity of fmt_arg_size
1274 spin_lock(&pfm_buffer_fmt_lock
);
1276 if (__pfm_find_buffer_fmt(fmt
->fmt_uuid
)) {
1277 printk(KERN_ERR
"perfmon: duplicate sampling format: %s\n", fmt
->fmt_name
);
1281 list_add(&fmt
->fmt_list
, &pfm_buffer_fmt_list
);
1282 printk(KERN_INFO
"perfmon: added sampling format %s\n", fmt
->fmt_name
);
1285 spin_unlock(&pfm_buffer_fmt_lock
);
1288 EXPORT_SYMBOL(pfm_register_buffer_fmt
);
1291 pfm_unregister_buffer_fmt(pfm_uuid_t uuid
)
1293 pfm_buffer_fmt_t
*fmt
;
1296 spin_lock(&pfm_buffer_fmt_lock
);
1298 fmt
= __pfm_find_buffer_fmt(uuid
);
1300 printk(KERN_ERR
"perfmon: cannot unregister format, not found\n");
1304 list_del_init(&fmt
->fmt_list
);
1305 printk(KERN_INFO
"perfmon: removed sampling format: %s\n", fmt
->fmt_name
);
1308 spin_unlock(&pfm_buffer_fmt_lock
);
1312 EXPORT_SYMBOL(pfm_unregister_buffer_fmt
);
1314 extern void update_pal_halt_status(int);
1317 pfm_reserve_session(struct task_struct
*task
, int is_syswide
, unsigned int cpu
)
1319 unsigned long flags
;
1321 * validity checks on cpu_mask have been done upstream
1325 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1326 pfm_sessions
.pfs_sys_sessions
,
1327 pfm_sessions
.pfs_task_sessions
,
1328 pfm_sessions
.pfs_sys_use_dbregs
,
1334 * cannot mix system wide and per-task sessions
1336 if (pfm_sessions
.pfs_task_sessions
> 0UL) {
1337 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1338 pfm_sessions
.pfs_task_sessions
));
1342 if (pfm_sessions
.pfs_sys_session
[cpu
]) goto error_conflict
;
1344 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu
, smp_processor_id()));
1346 pfm_sessions
.pfs_sys_session
[cpu
] = task
;
1348 pfm_sessions
.pfs_sys_sessions
++ ;
1351 if (pfm_sessions
.pfs_sys_sessions
) goto abort
;
1352 pfm_sessions
.pfs_task_sessions
++;
1355 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1356 pfm_sessions
.pfs_sys_sessions
,
1357 pfm_sessions
.pfs_task_sessions
,
1358 pfm_sessions
.pfs_sys_use_dbregs
,
1363 * disable default_idle() to go to PAL_HALT
1365 update_pal_halt_status(0);
1372 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1373 pfm_sessions
.pfs_sys_session
[cpu
]->pid
,
1383 pfm_unreserve_session(pfm_context_t
*ctx
, int is_syswide
, unsigned int cpu
)
1385 unsigned long flags
;
1387 * validity checks on cpu_mask have been done upstream
1391 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1392 pfm_sessions
.pfs_sys_sessions
,
1393 pfm_sessions
.pfs_task_sessions
,
1394 pfm_sessions
.pfs_sys_use_dbregs
,
1400 pfm_sessions
.pfs_sys_session
[cpu
] = NULL
;
1402 * would not work with perfmon+more than one bit in cpu_mask
1404 if (ctx
&& ctx
->ctx_fl_using_dbreg
) {
1405 if (pfm_sessions
.pfs_sys_use_dbregs
== 0) {
1406 printk(KERN_ERR
"perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx
);
1408 pfm_sessions
.pfs_sys_use_dbregs
--;
1411 pfm_sessions
.pfs_sys_sessions
--;
1413 pfm_sessions
.pfs_task_sessions
--;
1415 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1416 pfm_sessions
.pfs_sys_sessions
,
1417 pfm_sessions
.pfs_task_sessions
,
1418 pfm_sessions
.pfs_sys_use_dbregs
,
1423 * if possible, enable default_idle() to go into PAL_HALT
1425 if (pfm_sessions
.pfs_task_sessions
== 0 && pfm_sessions
.pfs_sys_sessions
== 0)
1426 update_pal_halt_status(1);
1434 * removes virtual mapping of the sampling buffer.
1435 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1436 * a PROTECT_CTX() section.
1439 pfm_remove_smpl_mapping(struct task_struct
*task
, void *vaddr
, unsigned long size
)
1444 if (task
->mm
== NULL
|| size
== 0UL || vaddr
== NULL
) {
1445 printk(KERN_ERR
"perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task
->pid
, task
->mm
);
1449 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1452 * does the actual unmapping
1454 down_write(&task
->mm
->mmap_sem
);
1456 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1458 r
= pfm_do_munmap(task
->mm
, (unsigned long)vaddr
, size
, 0);
1460 up_write(&task
->mm
->mmap_sem
);
1462 printk(KERN_ERR
"perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task
->pid
, vaddr
, size
);
1465 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr
, size
, r
));
1471 * free actual physical storage used by sampling buffer
1475 pfm_free_smpl_buffer(pfm_context_t
*ctx
)
1477 pfm_buffer_fmt_t
*fmt
;
1479 if (ctx
->ctx_smpl_hdr
== NULL
) goto invalid_free
;
1482 * we won't use the buffer format anymore
1484 fmt
= ctx
->ctx_buf_fmt
;
1486 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1489 ctx
->ctx_smpl_vaddr
));
1491 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1496 pfm_rvfree(ctx
->ctx_smpl_hdr
, ctx
->ctx_smpl_size
);
1498 ctx
->ctx_smpl_hdr
= NULL
;
1499 ctx
->ctx_smpl_size
= 0UL;
1504 printk(KERN_ERR
"perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current
->pid
);
1510 pfm_exit_smpl_buffer(pfm_buffer_fmt_t
*fmt
)
1512 if (fmt
== NULL
) return;
1514 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1519 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1520 * no real gain from having the whole whorehouse mounted. So we don't need
1521 * any operations on the root directory. However, we need a non-trivial
1522 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1524 static struct vfsmount
*pfmfs_mnt
;
1529 int err
= register_filesystem(&pfm_fs_type
);
1531 pfmfs_mnt
= kern_mount(&pfm_fs_type
);
1532 err
= PTR_ERR(pfmfs_mnt
);
1533 if (IS_ERR(pfmfs_mnt
))
1534 unregister_filesystem(&pfm_fs_type
);
1544 unregister_filesystem(&pfm_fs_type
);
1549 pfm_read(struct file
*filp
, char __user
*buf
, size_t size
, loff_t
*ppos
)
1554 unsigned long flags
;
1555 DECLARE_WAITQUEUE(wait
, current
);
1556 if (PFM_IS_FILE(filp
) == 0) {
1557 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", current
->pid
);
1561 ctx
= (pfm_context_t
*)filp
->private_data
;
1563 printk(KERN_ERR
"perfmon: pfm_read: NULL ctx [%d]\n", current
->pid
);
1568 * check even when there is no message
1570 if (size
< sizeof(pfm_msg_t
)) {
1571 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx
, sizeof(pfm_msg_t
)));
1575 PROTECT_CTX(ctx
, flags
);
1578 * put ourselves on the wait queue
1580 add_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1588 set_current_state(TASK_INTERRUPTIBLE
);
1590 DPRINT(("head=%d tail=%d\n", ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
1593 if(PFM_CTXQ_EMPTY(ctx
) == 0) break;
1595 UNPROTECT_CTX(ctx
, flags
);
1598 * check non-blocking read
1601 if(filp
->f_flags
& O_NONBLOCK
) break;
1604 * check pending signals
1606 if(signal_pending(current
)) {
1611 * no message, so wait
1615 PROTECT_CTX(ctx
, flags
);
1617 DPRINT(("[%d] back to running ret=%ld\n", current
->pid
, ret
));
1618 set_current_state(TASK_RUNNING
);
1619 remove_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1621 if (ret
< 0) goto abort
;
1624 msg
= pfm_get_next_msg(ctx
);
1626 printk(KERN_ERR
"perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx
, current
->pid
);
1630 DPRINT(("fd=%d type=%d\n", msg
->pfm_gen_msg
.msg_ctx_fd
, msg
->pfm_gen_msg
.msg_type
));
1633 if(copy_to_user(buf
, msg
, sizeof(pfm_msg_t
)) == 0) ret
= sizeof(pfm_msg_t
);
1636 UNPROTECT_CTX(ctx
, flags
);
1642 pfm_write(struct file
*file
, const char __user
*ubuf
,
1643 size_t size
, loff_t
*ppos
)
1645 DPRINT(("pfm_write called\n"));
1650 pfm_poll(struct file
*filp
, poll_table
* wait
)
1653 unsigned long flags
;
1654 unsigned int mask
= 0;
1656 if (PFM_IS_FILE(filp
) == 0) {
1657 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", current
->pid
);
1661 ctx
= (pfm_context_t
*)filp
->private_data
;
1663 printk(KERN_ERR
"perfmon: pfm_poll: NULL ctx [%d]\n", current
->pid
);
1668 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx
->ctx_fd
));
1670 poll_wait(filp
, &ctx
->ctx_msgq_wait
, wait
);
1672 PROTECT_CTX(ctx
, flags
);
1674 if (PFM_CTXQ_EMPTY(ctx
) == 0)
1675 mask
= POLLIN
| POLLRDNORM
;
1677 UNPROTECT_CTX(ctx
, flags
);
1679 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx
->ctx_fd
, mask
));
1685 pfm_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
1687 DPRINT(("pfm_ioctl called\n"));
1692 * interrupt cannot be masked when coming here
1695 pfm_do_fasync(int fd
, struct file
*filp
, pfm_context_t
*ctx
, int on
)
1699 ret
= fasync_helper (fd
, filp
, on
, &ctx
->ctx_async_queue
);
1701 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1705 ctx
->ctx_async_queue
, ret
));
1711 pfm_fasync(int fd
, struct file
*filp
, int on
)
1716 if (PFM_IS_FILE(filp
) == 0) {
1717 printk(KERN_ERR
"perfmon: pfm_fasync bad magic [%d]\n", current
->pid
);
1721 ctx
= (pfm_context_t
*)filp
->private_data
;
1723 printk(KERN_ERR
"perfmon: pfm_fasync NULL ctx [%d]\n", current
->pid
);
1727 * we cannot mask interrupts during this call because this may
1728 * may go to sleep if memory is not readily avalaible.
1730 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1731 * done in caller. Serialization of this function is ensured by caller.
1733 ret
= pfm_do_fasync(fd
, filp
, ctx
, on
);
1736 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1739 ctx
->ctx_async_queue
, ret
));
1746 * this function is exclusively called from pfm_close().
1747 * The context is not protected at that time, nor are interrupts
1748 * on the remote CPU. That's necessary to avoid deadlocks.
1751 pfm_syswide_force_stop(void *info
)
1753 pfm_context_t
*ctx
= (pfm_context_t
*)info
;
1754 struct pt_regs
*regs
= task_pt_regs(current
);
1755 struct task_struct
*owner
;
1756 unsigned long flags
;
1759 if (ctx
->ctx_cpu
!= smp_processor_id()) {
1760 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1762 smp_processor_id());
1765 owner
= GET_PMU_OWNER();
1766 if (owner
!= ctx
->ctx_task
) {
1767 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1769 owner
->pid
, ctx
->ctx_task
->pid
);
1772 if (GET_PMU_CTX() != ctx
) {
1773 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1775 GET_PMU_CTX(), ctx
);
1779 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx
->ctx_task
->pid
));
1781 * the context is already protected in pfm_close(), we simply
1782 * need to mask interrupts to avoid a PMU interrupt race on
1785 local_irq_save(flags
);
1787 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
1789 DPRINT(("context_unload returned %d\n", ret
));
1793 * unmask interrupts, PMU interrupts are now spurious here
1795 local_irq_restore(flags
);
1799 pfm_syswide_cleanup_other_cpu(pfm_context_t
*ctx
)
1803 DPRINT(("calling CPU%d for cleanup\n", ctx
->ctx_cpu
));
1804 ret
= smp_call_function_single(ctx
->ctx_cpu
, pfm_syswide_force_stop
, ctx
, 0, 1);
1805 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx
->ctx_cpu
, ret
));
1807 #endif /* CONFIG_SMP */
1810 * called for each close(). Partially free resources.
1811 * When caller is self-monitoring, the context is unloaded.
1814 pfm_flush(struct file
*filp
, fl_owner_t id
)
1817 struct task_struct
*task
;
1818 struct pt_regs
*regs
;
1819 unsigned long flags
;
1820 unsigned long smpl_buf_size
= 0UL;
1821 void *smpl_buf_vaddr
= NULL
;
1822 int state
, is_system
;
1824 if (PFM_IS_FILE(filp
) == 0) {
1825 DPRINT(("bad magic for\n"));
1829 ctx
= (pfm_context_t
*)filp
->private_data
;
1831 printk(KERN_ERR
"perfmon: pfm_flush: NULL ctx [%d]\n", current
->pid
);
1836 * remove our file from the async queue, if we use this mode.
1837 * This can be done without the context being protected. We come
1838 * here when the context has become unreachable by other tasks.
1840 * We may still have active monitoring at this point and we may
1841 * end up in pfm_overflow_handler(). However, fasync_helper()
1842 * operates with interrupts disabled and it cleans up the
1843 * queue. If the PMU handler is called prior to entering
1844 * fasync_helper() then it will send a signal. If it is
1845 * invoked after, it will find an empty queue and no
1846 * signal will be sent. In both case, we are safe
1848 if (filp
->f_flags
& FASYNC
) {
1849 DPRINT(("cleaning up async_queue=%p\n", ctx
->ctx_async_queue
));
1850 pfm_do_fasync (-1, filp
, ctx
, 0);
1853 PROTECT_CTX(ctx
, flags
);
1855 state
= ctx
->ctx_state
;
1856 is_system
= ctx
->ctx_fl_system
;
1858 task
= PFM_CTX_TASK(ctx
);
1859 regs
= task_pt_regs(task
);
1861 DPRINT(("ctx_state=%d is_current=%d\n",
1863 task
== current
? 1 : 0));
1866 * if state == UNLOADED, then task is NULL
1870 * we must stop and unload because we are losing access to the context.
1872 if (task
== current
) {
1875 * the task IS the owner but it migrated to another CPU: that's bad
1876 * but we must handle this cleanly. Unfortunately, the kernel does
1877 * not provide a mechanism to block migration (while the context is loaded).
1879 * We need to release the resource on the ORIGINAL cpu.
1881 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
1883 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
1885 * keep context protected but unmask interrupt for IPI
1887 local_irq_restore(flags
);
1889 pfm_syswide_cleanup_other_cpu(ctx
);
1892 * restore interrupt masking
1894 local_irq_save(flags
);
1897 * context is unloaded at this point
1900 #endif /* CONFIG_SMP */
1903 DPRINT(("forcing unload\n"));
1905 * stop and unload, returning with state UNLOADED
1906 * and session unreserved.
1908 pfm_context_unload(ctx
, NULL
, 0, regs
);
1910 DPRINT(("ctx_state=%d\n", ctx
->ctx_state
));
1915 * remove virtual mapping, if any, for the calling task.
1916 * cannot reset ctx field until last user is calling close().
1918 * ctx_smpl_vaddr must never be cleared because it is needed
1919 * by every task with access to the context
1921 * When called from do_exit(), the mm context is gone already, therefore
1922 * mm is NULL, i.e., the VMA is already gone and we do not have to
1925 if (ctx
->ctx_smpl_vaddr
&& current
->mm
) {
1926 smpl_buf_vaddr
= ctx
->ctx_smpl_vaddr
;
1927 smpl_buf_size
= ctx
->ctx_smpl_size
;
1930 UNPROTECT_CTX(ctx
, flags
);
1933 * if there was a mapping, then we systematically remove it
1934 * at this point. Cannot be done inside critical section
1935 * because some VM function reenables interrupts.
1938 if (smpl_buf_vaddr
) pfm_remove_smpl_mapping(current
, smpl_buf_vaddr
, smpl_buf_size
);
1943 * called either on explicit close() or from exit_files().
1944 * Only the LAST user of the file gets to this point, i.e., it is
1947 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1948 * (fput()),i.e, last task to access the file. Nobody else can access the
1949 * file at this point.
1951 * When called from exit_files(), the VMA has been freed because exit_mm()
1952 * is executed before exit_files().
1954 * When called from exit_files(), the current task is not yet ZOMBIE but we
1955 * flush the PMU state to the context.
1958 pfm_close(struct inode
*inode
, struct file
*filp
)
1961 struct task_struct
*task
;
1962 struct pt_regs
*regs
;
1963 DECLARE_WAITQUEUE(wait
, current
);
1964 unsigned long flags
;
1965 unsigned long smpl_buf_size
= 0UL;
1966 void *smpl_buf_addr
= NULL
;
1967 int free_possible
= 1;
1968 int state
, is_system
;
1970 DPRINT(("pfm_close called private=%p\n", filp
->private_data
));
1972 if (PFM_IS_FILE(filp
) == 0) {
1973 DPRINT(("bad magic\n"));
1977 ctx
= (pfm_context_t
*)filp
->private_data
;
1979 printk(KERN_ERR
"perfmon: pfm_close: NULL ctx [%d]\n", current
->pid
);
1983 PROTECT_CTX(ctx
, flags
);
1985 state
= ctx
->ctx_state
;
1986 is_system
= ctx
->ctx_fl_system
;
1988 task
= PFM_CTX_TASK(ctx
);
1989 regs
= task_pt_regs(task
);
1991 DPRINT(("ctx_state=%d is_current=%d\n",
1993 task
== current
? 1 : 0));
1996 * if task == current, then pfm_flush() unloaded the context
1998 if (state
== PFM_CTX_UNLOADED
) goto doit
;
2001 * context is loaded/masked and task != current, we need to
2002 * either force an unload or go zombie
2006 * The task is currently blocked or will block after an overflow.
2007 * we must force it to wakeup to get out of the
2008 * MASKED state and transition to the unloaded state by itself.
2010 * This situation is only possible for per-task mode
2012 if (state
== PFM_CTX_MASKED
&& CTX_OVFL_NOBLOCK(ctx
) == 0) {
2015 * set a "partial" zombie state to be checked
2016 * upon return from down() in pfm_handle_work().
2018 * We cannot use the ZOMBIE state, because it is checked
2019 * by pfm_load_regs() which is called upon wakeup from down().
2020 * In such case, it would free the context and then we would
2021 * return to pfm_handle_work() which would access the
2022 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2023 * but visible to pfm_handle_work().
2025 * For some window of time, we have a zombie context with
2026 * ctx_state = MASKED and not ZOMBIE
2028 ctx
->ctx_fl_going_zombie
= 1;
2031 * force task to wake up from MASKED state
2033 complete(&ctx
->ctx_restart_done
);
2035 DPRINT(("waking up ctx_state=%d\n", state
));
2038 * put ourself to sleep waiting for the other
2039 * task to report completion
2041 * the context is protected by mutex, therefore there
2042 * is no risk of being notified of completion before
2043 * begin actually on the waitq.
2045 set_current_state(TASK_INTERRUPTIBLE
);
2046 add_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2048 UNPROTECT_CTX(ctx
, flags
);
2051 * XXX: check for signals :
2052 * - ok for explicit close
2053 * - not ok when coming from exit_files()
2058 PROTECT_CTX(ctx
, flags
);
2061 remove_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2062 set_current_state(TASK_RUNNING
);
2065 * context is unloaded at this point
2067 DPRINT(("after zombie wakeup ctx_state=%d for\n", state
));
2069 else if (task
!= current
) {
2072 * switch context to zombie state
2074 ctx
->ctx_state
= PFM_CTX_ZOMBIE
;
2076 DPRINT(("zombie ctx for [%d]\n", task
->pid
));
2078 * cannot free the context on the spot. deferred until
2079 * the task notices the ZOMBIE state
2083 pfm_context_unload(ctx
, NULL
, 0, regs
);
2088 /* reload state, may have changed during opening of critical section */
2089 state
= ctx
->ctx_state
;
2092 * the context is still attached to a task (possibly current)
2093 * we cannot destroy it right now
2097 * we must free the sampling buffer right here because
2098 * we cannot rely on it being cleaned up later by the
2099 * monitored task. It is not possible to free vmalloc'ed
2100 * memory in pfm_load_regs(). Instead, we remove the buffer
2101 * now. should there be subsequent PMU overflow originally
2102 * meant for sampling, the will be converted to spurious
2103 * and that's fine because the monitoring tools is gone anyway.
2105 if (ctx
->ctx_smpl_hdr
) {
2106 smpl_buf_addr
= ctx
->ctx_smpl_hdr
;
2107 smpl_buf_size
= ctx
->ctx_smpl_size
;
2108 /* no more sampling */
2109 ctx
->ctx_smpl_hdr
= NULL
;
2110 ctx
->ctx_fl_is_sampling
= 0;
2113 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2119 if (smpl_buf_addr
) pfm_exit_smpl_buffer(ctx
->ctx_buf_fmt
);
2122 * UNLOADED that the session has already been unreserved.
2124 if (state
== PFM_CTX_ZOMBIE
) {
2125 pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, ctx
->ctx_cpu
);
2129 * disconnect file descriptor from context must be done
2132 filp
->private_data
= NULL
;
2135 * if we free on the spot, the context is now completely unreachable
2136 * from the callers side. The monitored task side is also cut, so we
2139 * If we have a deferred free, only the caller side is disconnected.
2141 UNPROTECT_CTX(ctx
, flags
);
2144 * All memory free operations (especially for vmalloc'ed memory)
2145 * MUST be done with interrupts ENABLED.
2147 if (smpl_buf_addr
) pfm_rvfree(smpl_buf_addr
, smpl_buf_size
);
2150 * return the memory used by the context
2152 if (free_possible
) pfm_context_free(ctx
);
2158 pfm_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
2160 DPRINT(("pfm_no_open called\n"));
2166 static const struct file_operations pfm_file_ops
= {
2167 .llseek
= no_llseek
,
2172 .open
= pfm_no_open
, /* special open code to disallow open via /proc */
2173 .fasync
= pfm_fasync
,
2174 .release
= pfm_close
,
2179 pfmfs_delete_dentry(struct dentry
*dentry
)
2184 static struct dentry_operations pfmfs_dentry_operations
= {
2185 .d_delete
= pfmfs_delete_dentry
,
2190 pfm_alloc_fd(struct file
**cfile
)
2193 struct file
*file
= NULL
;
2194 struct inode
* inode
;
2198 fd
= get_unused_fd();
2199 if (fd
< 0) return -ENFILE
;
2203 file
= get_empty_filp();
2204 if (!file
) goto out
;
2207 * allocate a new inode
2209 inode
= new_inode(pfmfs_mnt
->mnt_sb
);
2210 if (!inode
) goto out
;
2212 DPRINT(("new inode ino=%ld @%p\n", inode
->i_ino
, inode
));
2214 inode
->i_mode
= S_IFCHR
|S_IRUGO
;
2215 inode
->i_uid
= current
->fsuid
;
2216 inode
->i_gid
= current
->fsgid
;
2218 sprintf(name
, "[%lu]", inode
->i_ino
);
2220 this.len
= strlen(name
);
2221 this.hash
= inode
->i_ino
;
2226 * allocate a new dcache entry
2228 file
->f_path
.dentry
= d_alloc(pfmfs_mnt
->mnt_sb
->s_root
, &this);
2229 if (!file
->f_path
.dentry
) goto out
;
2231 file
->f_path
.dentry
->d_op
= &pfmfs_dentry_operations
;
2233 d_add(file
->f_path
.dentry
, inode
);
2234 file
->f_path
.mnt
= mntget(pfmfs_mnt
);
2235 file
->f_mapping
= inode
->i_mapping
;
2237 file
->f_op
= &pfm_file_ops
;
2238 file
->f_mode
= FMODE_READ
;
2239 file
->f_flags
= O_RDONLY
;
2243 * may have to delay until context is attached?
2245 fd_install(fd
, file
);
2248 * the file structure we will use
2254 if (file
) put_filp(file
);
2260 pfm_free_fd(int fd
, struct file
*file
)
2262 struct files_struct
*files
= current
->files
;
2263 struct fdtable
*fdt
;
2266 * there ie no fd_uninstall(), so we do it here
2268 spin_lock(&files
->file_lock
);
2269 fdt
= files_fdtable(files
);
2270 rcu_assign_pointer(fdt
->fd
[fd
], NULL
);
2271 spin_unlock(&files
->file_lock
);
2279 pfm_remap_buffer(struct vm_area_struct
*vma
, unsigned long buf
, unsigned long addr
, unsigned long size
)
2281 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf
, addr
, size
));
2284 unsigned long pfn
= ia64_tpa(buf
) >> PAGE_SHIFT
;
2287 if (remap_pfn_range(vma
, addr
, pfn
, PAGE_SIZE
, PAGE_READONLY
))
2298 * allocate a sampling buffer and remaps it into the user address space of the task
2301 pfm_smpl_buffer_alloc(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned long rsize
, void **user_vaddr
)
2303 struct mm_struct
*mm
= task
->mm
;
2304 struct vm_area_struct
*vma
= NULL
;
2310 * the fixed header + requested size and align to page boundary
2312 size
= PAGE_ALIGN(rsize
);
2314 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize
, size
));
2317 * check requested size to avoid Denial-of-service attacks
2318 * XXX: may have to refine this test
2319 * Check against address space limit.
2321 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2324 if (size
> task
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
)
2328 * We do the easy to undo allocations first.
2330 * pfm_rvmalloc(), clears the buffer, so there is no leak
2332 smpl_buf
= pfm_rvmalloc(size
);
2333 if (smpl_buf
== NULL
) {
2334 DPRINT(("Can't allocate sampling buffer\n"));
2338 DPRINT(("smpl_buf @%p\n", smpl_buf
));
2341 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2343 DPRINT(("Cannot allocate vma\n"));
2348 * partially initialize the vma for the sampling buffer
2351 vma
->vm_file
= filp
;
2352 vma
->vm_flags
= VM_READ
| VM_MAYREAD
|VM_RESERVED
;
2353 vma
->vm_page_prot
= PAGE_READONLY
; /* XXX may need to change */
2356 * Now we have everything we need and we can initialize
2357 * and connect all the data structures
2360 ctx
->ctx_smpl_hdr
= smpl_buf
;
2361 ctx
->ctx_smpl_size
= size
; /* aligned size */
2364 * Let's do the difficult operations next.
2366 * now we atomically find some area in the address space and
2367 * remap the buffer in it.
2369 down_write(&task
->mm
->mmap_sem
);
2371 /* find some free area in address space, must have mmap sem held */
2372 vma
->vm_start
= pfm_get_unmapped_area(NULL
, 0, size
, 0, MAP_PRIVATE
|MAP_ANONYMOUS
, 0);
2373 if (vma
->vm_start
== 0UL) {
2374 DPRINT(("Cannot find unmapped area for size %ld\n", size
));
2375 up_write(&task
->mm
->mmap_sem
);
2378 vma
->vm_end
= vma
->vm_start
+ size
;
2379 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2381 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size
, ctx
->ctx_smpl_hdr
, vma
->vm_start
));
2383 /* can only be applied to current task, need to have the mm semaphore held when called */
2384 if (pfm_remap_buffer(vma
, (unsigned long)smpl_buf
, vma
->vm_start
, size
)) {
2385 DPRINT(("Can't remap buffer\n"));
2386 up_write(&task
->mm
->mmap_sem
);
2393 * now insert the vma in the vm list for the process, must be
2394 * done with mmap lock held
2396 insert_vm_struct(mm
, vma
);
2398 mm
->total_vm
+= size
>> PAGE_SHIFT
;
2399 vm_stat_account(vma
->vm_mm
, vma
->vm_flags
, vma
->vm_file
,
2401 up_write(&task
->mm
->mmap_sem
);
2404 * keep track of user level virtual address
2406 ctx
->ctx_smpl_vaddr
= (void *)vma
->vm_start
;
2407 *(unsigned long *)user_vaddr
= vma
->vm_start
;
2412 kmem_cache_free(vm_area_cachep
, vma
);
2414 pfm_rvfree(smpl_buf
, size
);
2420 * XXX: do something better here
2423 pfm_bad_permissions(struct task_struct
*task
)
2425 /* inspired by ptrace_attach() */
2426 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2435 return ((current
->uid
!= task
->euid
)
2436 || (current
->uid
!= task
->suid
)
2437 || (current
->uid
!= task
->uid
)
2438 || (current
->gid
!= task
->egid
)
2439 || (current
->gid
!= task
->sgid
)
2440 || (current
->gid
!= task
->gid
)) && !capable(CAP_SYS_PTRACE
);
2444 pfarg_is_sane(struct task_struct
*task
, pfarg_context_t
*pfx
)
2450 ctx_flags
= pfx
->ctx_flags
;
2452 if (ctx_flags
& PFM_FL_SYSTEM_WIDE
) {
2455 * cannot block in this mode
2457 if (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) {
2458 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2463 /* probably more to add here */
2469 pfm_setup_buffer_fmt(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned int ctx_flags
,
2470 unsigned int cpu
, pfarg_context_t
*arg
)
2472 pfm_buffer_fmt_t
*fmt
= NULL
;
2473 unsigned long size
= 0UL;
2475 void *fmt_arg
= NULL
;
2477 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2479 /* invoke and lock buffer format, if found */
2480 fmt
= pfm_find_buffer_fmt(arg
->ctx_smpl_buf_id
);
2482 DPRINT(("[%d] cannot find buffer format\n", task
->pid
));
2487 * buffer argument MUST be contiguous to pfarg_context_t
2489 if (fmt
->fmt_arg_size
) fmt_arg
= PFM_CTXARG_BUF_ARG(arg
);
2491 ret
= pfm_buf_fmt_validate(fmt
, task
, ctx_flags
, cpu
, fmt_arg
);
2493 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task
->pid
, ctx_flags
, cpu
, fmt_arg
, ret
));
2495 if (ret
) goto error
;
2497 /* link buffer format and context */
2498 ctx
->ctx_buf_fmt
= fmt
;
2501 * check if buffer format wants to use perfmon buffer allocation/mapping service
2503 ret
= pfm_buf_fmt_getsize(fmt
, task
, ctx_flags
, cpu
, fmt_arg
, &size
);
2504 if (ret
) goto error
;
2508 * buffer is always remapped into the caller's address space
2510 ret
= pfm_smpl_buffer_alloc(current
, filp
, ctx
, size
, &uaddr
);
2511 if (ret
) goto error
;
2513 /* keep track of user address of buffer */
2514 arg
->ctx_smpl_vaddr
= uaddr
;
2516 ret
= pfm_buf_fmt_init(fmt
, task
, ctx
->ctx_smpl_hdr
, ctx_flags
, cpu
, fmt_arg
);
2523 pfm_reset_pmu_state(pfm_context_t
*ctx
)
2528 * install reset values for PMC.
2530 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
2531 if (PMC_IS_IMPL(i
) == 0) continue;
2532 ctx
->ctx_pmcs
[i
] = PMC_DFL_VAL(i
);
2533 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->ctx_pmcs
[i
]));
2536 * PMD registers are set to 0UL when the context in memset()
2540 * On context switched restore, we must restore ALL pmc and ALL pmd even
2541 * when they are not actively used by the task. In UP, the incoming process
2542 * may otherwise pick up left over PMC, PMD state from the previous process.
2543 * As opposed to PMD, stale PMC can cause harm to the incoming
2544 * process because they may change what is being measured.
2545 * Therefore, we must systematically reinstall the entire
2546 * PMC state. In SMP, the same thing is possible on the
2547 * same CPU but also on between 2 CPUs.
2549 * The problem with PMD is information leaking especially
2550 * to user level when psr.sp=0
2552 * There is unfortunately no easy way to avoid this problem
2553 * on either UP or SMP. This definitively slows down the
2554 * pfm_load_regs() function.
2558 * bitmask of all PMCs accessible to this context
2560 * PMC0 is treated differently.
2562 ctx
->ctx_all_pmcs
[0] = pmu_conf
->impl_pmcs
[0] & ~0x1;
2565 * bitmask of all PMDs that are accessible to this context
2567 ctx
->ctx_all_pmds
[0] = pmu_conf
->impl_pmds
[0];
2569 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx
->ctx_fd
, ctx
->ctx_all_pmcs
[0],ctx
->ctx_all_pmds
[0]));
2572 * useful in case of re-enable after disable
2574 ctx
->ctx_used_ibrs
[0] = 0UL;
2575 ctx
->ctx_used_dbrs
[0] = 0UL;
2579 pfm_ctx_getsize(void *arg
, size_t *sz
)
2581 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2582 pfm_buffer_fmt_t
*fmt
;
2586 if (!pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) return 0;
2588 fmt
= pfm_find_buffer_fmt(req
->ctx_smpl_buf_id
);
2590 DPRINT(("cannot find buffer format\n"));
2593 /* get just enough to copy in user parameters */
2594 *sz
= fmt
->fmt_arg_size
;
2595 DPRINT(("arg_size=%lu\n", *sz
));
2603 * cannot attach if :
2605 * - task not owned by caller
2606 * - task incompatible with context mode
2609 pfm_task_incompatible(pfm_context_t
*ctx
, struct task_struct
*task
)
2612 * no kernel task or task not owner by caller
2614 if (task
->mm
== NULL
) {
2615 DPRINT(("task [%d] has not memory context (kernel thread)\n", task
->pid
));
2618 if (pfm_bad_permissions(task
)) {
2619 DPRINT(("no permission to attach to [%d]\n", task
->pid
));
2623 * cannot block in self-monitoring mode
2625 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && task
== current
) {
2626 DPRINT(("cannot load a blocking context on self for [%d]\n", task
->pid
));
2630 if (task
->exit_state
== EXIT_ZOMBIE
) {
2631 DPRINT(("cannot attach to zombie task [%d]\n", task
->pid
));
2636 * always ok for self
2638 if (task
== current
) return 0;
2640 if ((task
->state
!= TASK_STOPPED
) && (task
->state
!= TASK_TRACED
)) {
2641 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task
->pid
, task
->state
));
2645 * make sure the task is off any CPU
2647 wait_task_inactive(task
);
2649 /* more to come... */
2655 pfm_get_task(pfm_context_t
*ctx
, pid_t pid
, struct task_struct
**task
)
2657 struct task_struct
*p
= current
;
2660 /* XXX: need to add more checks here */
2661 if (pid
< 2) return -EPERM
;
2663 if (pid
!= current
->pid
) {
2665 read_lock(&tasklist_lock
);
2667 p
= find_task_by_pid(pid
);
2669 /* make sure task cannot go away while we operate on it */
2670 if (p
) get_task_struct(p
);
2672 read_unlock(&tasklist_lock
);
2674 if (p
== NULL
) return -ESRCH
;
2677 ret
= pfm_task_incompatible(ctx
, p
);
2680 } else if (p
!= current
) {
2689 pfm_context_create(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2691 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2696 /* let's check the arguments first */
2697 ret
= pfarg_is_sane(current
, req
);
2698 if (ret
< 0) return ret
;
2700 ctx_flags
= req
->ctx_flags
;
2704 ctx
= pfm_context_alloc();
2705 if (!ctx
) goto error
;
2707 ret
= pfm_alloc_fd(&filp
);
2708 if (ret
< 0) goto error_file
;
2710 req
->ctx_fd
= ctx
->ctx_fd
= ret
;
2713 * attach context to file
2715 filp
->private_data
= ctx
;
2718 * does the user want to sample?
2720 if (pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) {
2721 ret
= pfm_setup_buffer_fmt(current
, filp
, ctx
, ctx_flags
, 0, req
);
2722 if (ret
) goto buffer_error
;
2726 * init context protection lock
2728 spin_lock_init(&ctx
->ctx_lock
);
2731 * context is unloaded
2733 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
2736 * initialization of context's flags
2738 ctx
->ctx_fl_block
= (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) ? 1 : 0;
2739 ctx
->ctx_fl_system
= (ctx_flags
& PFM_FL_SYSTEM_WIDE
) ? 1: 0;
2740 ctx
->ctx_fl_is_sampling
= ctx
->ctx_buf_fmt
? 1 : 0; /* assume record() is defined */
2741 ctx
->ctx_fl_no_msg
= (ctx_flags
& PFM_FL_OVFL_NO_MSG
) ? 1: 0;
2743 * will move to set properties
2744 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2748 * init restart semaphore to locked
2750 init_completion(&ctx
->ctx_restart_done
);
2753 * activation is used in SMP only
2755 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
2756 SET_LAST_CPU(ctx
, -1);
2759 * initialize notification message queue
2761 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
2762 init_waitqueue_head(&ctx
->ctx_msgq_wait
);
2763 init_waitqueue_head(&ctx
->ctx_zombieq
);
2765 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2770 ctx
->ctx_fl_excl_idle
,
2775 * initialize soft PMU state
2777 pfm_reset_pmu_state(ctx
);
2782 pfm_free_fd(ctx
->ctx_fd
, filp
);
2784 if (ctx
->ctx_buf_fmt
) {
2785 pfm_buf_fmt_exit(ctx
->ctx_buf_fmt
, current
, NULL
, regs
);
2788 pfm_context_free(ctx
);
2794 static inline unsigned long
2795 pfm_new_counter_value (pfm_counter_t
*reg
, int is_long_reset
)
2797 unsigned long val
= is_long_reset
? reg
->long_reset
: reg
->short_reset
;
2798 unsigned long new_seed
, old_seed
= reg
->seed
, mask
= reg
->mask
;
2799 extern unsigned long carta_random32 (unsigned long seed
);
2801 if (reg
->flags
& PFM_REGFL_RANDOM
) {
2802 new_seed
= carta_random32(old_seed
);
2803 val
-= (old_seed
& mask
); /* counter values are negative numbers! */
2804 if ((mask
>> 32) != 0)
2805 /* construct a full 64-bit random value: */
2806 new_seed
|= carta_random32(old_seed
>> 32) << 32;
2807 reg
->seed
= new_seed
;
2814 pfm_reset_regs_masked(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2816 unsigned long mask
= ovfl_regs
[0];
2817 unsigned long reset_others
= 0UL;
2822 * now restore reset value on sampling overflowed counters
2824 mask
>>= PMU_FIRST_COUNTER
;
2825 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2827 if ((mask
& 0x1UL
) == 0UL) continue;
2829 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2830 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2832 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2836 * Now take care of resetting the other registers
2838 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2840 if ((reset_others
& 0x1) == 0) continue;
2842 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2844 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2845 is_long_reset
? "long" : "short", i
, val
));
2850 pfm_reset_regs(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2852 unsigned long mask
= ovfl_regs
[0];
2853 unsigned long reset_others
= 0UL;
2857 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs
[0], is_long_reset
));
2859 if (ctx
->ctx_state
== PFM_CTX_MASKED
) {
2860 pfm_reset_regs_masked(ctx
, ovfl_regs
, is_long_reset
);
2865 * now restore reset value on sampling overflowed counters
2867 mask
>>= PMU_FIRST_COUNTER
;
2868 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2870 if ((mask
& 0x1UL
) == 0UL) continue;
2872 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2873 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2875 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2877 pfm_write_soft_counter(ctx
, i
, val
);
2881 * Now take care of resetting the other registers
2883 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2885 if ((reset_others
& 0x1) == 0) continue;
2887 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2889 if (PMD_IS_COUNTING(i
)) {
2890 pfm_write_soft_counter(ctx
, i
, val
);
2892 ia64_set_pmd(i
, val
);
2894 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2895 is_long_reset
? "long" : "short", i
, val
));
2901 pfm_write_pmcs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2903 struct task_struct
*task
;
2904 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
2905 unsigned long value
, pmc_pm
;
2906 unsigned long smpl_pmds
, reset_pmds
, impl_pmds
;
2907 unsigned int cnum
, reg_flags
, flags
, pmc_type
;
2908 int i
, can_access_pmu
= 0, is_loaded
, is_system
, expert_mode
;
2909 int is_monitor
, is_counting
, state
;
2911 pfm_reg_check_t wr_func
;
2912 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2914 state
= ctx
->ctx_state
;
2915 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
2916 is_system
= ctx
->ctx_fl_system
;
2917 task
= ctx
->ctx_task
;
2918 impl_pmds
= pmu_conf
->impl_pmds
[0];
2920 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
2924 * In system wide and when the context is loaded, access can only happen
2925 * when the caller is running on the CPU being monitored by the session.
2926 * It does not have to be the owner (ctx_task) of the context per se.
2928 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
2929 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
2932 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
2934 expert_mode
= pfm_sysctl
.expert_mode
;
2936 for (i
= 0; i
< count
; i
++, req
++) {
2938 cnum
= req
->reg_num
;
2939 reg_flags
= req
->reg_flags
;
2940 value
= req
->reg_value
;
2941 smpl_pmds
= req
->reg_smpl_pmds
[0];
2942 reset_pmds
= req
->reg_reset_pmds
[0];
2946 if (cnum
>= PMU_MAX_PMCS
) {
2947 DPRINT(("pmc%u is invalid\n", cnum
));
2951 pmc_type
= pmu_conf
->pmc_desc
[cnum
].type
;
2952 pmc_pm
= (value
>> pmu_conf
->pmc_desc
[cnum
].pm_pos
) & 0x1;
2953 is_counting
= (pmc_type
& PFM_REG_COUNTING
) == PFM_REG_COUNTING
? 1 : 0;
2954 is_monitor
= (pmc_type
& PFM_REG_MONITOR
) == PFM_REG_MONITOR
? 1 : 0;
2957 * we reject all non implemented PMC as well
2958 * as attempts to modify PMC[0-3] which are used
2959 * as status registers by the PMU
2961 if ((pmc_type
& PFM_REG_IMPL
) == 0 || (pmc_type
& PFM_REG_CONTROL
) == PFM_REG_CONTROL
) {
2962 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum
, pmc_type
));
2965 wr_func
= pmu_conf
->pmc_desc
[cnum
].write_check
;
2967 * If the PMC is a monitor, then if the value is not the default:
2968 * - system-wide session: PMCx.pm=1 (privileged monitor)
2969 * - per-task : PMCx.pm=0 (user monitor)
2971 if (is_monitor
&& value
!= PMC_DFL_VAL(cnum
) && is_system
^ pmc_pm
) {
2972 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2981 * enforce generation of overflow interrupt. Necessary on all
2984 value
|= 1 << PMU_PMC_OI
;
2986 if (reg_flags
& PFM_REGFL_OVFL_NOTIFY
) {
2987 flags
|= PFM_REGFL_OVFL_NOTIFY
;
2990 if (reg_flags
& PFM_REGFL_RANDOM
) flags
|= PFM_REGFL_RANDOM
;
2992 /* verify validity of smpl_pmds */
2993 if ((smpl_pmds
& impl_pmds
) != smpl_pmds
) {
2994 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds
, cnum
));
2998 /* verify validity of reset_pmds */
2999 if ((reset_pmds
& impl_pmds
) != reset_pmds
) {
3000 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds
, cnum
));
3004 if (reg_flags
& (PFM_REGFL_OVFL_NOTIFY
|PFM_REGFL_RANDOM
)) {
3005 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum
));
3008 /* eventid on non-counting monitors are ignored */
3012 * execute write checker, if any
3014 if (likely(expert_mode
== 0 && wr_func
)) {
3015 ret
= (*wr_func
)(task
, ctx
, cnum
, &value
, regs
);
3016 if (ret
) goto error
;
3021 * no error on this register
3023 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
3026 * Now we commit the changes to the software state
3030 * update overflow information
3034 * full flag update each time a register is programmed
3036 ctx
->ctx_pmds
[cnum
].flags
= flags
;
3038 ctx
->ctx_pmds
[cnum
].reset_pmds
[0] = reset_pmds
;
3039 ctx
->ctx_pmds
[cnum
].smpl_pmds
[0] = smpl_pmds
;
3040 ctx
->ctx_pmds
[cnum
].eventid
= req
->reg_smpl_eventid
;
3043 * Mark all PMDS to be accessed as used.
3045 * We do not keep track of PMC because we have to
3046 * systematically restore ALL of them.
3048 * We do not update the used_monitors mask, because
3049 * if we have not programmed them, then will be in
3050 * a quiescent state, therefore we will not need to
3051 * mask/restore then when context is MASKED.
3053 CTX_USED_PMD(ctx
, reset_pmds
);
3054 CTX_USED_PMD(ctx
, smpl_pmds
);
3056 * make sure we do not try to reset on
3057 * restart because we have established new values
3059 if (state
== PFM_CTX_MASKED
) ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3062 * Needed in case the user does not initialize the equivalent
3063 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3064 * possible leak here.
3066 CTX_USED_PMD(ctx
, pmu_conf
->pmc_desc
[cnum
].dep_pmd
[0]);
3069 * keep track of the monitor PMC that we are using.
3070 * we save the value of the pmc in ctx_pmcs[] and if
3071 * the monitoring is not stopped for the context we also
3072 * place it in the saved state area so that it will be
3073 * picked up later by the context switch code.
3075 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3077 * The value in th_pmcs[] may be modified on overflow, i.e., when
3078 * monitoring needs to be stopped.
3080 if (is_monitor
) CTX_USED_MONITOR(ctx
, 1UL << cnum
);
3083 * update context state
3085 ctx
->ctx_pmcs
[cnum
] = value
;
3089 * write thread state
3091 if (is_system
== 0) ctx
->th_pmcs
[cnum
] = value
;
3094 * write hardware register if we can
3096 if (can_access_pmu
) {
3097 ia64_set_pmc(cnum
, value
);
3102 * per-task SMP only here
3104 * we are guaranteed that the task is not running on the other CPU,
3105 * we indicate that this PMD will need to be reloaded if the task
3106 * is rescheduled on the CPU it ran last on.
3108 ctx
->ctx_reload_pmcs
[0] |= 1UL << cnum
;
3113 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3119 ctx
->ctx_all_pmcs
[0],
3120 ctx
->ctx_used_pmds
[0],
3121 ctx
->ctx_pmds
[cnum
].eventid
,
3124 ctx
->ctx_reload_pmcs
[0],
3125 ctx
->ctx_used_monitors
[0],
3126 ctx
->ctx_ovfl_regs
[0]));
3130 * make sure the changes are visible
3132 if (can_access_pmu
) ia64_srlz_d();
3136 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3141 pfm_write_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3143 struct task_struct
*task
;
3144 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3145 unsigned long value
, hw_value
, ovfl_mask
;
3147 int i
, can_access_pmu
= 0, state
;
3148 int is_counting
, is_loaded
, is_system
, expert_mode
;
3150 pfm_reg_check_t wr_func
;
3153 state
= ctx
->ctx_state
;
3154 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3155 is_system
= ctx
->ctx_fl_system
;
3156 ovfl_mask
= pmu_conf
->ovfl_val
;
3157 task
= ctx
->ctx_task
;
3159 if (unlikely(state
== PFM_CTX_ZOMBIE
)) return -EINVAL
;
3162 * on both UP and SMP, we can only write to the PMC when the task is
3163 * the owner of the local PMU.
3165 if (likely(is_loaded
)) {
3167 * In system wide and when the context is loaded, access can only happen
3168 * when the caller is running on the CPU being monitored by the session.
3169 * It does not have to be the owner (ctx_task) of the context per se.
3171 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3172 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3175 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3177 expert_mode
= pfm_sysctl
.expert_mode
;
3179 for (i
= 0; i
< count
; i
++, req
++) {
3181 cnum
= req
->reg_num
;
3182 value
= req
->reg_value
;
3184 if (!PMD_IS_IMPL(cnum
)) {
3185 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum
));
3188 is_counting
= PMD_IS_COUNTING(cnum
);
3189 wr_func
= pmu_conf
->pmd_desc
[cnum
].write_check
;
3192 * execute write checker, if any
3194 if (unlikely(expert_mode
== 0 && wr_func
)) {
3195 unsigned long v
= value
;
3197 ret
= (*wr_func
)(task
, ctx
, cnum
, &v
, regs
);
3198 if (ret
) goto abort_mission
;
3205 * no error on this register
3207 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
3210 * now commit changes to software state
3215 * update virtualized (64bits) counter
3219 * write context state
3221 ctx
->ctx_pmds
[cnum
].lval
= value
;
3224 * when context is load we use the split value
3227 hw_value
= value
& ovfl_mask
;
3228 value
= value
& ~ovfl_mask
;
3232 * update reset values (not just for counters)
3234 ctx
->ctx_pmds
[cnum
].long_reset
= req
->reg_long_reset
;
3235 ctx
->ctx_pmds
[cnum
].short_reset
= req
->reg_short_reset
;
3238 * update randomization parameters (not just for counters)
3240 ctx
->ctx_pmds
[cnum
].seed
= req
->reg_random_seed
;
3241 ctx
->ctx_pmds
[cnum
].mask
= req
->reg_random_mask
;
3244 * update context value
3246 ctx
->ctx_pmds
[cnum
].val
= value
;
3249 * Keep track of what we use
3251 * We do not keep track of PMC because we have to
3252 * systematically restore ALL of them.
3254 CTX_USED_PMD(ctx
, PMD_PMD_DEP(cnum
));
3257 * mark this PMD register used as well
3259 CTX_USED_PMD(ctx
, RDEP(cnum
));
3262 * make sure we do not try to reset on
3263 * restart because we have established new values
3265 if (is_counting
&& state
== PFM_CTX_MASKED
) {
3266 ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3271 * write thread state
3273 if (is_system
== 0) ctx
->th_pmds
[cnum
] = hw_value
;
3276 * write hardware register if we can
3278 if (can_access_pmu
) {
3279 ia64_set_pmd(cnum
, hw_value
);
3283 * we are guaranteed that the task is not running on the other CPU,
3284 * we indicate that this PMD will need to be reloaded if the task
3285 * is rescheduled on the CPU it ran last on.
3287 ctx
->ctx_reload_pmds
[0] |= 1UL << cnum
;
3292 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3293 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3299 ctx
->ctx_pmds
[cnum
].val
,
3300 ctx
->ctx_pmds
[cnum
].short_reset
,
3301 ctx
->ctx_pmds
[cnum
].long_reset
,
3302 PMC_OVFL_NOTIFY(ctx
, cnum
) ? 'Y':'N',
3303 ctx
->ctx_pmds
[cnum
].seed
,
3304 ctx
->ctx_pmds
[cnum
].mask
,
3305 ctx
->ctx_used_pmds
[0],
3306 ctx
->ctx_pmds
[cnum
].reset_pmds
[0],
3307 ctx
->ctx_reload_pmds
[0],
3308 ctx
->ctx_all_pmds
[0],
3309 ctx
->ctx_ovfl_regs
[0]));
3313 * make changes visible
3315 if (can_access_pmu
) ia64_srlz_d();
3321 * for now, we have only one possibility for error
3323 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3328 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3329 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3330 * interrupt is delivered during the call, it will be kept pending until we leave, making
3331 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3332 * guaranteed to return consistent data to the user, it may simply be old. It is not
3333 * trivial to treat the overflow while inside the call because you may end up in
3334 * some module sampling buffer code causing deadlocks.
3337 pfm_read_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3339 struct task_struct
*task
;
3340 unsigned long val
= 0UL, lval
, ovfl_mask
, sval
;
3341 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3342 unsigned int cnum
, reg_flags
= 0;
3343 int i
, can_access_pmu
= 0, state
;
3344 int is_loaded
, is_system
, is_counting
, expert_mode
;
3346 pfm_reg_check_t rd_func
;
3349 * access is possible when loaded only for
3350 * self-monitoring tasks or in UP mode
3353 state
= ctx
->ctx_state
;
3354 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3355 is_system
= ctx
->ctx_fl_system
;
3356 ovfl_mask
= pmu_conf
->ovfl_val
;
3357 task
= ctx
->ctx_task
;
3359 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3361 if (likely(is_loaded
)) {
3363 * In system wide and when the context is loaded, access can only happen
3364 * when the caller is running on the CPU being monitored by the session.
3365 * It does not have to be the owner (ctx_task) of the context per se.
3367 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3368 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3372 * this can be true when not self-monitoring only in UP
3374 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3376 if (can_access_pmu
) ia64_srlz_d();
3378 expert_mode
= pfm_sysctl
.expert_mode
;
3380 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3386 * on both UP and SMP, we can only read the PMD from the hardware register when
3387 * the task is the owner of the local PMU.
3390 for (i
= 0; i
< count
; i
++, req
++) {
3392 cnum
= req
->reg_num
;
3393 reg_flags
= req
->reg_flags
;
3395 if (unlikely(!PMD_IS_IMPL(cnum
))) goto error
;
3397 * we can only read the register that we use. That includes
3398 * the one we explicitly initialize AND the one we want included
3399 * in the sampling buffer (smpl_regs).
3401 * Having this restriction allows optimization in the ctxsw routine
3402 * without compromising security (leaks)
3404 if (unlikely(!CTX_IS_USED_PMD(ctx
, cnum
))) goto error
;
3406 sval
= ctx
->ctx_pmds
[cnum
].val
;
3407 lval
= ctx
->ctx_pmds
[cnum
].lval
;
3408 is_counting
= PMD_IS_COUNTING(cnum
);
3411 * If the task is not the current one, then we check if the
3412 * PMU state is still in the local live register due to lazy ctxsw.
3413 * If true, then we read directly from the registers.
3415 if (can_access_pmu
){
3416 val
= ia64_get_pmd(cnum
);
3419 * context has been saved
3420 * if context is zombie, then task does not exist anymore.
3421 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3423 val
= is_loaded
? ctx
->th_pmds
[cnum
] : 0UL;
3425 rd_func
= pmu_conf
->pmd_desc
[cnum
].read_check
;
3429 * XXX: need to check for overflow when loaded
3436 * execute read checker, if any
3438 if (unlikely(expert_mode
== 0 && rd_func
)) {
3439 unsigned long v
= val
;
3440 ret
= (*rd_func
)(ctx
->ctx_task
, ctx
, cnum
, &v
, regs
);
3441 if (ret
) goto error
;
3446 PFM_REG_RETFLAG_SET(reg_flags
, 0);
3448 DPRINT(("pmd[%u]=0x%lx\n", cnum
, val
));
3451 * update register return value, abort all if problem during copy.
3452 * we only modify the reg_flags field. no check mode is fine because
3453 * access has been verified upfront in sys_perfmonctl().
3455 req
->reg_value
= val
;
3456 req
->reg_flags
= reg_flags
;
3457 req
->reg_last_reset_val
= lval
;
3463 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3468 pfm_mod_write_pmcs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3472 if (req
== NULL
) return -EINVAL
;
3474 ctx
= GET_PMU_CTX();
3476 if (ctx
== NULL
) return -EINVAL
;
3479 * for now limit to current task, which is enough when calling
3480 * from overflow handler
3482 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3484 return pfm_write_pmcs(ctx
, req
, nreq
, regs
);
3486 EXPORT_SYMBOL(pfm_mod_write_pmcs
);
3489 pfm_mod_read_pmds(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3493 if (req
== NULL
) return -EINVAL
;
3495 ctx
= GET_PMU_CTX();
3497 if (ctx
== NULL
) return -EINVAL
;
3500 * for now limit to current task, which is enough when calling
3501 * from overflow handler
3503 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3505 return pfm_read_pmds(ctx
, req
, nreq
, regs
);
3507 EXPORT_SYMBOL(pfm_mod_read_pmds
);
3510 * Only call this function when a process it trying to
3511 * write the debug registers (reading is always allowed)
3514 pfm_use_debug_registers(struct task_struct
*task
)
3516 pfm_context_t
*ctx
= task
->thread
.pfm_context
;
3517 unsigned long flags
;
3520 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3522 DPRINT(("called for [%d]\n", task
->pid
));
3527 if (task
->thread
.flags
& IA64_THREAD_DBG_VALID
) return 0;
3530 * Even on SMP, we do not need to use an atomic here because
3531 * the only way in is via ptrace() and this is possible only when the
3532 * process is stopped. Even in the case where the ctxsw out is not totally
3533 * completed by the time we come here, there is no way the 'stopped' process
3534 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3535 * So this is always safe.
3537 if (ctx
&& ctx
->ctx_fl_using_dbreg
== 1) return -1;
3542 * We cannot allow setting breakpoints when system wide monitoring
3543 * sessions are using the debug registers.
3545 if (pfm_sessions
.pfs_sys_use_dbregs
> 0)
3548 pfm_sessions
.pfs_ptrace_use_dbregs
++;
3550 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3551 pfm_sessions
.pfs_ptrace_use_dbregs
,
3552 pfm_sessions
.pfs_sys_use_dbregs
,
3561 * This function is called for every task that exits with the
3562 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3563 * able to use the debug registers for debugging purposes via
3564 * ptrace(). Therefore we know it was not using them for
3565 * perfmormance monitoring, so we only decrement the number
3566 * of "ptraced" debug register users to keep the count up to date
3569 pfm_release_debug_registers(struct task_struct
*task
)
3571 unsigned long flags
;
3574 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3577 if (pfm_sessions
.pfs_ptrace_use_dbregs
== 0) {
3578 printk(KERN_ERR
"perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task
->pid
);
3581 pfm_sessions
.pfs_ptrace_use_dbregs
--;
3590 pfm_restart(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3592 struct task_struct
*task
;
3593 pfm_buffer_fmt_t
*fmt
;
3594 pfm_ovfl_ctrl_t rst_ctrl
;
3595 int state
, is_system
;
3598 state
= ctx
->ctx_state
;
3599 fmt
= ctx
->ctx_buf_fmt
;
3600 is_system
= ctx
->ctx_fl_system
;
3601 task
= PFM_CTX_TASK(ctx
);
3604 case PFM_CTX_MASKED
:
3606 case PFM_CTX_LOADED
:
3607 if (CTX_HAS_SMPL(ctx
) && fmt
->fmt_restart_active
) break;
3609 case PFM_CTX_UNLOADED
:
3610 case PFM_CTX_ZOMBIE
:
3611 DPRINT(("invalid state=%d\n", state
));
3614 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state
));
3619 * In system wide and when the context is loaded, access can only happen
3620 * when the caller is running on the CPU being monitored by the session.
3621 * It does not have to be the owner (ctx_task) of the context per se.
3623 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3624 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3629 if (unlikely(task
== NULL
)) {
3630 printk(KERN_ERR
"perfmon: [%d] pfm_restart no task\n", current
->pid
);
3634 if (task
== current
|| is_system
) {
3636 fmt
= ctx
->ctx_buf_fmt
;
3638 DPRINT(("restarting self %d ovfl=0x%lx\n",
3640 ctx
->ctx_ovfl_regs
[0]));
3642 if (CTX_HAS_SMPL(ctx
)) {
3644 prefetch(ctx
->ctx_smpl_hdr
);
3646 rst_ctrl
.bits
.mask_monitoring
= 0;
3647 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
3649 if (state
== PFM_CTX_LOADED
)
3650 ret
= pfm_buf_fmt_restart_active(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3652 ret
= pfm_buf_fmt_restart(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3654 rst_ctrl
.bits
.mask_monitoring
= 0;
3655 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
3659 if (rst_ctrl
.bits
.reset_ovfl_pmds
)
3660 pfm_reset_regs(ctx
, ctx
->ctx_ovfl_regs
, PFM_PMD_LONG_RESET
);
3662 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
3663 DPRINT(("resuming monitoring for [%d]\n", task
->pid
));
3665 if (state
== PFM_CTX_MASKED
) pfm_restore_monitoring(task
);
3667 DPRINT(("keeping monitoring stopped for [%d]\n", task
->pid
));
3669 // cannot use pfm_stop_monitoring(task, regs);
3673 * clear overflowed PMD mask to remove any stale information
3675 ctx
->ctx_ovfl_regs
[0] = 0UL;
3678 * back to LOADED state
3680 ctx
->ctx_state
= PFM_CTX_LOADED
;
3683 * XXX: not really useful for self monitoring
3685 ctx
->ctx_fl_can_restart
= 0;
3691 * restart another task
3695 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3696 * one is seen by the task.
3698 if (state
== PFM_CTX_MASKED
) {
3699 if (ctx
->ctx_fl_can_restart
== 0) return -EINVAL
;
3701 * will prevent subsequent restart before this one is
3702 * seen by other task
3704 ctx
->ctx_fl_can_restart
= 0;
3708 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3709 * the task is blocked or on its way to block. That's the normal
3710 * restart path. If the monitoring is not masked, then the task
3711 * can be actively monitoring and we cannot directly intervene.
3712 * Therefore we use the trap mechanism to catch the task and
3713 * force it to reset the buffer/reset PMDs.
3715 * if non-blocking, then we ensure that the task will go into
3716 * pfm_handle_work() before returning to user mode.
3718 * We cannot explicitly reset another task, it MUST always
3719 * be done by the task itself. This works for system wide because
3720 * the tool that is controlling the session is logically doing
3721 * "self-monitoring".
3723 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && state
== PFM_CTX_MASKED
) {
3724 DPRINT(("unblocking [%d] \n", task
->pid
));
3725 complete(&ctx
->ctx_restart_done
);
3727 DPRINT(("[%d] armed exit trap\n", task
->pid
));
3729 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_RESET
;
3731 PFM_SET_WORK_PENDING(task
, 1);
3733 pfm_set_task_notify(task
);
3736 * XXX: send reschedule if task runs on another CPU
3743 pfm_debug(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3745 unsigned int m
= *(unsigned int *)arg
;
3747 pfm_sysctl
.debug
= m
== 0 ? 0 : 1;
3749 printk(KERN_INFO
"perfmon debugging %s (timing reset)\n", pfm_sysctl
.debug
? "on" : "off");
3752 memset(pfm_stats
, 0, sizeof(pfm_stats
));
3753 for(m
=0; m
< NR_CPUS
; m
++) pfm_stats
[m
].pfm_ovfl_intr_cycles_min
= ~0UL;
3759 * arg can be NULL and count can be zero for this function
3762 pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3764 struct thread_struct
*thread
= NULL
;
3765 struct task_struct
*task
;
3766 pfarg_dbreg_t
*req
= (pfarg_dbreg_t
*)arg
;
3767 unsigned long flags
;
3772 int i
, can_access_pmu
= 0;
3773 int is_system
, is_loaded
;
3775 if (pmu_conf
->use_rr_dbregs
== 0) return -EINVAL
;
3777 state
= ctx
->ctx_state
;
3778 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3779 is_system
= ctx
->ctx_fl_system
;
3780 task
= ctx
->ctx_task
;
3782 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3785 * on both UP and SMP, we can only write to the PMC when the task is
3786 * the owner of the local PMU.
3789 thread
= &task
->thread
;
3791 * In system wide and when the context is loaded, access can only happen
3792 * when the caller is running on the CPU being monitored by the session.
3793 * It does not have to be the owner (ctx_task) of the context per se.
3795 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3796 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3799 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3803 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3804 * ensuring that no real breakpoint can be installed via this call.
3806 * IMPORTANT: regs can be NULL in this function
3809 first_time
= ctx
->ctx_fl_using_dbreg
== 0;
3812 * don't bother if we are loaded and task is being debugged
3814 if (is_loaded
&& (thread
->flags
& IA64_THREAD_DBG_VALID
) != 0) {
3815 DPRINT(("debug registers already in use for [%d]\n", task
->pid
));
3820 * check for debug registers in system wide mode
3822 * If though a check is done in pfm_context_load(),
3823 * we must repeat it here, in case the registers are
3824 * written after the context is loaded
3829 if (first_time
&& is_system
) {
3830 if (pfm_sessions
.pfs_ptrace_use_dbregs
)
3833 pfm_sessions
.pfs_sys_use_dbregs
++;
3838 if (ret
!= 0) return ret
;
3841 * mark ourself as user of the debug registers for
3844 ctx
->ctx_fl_using_dbreg
= 1;
3847 * clear hardware registers to make sure we don't
3848 * pick up stale state.
3850 * for a system wide session, we do not use
3851 * thread.dbr, thread.ibr because this process
3852 * never leaves the current CPU and the state
3853 * is shared by all processes running on it
3855 if (first_time
&& can_access_pmu
) {
3856 DPRINT(("[%d] clearing ibrs, dbrs\n", task
->pid
));
3857 for (i
=0; i
< pmu_conf
->num_ibrs
; i
++) {
3858 ia64_set_ibr(i
, 0UL);
3859 ia64_dv_serialize_instruction();
3862 for (i
=0; i
< pmu_conf
->num_dbrs
; i
++) {
3863 ia64_set_dbr(i
, 0UL);
3864 ia64_dv_serialize_data();
3870 * Now install the values into the registers
3872 for (i
= 0; i
< count
; i
++, req
++) {
3874 rnum
= req
->dbreg_num
;
3875 dbreg
.val
= req
->dbreg_value
;
3879 if ((mode
== PFM_CODE_RR
&& rnum
>= PFM_NUM_IBRS
) || ((mode
== PFM_DATA_RR
) && rnum
>= PFM_NUM_DBRS
)) {
3880 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3881 rnum
, dbreg
.val
, mode
, i
, count
));
3887 * make sure we do not install enabled breakpoint
3890 if (mode
== PFM_CODE_RR
)
3891 dbreg
.ibr
.ibr_x
= 0;
3893 dbreg
.dbr
.dbr_r
= dbreg
.dbr
.dbr_w
= 0;
3896 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, 0);
3899 * Debug registers, just like PMC, can only be modified
3900 * by a kernel call. Moreover, perfmon() access to those
3901 * registers are centralized in this routine. The hardware
3902 * does not modify the value of these registers, therefore,
3903 * if we save them as they are written, we can avoid having
3904 * to save them on context switch out. This is made possible
3905 * by the fact that when perfmon uses debug registers, ptrace()
3906 * won't be able to modify them concurrently.
3908 if (mode
== PFM_CODE_RR
) {
3909 CTX_USED_IBR(ctx
, rnum
);
3911 if (can_access_pmu
) {
3912 ia64_set_ibr(rnum
, dbreg
.val
);
3913 ia64_dv_serialize_instruction();
3916 ctx
->ctx_ibrs
[rnum
] = dbreg
.val
;
3918 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3919 rnum
, dbreg
.val
, ctx
->ctx_used_ibrs
[0], is_loaded
, can_access_pmu
));
3921 CTX_USED_DBR(ctx
, rnum
);
3923 if (can_access_pmu
) {
3924 ia64_set_dbr(rnum
, dbreg
.val
);
3925 ia64_dv_serialize_data();
3927 ctx
->ctx_dbrs
[rnum
] = dbreg
.val
;
3929 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3930 rnum
, dbreg
.val
, ctx
->ctx_used_dbrs
[0], is_loaded
, can_access_pmu
));
3938 * in case it was our first attempt, we undo the global modifications
3942 if (ctx
->ctx_fl_system
) {
3943 pfm_sessions
.pfs_sys_use_dbregs
--;
3946 ctx
->ctx_fl_using_dbreg
= 0;
3949 * install error return flag
3951 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, PFM_REG_RETFL_EINVAL
);
3957 pfm_write_ibrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3959 return pfm_write_ibr_dbr(PFM_CODE_RR
, ctx
, arg
, count
, regs
);
3963 pfm_write_dbrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3965 return pfm_write_ibr_dbr(PFM_DATA_RR
, ctx
, arg
, count
, regs
);
3969 pfm_mod_write_ibrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3973 if (req
== NULL
) return -EINVAL
;
3975 ctx
= GET_PMU_CTX();
3977 if (ctx
== NULL
) return -EINVAL
;
3980 * for now limit to current task, which is enough when calling
3981 * from overflow handler
3983 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3985 return pfm_write_ibrs(ctx
, req
, nreq
, regs
);
3987 EXPORT_SYMBOL(pfm_mod_write_ibrs
);
3990 pfm_mod_write_dbrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3994 if (req
== NULL
) return -EINVAL
;
3996 ctx
= GET_PMU_CTX();
3998 if (ctx
== NULL
) return -EINVAL
;
4001 * for now limit to current task, which is enough when calling
4002 * from overflow handler
4004 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
4006 return pfm_write_dbrs(ctx
, req
, nreq
, regs
);
4008 EXPORT_SYMBOL(pfm_mod_write_dbrs
);
4012 pfm_get_features(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4014 pfarg_features_t
*req
= (pfarg_features_t
*)arg
;
4016 req
->ft_version
= PFM_VERSION
;
4021 pfm_stop(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4023 struct pt_regs
*tregs
;
4024 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
4025 int state
, is_system
;
4027 state
= ctx
->ctx_state
;
4028 is_system
= ctx
->ctx_fl_system
;
4031 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
4033 if (state
== PFM_CTX_UNLOADED
) return -EINVAL
;
4036 * In system wide and when the context is loaded, access can only happen
4037 * when the caller is running on the CPU being monitored by the session.
4038 * It does not have to be the owner (ctx_task) of the context per se.
4040 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
4041 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
4044 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4045 PFM_CTX_TASK(ctx
)->pid
,
4049 * in system mode, we need to update the PMU directly
4050 * and the user level state of the caller, which may not
4051 * necessarily be the creator of the context.
4055 * Update local PMU first
4059 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
4063 * update local cpuinfo
4065 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4068 * stop monitoring, does srlz.i
4073 * stop monitoring in the caller
4075 ia64_psr(regs
)->pp
= 0;
4083 if (task
== current
) {
4084 /* stop monitoring at kernel level */
4088 * stop monitoring at the user level
4090 ia64_psr(regs
)->up
= 0;
4092 tregs
= task_pt_regs(task
);
4095 * stop monitoring at the user level
4097 ia64_psr(tregs
)->up
= 0;
4100 * monitoring disabled in kernel at next reschedule
4102 ctx
->ctx_saved_psr_up
= 0;
4103 DPRINT(("task=[%d]\n", task
->pid
));
4110 pfm_start(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4112 struct pt_regs
*tregs
;
4113 int state
, is_system
;
4115 state
= ctx
->ctx_state
;
4116 is_system
= ctx
->ctx_fl_system
;
4118 if (state
!= PFM_CTX_LOADED
) return -EINVAL
;
4121 * In system wide and when the context is loaded, access can only happen
4122 * when the caller is running on the CPU being monitored by the session.
4123 * It does not have to be the owner (ctx_task) of the context per se.
4125 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
4126 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
4131 * in system mode, we need to update the PMU directly
4132 * and the user level state of the caller, which may not
4133 * necessarily be the creator of the context.
4138 * set user level psr.pp for the caller
4140 ia64_psr(regs
)->pp
= 1;
4143 * now update the local PMU and cpuinfo
4145 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP
);
4148 * start monitoring at kernel level
4153 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
4163 if (ctx
->ctx_task
== current
) {
4165 /* start monitoring at kernel level */
4169 * activate monitoring at user level
4171 ia64_psr(regs
)->up
= 1;
4174 tregs
= task_pt_regs(ctx
->ctx_task
);
4177 * start monitoring at the kernel level the next
4178 * time the task is scheduled
4180 ctx
->ctx_saved_psr_up
= IA64_PSR_UP
;
4183 * activate monitoring at user level
4185 ia64_psr(tregs
)->up
= 1;
4191 pfm_get_pmc_reset(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4193 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
4198 for (i
= 0; i
< count
; i
++, req
++) {
4200 cnum
= req
->reg_num
;
4202 if (!PMC_IS_IMPL(cnum
)) goto abort_mission
;
4204 req
->reg_value
= PMC_DFL_VAL(cnum
);
4206 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
4208 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum
, req
->reg_value
));
4213 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
4218 pfm_check_task_exist(pfm_context_t
*ctx
)
4220 struct task_struct
*g
, *t
;
4223 read_lock(&tasklist_lock
);
4225 do_each_thread (g
, t
) {
4226 if (t
->thread
.pfm_context
== ctx
) {
4230 } while_each_thread (g
, t
);
4232 read_unlock(&tasklist_lock
);
4234 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret
, ctx
));
4240 pfm_context_load(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4242 struct task_struct
*task
;
4243 struct thread_struct
*thread
;
4244 struct pfm_context_t
*old
;
4245 unsigned long flags
;
4247 struct task_struct
*owner_task
= NULL
;
4249 pfarg_load_t
*req
= (pfarg_load_t
*)arg
;
4250 unsigned long *pmcs_source
, *pmds_source
;
4253 int state
, is_system
, set_dbregs
= 0;
4255 state
= ctx
->ctx_state
;
4256 is_system
= ctx
->ctx_fl_system
;
4258 * can only load from unloaded or terminated state
4260 if (state
!= PFM_CTX_UNLOADED
) {
4261 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4267 DPRINT(("load_pid [%d] using_dbreg=%d\n", req
->load_pid
, ctx
->ctx_fl_using_dbreg
));
4269 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && req
->load_pid
== current
->pid
) {
4270 DPRINT(("cannot use blocking mode on self\n"));
4274 ret
= pfm_get_task(ctx
, req
->load_pid
, &task
);
4276 DPRINT(("load_pid [%d] get_task=%d\n", req
->load_pid
, ret
));
4283 * system wide is self monitoring only
4285 if (is_system
&& task
!= current
) {
4286 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4291 thread
= &task
->thread
;
4295 * cannot load a context which is using range restrictions,
4296 * into a task that is being debugged.
4298 if (ctx
->ctx_fl_using_dbreg
) {
4299 if (thread
->flags
& IA64_THREAD_DBG_VALID
) {
4301 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req
->load_pid
));
4307 if (pfm_sessions
.pfs_ptrace_use_dbregs
) {
4308 DPRINT(("cannot load [%d] dbregs in use\n", task
->pid
));
4311 pfm_sessions
.pfs_sys_use_dbregs
++;
4312 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task
->pid
, pfm_sessions
.pfs_sys_use_dbregs
));
4319 if (ret
) goto error
;
4323 * SMP system-wide monitoring implies self-monitoring.
4325 * The programming model expects the task to
4326 * be pinned on a CPU throughout the session.
4327 * Here we take note of the current CPU at the
4328 * time the context is loaded. No call from
4329 * another CPU will be allowed.
4331 * The pinning via shed_setaffinity()
4332 * must be done by the calling task prior
4335 * systemwide: keep track of CPU this session is supposed to run on
4337 the_cpu
= ctx
->ctx_cpu
= smp_processor_id();
4341 * now reserve the session
4343 ret
= pfm_reserve_session(current
, is_system
, the_cpu
);
4344 if (ret
) goto error
;
4347 * task is necessarily stopped at this point.
4349 * If the previous context was zombie, then it got removed in
4350 * pfm_save_regs(). Therefore we should not see it here.
4351 * If we see a context, then this is an active context
4353 * XXX: needs to be atomic
4355 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4356 thread
->pfm_context
, ctx
));
4359 old
= ia64_cmpxchg(acq
, &thread
->pfm_context
, NULL
, ctx
, sizeof(pfm_context_t
*));
4361 DPRINT(("load_pid [%d] already has a context\n", req
->load_pid
));
4365 pfm_reset_msgq(ctx
);
4367 ctx
->ctx_state
= PFM_CTX_LOADED
;
4370 * link context to task
4372 ctx
->ctx_task
= task
;
4376 * we load as stopped
4378 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE
);
4379 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4381 if (ctx
->ctx_fl_excl_idle
) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE
);
4383 thread
->flags
|= IA64_THREAD_PM_VALID
;
4387 * propagate into thread-state
4389 pfm_copy_pmds(task
, ctx
);
4390 pfm_copy_pmcs(task
, ctx
);
4392 pmcs_source
= ctx
->th_pmcs
;
4393 pmds_source
= ctx
->th_pmds
;
4396 * always the case for system-wide
4398 if (task
== current
) {
4400 if (is_system
== 0) {
4402 /* allow user level control */
4403 ia64_psr(regs
)->sp
= 0;
4404 DPRINT(("clearing psr.sp for [%d]\n", task
->pid
));
4406 SET_LAST_CPU(ctx
, smp_processor_id());
4408 SET_ACTIVATION(ctx
);
4411 * push the other task out, if any
4413 owner_task
= GET_PMU_OWNER();
4414 if (owner_task
) pfm_lazy_save_regs(owner_task
);
4418 * load all PMD from ctx to PMU (as opposed to thread state)
4419 * restore all PMC from ctx to PMU
4421 pfm_restore_pmds(pmds_source
, ctx
->ctx_all_pmds
[0]);
4422 pfm_restore_pmcs(pmcs_source
, ctx
->ctx_all_pmcs
[0]);
4424 ctx
->ctx_reload_pmcs
[0] = 0UL;
4425 ctx
->ctx_reload_pmds
[0] = 0UL;
4428 * guaranteed safe by earlier check against DBG_VALID
4430 if (ctx
->ctx_fl_using_dbreg
) {
4431 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
4432 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
4437 SET_PMU_OWNER(task
, ctx
);
4439 DPRINT(("context loaded on PMU for [%d]\n", task
->pid
));
4442 * when not current, task MUST be stopped, so this is safe
4444 regs
= task_pt_regs(task
);
4446 /* force a full reload */
4447 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4448 SET_LAST_CPU(ctx
, -1);
4450 /* initial saved psr (stopped) */
4451 ctx
->ctx_saved_psr_up
= 0UL;
4452 ia64_psr(regs
)->up
= ia64_psr(regs
)->pp
= 0;
4458 if (ret
) pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, the_cpu
);
4461 * we must undo the dbregs setting (for system-wide)
4463 if (ret
&& set_dbregs
) {
4465 pfm_sessions
.pfs_sys_use_dbregs
--;
4469 * release task, there is now a link with the context
4471 if (is_system
== 0 && task
!= current
) {
4475 ret
= pfm_check_task_exist(ctx
);
4477 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4478 ctx
->ctx_task
= NULL
;
4486 * in this function, we do not need to increase the use count
4487 * for the task via get_task_struct(), because we hold the
4488 * context lock. If the task were to disappear while having
4489 * a context attached, it would go through pfm_exit_thread()
4490 * which also grabs the context lock and would therefore be blocked
4491 * until we are here.
4493 static void pfm_flush_pmds(struct task_struct
*, pfm_context_t
*ctx
);
4496 pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4498 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
4499 struct pt_regs
*tregs
;
4500 int prev_state
, is_system
;
4503 DPRINT(("ctx_state=%d task [%d]\n", ctx
->ctx_state
, task
? task
->pid
: -1));
4505 prev_state
= ctx
->ctx_state
;
4506 is_system
= ctx
->ctx_fl_system
;
4509 * unload only when necessary
4511 if (prev_state
== PFM_CTX_UNLOADED
) {
4512 DPRINT(("ctx_state=%d, nothing to do\n", prev_state
));
4517 * clear psr and dcr bits
4519 ret
= pfm_stop(ctx
, NULL
, 0, regs
);
4520 if (ret
) return ret
;
4522 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4525 * in system mode, we need to update the PMU directly
4526 * and the user level state of the caller, which may not
4527 * necessarily be the creator of the context.
4534 * local PMU is taken care of in pfm_stop()
4536 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE
);
4537 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE
);
4540 * save PMDs in context
4543 pfm_flush_pmds(current
, ctx
);
4546 * at this point we are done with the PMU
4547 * so we can unreserve the resource.
4549 if (prev_state
!= PFM_CTX_ZOMBIE
)
4550 pfm_unreserve_session(ctx
, 1 , ctx
->ctx_cpu
);
4553 * disconnect context from task
4555 task
->thread
.pfm_context
= NULL
;
4557 * disconnect task from context
4559 ctx
->ctx_task
= NULL
;
4562 * There is nothing more to cleanup here.
4570 tregs
= task
== current
? regs
: task_pt_regs(task
);
4572 if (task
== current
) {
4574 * cancel user level control
4576 ia64_psr(regs
)->sp
= 1;
4578 DPRINT(("setting psr.sp for [%d]\n", task
->pid
));
4581 * save PMDs to context
4584 pfm_flush_pmds(task
, ctx
);
4587 * at this point we are done with the PMU
4588 * so we can unreserve the resource.
4590 * when state was ZOMBIE, we have already unreserved.
4592 if (prev_state
!= PFM_CTX_ZOMBIE
)
4593 pfm_unreserve_session(ctx
, 0 , ctx
->ctx_cpu
);
4596 * reset activation counter and psr
4598 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4599 SET_LAST_CPU(ctx
, -1);
4602 * PMU state will not be restored
4604 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
4607 * break links between context and task
4609 task
->thread
.pfm_context
= NULL
;
4610 ctx
->ctx_task
= NULL
;
4612 PFM_SET_WORK_PENDING(task
, 0);
4614 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
4615 ctx
->ctx_fl_can_restart
= 0;
4616 ctx
->ctx_fl_going_zombie
= 0;
4618 DPRINT(("disconnected [%d] from context\n", task
->pid
));
4625 * called only from exit_thread(): task == current
4626 * we come here only if current has a context attached (loaded or masked)
4629 pfm_exit_thread(struct task_struct
*task
)
4632 unsigned long flags
;
4633 struct pt_regs
*regs
= task_pt_regs(task
);
4637 ctx
= PFM_GET_CTX(task
);
4639 PROTECT_CTX(ctx
, flags
);
4641 DPRINT(("state=%d task [%d]\n", ctx
->ctx_state
, task
->pid
));
4643 state
= ctx
->ctx_state
;
4645 case PFM_CTX_UNLOADED
:
4647 * only comes to this function if pfm_context is not NULL, i.e., cannot
4648 * be in unloaded state
4650 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] ctx unloaded\n", task
->pid
);
4652 case PFM_CTX_LOADED
:
4653 case PFM_CTX_MASKED
:
4654 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4656 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task
->pid
, state
, ret
);
4658 DPRINT(("ctx unloaded for current state was %d\n", state
));
4660 pfm_end_notify_user(ctx
);
4662 case PFM_CTX_ZOMBIE
:
4663 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4665 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task
->pid
, state
, ret
);
4670 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task
->pid
, state
);
4673 UNPROTECT_CTX(ctx
, flags
);
4675 { u64 psr
= pfm_get_psr();
4676 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
4677 BUG_ON(GET_PMU_OWNER());
4678 BUG_ON(ia64_psr(regs
)->up
);
4679 BUG_ON(ia64_psr(regs
)->pp
);
4683 * All memory free operations (especially for vmalloc'ed memory)
4684 * MUST be done with interrupts ENABLED.
4686 if (free_ok
) pfm_context_free(ctx
);
4690 * functions MUST be listed in the increasing order of their index (see permfon.h)
4692 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4693 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4694 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4695 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4696 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4698 static pfm_cmd_desc_t pfm_cmd_tab
[]={
4699 /* 0 */PFM_CMD_NONE
,
4700 /* 1 */PFM_CMD(pfm_write_pmcs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4701 /* 2 */PFM_CMD(pfm_write_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4702 /* 3 */PFM_CMD(pfm_read_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4703 /* 4 */PFM_CMD_S(pfm_stop
, PFM_CMD_PCLRWS
),
4704 /* 5 */PFM_CMD_S(pfm_start
, PFM_CMD_PCLRWS
),
4705 /* 6 */PFM_CMD_NONE
,
4706 /* 7 */PFM_CMD_NONE
,
4707 /* 8 */PFM_CMD(pfm_context_create
, PFM_CMD_ARG_RW
, 1, pfarg_context_t
, pfm_ctx_getsize
),
4708 /* 9 */PFM_CMD_NONE
,
4709 /* 10 */PFM_CMD_S(pfm_restart
, PFM_CMD_PCLRW
),
4710 /* 11 */PFM_CMD_NONE
,
4711 /* 12 */PFM_CMD(pfm_get_features
, PFM_CMD_ARG_RW
, 1, pfarg_features_t
, NULL
),
4712 /* 13 */PFM_CMD(pfm_debug
, 0, 1, unsigned int, NULL
),
4713 /* 14 */PFM_CMD_NONE
,
4714 /* 15 */PFM_CMD(pfm_get_pmc_reset
, PFM_CMD_ARG_RW
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4715 /* 16 */PFM_CMD(pfm_context_load
, PFM_CMD_PCLRWS
, 1, pfarg_load_t
, NULL
),
4716 /* 17 */PFM_CMD_S(pfm_context_unload
, PFM_CMD_PCLRWS
),
4717 /* 18 */PFM_CMD_NONE
,
4718 /* 19 */PFM_CMD_NONE
,
4719 /* 20 */PFM_CMD_NONE
,
4720 /* 21 */PFM_CMD_NONE
,
4721 /* 22 */PFM_CMD_NONE
,
4722 /* 23 */PFM_CMD_NONE
,
4723 /* 24 */PFM_CMD_NONE
,
4724 /* 25 */PFM_CMD_NONE
,
4725 /* 26 */PFM_CMD_NONE
,
4726 /* 27 */PFM_CMD_NONE
,
4727 /* 28 */PFM_CMD_NONE
,
4728 /* 29 */PFM_CMD_NONE
,
4729 /* 30 */PFM_CMD_NONE
,
4730 /* 31 */PFM_CMD_NONE
,
4731 /* 32 */PFM_CMD(pfm_write_ibrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
),
4732 /* 33 */PFM_CMD(pfm_write_dbrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
)
4734 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4737 pfm_check_task_state(pfm_context_t
*ctx
, int cmd
, unsigned long flags
)
4739 struct task_struct
*task
;
4740 int state
, old_state
;
4743 state
= ctx
->ctx_state
;
4744 task
= ctx
->ctx_task
;
4747 DPRINT(("context %d no task, state=%d\n", ctx
->ctx_fd
, state
));
4751 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4755 task
->state
, PFM_CMD_STOPPED(cmd
)));
4758 * self-monitoring always ok.
4760 * for system-wide the caller can either be the creator of the
4761 * context (to one to which the context is attached to) OR
4762 * a task running on the same CPU as the session.
4764 if (task
== current
|| ctx
->ctx_fl_system
) return 0;
4767 * we are monitoring another thread
4770 case PFM_CTX_UNLOADED
:
4772 * if context is UNLOADED we are safe to go
4775 case PFM_CTX_ZOMBIE
:
4777 * no command can operate on a zombie context
4779 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd
));
4781 case PFM_CTX_MASKED
:
4783 * PMU state has been saved to software even though
4784 * the thread may still be running.
4786 if (cmd
!= PFM_UNLOAD_CONTEXT
) return 0;
4790 * context is LOADED or MASKED. Some commands may need to have
4793 * We could lift this restriction for UP but it would mean that
4794 * the user has no guarantee the task would not run between
4795 * two successive calls to perfmonctl(). That's probably OK.
4796 * If this user wants to ensure the task does not run, then
4797 * the task must be stopped.
4799 if (PFM_CMD_STOPPED(cmd
)) {
4800 if ((task
->state
!= TASK_STOPPED
) && (task
->state
!= TASK_TRACED
)) {
4801 DPRINT(("[%d] task not in stopped state\n", task
->pid
));
4805 * task is now stopped, wait for ctxsw out
4807 * This is an interesting point in the code.
4808 * We need to unprotect the context because
4809 * the pfm_save_regs() routines needs to grab
4810 * the same lock. There are danger in doing
4811 * this because it leaves a window open for
4812 * another task to get access to the context
4813 * and possibly change its state. The one thing
4814 * that is not possible is for the context to disappear
4815 * because we are protected by the VFS layer, i.e.,
4816 * get_fd()/put_fd().
4820 UNPROTECT_CTX(ctx
, flags
);
4822 wait_task_inactive(task
);
4824 PROTECT_CTX(ctx
, flags
);
4827 * we must recheck to verify if state has changed
4829 if (ctx
->ctx_state
!= old_state
) {
4830 DPRINT(("old_state=%d new_state=%d\n", old_state
, ctx
->ctx_state
));
4838 * system-call entry point (must return long)
4841 sys_perfmonctl (int fd
, int cmd
, void __user
*arg
, int count
)
4843 struct file
*file
= NULL
;
4844 pfm_context_t
*ctx
= NULL
;
4845 unsigned long flags
= 0UL;
4846 void *args_k
= NULL
;
4847 long ret
; /* will expand int return types */
4848 size_t base_sz
, sz
, xtra_sz
= 0;
4849 int narg
, completed_args
= 0, call_made
= 0, cmd_flags
;
4850 int (*func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
4851 int (*getsize
)(void *arg
, size_t *sz
);
4852 #define PFM_MAX_ARGSIZE 4096
4855 * reject any call if perfmon was disabled at initialization
4857 if (unlikely(pmu_conf
== NULL
)) return -ENOSYS
;
4859 if (unlikely(cmd
< 0 || cmd
>= PFM_CMD_COUNT
)) {
4860 DPRINT(("invalid cmd=%d\n", cmd
));
4864 func
= pfm_cmd_tab
[cmd
].cmd_func
;
4865 narg
= pfm_cmd_tab
[cmd
].cmd_narg
;
4866 base_sz
= pfm_cmd_tab
[cmd
].cmd_argsize
;
4867 getsize
= pfm_cmd_tab
[cmd
].cmd_getsize
;
4868 cmd_flags
= pfm_cmd_tab
[cmd
].cmd_flags
;
4870 if (unlikely(func
== NULL
)) {
4871 DPRINT(("invalid cmd=%d\n", cmd
));
4875 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4883 * check if number of arguments matches what the command expects
4885 if (unlikely((narg
== PFM_CMD_ARG_MANY
&& count
<= 0) || (narg
> 0 && narg
!= count
)))
4889 sz
= xtra_sz
+ base_sz
*count
;
4891 * limit abuse to min page size
4893 if (unlikely(sz
> PFM_MAX_ARGSIZE
)) {
4894 printk(KERN_ERR
"perfmon: [%d] argument too big %lu\n", current
->pid
, sz
);
4899 * allocate default-sized argument buffer
4901 if (likely(count
&& args_k
== NULL
)) {
4902 args_k
= kmalloc(PFM_MAX_ARGSIZE
, GFP_KERNEL
);
4903 if (args_k
== NULL
) return -ENOMEM
;
4911 * assume sz = 0 for command without parameters
4913 if (sz
&& copy_from_user(args_k
, arg
, sz
)) {
4914 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz
, arg
));
4919 * check if command supports extra parameters
4921 if (completed_args
== 0 && getsize
) {
4923 * get extra parameters size (based on main argument)
4925 ret
= (*getsize
)(args_k
, &xtra_sz
);
4926 if (ret
) goto error_args
;
4930 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz
, xtra_sz
));
4932 /* retry if necessary */
4933 if (likely(xtra_sz
)) goto restart_args
;
4936 if (unlikely((cmd_flags
& PFM_CMD_FD
) == 0)) goto skip_fd
;
4941 if (unlikely(file
== NULL
)) {
4942 DPRINT(("invalid fd %d\n", fd
));
4945 if (unlikely(PFM_IS_FILE(file
) == 0)) {
4946 DPRINT(("fd %d not related to perfmon\n", fd
));
4950 ctx
= (pfm_context_t
*)file
->private_data
;
4951 if (unlikely(ctx
== NULL
)) {
4952 DPRINT(("no context for fd %d\n", fd
));
4955 prefetch(&ctx
->ctx_state
);
4957 PROTECT_CTX(ctx
, flags
);
4960 * check task is stopped
4962 ret
= pfm_check_task_state(ctx
, cmd
, flags
);
4963 if (unlikely(ret
)) goto abort_locked
;
4966 ret
= (*func
)(ctx
, args_k
, count
, task_pt_regs(current
));
4972 DPRINT(("context unlocked\n"));
4973 UNPROTECT_CTX(ctx
, flags
);
4976 /* copy argument back to user, if needed */
4977 if (call_made
&& PFM_CMD_RW_ARG(cmd
) && copy_to_user(arg
, args_k
, base_sz
*count
)) ret
= -EFAULT
;
4985 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd
), ret
));
4991 pfm_resume_after_ovfl(pfm_context_t
*ctx
, unsigned long ovfl_regs
, struct pt_regs
*regs
)
4993 pfm_buffer_fmt_t
*fmt
= ctx
->ctx_buf_fmt
;
4994 pfm_ovfl_ctrl_t rst_ctrl
;
4998 state
= ctx
->ctx_state
;
5000 * Unlock sampling buffer and reset index atomically
5001 * XXX: not really needed when blocking
5003 if (CTX_HAS_SMPL(ctx
)) {
5005 rst_ctrl
.bits
.mask_monitoring
= 0;
5006 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
5008 if (state
== PFM_CTX_LOADED
)
5009 ret
= pfm_buf_fmt_restart_active(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
5011 ret
= pfm_buf_fmt_restart(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
5013 rst_ctrl
.bits
.mask_monitoring
= 0;
5014 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
5018 if (rst_ctrl
.bits
.reset_ovfl_pmds
) {
5019 pfm_reset_regs(ctx
, &ovfl_regs
, PFM_PMD_LONG_RESET
);
5021 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
5022 DPRINT(("resuming monitoring\n"));
5023 if (ctx
->ctx_state
== PFM_CTX_MASKED
) pfm_restore_monitoring(current
);
5025 DPRINT(("stopping monitoring\n"));
5026 //pfm_stop_monitoring(current, regs);
5028 ctx
->ctx_state
= PFM_CTX_LOADED
;
5033 * context MUST BE LOCKED when calling
5034 * can only be called for current
5037 pfm_context_force_terminate(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5041 DPRINT(("entering for [%d]\n", current
->pid
));
5043 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
5045 printk(KERN_ERR
"pfm_context_force_terminate: [%d] unloaded failed with %d\n", current
->pid
, ret
);
5049 * and wakeup controlling task, indicating we are now disconnected
5051 wake_up_interruptible(&ctx
->ctx_zombieq
);
5054 * given that context is still locked, the controlling
5055 * task will only get access when we return from
5056 * pfm_handle_work().
5060 static int pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
);
5062 * pfm_handle_work() can be called with interrupts enabled
5063 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5064 * call may sleep, therefore we must re-enable interrupts
5065 * to avoid deadlocks. It is safe to do so because this function
5066 * is called ONLY when returning to user level (PUStk=1), in which case
5067 * there is no risk of kernel stack overflow due to deep
5068 * interrupt nesting.
5071 pfm_handle_work(void)
5074 struct pt_regs
*regs
;
5075 unsigned long flags
, dummy_flags
;
5076 unsigned long ovfl_regs
;
5077 unsigned int reason
;
5080 ctx
= PFM_GET_CTX(current
);
5082 printk(KERN_ERR
"perfmon: [%d] has no PFM context\n", current
->pid
);
5086 PROTECT_CTX(ctx
, flags
);
5088 PFM_SET_WORK_PENDING(current
, 0);
5090 pfm_clear_task_notify();
5092 regs
= task_pt_regs(current
);
5095 * extract reason for being here and clear
5097 reason
= ctx
->ctx_fl_trap_reason
;
5098 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
5099 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5101 DPRINT(("reason=%d state=%d\n", reason
, ctx
->ctx_state
));
5104 * must be done before we check for simple-reset mode
5106 if (ctx
->ctx_fl_going_zombie
|| ctx
->ctx_state
== PFM_CTX_ZOMBIE
) goto do_zombie
;
5109 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5110 if (reason
== PFM_TRAP_REASON_RESET
) goto skip_blocking
;
5113 * restore interrupt mask to what it was on entry.
5114 * Could be enabled/diasbled.
5116 UNPROTECT_CTX(ctx
, flags
);
5119 * force interrupt enable because of down_interruptible()
5123 DPRINT(("before block sleeping\n"));
5126 * may go through without blocking on SMP systems
5127 * if restart has been received already by the time we call down()
5129 ret
= wait_for_completion_interruptible(&ctx
->ctx_restart_done
);
5131 DPRINT(("after block sleeping ret=%d\n", ret
));
5134 * lock context and mask interrupts again
5135 * We save flags into a dummy because we may have
5136 * altered interrupts mask compared to entry in this
5139 PROTECT_CTX(ctx
, dummy_flags
);
5142 * we need to read the ovfl_regs only after wake-up
5143 * because we may have had pfm_write_pmds() in between
5144 * and that can changed PMD values and therefore
5145 * ovfl_regs is reset for these new PMD values.
5147 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5149 if (ctx
->ctx_fl_going_zombie
) {
5151 DPRINT(("context is zombie, bailing out\n"));
5152 pfm_context_force_terminate(ctx
, regs
);
5156 * in case of interruption of down() we don't restart anything
5158 if (ret
< 0) goto nothing_to_do
;
5161 pfm_resume_after_ovfl(ctx
, ovfl_regs
, regs
);
5162 ctx
->ctx_ovfl_regs
[0] = 0UL;
5166 * restore flags as they were upon entry
5168 UNPROTECT_CTX(ctx
, flags
);
5172 pfm_notify_user(pfm_context_t
*ctx
, pfm_msg_t
*msg
)
5174 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5175 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5179 DPRINT(("waking up somebody\n"));
5181 if (msg
) wake_up_interruptible(&ctx
->ctx_msgq_wait
);
5184 * safe, we are not in intr handler, nor in ctxsw when
5187 kill_fasync (&ctx
->ctx_async_queue
, SIGIO
, POLL_IN
);
5193 pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
)
5195 pfm_msg_t
*msg
= NULL
;
5197 if (ctx
->ctx_fl_no_msg
== 0) {
5198 msg
= pfm_get_new_msg(ctx
);
5200 printk(KERN_ERR
"perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5204 msg
->pfm_ovfl_msg
.msg_type
= PFM_MSG_OVFL
;
5205 msg
->pfm_ovfl_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5206 msg
->pfm_ovfl_msg
.msg_active_set
= 0;
5207 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[0] = ovfl_pmds
;
5208 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[1] = 0UL;
5209 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[2] = 0UL;
5210 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[3] = 0UL;
5211 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5214 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5220 return pfm_notify_user(ctx
, msg
);
5224 pfm_end_notify_user(pfm_context_t
*ctx
)
5228 msg
= pfm_get_new_msg(ctx
);
5230 printk(KERN_ERR
"perfmon: pfm_end_notify_user no more notification msgs\n");
5234 memset(msg
, 0, sizeof(*msg
));
5236 msg
->pfm_end_msg
.msg_type
= PFM_MSG_END
;
5237 msg
->pfm_end_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5238 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5240 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5245 return pfm_notify_user(ctx
, msg
);
5249 * main overflow processing routine.
5250 * it can be called from the interrupt path or explicitly during the context switch code
5253 pfm_overflow_handler(struct task_struct
*task
, pfm_context_t
*ctx
, u64 pmc0
, struct pt_regs
*regs
)
5255 pfm_ovfl_arg_t
*ovfl_arg
;
5257 unsigned long old_val
, ovfl_val
, new_val
;
5258 unsigned long ovfl_notify
= 0UL, ovfl_pmds
= 0UL, smpl_pmds
= 0UL, reset_pmds
;
5259 unsigned long tstamp
;
5260 pfm_ovfl_ctrl_t ovfl_ctrl
;
5261 unsigned int i
, has_smpl
;
5262 int must_notify
= 0;
5264 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) goto stop_monitoring
;
5267 * sanity test. Should never happen
5269 if (unlikely((pmc0
& 0x1) == 0)) goto sanity_check
;
5271 tstamp
= ia64_get_itc();
5272 mask
= pmc0
>> PMU_FIRST_COUNTER
;
5273 ovfl_val
= pmu_conf
->ovfl_val
;
5274 has_smpl
= CTX_HAS_SMPL(ctx
);
5276 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5277 "used_pmds=0x%lx\n",
5279 task
? task
->pid
: -1,
5280 (regs
? regs
->cr_iip
: 0),
5281 CTX_OVFL_NOBLOCK(ctx
) ? "nonblocking" : "blocking",
5282 ctx
->ctx_used_pmds
[0]));
5286 * first we update the virtual counters
5287 * assume there was a prior ia64_srlz_d() issued
5289 for (i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
5291 /* skip pmd which did not overflow */
5292 if ((mask
& 0x1) == 0) continue;
5295 * Note that the pmd is not necessarily 0 at this point as qualified events
5296 * may have happened before the PMU was frozen. The residual count is not
5297 * taken into consideration here but will be with any read of the pmd via
5300 old_val
= new_val
= ctx
->ctx_pmds
[i
].val
;
5301 new_val
+= 1 + ovfl_val
;
5302 ctx
->ctx_pmds
[i
].val
= new_val
;
5305 * check for overflow condition
5307 if (likely(old_val
> new_val
)) {
5308 ovfl_pmds
|= 1UL << i
;
5309 if (PMC_OVFL_NOTIFY(ctx
, i
)) ovfl_notify
|= 1UL << i
;
5312 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5316 ia64_get_pmd(i
) & ovfl_val
,
5322 * there was no 64-bit overflow, nothing else to do
5324 if (ovfl_pmds
== 0UL) return;
5327 * reset all control bits
5333 * if a sampling format module exists, then we "cache" the overflow by
5334 * calling the module's handler() routine.
5337 unsigned long start_cycles
, end_cycles
;
5338 unsigned long pmd_mask
;
5340 int this_cpu
= smp_processor_id();
5342 pmd_mask
= ovfl_pmds
>> PMU_FIRST_COUNTER
;
5343 ovfl_arg
= &ctx
->ctx_ovfl_arg
;
5345 prefetch(ctx
->ctx_smpl_hdr
);
5347 for(i
=PMU_FIRST_COUNTER
; pmd_mask
&& ret
== 0; i
++, pmd_mask
>>=1) {
5351 if ((pmd_mask
& 0x1) == 0) continue;
5353 ovfl_arg
->ovfl_pmd
= (unsigned char )i
;
5354 ovfl_arg
->ovfl_notify
= ovfl_notify
& mask
? 1 : 0;
5355 ovfl_arg
->active_set
= 0;
5356 ovfl_arg
->ovfl_ctrl
.val
= 0; /* module must fill in all fields */
5357 ovfl_arg
->smpl_pmds
[0] = smpl_pmds
= ctx
->ctx_pmds
[i
].smpl_pmds
[0];
5359 ovfl_arg
->pmd_value
= ctx
->ctx_pmds
[i
].val
;
5360 ovfl_arg
->pmd_last_reset
= ctx
->ctx_pmds
[i
].lval
;
5361 ovfl_arg
->pmd_eventid
= ctx
->ctx_pmds
[i
].eventid
;
5364 * copy values of pmds of interest. Sampling format may copy them
5365 * into sampling buffer.
5368 for(j
=0, k
=0; smpl_pmds
; j
++, smpl_pmds
>>=1) {
5369 if ((smpl_pmds
& 0x1) == 0) continue;
5370 ovfl_arg
->smpl_pmds_values
[k
++] = PMD_IS_COUNTING(j
) ? pfm_read_soft_counter(ctx
, j
) : ia64_get_pmd(j
);
5371 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k
-1, j
, ovfl_arg
->smpl_pmds_values
[k
-1]));
5375 pfm_stats
[this_cpu
].pfm_smpl_handler_calls
++;
5377 start_cycles
= ia64_get_itc();
5380 * call custom buffer format record (handler) routine
5382 ret
= (*ctx
->ctx_buf_fmt
->fmt_handler
)(task
, ctx
->ctx_smpl_hdr
, ovfl_arg
, regs
, tstamp
);
5384 end_cycles
= ia64_get_itc();
5387 * For those controls, we take the union because they have
5388 * an all or nothing behavior.
5390 ovfl_ctrl
.bits
.notify_user
|= ovfl_arg
->ovfl_ctrl
.bits
.notify_user
;
5391 ovfl_ctrl
.bits
.block_task
|= ovfl_arg
->ovfl_ctrl
.bits
.block_task
;
5392 ovfl_ctrl
.bits
.mask_monitoring
|= ovfl_arg
->ovfl_ctrl
.bits
.mask_monitoring
;
5394 * build the bitmask of pmds to reset now
5396 if (ovfl_arg
->ovfl_ctrl
.bits
.reset_ovfl_pmds
) reset_pmds
|= mask
;
5398 pfm_stats
[this_cpu
].pfm_smpl_handler_cycles
+= end_cycles
- start_cycles
;
5401 * when the module cannot handle the rest of the overflows, we abort right here
5403 if (ret
&& pmd_mask
) {
5404 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5405 pmd_mask
<<PMU_FIRST_COUNTER
));
5408 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5410 ovfl_pmds
&= ~reset_pmds
;
5413 * when no sampling module is used, then the default
5414 * is to notify on overflow if requested by user
5416 ovfl_ctrl
.bits
.notify_user
= ovfl_notify
? 1 : 0;
5417 ovfl_ctrl
.bits
.block_task
= ovfl_notify
? 1 : 0;
5418 ovfl_ctrl
.bits
.mask_monitoring
= ovfl_notify
? 1 : 0; /* XXX: change for saturation */
5419 ovfl_ctrl
.bits
.reset_ovfl_pmds
= ovfl_notify
? 0 : 1;
5421 * if needed, we reset all overflowed pmds
5423 if (ovfl_notify
== 0) reset_pmds
= ovfl_pmds
;
5426 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds
, reset_pmds
));
5429 * reset the requested PMD registers using the short reset values
5432 unsigned long bm
= reset_pmds
;
5433 pfm_reset_regs(ctx
, &bm
, PFM_PMD_SHORT_RESET
);
5436 if (ovfl_notify
&& ovfl_ctrl
.bits
.notify_user
) {
5438 * keep track of what to reset when unblocking
5440 ctx
->ctx_ovfl_regs
[0] = ovfl_pmds
;
5443 * check for blocking context
5445 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && ovfl_ctrl
.bits
.block_task
) {
5447 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_BLOCK
;
5450 * set the perfmon specific checking pending work for the task
5452 PFM_SET_WORK_PENDING(task
, 1);
5455 * when coming from ctxsw, current still points to the
5456 * previous task, therefore we must work with task and not current.
5458 pfm_set_task_notify(task
);
5461 * defer until state is changed (shorten spin window). the context is locked
5462 * anyway, so the signal receiver would come spin for nothing.
5467 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5468 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid
: -1,
5469 PFM_GET_WORK_PENDING(task
),
5470 ctx
->ctx_fl_trap_reason
,
5473 ovfl_ctrl
.bits
.mask_monitoring
? 1 : 0));
5475 * in case monitoring must be stopped, we toggle the psr bits
5477 if (ovfl_ctrl
.bits
.mask_monitoring
) {
5478 pfm_mask_monitoring(task
);
5479 ctx
->ctx_state
= PFM_CTX_MASKED
;
5480 ctx
->ctx_fl_can_restart
= 1;
5484 * send notification now
5486 if (must_notify
) pfm_ovfl_notify_user(ctx
, ovfl_notify
);
5491 printk(KERN_ERR
"perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5493 task
? task
->pid
: -1,
5499 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5500 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5501 * come here as zombie only if the task is the current task. In which case, we
5502 * can access the PMU hardware directly.
5504 * Note that zombies do have PM_VALID set. So here we do the minimal.
5506 * In case the context was zombified it could not be reclaimed at the time
5507 * the monitoring program exited. At this point, the PMU reservation has been
5508 * returned, the sampiing buffer has been freed. We must convert this call
5509 * into a spurious interrupt. However, we must also avoid infinite overflows
5510 * by stopping monitoring for this task. We can only come here for a per-task
5511 * context. All we need to do is to stop monitoring using the psr bits which
5512 * are always task private. By re-enabling secure montioring, we ensure that
5513 * the monitored task will not be able to re-activate monitoring.
5514 * The task will eventually be context switched out, at which point the context
5515 * will be reclaimed (that includes releasing ownership of the PMU).
5517 * So there might be a window of time where the number of per-task session is zero
5518 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5519 * context. This is safe because if a per-task session comes in, it will push this one
5520 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5521 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5522 * also push our zombie context out.
5524 * Overall pretty hairy stuff....
5526 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task
? task
->pid
: -1));
5528 ia64_psr(regs
)->up
= 0;
5529 ia64_psr(regs
)->sp
= 1;
5534 pfm_do_interrupt_handler(int irq
, void *arg
, struct pt_regs
*regs
)
5536 struct task_struct
*task
;
5538 unsigned long flags
;
5540 int this_cpu
= smp_processor_id();
5543 pfm_stats
[this_cpu
].pfm_ovfl_intr_count
++;
5546 * srlz.d done before arriving here
5548 pmc0
= ia64_get_pmc(0);
5550 task
= GET_PMU_OWNER();
5551 ctx
= GET_PMU_CTX();
5554 * if we have some pending bits set
5555 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5557 if (PMC0_HAS_OVFL(pmc0
) && task
) {
5559 * we assume that pmc0.fr is always set here
5563 if (!ctx
) goto report_spurious1
;
5565 if (ctx
->ctx_fl_system
== 0 && (task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)
5566 goto report_spurious2
;
5568 PROTECT_CTX_NOPRINT(ctx
, flags
);
5570 pfm_overflow_handler(task
, ctx
, pmc0
, regs
);
5572 UNPROTECT_CTX_NOPRINT(ctx
, flags
);
5575 pfm_stats
[this_cpu
].pfm_spurious_ovfl_intr_count
++;
5579 * keep it unfrozen at all times
5586 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5587 this_cpu
, task
->pid
);
5591 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5599 pfm_interrupt_handler(int irq
, void *arg
)
5601 unsigned long start_cycles
, total_cycles
;
5602 unsigned long min
, max
;
5605 struct pt_regs
*regs
= get_irq_regs();
5607 this_cpu
= get_cpu();
5608 if (likely(!pfm_alt_intr_handler
)) {
5609 min
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
;
5610 max
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
;
5612 start_cycles
= ia64_get_itc();
5614 ret
= pfm_do_interrupt_handler(irq
, arg
, regs
);
5616 total_cycles
= ia64_get_itc();
5619 * don't measure spurious interrupts
5621 if (likely(ret
== 0)) {
5622 total_cycles
-= start_cycles
;
5624 if (total_cycles
< min
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
= total_cycles
;
5625 if (total_cycles
> max
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
= total_cycles
;
5627 pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles
+= total_cycles
;
5631 (*pfm_alt_intr_handler
->handler
)(irq
, arg
, regs
);
5634 put_cpu_no_resched();
5639 * /proc/perfmon interface, for debug only
5642 #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5645 pfm_proc_start(struct seq_file
*m
, loff_t
*pos
)
5648 return PFM_PROC_SHOW_HEADER
;
5651 while (*pos
<= NR_CPUS
) {
5652 if (cpu_online(*pos
- 1)) {
5653 return (void *)*pos
;
5661 pfm_proc_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
5664 return pfm_proc_start(m
, pos
);
5668 pfm_proc_stop(struct seq_file
*m
, void *v
)
5673 pfm_proc_show_header(struct seq_file
*m
)
5675 struct list_head
* pos
;
5676 pfm_buffer_fmt_t
* entry
;
5677 unsigned long flags
;
5680 "perfmon version : %u.%u\n"
5683 "expert mode : %s\n"
5684 "ovfl_mask : 0x%lx\n"
5685 "PMU flags : 0x%x\n",
5686 PFM_VERSION_MAJ
, PFM_VERSION_MIN
,
5688 pfm_sysctl
.fastctxsw
> 0 ? "Yes": "No",
5689 pfm_sysctl
.expert_mode
> 0 ? "Yes": "No",
5696 "proc_sessions : %u\n"
5697 "sys_sessions : %u\n"
5698 "sys_use_dbregs : %u\n"
5699 "ptrace_use_dbregs : %u\n",
5700 pfm_sessions
.pfs_task_sessions
,
5701 pfm_sessions
.pfs_sys_sessions
,
5702 pfm_sessions
.pfs_sys_use_dbregs
,
5703 pfm_sessions
.pfs_ptrace_use_dbregs
);
5707 spin_lock(&pfm_buffer_fmt_lock
);
5709 list_for_each(pos
, &pfm_buffer_fmt_list
) {
5710 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
5711 seq_printf(m
, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5722 entry
->fmt_uuid
[10],
5723 entry
->fmt_uuid
[11],
5724 entry
->fmt_uuid
[12],
5725 entry
->fmt_uuid
[13],
5726 entry
->fmt_uuid
[14],
5727 entry
->fmt_uuid
[15],
5730 spin_unlock(&pfm_buffer_fmt_lock
);
5735 pfm_proc_show(struct seq_file
*m
, void *v
)
5741 if (v
== PFM_PROC_SHOW_HEADER
) {
5742 pfm_proc_show_header(m
);
5746 /* show info for CPU (v - 1) */
5750 "CPU%-2d overflow intrs : %lu\n"
5751 "CPU%-2d overflow cycles : %lu\n"
5752 "CPU%-2d overflow min : %lu\n"
5753 "CPU%-2d overflow max : %lu\n"
5754 "CPU%-2d smpl handler calls : %lu\n"
5755 "CPU%-2d smpl handler cycles : %lu\n"
5756 "CPU%-2d spurious intrs : %lu\n"
5757 "CPU%-2d replay intrs : %lu\n"
5758 "CPU%-2d syst_wide : %d\n"
5759 "CPU%-2d dcr_pp : %d\n"
5760 "CPU%-2d exclude idle : %d\n"
5761 "CPU%-2d owner : %d\n"
5762 "CPU%-2d context : %p\n"
5763 "CPU%-2d activations : %lu\n",
5764 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_count
,
5765 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles
,
5766 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_min
,
5767 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_max
,
5768 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_calls
,
5769 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_cycles
,
5770 cpu
, pfm_stats
[cpu
].pfm_spurious_ovfl_intr_count
,
5771 cpu
, pfm_stats
[cpu
].pfm_replay_ovfl_intr_count
,
5772 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_SYST_WIDE
? 1 : 0,
5773 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_DCR_PP
? 1 : 0,
5774 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_EXCL_IDLE
? 1 : 0,
5775 cpu
, pfm_get_cpu_data(pmu_owner
, cpu
) ? pfm_get_cpu_data(pmu_owner
, cpu
)->pid
: -1,
5776 cpu
, pfm_get_cpu_data(pmu_ctx
, cpu
),
5777 cpu
, pfm_get_cpu_data(pmu_activation_number
, cpu
));
5779 if (num_online_cpus() == 1 && pfm_sysctl
.debug
> 0) {
5781 psr
= pfm_get_psr();
5786 "CPU%-2d psr : 0x%lx\n"
5787 "CPU%-2d pmc0 : 0x%lx\n",
5789 cpu
, ia64_get_pmc(0));
5791 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
5792 if (PMC_IS_COUNTING(i
) == 0) continue;
5794 "CPU%-2d pmc%u : 0x%lx\n"
5795 "CPU%-2d pmd%u : 0x%lx\n",
5796 cpu
, i
, ia64_get_pmc(i
),
5797 cpu
, i
, ia64_get_pmd(i
));
5803 struct seq_operations pfm_seq_ops
= {
5804 .start
= pfm_proc_start
,
5805 .next
= pfm_proc_next
,
5806 .stop
= pfm_proc_stop
,
5807 .show
= pfm_proc_show
5811 pfm_proc_open(struct inode
*inode
, struct file
*file
)
5813 return seq_open(file
, &pfm_seq_ops
);
5818 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5819 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5820 * is active or inactive based on mode. We must rely on the value in
5821 * local_cpu_data->pfm_syst_info
5824 pfm_syst_wide_update_task(struct task_struct
*task
, unsigned long info
, int is_ctxswin
)
5826 struct pt_regs
*regs
;
5828 unsigned long dcr_pp
;
5830 dcr_pp
= info
& PFM_CPUINFO_DCR_PP
? 1 : 0;
5833 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5834 * on every CPU, so we can rely on the pid to identify the idle task.
5836 if ((info
& PFM_CPUINFO_EXCL_IDLE
) == 0 || task
->pid
) {
5837 regs
= task_pt_regs(task
);
5838 ia64_psr(regs
)->pp
= is_ctxswin
? dcr_pp
: 0;
5842 * if monitoring has started
5845 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
5847 * context switching in?
5850 /* mask monitoring for the idle task */
5851 ia64_setreg(_IA64_REG_CR_DCR
, dcr
& ~IA64_DCR_PP
);
5857 * context switching out
5858 * restore monitoring for next task
5860 * Due to inlining this odd if-then-else construction generates
5863 ia64_setreg(_IA64_REG_CR_DCR
, dcr
|IA64_DCR_PP
);
5872 pfm_force_cleanup(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5874 struct task_struct
*task
= ctx
->ctx_task
;
5876 ia64_psr(regs
)->up
= 0;
5877 ia64_psr(regs
)->sp
= 1;
5879 if (GET_PMU_OWNER() == task
) {
5880 DPRINT(("cleared ownership for [%d]\n", ctx
->ctx_task
->pid
));
5881 SET_PMU_OWNER(NULL
, NULL
);
5885 * disconnect the task from the context and vice-versa
5887 PFM_SET_WORK_PENDING(task
, 0);
5889 task
->thread
.pfm_context
= NULL
;
5890 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
5892 DPRINT(("force cleanup for [%d]\n", task
->pid
));
5897 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5900 pfm_save_regs(struct task_struct
*task
)
5903 unsigned long flags
;
5907 ctx
= PFM_GET_CTX(task
);
5908 if (ctx
== NULL
) return;
5911 * we always come here with interrupts ALREADY disabled by
5912 * the scheduler. So we simply need to protect against concurrent
5913 * access, not CPU concurrency.
5915 flags
= pfm_protect_ctx_ctxsw(ctx
);
5917 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5918 struct pt_regs
*regs
= task_pt_regs(task
);
5922 pfm_force_cleanup(ctx
, regs
);
5924 BUG_ON(ctx
->ctx_smpl_hdr
);
5926 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5928 pfm_context_free(ctx
);
5933 * save current PSR: needed because we modify it
5936 psr
= pfm_get_psr();
5938 BUG_ON(psr
& (IA64_PSR_I
));
5942 * This is the last instruction which may generate an overflow
5944 * We do not need to set psr.sp because, it is irrelevant in kernel.
5945 * It will be restored from ipsr when going back to user level
5950 * keep a copy of psr.up (for reload)
5952 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5955 * release ownership of this PMU.
5956 * PM interrupts are masked, so nothing
5959 SET_PMU_OWNER(NULL
, NULL
);
5962 * we systematically save the PMD as we have no
5963 * guarantee we will be schedule at that same
5966 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
5969 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5970 * we will need it on the restore path to check
5971 * for pending overflow.
5973 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
5976 * unfreeze PMU if had pending overflows
5978 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5981 * finally, allow context access.
5982 * interrupts will still be masked after this call.
5984 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5987 #else /* !CONFIG_SMP */
5989 pfm_save_regs(struct task_struct
*task
)
5994 ctx
= PFM_GET_CTX(task
);
5995 if (ctx
== NULL
) return;
5998 * save current PSR: needed because we modify it
6000 psr
= pfm_get_psr();
6002 BUG_ON(psr
& (IA64_PSR_I
));
6006 * This is the last instruction which may generate an overflow
6008 * We do not need to set psr.sp because, it is irrelevant in kernel.
6009 * It will be restored from ipsr when going back to user level
6014 * keep a copy of psr.up (for reload)
6016 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
6020 pfm_lazy_save_regs (struct task_struct
*task
)
6023 unsigned long flags
;
6025 { u64 psr
= pfm_get_psr();
6026 BUG_ON(psr
& IA64_PSR_UP
);
6029 ctx
= PFM_GET_CTX(task
);
6032 * we need to mask PMU overflow here to
6033 * make sure that we maintain pmc0 until
6034 * we save it. overflow interrupts are
6035 * treated as spurious if there is no
6038 * XXX: I don't think this is necessary
6040 PROTECT_CTX(ctx
,flags
);
6043 * release ownership of this PMU.
6044 * must be done before we save the registers.
6046 * after this call any PMU interrupt is treated
6049 SET_PMU_OWNER(NULL
, NULL
);
6052 * save all the pmds we use
6054 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
6057 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6058 * it is needed to check for pended overflow
6059 * on the restore path
6061 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
6064 * unfreeze PMU if had pending overflows
6066 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
6069 * now get can unmask PMU interrupts, they will
6070 * be treated as purely spurious and we will not
6071 * lose any information
6073 UNPROTECT_CTX(ctx
,flags
);
6075 #endif /* CONFIG_SMP */
6079 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6082 pfm_load_regs (struct task_struct
*task
)
6085 unsigned long pmc_mask
= 0UL, pmd_mask
= 0UL;
6086 unsigned long flags
;
6088 int need_irq_resend
;
6090 ctx
= PFM_GET_CTX(task
);
6091 if (unlikely(ctx
== NULL
)) return;
6093 BUG_ON(GET_PMU_OWNER());
6096 * possible on unload
6098 if (unlikely((task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)) return;
6101 * we always come here with interrupts ALREADY disabled by
6102 * the scheduler. So we simply need to protect against concurrent
6103 * access, not CPU concurrency.
6105 flags
= pfm_protect_ctx_ctxsw(ctx
);
6106 psr
= pfm_get_psr();
6108 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6110 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6111 BUG_ON(psr
& IA64_PSR_I
);
6113 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) {
6114 struct pt_regs
*regs
= task_pt_regs(task
);
6116 BUG_ON(ctx
->ctx_smpl_hdr
);
6118 pfm_force_cleanup(ctx
, regs
);
6120 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6123 * this one (kmalloc'ed) is fine with interrupts disabled
6125 pfm_context_free(ctx
);
6131 * we restore ALL the debug registers to avoid picking up
6134 if (ctx
->ctx_fl_using_dbreg
) {
6135 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6136 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6139 * retrieve saved psr.up
6141 psr_up
= ctx
->ctx_saved_psr_up
;
6144 * if we were the last user of the PMU on that CPU,
6145 * then nothing to do except restore psr
6147 if (GET_LAST_CPU(ctx
) == smp_processor_id() && ctx
->ctx_last_activation
== GET_ACTIVATION()) {
6150 * retrieve partial reload masks (due to user modifications)
6152 pmc_mask
= ctx
->ctx_reload_pmcs
[0];
6153 pmd_mask
= ctx
->ctx_reload_pmds
[0];
6157 * To avoid leaking information to the user level when psr.sp=0,
6158 * we must reload ALL implemented pmds (even the ones we don't use).
6159 * In the kernel we only allow PFM_READ_PMDS on registers which
6160 * we initialized or requested (sampling) so there is no risk there.
6162 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6165 * ALL accessible PMCs are systematically reloaded, unused registers
6166 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6167 * up stale configuration.
6169 * PMC0 is never in the mask. It is always restored separately.
6171 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6174 * when context is MASKED, we will restore PMC with plm=0
6175 * and PMD with stale information, but that's ok, nothing
6178 * XXX: optimize here
6180 if (pmd_mask
) pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6181 if (pmc_mask
) pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6184 * check for pending overflow at the time the state
6187 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6189 * reload pmc0 with the overflow information
6190 * On McKinley PMU, this will trigger a PMU interrupt
6192 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6194 ctx
->th_pmcs
[0] = 0UL;
6197 * will replay the PMU interrupt
6199 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6201 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6205 * we just did a reload, so we reset the partial reload fields
6207 ctx
->ctx_reload_pmcs
[0] = 0UL;
6208 ctx
->ctx_reload_pmds
[0] = 0UL;
6210 SET_LAST_CPU(ctx
, smp_processor_id());
6213 * dump activation value for this PMU
6217 * record current activation for this context
6219 SET_ACTIVATION(ctx
);
6222 * establish new ownership.
6224 SET_PMU_OWNER(task
, ctx
);
6227 * restore the psr.up bit. measurement
6229 * no PMU interrupt can happen at this point
6230 * because we still have interrupts disabled.
6232 if (likely(psr_up
)) pfm_set_psr_up();
6235 * allow concurrent access to context
6237 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6239 #else /* !CONFIG_SMP */
6241 * reload PMU state for UP kernels
6242 * in 2.5 we come here with interrupts disabled
6245 pfm_load_regs (struct task_struct
*task
)
6248 struct task_struct
*owner
;
6249 unsigned long pmd_mask
, pmc_mask
;
6251 int need_irq_resend
;
6253 owner
= GET_PMU_OWNER();
6254 ctx
= PFM_GET_CTX(task
);
6255 psr
= pfm_get_psr();
6257 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6258 BUG_ON(psr
& IA64_PSR_I
);
6261 * we restore ALL the debug registers to avoid picking up
6264 * This must be done even when the task is still the owner
6265 * as the registers may have been modified via ptrace()
6266 * (not perfmon) by the previous task.
6268 if (ctx
->ctx_fl_using_dbreg
) {
6269 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6270 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6274 * retrieved saved psr.up
6276 psr_up
= ctx
->ctx_saved_psr_up
;
6277 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6280 * short path, our state is still there, just
6281 * need to restore psr and we go
6283 * we do not touch either PMC nor PMD. the psr is not touched
6284 * by the overflow_handler. So we are safe w.r.t. to interrupt
6285 * concurrency even without interrupt masking.
6287 if (likely(owner
== task
)) {
6288 if (likely(psr_up
)) pfm_set_psr_up();
6293 * someone else is still using the PMU, first push it out and
6294 * then we'll be able to install our stuff !
6296 * Upon return, there will be no owner for the current PMU
6298 if (owner
) pfm_lazy_save_regs(owner
);
6301 * To avoid leaking information to the user level when psr.sp=0,
6302 * we must reload ALL implemented pmds (even the ones we don't use).
6303 * In the kernel we only allow PFM_READ_PMDS on registers which
6304 * we initialized or requested (sampling) so there is no risk there.
6306 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6309 * ALL accessible PMCs are systematically reloaded, unused registers
6310 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6311 * up stale configuration.
6313 * PMC0 is never in the mask. It is always restored separately
6315 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6317 pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6318 pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6321 * check for pending overflow at the time the state
6324 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6326 * reload pmc0 with the overflow information
6327 * On McKinley PMU, this will trigger a PMU interrupt
6329 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6332 ctx
->th_pmcs
[0] = 0UL;
6335 * will replay the PMU interrupt
6337 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6339 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6343 * establish new ownership.
6345 SET_PMU_OWNER(task
, ctx
);
6348 * restore the psr.up bit. measurement
6350 * no PMU interrupt can happen at this point
6351 * because we still have interrupts disabled.
6353 if (likely(psr_up
)) pfm_set_psr_up();
6355 #endif /* CONFIG_SMP */
6358 * this function assumes monitoring is stopped
6361 pfm_flush_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
6364 unsigned long mask2
, val
, pmd_val
, ovfl_val
;
6365 int i
, can_access_pmu
= 0;
6369 * is the caller the task being monitored (or which initiated the
6370 * session for system wide measurements)
6372 is_self
= ctx
->ctx_task
== task
? 1 : 0;
6375 * can access PMU is task is the owner of the PMU state on the current CPU
6376 * or if we are running on the CPU bound to the context in system-wide mode
6377 * (that is not necessarily the task the context is attached to in this mode).
6378 * In system-wide we always have can_access_pmu true because a task running on an
6379 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6381 can_access_pmu
= (GET_PMU_OWNER() == task
) || (ctx
->ctx_fl_system
&& ctx
->ctx_cpu
== smp_processor_id());
6382 if (can_access_pmu
) {
6384 * Mark the PMU as not owned
6385 * This will cause the interrupt handler to do nothing in case an overflow
6386 * interrupt was in-flight
6387 * This also guarantees that pmc0 will contain the final state
6388 * It virtually gives us full control on overflow processing from that point
6391 SET_PMU_OWNER(NULL
, NULL
);
6392 DPRINT(("releasing ownership\n"));
6395 * read current overflow status:
6397 * we are guaranteed to read the final stable state
6400 pmc0
= ia64_get_pmc(0); /* slow */
6403 * reset freeze bit, overflow status information destroyed
6407 pmc0
= ctx
->th_pmcs
[0];
6409 * clear whatever overflow status bits there were
6411 ctx
->th_pmcs
[0] = 0;
6413 ovfl_val
= pmu_conf
->ovfl_val
;
6415 * we save all the used pmds
6416 * we take care of overflows for counting PMDs
6418 * XXX: sampling situation is not taken into account here
6420 mask2
= ctx
->ctx_used_pmds
[0];
6422 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self
, ovfl_val
, mask2
));
6424 for (i
= 0; mask2
; i
++, mask2
>>=1) {
6426 /* skip non used pmds */
6427 if ((mask2
& 0x1) == 0) continue;
6430 * can access PMU always true in system wide mode
6432 val
= pmd_val
= can_access_pmu
? ia64_get_pmd(i
) : ctx
->th_pmds
[i
];
6434 if (PMD_IS_COUNTING(i
)) {
6435 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6438 ctx
->ctx_pmds
[i
].val
,
6442 * we rebuild the full 64 bit value of the counter
6444 val
= ctx
->ctx_pmds
[i
].val
+ (val
& ovfl_val
);
6447 * now everything is in ctx_pmds[] and we need
6448 * to clear the saved context from save_regs() such that
6449 * pfm_read_pmds() gets the correct value
6454 * take care of overflow inline
6456 if (pmc0
& (1UL << i
)) {
6457 val
+= 1 + ovfl_val
;
6458 DPRINT(("[%d] pmd[%d] overflowed\n", task
->pid
, i
));
6462 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task
->pid
, i
, val
, pmd_val
));
6464 if (is_self
) ctx
->th_pmds
[i
] = pmd_val
;
6466 ctx
->ctx_pmds
[i
].val
= val
;
6470 static struct irqaction perfmon_irqaction
= {
6471 .handler
= pfm_interrupt_handler
,
6472 .flags
= IRQF_DISABLED
,
6477 pfm_alt_save_pmu_state(void *data
)
6479 struct pt_regs
*regs
;
6481 regs
= task_pt_regs(current
);
6483 DPRINT(("called\n"));
6486 * should not be necessary but
6487 * let's take not risk
6491 ia64_psr(regs
)->pp
= 0;
6494 * This call is required
6495 * May cause a spurious interrupt on some processors
6503 pfm_alt_restore_pmu_state(void *data
)
6505 struct pt_regs
*regs
;
6507 regs
= task_pt_regs(current
);
6509 DPRINT(("called\n"));
6512 * put PMU back in state expected
6517 ia64_psr(regs
)->pp
= 0;
6520 * perfmon runs with PMU unfrozen at all times
6528 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6533 /* some sanity checks */
6534 if (hdl
== NULL
|| hdl
->handler
== NULL
) return -EINVAL
;
6536 /* do the easy test first */
6537 if (pfm_alt_intr_handler
) return -EBUSY
;
6539 /* one at a time in the install or remove, just fail the others */
6540 if (!spin_trylock(&pfm_alt_install_check
)) {
6544 /* reserve our session */
6545 for_each_online_cpu(reserve_cpu
) {
6546 ret
= pfm_reserve_session(NULL
, 1, reserve_cpu
);
6547 if (ret
) goto cleanup_reserve
;
6550 /* save the current system wide pmu states */
6551 ret
= on_each_cpu(pfm_alt_save_pmu_state
, NULL
, 0, 1);
6553 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6554 goto cleanup_reserve
;
6557 /* officially change to the alternate interrupt handler */
6558 pfm_alt_intr_handler
= hdl
;
6560 spin_unlock(&pfm_alt_install_check
);
6565 for_each_online_cpu(i
) {
6566 /* don't unreserve more than we reserved */
6567 if (i
>= reserve_cpu
) break;
6569 pfm_unreserve_session(NULL
, 1, i
);
6572 spin_unlock(&pfm_alt_install_check
);
6576 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt
);
6579 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6584 if (hdl
== NULL
) return -EINVAL
;
6586 /* cannot remove someone else's handler! */
6587 if (pfm_alt_intr_handler
!= hdl
) return -EINVAL
;
6589 /* one at a time in the install or remove, just fail the others */
6590 if (!spin_trylock(&pfm_alt_install_check
)) {
6594 pfm_alt_intr_handler
= NULL
;
6596 ret
= on_each_cpu(pfm_alt_restore_pmu_state
, NULL
, 0, 1);
6598 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6601 for_each_online_cpu(i
) {
6602 pfm_unreserve_session(NULL
, 1, i
);
6605 spin_unlock(&pfm_alt_install_check
);
6609 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt
);
6612 * perfmon initialization routine, called from the initcall() table
6614 static int init_pfm_fs(void);
6622 family
= local_cpu_data
->family
;
6627 if ((*p
)->probe() == 0) goto found
;
6628 } else if ((*p
)->pmu_family
== family
|| (*p
)->pmu_family
== 0xff) {
6639 static const struct file_operations pfm_proc_fops
= {
6640 .open
= pfm_proc_open
,
6642 .llseek
= seq_lseek
,
6643 .release
= seq_release
,
6649 unsigned int n
, n_counters
, i
;
6651 printk("perfmon: version %u.%u IRQ %u\n",
6654 IA64_PERFMON_VECTOR
);
6656 if (pfm_probe_pmu()) {
6657 printk(KERN_INFO
"perfmon: disabled, there is no support for processor family %d\n",
6658 local_cpu_data
->family
);
6663 * compute the number of implemented PMD/PMC from the
6664 * description tables
6667 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
6668 if (PMC_IS_IMPL(i
) == 0) continue;
6669 pmu_conf
->impl_pmcs
[i
>>6] |= 1UL << (i
&63);
6672 pmu_conf
->num_pmcs
= n
;
6674 n
= 0; n_counters
= 0;
6675 for (i
=0; PMD_IS_LAST(i
) == 0; i
++) {
6676 if (PMD_IS_IMPL(i
) == 0) continue;
6677 pmu_conf
->impl_pmds
[i
>>6] |= 1UL << (i
&63);
6679 if (PMD_IS_COUNTING(i
)) n_counters
++;
6681 pmu_conf
->num_pmds
= n
;
6682 pmu_conf
->num_counters
= n_counters
;
6685 * sanity checks on the number of debug registers
6687 if (pmu_conf
->use_rr_dbregs
) {
6688 if (pmu_conf
->num_ibrs
> IA64_NUM_DBG_REGS
) {
6689 printk(KERN_INFO
"perfmon: unsupported number of code debug registers (%u)\n", pmu_conf
->num_ibrs
);
6693 if (pmu_conf
->num_dbrs
> IA64_NUM_DBG_REGS
) {
6694 printk(KERN_INFO
"perfmon: unsupported number of data debug registers (%u)\n", pmu_conf
->num_ibrs
);
6700 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6704 pmu_conf
->num_counters
,
6705 ffz(pmu_conf
->ovfl_val
));
6708 if (pmu_conf
->num_pmds
>= PFM_NUM_PMD_REGS
|| pmu_conf
->num_pmcs
>= PFM_NUM_PMC_REGS
) {
6709 printk(KERN_ERR
"perfmon: not enough pmc/pmd, perfmon disabled\n");
6715 * create /proc/perfmon (mostly for debugging purposes)
6717 perfmon_dir
= create_proc_entry("perfmon", S_IRUGO
, NULL
);
6718 if (perfmon_dir
== NULL
) {
6719 printk(KERN_ERR
"perfmon: cannot create /proc entry, perfmon disabled\n");
6724 * install customized file operations for /proc/perfmon entry
6726 perfmon_dir
->proc_fops
= &pfm_proc_fops
;
6729 * create /proc/sys/kernel/perfmon (for debugging purposes)
6731 pfm_sysctl_header
= register_sysctl_table(pfm_sysctl_root
);
6734 * initialize all our spinlocks
6736 spin_lock_init(&pfm_sessions
.pfs_lock
);
6737 spin_lock_init(&pfm_buffer_fmt_lock
);
6741 for(i
=0; i
< NR_CPUS
; i
++) pfm_stats
[i
].pfm_ovfl_intr_cycles_min
= ~0UL;
6746 __initcall(pfm_init
);
6749 * this function is called before pfm_init()
6752 pfm_init_percpu (void)
6754 static int first_time
=1;
6756 * make sure no measurement is active
6757 * (may inherit programmed PMCs from EFI).
6763 * we run with the PMU not frozen at all times
6768 register_percpu_irq(IA64_PERFMON_VECTOR
, &perfmon_irqaction
);
6772 ia64_setreg(_IA64_REG_CR_PMV
, IA64_PERFMON_VECTOR
);
6777 * used for debug purposes only
6780 dump_pmu_state(const char *from
)
6782 struct task_struct
*task
;
6783 struct pt_regs
*regs
;
6785 unsigned long psr
, dcr
, info
, flags
;
6788 local_irq_save(flags
);
6790 this_cpu
= smp_processor_id();
6791 regs
= task_pt_regs(current
);
6792 info
= PFM_CPUINFO_GET();
6793 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
6795 if (info
== 0 && ia64_psr(regs
)->pp
== 0 && (dcr
& IA64_DCR_PP
) == 0) {
6796 local_irq_restore(flags
);
6800 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6807 task
= GET_PMU_OWNER();
6808 ctx
= GET_PMU_CTX();
6810 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu
, task
? task
->pid
: -1, ctx
);
6812 psr
= pfm_get_psr();
6814 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6817 psr
& IA64_PSR_PP
? 1 : 0,
6818 psr
& IA64_PSR_UP
? 1 : 0,
6819 dcr
& IA64_DCR_PP
? 1 : 0,
6822 ia64_psr(regs
)->pp
);
6824 ia64_psr(regs
)->up
= 0;
6825 ia64_psr(regs
)->pp
= 0;
6827 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
6828 if (PMC_IS_IMPL(i
) == 0) continue;
6829 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmc(i
), i
, ctx
->th_pmcs
[i
]);
6832 for (i
=1; PMD_IS_LAST(i
) == 0; i
++) {
6833 if (PMD_IS_IMPL(i
) == 0) continue;
6834 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmd(i
), i
, ctx
->th_pmds
[i
]);
6838 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6841 ctx
->ctx_smpl_vaddr
,
6845 ctx
->ctx_saved_psr_up
);
6847 local_irq_restore(flags
);
6851 * called from process.c:copy_thread(). task is new child.
6854 pfm_inherit(struct task_struct
*task
, struct pt_regs
*regs
)
6856 struct thread_struct
*thread
;
6858 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task
->pid
));
6860 thread
= &task
->thread
;
6863 * cut links inherited from parent (current)
6865 thread
->pfm_context
= NULL
;
6867 PFM_SET_WORK_PENDING(task
, 0);
6870 * the psr bits are already set properly in copy_threads()
6873 #else /* !CONFIG_PERFMON */
6875 sys_perfmonctl (int fd
, int cmd
, void *arg
, int count
)
6879 #endif /* CONFIG_PERFMON */