dmaengine: driver for the iop32x, iop33x, and iop13xx raid engines
[pv_ops_mirror.git] / arch / ia64 / kernel / setup.c
blobeaa6a24bc0b6e61b284d38aef67fa2db6e31f1c2
1 /*
2 * Architecture-specific setup.
4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Stephane Eranian <eranian@hpl.hp.com>
7 * Copyright (C) 2000, 2004 Intel Corp
8 * Rohit Seth <rohit.seth@intel.com>
9 * Suresh Siddha <suresh.b.siddha@intel.com>
10 * Gordon Jin <gordon.jin@intel.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14 * 12/26/04 S.Siddha, G.Jin, R.Seth
15 * Add multi-threading and multi-core detection
16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
19 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
21 * 01/07/99 S.Eranian added the support for command line argument
22 * 06/24/99 W.Drummond added boot_cpu_data.
23 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
25 #include <linux/module.h>
26 #include <linux/init.h>
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/system.h>
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
67 #endif
69 #ifdef CONFIG_SMP
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
72 #endif
74 extern void ia64_setup_printk_clock(void);
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 unsigned long ia64_cycles_per_usec;
79 struct ia64_boot_param *ia64_boot_param;
80 struct screen_info screen_info;
81 unsigned long vga_console_iobase;
82 unsigned long vga_console_membase;
84 static struct resource data_resource = {
85 .name = "Kernel data",
86 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
89 static struct resource code_resource = {
90 .name = "Kernel code",
91 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
93 extern char _text[], _end[], _etext[];
95 unsigned long ia64_max_cacheline_size;
97 int dma_get_cache_alignment(void)
99 return ia64_max_cacheline_size;
101 EXPORT_SYMBOL(dma_get_cache_alignment);
103 unsigned long ia64_iobase; /* virtual address for I/O accesses */
104 EXPORT_SYMBOL(ia64_iobase);
105 struct io_space io_space[MAX_IO_SPACES];
106 EXPORT_SYMBOL(io_space);
107 unsigned int num_io_spaces;
110 * "flush_icache_range()" needs to know what processor dependent stride size to use
111 * when it makes i-cache(s) coherent with d-caches.
113 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
114 unsigned long ia64_i_cache_stride_shift = ~0;
117 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
118 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
119 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
120 * address of the second buffer must be aligned to (merge_mask+1) in order to be
121 * mergeable). By default, we assume there is no I/O MMU which can merge physically
122 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
123 * page-size of 2^64.
125 unsigned long ia64_max_iommu_merge_mask = ~0UL;
126 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
129 * We use a special marker for the end of memory and it uses the extra (+1) slot
131 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
132 int num_rsvd_regions __initdata;
136 * Filter incoming memory segments based on the primitive map created from the boot
137 * parameters. Segments contained in the map are removed from the memory ranges. A
138 * caller-specified function is called with the memory ranges that remain after filtering.
139 * This routine does not assume the incoming segments are sorted.
141 int __init
142 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
144 unsigned long range_start, range_end, prev_start;
145 void (*func)(unsigned long, unsigned long, int);
146 int i;
148 #if IGNORE_PFN0
149 if (start == PAGE_OFFSET) {
150 printk(KERN_WARNING "warning: skipping physical page 0\n");
151 start += PAGE_SIZE;
152 if (start >= end) return 0;
154 #endif
156 * lowest possible address(walker uses virtual)
158 prev_start = PAGE_OFFSET;
159 func = arg;
161 for (i = 0; i < num_rsvd_regions; ++i) {
162 range_start = max(start, prev_start);
163 range_end = min(end, rsvd_region[i].start);
165 if (range_start < range_end)
166 call_pernode_memory(__pa(range_start), range_end - range_start, func);
168 /* nothing more available in this segment */
169 if (range_end == end) return 0;
171 prev_start = rsvd_region[i].end;
173 /* end of memory marker allows full processing inside loop body */
174 return 0;
177 static void __init
178 sort_regions (struct rsvd_region *rsvd_region, int max)
180 int j;
182 /* simple bubble sorting */
183 while (max--) {
184 for (j = 0; j < max; ++j) {
185 if (rsvd_region[j].start > rsvd_region[j+1].start) {
186 struct rsvd_region tmp;
187 tmp = rsvd_region[j];
188 rsvd_region[j] = rsvd_region[j + 1];
189 rsvd_region[j + 1] = tmp;
196 * Request address space for all standard resources
198 static int __init register_memory(void)
200 code_resource.start = ia64_tpa(_text);
201 code_resource.end = ia64_tpa(_etext) - 1;
202 data_resource.start = ia64_tpa(_etext);
203 data_resource.end = ia64_tpa(_end) - 1;
204 efi_initialize_iomem_resources(&code_resource, &data_resource);
206 return 0;
209 __initcall(register_memory);
212 * reserve_memory - setup reserved memory areas
214 * Setup the reserved memory areas set aside for the boot parameters,
215 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
216 * see include/asm-ia64/meminit.h if you need to define more.
218 void __init
219 reserve_memory (void)
221 int n = 0;
224 * none of the entries in this table overlap
226 rsvd_region[n].start = (unsigned long) ia64_boot_param;
227 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
228 n++;
230 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
231 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
232 n++;
234 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
235 rsvd_region[n].end = (rsvd_region[n].start
236 + strlen(__va(ia64_boot_param->command_line)) + 1);
237 n++;
239 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
240 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
241 n++;
243 #ifdef CONFIG_BLK_DEV_INITRD
244 if (ia64_boot_param->initrd_start) {
245 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
246 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
247 n++;
249 #endif
251 #ifdef CONFIG_PROC_VMCORE
252 if (reserve_elfcorehdr(&rsvd_region[n].start,
253 &rsvd_region[n].end) == 0)
254 n++;
255 #endif
257 efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
258 n++;
260 #ifdef CONFIG_KEXEC
261 /* crashkernel=size@offset specifies the size to reserve for a crash
262 * kernel. If offset is 0, then it is determined automatically.
263 * By reserving this memory we guarantee that linux never set's it
264 * up as a DMA target.Useful for holding code to do something
265 * appropriate after a kernel panic.
268 char *from = strstr(boot_command_line, "crashkernel=");
269 unsigned long base, size;
270 if (from) {
271 size = memparse(from + 12, &from);
272 if (*from == '@')
273 base = memparse(from+1, &from);
274 else
275 base = 0;
276 if (size) {
277 if (!base) {
278 sort_regions(rsvd_region, n);
279 base = kdump_find_rsvd_region(size,
280 rsvd_region, n);
282 if (base != ~0UL) {
283 rsvd_region[n].start =
284 (unsigned long)__va(base);
285 rsvd_region[n].end =
286 (unsigned long)__va(base + size);
287 n++;
288 crashk_res.start = base;
289 crashk_res.end = base + size - 1;
293 efi_memmap_res.start = ia64_boot_param->efi_memmap;
294 efi_memmap_res.end = efi_memmap_res.start +
295 ia64_boot_param->efi_memmap_size;
296 boot_param_res.start = __pa(ia64_boot_param);
297 boot_param_res.end = boot_param_res.start +
298 sizeof(*ia64_boot_param);
300 #endif
301 /* end of memory marker */
302 rsvd_region[n].start = ~0UL;
303 rsvd_region[n].end = ~0UL;
304 n++;
306 num_rsvd_regions = n;
307 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
309 sort_regions(rsvd_region, num_rsvd_regions);
314 * find_initrd - get initrd parameters from the boot parameter structure
316 * Grab the initrd start and end from the boot parameter struct given us by
317 * the boot loader.
319 void __init
320 find_initrd (void)
322 #ifdef CONFIG_BLK_DEV_INITRD
323 if (ia64_boot_param->initrd_start) {
324 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
325 initrd_end = initrd_start+ia64_boot_param->initrd_size;
327 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
328 initrd_start, ia64_boot_param->initrd_size);
330 #endif
333 static void __init
334 io_port_init (void)
336 unsigned long phys_iobase;
339 * Set `iobase' based on the EFI memory map or, failing that, the
340 * value firmware left in ar.k0.
342 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
343 * the port's virtual address, so ia32_load_state() loads it with a
344 * user virtual address. But in ia64 mode, glibc uses the
345 * *physical* address in ar.k0 to mmap the appropriate area from
346 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
347 * cases, user-mode can only use the legacy 0-64K I/O port space.
349 * ar.k0 is not involved in kernel I/O port accesses, which can use
350 * any of the I/O port spaces and are done via MMIO using the
351 * virtual mmio_base from the appropriate io_space[].
353 phys_iobase = efi_get_iobase();
354 if (!phys_iobase) {
355 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
356 printk(KERN_INFO "No I/O port range found in EFI memory map, "
357 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
359 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
360 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
362 /* setup legacy IO port space */
363 io_space[0].mmio_base = ia64_iobase;
364 io_space[0].sparse = 1;
365 num_io_spaces = 1;
369 * early_console_setup - setup debugging console
371 * Consoles started here require little enough setup that we can start using
372 * them very early in the boot process, either right after the machine
373 * vector initialization, or even before if the drivers can detect their hw.
375 * Returns non-zero if a console couldn't be setup.
377 static inline int __init
378 early_console_setup (char *cmdline)
380 int earlycons = 0;
382 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
384 extern int sn_serial_console_early_setup(void);
385 if (!sn_serial_console_early_setup())
386 earlycons++;
388 #endif
389 #ifdef CONFIG_EFI_PCDP
390 if (!efi_setup_pcdp_console(cmdline))
391 earlycons++;
392 #endif
393 #ifdef CONFIG_SERIAL_8250_CONSOLE
394 if (!early_serial_console_init(cmdline))
395 earlycons++;
396 #endif
398 return (earlycons) ? 0 : -1;
401 static inline void
402 mark_bsp_online (void)
404 #ifdef CONFIG_SMP
405 /* If we register an early console, allow CPU 0 to printk */
406 cpu_set(smp_processor_id(), cpu_online_map);
407 #endif
410 #ifdef CONFIG_SMP
411 static void __init
412 check_for_logical_procs (void)
414 pal_logical_to_physical_t info;
415 s64 status;
417 status = ia64_pal_logical_to_phys(0, &info);
418 if (status == -1) {
419 printk(KERN_INFO "No logical to physical processor mapping "
420 "available\n");
421 return;
423 if (status) {
424 printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
425 status);
426 return;
429 * Total number of siblings that BSP has. Though not all of them
430 * may have booted successfully. The correct number of siblings
431 * booted is in info.overview_num_log.
433 smp_num_siblings = info.overview_tpc;
434 smp_num_cpucores = info.overview_cpp;
436 #endif
438 static __initdata int nomca;
439 static __init int setup_nomca(char *s)
441 nomca = 1;
442 return 0;
444 early_param("nomca", setup_nomca);
446 #ifdef CONFIG_PROC_VMCORE
447 /* elfcorehdr= specifies the location of elf core header
448 * stored by the crashed kernel.
450 static int __init parse_elfcorehdr(char *arg)
452 if (!arg)
453 return -EINVAL;
455 elfcorehdr_addr = memparse(arg, &arg);
456 return 0;
458 early_param("elfcorehdr", parse_elfcorehdr);
460 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
462 unsigned long length;
464 /* We get the address using the kernel command line,
465 * but the size is extracted from the EFI tables.
466 * Both address and size are required for reservation
467 * to work properly.
470 if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
471 return -EINVAL;
473 if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
474 elfcorehdr_addr = ELFCORE_ADDR_MAX;
475 return -EINVAL;
478 *start = (unsigned long)__va(elfcorehdr_addr);
479 *end = *start + length;
480 return 0;
483 #endif /* CONFIG_PROC_VMCORE */
485 void __init
486 setup_arch (char **cmdline_p)
488 unw_init();
490 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
492 *cmdline_p = __va(ia64_boot_param->command_line);
493 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
495 efi_init();
496 io_port_init();
498 parse_early_param();
500 #ifdef CONFIG_IA64_GENERIC
501 machvec_init(NULL);
502 #endif
504 if (early_console_setup(*cmdline_p) == 0)
505 mark_bsp_online();
507 #ifdef CONFIG_ACPI
508 /* Initialize the ACPI boot-time table parser */
509 acpi_table_init();
510 # ifdef CONFIG_ACPI_NUMA
511 acpi_numa_init();
512 # endif
513 #else
514 # ifdef CONFIG_SMP
515 smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
516 # endif
517 #endif /* CONFIG_APCI_BOOT */
519 find_memory();
521 /* process SAL system table: */
522 ia64_sal_init(__va(efi.sal_systab));
524 ia64_setup_printk_clock();
526 #ifdef CONFIG_SMP
527 cpu_physical_id(0) = hard_smp_processor_id();
529 cpu_set(0, cpu_sibling_map[0]);
530 cpu_set(0, cpu_core_map[0]);
532 check_for_logical_procs();
533 if (smp_num_cpucores > 1)
534 printk(KERN_INFO
535 "cpu package is Multi-Core capable: number of cores=%d\n",
536 smp_num_cpucores);
537 if (smp_num_siblings > 1)
538 printk(KERN_INFO
539 "cpu package is Multi-Threading capable: number of siblings=%d\n",
540 smp_num_siblings);
541 #endif
543 cpu_init(); /* initialize the bootstrap CPU */
544 mmu_context_init(); /* initialize context_id bitmap */
546 check_sal_cache_flush();
548 #ifdef CONFIG_ACPI
549 acpi_boot_init();
550 #endif
552 #ifdef CONFIG_VT
553 if (!conswitchp) {
554 # if defined(CONFIG_DUMMY_CONSOLE)
555 conswitchp = &dummy_con;
556 # endif
557 # if defined(CONFIG_VGA_CONSOLE)
559 * Non-legacy systems may route legacy VGA MMIO range to system
560 * memory. vga_con probes the MMIO hole, so memory looks like
561 * a VGA device to it. The EFI memory map can tell us if it's
562 * memory so we can avoid this problem.
564 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
565 conswitchp = &vga_con;
566 # endif
568 #endif
570 /* enable IA-64 Machine Check Abort Handling unless disabled */
571 if (!nomca)
572 ia64_mca_init();
574 platform_setup(cmdline_p);
575 paging_init();
579 * Display cpu info for all CPUs.
581 static int
582 show_cpuinfo (struct seq_file *m, void *v)
584 #ifdef CONFIG_SMP
585 # define lpj c->loops_per_jiffy
586 # define cpunum c->cpu
587 #else
588 # define lpj loops_per_jiffy
589 # define cpunum 0
590 #endif
591 static struct {
592 unsigned long mask;
593 const char *feature_name;
594 } feature_bits[] = {
595 { 1UL << 0, "branchlong" },
596 { 1UL << 1, "spontaneous deferral"},
597 { 1UL << 2, "16-byte atomic ops" }
599 char features[128], *cp, *sep;
600 struct cpuinfo_ia64 *c = v;
601 unsigned long mask;
602 unsigned long proc_freq;
603 int i, size;
605 mask = c->features;
607 /* build the feature string: */
608 memcpy(features, "standard", 9);
609 cp = features;
610 size = sizeof(features);
611 sep = "";
612 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
613 if (mask & feature_bits[i].mask) {
614 cp += snprintf(cp, size, "%s%s", sep,
615 feature_bits[i].feature_name),
616 sep = ", ";
617 mask &= ~feature_bits[i].mask;
618 size = sizeof(features) - (cp - features);
621 if (mask && size > 1) {
622 /* print unknown features as a hex value */
623 snprintf(cp, size, "%s0x%lx", sep, mask);
626 proc_freq = cpufreq_quick_get(cpunum);
627 if (!proc_freq)
628 proc_freq = c->proc_freq / 1000;
630 seq_printf(m,
631 "processor : %d\n"
632 "vendor : %s\n"
633 "arch : IA-64\n"
634 "family : %u\n"
635 "model : %u\n"
636 "model name : %s\n"
637 "revision : %u\n"
638 "archrev : %u\n"
639 "features : %s\n"
640 "cpu number : %lu\n"
641 "cpu regs : %u\n"
642 "cpu MHz : %lu.%03lu\n"
643 "itc MHz : %lu.%06lu\n"
644 "BogoMIPS : %lu.%02lu\n",
645 cpunum, c->vendor, c->family, c->model,
646 c->model_name, c->revision, c->archrev,
647 features, c->ppn, c->number,
648 proc_freq / 1000, proc_freq % 1000,
649 c->itc_freq / 1000000, c->itc_freq % 1000000,
650 lpj*HZ/500000, (lpj*HZ/5000) % 100);
651 #ifdef CONFIG_SMP
652 seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
653 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
654 seq_printf(m,
655 "physical id: %u\n"
656 "core id : %u\n"
657 "thread id : %u\n",
658 c->socket_id, c->core_id, c->thread_id);
659 #endif
660 seq_printf(m,"\n");
662 return 0;
665 static void *
666 c_start (struct seq_file *m, loff_t *pos)
668 #ifdef CONFIG_SMP
669 while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
670 ++*pos;
671 #endif
672 return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
675 static void *
676 c_next (struct seq_file *m, void *v, loff_t *pos)
678 ++*pos;
679 return c_start(m, pos);
682 static void
683 c_stop (struct seq_file *m, void *v)
687 struct seq_operations cpuinfo_op = {
688 .start = c_start,
689 .next = c_next,
690 .stop = c_stop,
691 .show = show_cpuinfo
694 #define MAX_BRANDS 8
695 static char brandname[MAX_BRANDS][128];
697 static char * __cpuinit
698 get_model_name(__u8 family, __u8 model)
700 static int overflow;
701 char brand[128];
702 int i;
704 memcpy(brand, "Unknown", 8);
705 if (ia64_pal_get_brand_info(brand)) {
706 if (family == 0x7)
707 memcpy(brand, "Merced", 7);
708 else if (family == 0x1f) switch (model) {
709 case 0: memcpy(brand, "McKinley", 9); break;
710 case 1: memcpy(brand, "Madison", 8); break;
711 case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
714 for (i = 0; i < MAX_BRANDS; i++)
715 if (strcmp(brandname[i], brand) == 0)
716 return brandname[i];
717 for (i = 0; i < MAX_BRANDS; i++)
718 if (brandname[i][0] == '\0')
719 return strcpy(brandname[i], brand);
720 if (overflow++ == 0)
721 printk(KERN_ERR
722 "%s: Table overflow. Some processor model information will be missing\n",
723 __FUNCTION__);
724 return "Unknown";
727 static void __cpuinit
728 identify_cpu (struct cpuinfo_ia64 *c)
730 union {
731 unsigned long bits[5];
732 struct {
733 /* id 0 & 1: */
734 char vendor[16];
736 /* id 2 */
737 u64 ppn; /* processor serial number */
739 /* id 3: */
740 unsigned number : 8;
741 unsigned revision : 8;
742 unsigned model : 8;
743 unsigned family : 8;
744 unsigned archrev : 8;
745 unsigned reserved : 24;
747 /* id 4: */
748 u64 features;
749 } field;
750 } cpuid;
751 pal_vm_info_1_u_t vm1;
752 pal_vm_info_2_u_t vm2;
753 pal_status_t status;
754 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
755 int i;
756 for (i = 0; i < 5; ++i)
757 cpuid.bits[i] = ia64_get_cpuid(i);
759 memcpy(c->vendor, cpuid.field.vendor, 16);
760 #ifdef CONFIG_SMP
761 c->cpu = smp_processor_id();
763 /* below default values will be overwritten by identify_siblings()
764 * for Multi-Threading/Multi-Core capable CPUs
766 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
767 c->socket_id = -1;
769 identify_siblings(c);
770 #endif
771 c->ppn = cpuid.field.ppn;
772 c->number = cpuid.field.number;
773 c->revision = cpuid.field.revision;
774 c->model = cpuid.field.model;
775 c->family = cpuid.field.family;
776 c->archrev = cpuid.field.archrev;
777 c->features = cpuid.field.features;
778 c->model_name = get_model_name(c->family, c->model);
780 status = ia64_pal_vm_summary(&vm1, &vm2);
781 if (status == PAL_STATUS_SUCCESS) {
782 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
783 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
785 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
786 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
789 void __init
790 setup_per_cpu_areas (void)
792 /* start_kernel() requires this... */
793 #ifdef CONFIG_ACPI_HOTPLUG_CPU
794 prefill_possible_map();
795 #endif
799 * Calculate the max. cache line size.
801 * In addition, the minimum of the i-cache stride sizes is calculated for
802 * "flush_icache_range()".
804 static void __cpuinit
805 get_max_cacheline_size (void)
807 unsigned long line_size, max = 1;
808 unsigned int cache_size = 0;
809 u64 l, levels, unique_caches;
810 pal_cache_config_info_t cci;
811 s64 status;
813 status = ia64_pal_cache_summary(&levels, &unique_caches);
814 if (status != 0) {
815 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
816 __FUNCTION__, status);
817 max = SMP_CACHE_BYTES;
818 /* Safest setup for "flush_icache_range()" */
819 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
820 goto out;
823 for (l = 0; l < levels; ++l) {
824 status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
825 &cci);
826 if (status != 0) {
827 printk(KERN_ERR
828 "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
829 __FUNCTION__, l, status);
830 max = SMP_CACHE_BYTES;
831 /* The safest setup for "flush_icache_range()" */
832 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
833 cci.pcci_unified = 1;
835 line_size = 1 << cci.pcci_line_size;
836 if (line_size > max)
837 max = line_size;
838 if (cache_size < cci.pcci_cache_size)
839 cache_size = cci.pcci_cache_size;
840 if (!cci.pcci_unified) {
841 status = ia64_pal_cache_config_info(l,
842 /* cache_type (instruction)= */ 1,
843 &cci);
844 if (status != 0) {
845 printk(KERN_ERR
846 "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
847 __FUNCTION__, l, status);
848 /* The safest setup for "flush_icache_range()" */
849 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
852 if (cci.pcci_stride < ia64_i_cache_stride_shift)
853 ia64_i_cache_stride_shift = cci.pcci_stride;
855 out:
856 #ifdef CONFIG_SMP
857 max_cache_size = max(max_cache_size, cache_size);
858 #endif
859 if (max > ia64_max_cacheline_size)
860 ia64_max_cacheline_size = max;
864 * cpu_init() initializes state that is per-CPU. This function acts
865 * as a 'CPU state barrier', nothing should get across.
867 void __cpuinit
868 cpu_init (void)
870 extern void __cpuinit ia64_mmu_init (void *);
871 static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
872 unsigned long num_phys_stacked;
873 pal_vm_info_2_u_t vmi;
874 unsigned int max_ctx;
875 struct cpuinfo_ia64 *cpu_info;
876 void *cpu_data;
878 cpu_data = per_cpu_init();
881 * We set ar.k3 so that assembly code in MCA handler can compute
882 * physical addresses of per cpu variables with a simple:
883 * phys = ar.k3 + &per_cpu_var
885 ia64_set_kr(IA64_KR_PER_CPU_DATA,
886 ia64_tpa(cpu_data) - (long) __per_cpu_start);
888 get_max_cacheline_size();
891 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
892 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
893 * depends on the data returned by identify_cpu(). We break the dependency by
894 * accessing cpu_data() through the canonical per-CPU address.
896 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
897 identify_cpu(cpu_info);
899 #ifdef CONFIG_MCKINLEY
901 # define FEATURE_SET 16
902 struct ia64_pal_retval iprv;
904 if (cpu_info->family == 0x1f) {
905 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
906 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
907 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
908 (iprv.v1 | 0x80), FEATURE_SET, 0);
911 #endif
913 /* Clear the stack memory reserved for pt_regs: */
914 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
916 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
919 * Initialize the page-table base register to a global
920 * directory with all zeroes. This ensure that we can handle
921 * TLB-misses to user address-space even before we created the
922 * first user address-space. This may happen, e.g., due to
923 * aggressive use of lfetch.fault.
925 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
928 * Initialize default control register to defer speculative faults except
929 * for those arising from TLB misses, which are not deferred. The
930 * kernel MUST NOT depend on a particular setting of these bits (in other words,
931 * the kernel must have recovery code for all speculative accesses). Turn on
932 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
933 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
934 * be fine).
936 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
937 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
938 atomic_inc(&init_mm.mm_count);
939 current->active_mm = &init_mm;
940 if (current->mm)
941 BUG();
943 ia64_mmu_init(ia64_imva(cpu_data));
944 ia64_mca_cpu_init(ia64_imva(cpu_data));
946 #ifdef CONFIG_IA32_SUPPORT
947 ia32_cpu_init();
948 #endif
950 /* Clear ITC to eliminate sched_clock() overflows in human time. */
951 ia64_set_itc(0);
953 /* disable all local interrupt sources: */
954 ia64_set_itv(1 << 16);
955 ia64_set_lrr0(1 << 16);
956 ia64_set_lrr1(1 << 16);
957 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
958 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
960 /* clear TPR & XTP to enable all interrupt classes: */
961 ia64_setreg(_IA64_REG_CR_TPR, 0);
962 #ifdef CONFIG_SMP
963 normal_xtp();
964 #endif
966 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
967 if (ia64_pal_vm_summary(NULL, &vmi) == 0)
968 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
969 else {
970 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
971 max_ctx = (1U << 15) - 1; /* use architected minimum */
973 while (max_ctx < ia64_ctx.max_ctx) {
974 unsigned int old = ia64_ctx.max_ctx;
975 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
976 break;
979 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
980 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
981 "stacked regs\n");
982 num_phys_stacked = 96;
984 /* size of physical stacked register partition plus 8 bytes: */
985 if (num_phys_stacked > max_num_phys_stacked) {
986 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
987 max_num_phys_stacked = num_phys_stacked;
989 platform_cpu_init();
990 pm_idle = default_idle;
994 * On SMP systems, when the scheduler does migration-cost autodetection,
995 * it needs a way to flush as much of the CPU's caches as possible.
997 void sched_cacheflush(void)
999 ia64_sal_cache_flush(3);
1002 void __init
1003 check_bugs (void)
1005 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1006 (unsigned long) __end___mckinley_e9_bundles);
1009 static int __init run_dmi_scan(void)
1011 dmi_scan_machine();
1012 return 0;
1014 core_initcall(run_dmi_scan);