2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * Abstract: Contain all routines that are required for FSA host/adapter
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
53 * fib_map_alloc - allocate the fib objects
54 * @dev: Adapter to allocate for
56 * Allocate and map the shared PCI space for the FIB blocks used to
57 * talk to the Adaptec firmware.
60 static int fib_map_alloc(struct aac_dev
*dev
)
63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64 dev
->pdev
, dev
->max_fib_size
, dev
->scsi_host_ptr
->can_queue
,
65 AAC_NUM_MGT_FIB
, &dev
->hw_fib_pa
));
66 if((dev
->hw_fib_va
= pci_alloc_consistent(dev
->pdev
, dev
->max_fib_size
67 * (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
),
68 &dev
->hw_fib_pa
))==NULL
)
74 * aac_fib_map_free - free the fib objects
75 * @dev: Adapter to free
77 * Free the PCI mappings and the memory allocated for FIB blocks
81 void aac_fib_map_free(struct aac_dev
*dev
)
83 pci_free_consistent(dev
->pdev
, dev
->max_fib_size
* (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
), dev
->hw_fib_va
, dev
->hw_fib_pa
);
87 * aac_fib_setup - setup the fibs
88 * @dev: Adapter to set up
90 * Allocate the PCI space for the fibs, map it and then intialise the
91 * fib area, the unmapped fib data and also the free list
94 int aac_fib_setup(struct aac_dev
* dev
)
97 struct hw_fib
*hw_fib
;
101 while (((i
= fib_map_alloc(dev
)) == -ENOMEM
)
102 && (dev
->scsi_host_ptr
->can_queue
> (64 - AAC_NUM_MGT_FIB
))) {
103 dev
->init
->MaxIoCommands
= cpu_to_le32((dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
) >> 1);
104 dev
->scsi_host_ptr
->can_queue
= le32_to_cpu(dev
->init
->MaxIoCommands
) - AAC_NUM_MGT_FIB
;
109 hw_fib
= dev
->hw_fib_va
;
110 hw_fib_pa
= dev
->hw_fib_pa
;
111 memset(hw_fib
, 0, dev
->max_fib_size
* (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
));
113 * Initialise the fibs
115 for (i
= 0, fibptr
= &dev
->fibs
[i
]; i
< (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
); i
++, fibptr
++)
118 fibptr
->hw_fib_va
= hw_fib
;
119 fibptr
->data
= (void *) fibptr
->hw_fib_va
->data
;
120 fibptr
->next
= fibptr
+1; /* Forward chain the fibs */
121 init_MUTEX_LOCKED(&fibptr
->event_wait
);
122 spin_lock_init(&fibptr
->event_lock
);
123 hw_fib
->header
.XferState
= cpu_to_le32(0xffffffff);
124 hw_fib
->header
.SenderSize
= cpu_to_le16(dev
->max_fib_size
);
125 fibptr
->hw_fib_pa
= hw_fib_pa
;
126 hw_fib
= (struct hw_fib
*)((unsigned char *)hw_fib
+ dev
->max_fib_size
);
127 hw_fib_pa
= hw_fib_pa
+ dev
->max_fib_size
;
130 * Add the fib chain to the free list
132 dev
->fibs
[dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
- 1].next
= NULL
;
134 * Enable this to debug out of queue space
136 dev
->free_fib
= &dev
->fibs
[0];
141 * aac_fib_alloc - allocate a fib
142 * @dev: Adapter to allocate the fib for
144 * Allocate a fib from the adapter fib pool. If the pool is empty we
148 struct fib
*aac_fib_alloc(struct aac_dev
*dev
)
152 spin_lock_irqsave(&dev
->fib_lock
, flags
);
153 fibptr
= dev
->free_fib
;
155 spin_unlock_irqrestore(&dev
->fib_lock
, flags
);
158 dev
->free_fib
= fibptr
->next
;
159 spin_unlock_irqrestore(&dev
->fib_lock
, flags
);
161 * Set the proper node type code and node byte size
163 fibptr
->type
= FSAFS_NTC_FIB_CONTEXT
;
164 fibptr
->size
= sizeof(struct fib
);
166 * Null out fields that depend on being zero at the start of
169 fibptr
->hw_fib_va
->header
.XferState
= 0;
170 fibptr
->callback
= NULL
;
171 fibptr
->callback_data
= NULL
;
177 * aac_fib_free - free a fib
178 * @fibptr: fib to free up
180 * Frees up a fib and places it on the appropriate queue
183 void aac_fib_free(struct fib
*fibptr
)
187 spin_lock_irqsave(&fibptr
->dev
->fib_lock
, flags
);
188 if (unlikely(fibptr
->flags
& FIB_CONTEXT_FLAG_TIMED_OUT
))
189 aac_config
.fib_timeouts
++;
190 if (fibptr
->hw_fib_va
->header
.XferState
!= 0) {
191 printk(KERN_WARNING
"aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
193 le32_to_cpu(fibptr
->hw_fib_va
->header
.XferState
));
195 fibptr
->next
= fibptr
->dev
->free_fib
;
196 fibptr
->dev
->free_fib
= fibptr
;
197 spin_unlock_irqrestore(&fibptr
->dev
->fib_lock
, flags
);
201 * aac_fib_init - initialise a fib
202 * @fibptr: The fib to initialize
204 * Set up the generic fib fields ready for use
207 void aac_fib_init(struct fib
*fibptr
)
209 struct hw_fib
*hw_fib
= fibptr
->hw_fib_va
;
211 hw_fib
->header
.StructType
= FIB_MAGIC
;
212 hw_fib
->header
.Size
= cpu_to_le16(fibptr
->dev
->max_fib_size
);
213 hw_fib
->header
.XferState
= cpu_to_le32(HostOwned
| FibInitialized
| FibEmpty
| FastResponseCapable
);
214 hw_fib
->header
.SenderFibAddress
= 0; /* Filled in later if needed */
215 hw_fib
->header
.ReceiverFibAddress
= cpu_to_le32(fibptr
->hw_fib_pa
);
216 hw_fib
->header
.SenderSize
= cpu_to_le16(fibptr
->dev
->max_fib_size
);
220 * fib_deallocate - deallocate a fib
221 * @fibptr: fib to deallocate
223 * Will deallocate and return to the free pool the FIB pointed to by the
227 static void fib_dealloc(struct fib
* fibptr
)
229 struct hw_fib
*hw_fib
= fibptr
->hw_fib_va
;
230 BUG_ON(hw_fib
->header
.StructType
!= FIB_MAGIC
);
231 hw_fib
->header
.XferState
= 0;
235 * Commuication primitives define and support the queuing method we use to
236 * support host to adapter commuication. All queue accesses happen through
237 * these routines and are the only routines which have a knowledge of the
238 * how these queues are implemented.
242 * aac_get_entry - get a queue entry
245 * @entry: Entry return
246 * @index: Index return
247 * @nonotify: notification control
249 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
250 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
254 static int aac_get_entry (struct aac_dev
* dev
, u32 qid
, struct aac_entry
**entry
, u32
* index
, unsigned long *nonotify
)
256 struct aac_queue
* q
;
260 * All of the queues wrap when they reach the end, so we check
261 * to see if they have reached the end and if they have we just
262 * set the index back to zero. This is a wrap. You could or off
263 * the high bits in all updates but this is a bit faster I think.
266 q
= &dev
->queues
->queue
[qid
];
268 idx
= *index
= le32_to_cpu(*(q
->headers
.producer
));
269 /* Interrupt Moderation, only interrupt for first two entries */
270 if (idx
!= le32_to_cpu(*(q
->headers
.consumer
))) {
272 if (qid
== AdapNormCmdQueue
)
273 idx
= ADAP_NORM_CMD_ENTRIES
;
275 idx
= ADAP_NORM_RESP_ENTRIES
;
277 if (idx
!= le32_to_cpu(*(q
->headers
.consumer
)))
281 if (qid
== AdapNormCmdQueue
) {
282 if (*index
>= ADAP_NORM_CMD_ENTRIES
)
283 *index
= 0; /* Wrap to front of the Producer Queue. */
285 if (*index
>= ADAP_NORM_RESP_ENTRIES
)
286 *index
= 0; /* Wrap to front of the Producer Queue. */
289 if ((*index
+ 1) == le32_to_cpu(*(q
->headers
.consumer
))) { /* Queue is full */
290 printk(KERN_WARNING
"Queue %d full, %u outstanding.\n",
294 *entry
= q
->base
+ *index
;
300 * aac_queue_get - get the next free QE
302 * @index: Returned index
303 * @priority: Priority of fib
304 * @fib: Fib to associate with the queue entry
305 * @wait: Wait if queue full
306 * @fibptr: Driver fib object to go with fib
307 * @nonotify: Don't notify the adapter
309 * Gets the next free QE off the requested priorty adapter command
310 * queue and associates the Fib with the QE. The QE represented by
311 * index is ready to insert on the queue when this routine returns
315 int aac_queue_get(struct aac_dev
* dev
, u32
* index
, u32 qid
, struct hw_fib
* hw_fib
, int wait
, struct fib
* fibptr
, unsigned long *nonotify
)
317 struct aac_entry
* entry
= NULL
;
320 if (qid
== AdapNormCmdQueue
) {
321 /* if no entries wait for some if caller wants to */
322 while (!aac_get_entry(dev
, qid
, &entry
, index
, nonotify
))
324 printk(KERN_ERR
"GetEntries failed\n");
327 * Setup queue entry with a command, status and fib mapped
329 entry
->size
= cpu_to_le32(le16_to_cpu(hw_fib
->header
.Size
));
332 while(!aac_get_entry(dev
, qid
, &entry
, index
, nonotify
))
334 /* if no entries wait for some if caller wants to */
337 * Setup queue entry with command, status and fib mapped
339 entry
->size
= cpu_to_le32(le16_to_cpu(hw_fib
->header
.Size
));
340 entry
->addr
= hw_fib
->header
.SenderFibAddress
;
341 /* Restore adapters pointer to the FIB */
342 hw_fib
->header
.ReceiverFibAddress
= hw_fib
->header
.SenderFibAddress
; /* Let the adapter now where to find its data */
346 * If MapFib is true than we need to map the Fib and put pointers
347 * in the queue entry.
350 entry
->addr
= cpu_to_le32(fibptr
->hw_fib_pa
);
355 * Define the highest level of host to adapter communication routines.
356 * These routines will support host to adapter FS commuication. These
357 * routines have no knowledge of the commuication method used. This level
358 * sends and receives FIBs. This level has no knowledge of how these FIBs
359 * get passed back and forth.
363 * aac_fib_send - send a fib to the adapter
364 * @command: Command to send
366 * @size: Size of fib data area
367 * @priority: Priority of Fib
368 * @wait: Async/sync select
369 * @reply: True if a reply is wanted
370 * @callback: Called with reply
371 * @callback_data: Passed to callback
373 * Sends the requested FIB to the adapter and optionally will wait for a
374 * response FIB. If the caller does not wish to wait for a response than
375 * an event to wait on must be supplied. This event will be set when a
376 * response FIB is received from the adapter.
379 int aac_fib_send(u16 command
, struct fib
*fibptr
, unsigned long size
,
380 int priority
, int wait
, int reply
, fib_callback callback
,
383 struct aac_dev
* dev
= fibptr
->dev
;
384 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
385 unsigned long flags
= 0;
386 unsigned long qflags
;
388 if (!(hw_fib
->header
.XferState
& cpu_to_le32(HostOwned
)))
391 * There are 5 cases with the wait and reponse requested flags.
392 * The only invalid cases are if the caller requests to wait and
393 * does not request a response and if the caller does not want a
394 * response and the Fib is not allocated from pool. If a response
395 * is not requesed the Fib will just be deallocaed by the DPC
396 * routine when the response comes back from the adapter. No
397 * further processing will be done besides deleting the Fib. We
398 * will have a debug mode where the adapter can notify the host
399 * it had a problem and the host can log that fact.
401 if (wait
&& !reply
) {
403 } else if (!wait
&& reply
) {
404 hw_fib
->header
.XferState
|= cpu_to_le32(Async
| ResponseExpected
);
405 FIB_COUNTER_INCREMENT(aac_config
.AsyncSent
);
406 } else if (!wait
&& !reply
) {
407 hw_fib
->header
.XferState
|= cpu_to_le32(NoResponseExpected
);
408 FIB_COUNTER_INCREMENT(aac_config
.NoResponseSent
);
409 } else if (wait
&& reply
) {
410 hw_fib
->header
.XferState
|= cpu_to_le32(ResponseExpected
);
411 FIB_COUNTER_INCREMENT(aac_config
.NormalSent
);
414 * Map the fib into 32bits by using the fib number
417 hw_fib
->header
.SenderFibAddress
= cpu_to_le32(((u32
)(fibptr
- dev
->fibs
)) << 2);
418 hw_fib
->header
.SenderData
= (u32
)(fibptr
- dev
->fibs
);
420 * Set FIB state to indicate where it came from and if we want a
421 * response from the adapter. Also load the command from the
424 * Map the hw fib pointer as a 32bit value
426 hw_fib
->header
.Command
= cpu_to_le16(command
);
427 hw_fib
->header
.XferState
|= cpu_to_le32(SentFromHost
);
428 fibptr
->hw_fib_va
->header
.Flags
= 0; /* 0 the flags field - internal only*/
430 * Set the size of the Fib we want to send to the adapter
432 hw_fib
->header
.Size
= cpu_to_le16(sizeof(struct aac_fibhdr
) + size
);
433 if (le16_to_cpu(hw_fib
->header
.Size
) > le16_to_cpu(hw_fib
->header
.SenderSize
)) {
437 * Get a queue entry connect the FIB to it and send an notify
438 * the adapter a command is ready.
440 hw_fib
->header
.XferState
|= cpu_to_le32(NormalPriority
);
443 * Fill in the Callback and CallbackContext if we are not
447 fibptr
->callback
= callback
;
448 fibptr
->callback_data
= callback_data
;
454 FIB_COUNTER_INCREMENT(aac_config
.FibsSent
);
456 dprintk((KERN_DEBUG
"Fib contents:.\n"));
457 dprintk((KERN_DEBUG
" Command = %d.\n", le32_to_cpu(hw_fib
->header
.Command
)));
458 dprintk((KERN_DEBUG
" SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount
*)fib_data(fibptr
))->command
)));
459 dprintk((KERN_DEBUG
" XferState = %x.\n", le32_to_cpu(hw_fib
->header
.XferState
)));
460 dprintk((KERN_DEBUG
" hw_fib va being sent=%p\n",fibptr
->hw_fib_va
));
461 dprintk((KERN_DEBUG
" hw_fib pa being sent=%lx\n",(ulong
)fibptr
->hw_fib_pa
));
462 dprintk((KERN_DEBUG
" fib being sent=%p\n",fibptr
));
468 spin_lock_irqsave(&fibptr
->event_lock
, flags
);
469 aac_adapter_deliver(fibptr
);
472 * If the caller wanted us to wait for response wait now.
476 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
477 /* Only set for first known interruptable command */
480 * *VERY* Dangerous to time out a command, the
481 * assumption is made that we have no hope of
482 * functioning because an interrupt routing or other
483 * hardware failure has occurred.
485 unsigned long count
= 36000000L; /* 3 minutes */
486 while (down_trylock(&fibptr
->event_wait
)) {
489 struct aac_queue
* q
= &dev
->queues
->queue
[AdapNormCmdQueue
];
490 spin_lock_irqsave(q
->lock
, qflags
);
492 spin_unlock_irqrestore(q
->lock
, qflags
);
494 printk(KERN_ERR
"aacraid: aac_fib_send: first asynchronous command timed out.\n"
495 "Usually a result of a PCI interrupt routing problem;\n"
496 "update mother board BIOS or consider utilizing one of\n"
497 "the SAFE mode kernel options (acpi, apic etc)\n");
501 if ((blink
= aac_adapter_check_health(dev
)) > 0) {
503 printk(KERN_ERR
"aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
504 "Usually a result of a serious unrecoverable hardware problem\n",
512 (void)down_interruptible(&fibptr
->event_wait
);
513 spin_lock_irqsave(&fibptr
->event_lock
, flags
);
514 if (fibptr
->done
== 0) {
515 fibptr
->done
= 2; /* Tell interrupt we aborted */
516 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
519 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
520 BUG_ON(fibptr
->done
== 0);
522 if(unlikely(fibptr
->flags
& FIB_CONTEXT_FLAG_TIMED_OUT
))
527 * If the user does not want a response than return success otherwise
537 * aac_consumer_get - get the top of the queue
540 * @entry: Return entry
542 * Will return a pointer to the entry on the top of the queue requested that
543 * we are a consumer of, and return the address of the queue entry. It does
544 * not change the state of the queue.
547 int aac_consumer_get(struct aac_dev
* dev
, struct aac_queue
* q
, struct aac_entry
**entry
)
551 if (le32_to_cpu(*q
->headers
.producer
) == le32_to_cpu(*q
->headers
.consumer
)) {
555 * The consumer index must be wrapped if we have reached
556 * the end of the queue, else we just use the entry
557 * pointed to by the header index
559 if (le32_to_cpu(*q
->headers
.consumer
) >= q
->entries
)
562 index
= le32_to_cpu(*q
->headers
.consumer
);
563 *entry
= q
->base
+ index
;
570 * aac_consumer_free - free consumer entry
575 * Frees up the current top of the queue we are a consumer of. If the
576 * queue was full notify the producer that the queue is no longer full.
579 void aac_consumer_free(struct aac_dev
* dev
, struct aac_queue
*q
, u32 qid
)
584 if ((le32_to_cpu(*q
->headers
.producer
)+1) == le32_to_cpu(*q
->headers
.consumer
))
587 if (le32_to_cpu(*q
->headers
.consumer
) >= q
->entries
)
588 *q
->headers
.consumer
= cpu_to_le32(1);
590 *q
->headers
.consumer
= cpu_to_le32(le32_to_cpu(*q
->headers
.consumer
)+1);
595 case HostNormCmdQueue
:
596 notify
= HostNormCmdNotFull
;
598 case HostNormRespQueue
:
599 notify
= HostNormRespNotFull
;
605 aac_adapter_notify(dev
, notify
);
610 * aac_fib_adapter_complete - complete adapter issued fib
611 * @fibptr: fib to complete
614 * Will do all necessary work to complete a FIB that was sent from
618 int aac_fib_adapter_complete(struct fib
*fibptr
, unsigned short size
)
620 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
621 struct aac_dev
* dev
= fibptr
->dev
;
622 struct aac_queue
* q
;
623 unsigned long nointr
= 0;
624 unsigned long qflags
;
626 if (hw_fib
->header
.XferState
== 0) {
627 if (dev
->comm_interface
== AAC_COMM_MESSAGE
)
632 * If we plan to do anything check the structure type first.
634 if ( hw_fib
->header
.StructType
!= FIB_MAGIC
) {
635 if (dev
->comm_interface
== AAC_COMM_MESSAGE
)
640 * This block handles the case where the adapter had sent us a
641 * command and we have finished processing the command. We
642 * call completeFib when we are done processing the command
643 * and want to send a response back to the adapter. This will
644 * send the completed cdb to the adapter.
646 if (hw_fib
->header
.XferState
& cpu_to_le32(SentFromAdapter
)) {
647 if (dev
->comm_interface
== AAC_COMM_MESSAGE
) {
651 hw_fib
->header
.XferState
|= cpu_to_le32(HostProcessed
);
653 size
+= sizeof(struct aac_fibhdr
);
654 if (size
> le16_to_cpu(hw_fib
->header
.SenderSize
))
656 hw_fib
->header
.Size
= cpu_to_le16(size
);
658 q
= &dev
->queues
->queue
[AdapNormRespQueue
];
659 spin_lock_irqsave(q
->lock
, qflags
);
660 aac_queue_get(dev
, &index
, AdapNormRespQueue
, hw_fib
, 1, NULL
, &nointr
);
661 *(q
->headers
.producer
) = cpu_to_le32(index
+ 1);
662 spin_unlock_irqrestore(q
->lock
, qflags
);
663 if (!(nointr
& (int)aac_config
.irq_mod
))
664 aac_adapter_notify(dev
, AdapNormRespQueue
);
669 printk(KERN_WARNING
"aac_fib_adapter_complete: Unknown xferstate detected.\n");
676 * aac_fib_complete - fib completion handler
677 * @fib: FIB to complete
679 * Will do all necessary work to complete a FIB.
682 int aac_fib_complete(struct fib
*fibptr
)
684 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
687 * Check for a fib which has already been completed
690 if (hw_fib
->header
.XferState
== 0)
693 * If we plan to do anything check the structure type first.
696 if (hw_fib
->header
.StructType
!= FIB_MAGIC
)
699 * This block completes a cdb which orginated on the host and we
700 * just need to deallocate the cdb or reinit it. At this point the
701 * command is complete that we had sent to the adapter and this
702 * cdb could be reused.
704 if((hw_fib
->header
.XferState
& cpu_to_le32(SentFromHost
)) &&
705 (hw_fib
->header
.XferState
& cpu_to_le32(AdapterProcessed
)))
709 else if(hw_fib
->header
.XferState
& cpu_to_le32(SentFromHost
))
712 * This handles the case when the host has aborted the I/O
713 * to the adapter because the adapter is not responding
716 } else if(hw_fib
->header
.XferState
& cpu_to_le32(HostOwned
)) {
725 * aac_printf - handle printf from firmware
729 * Print a message passed to us by the controller firmware on the
733 void aac_printf(struct aac_dev
*dev
, u32 val
)
735 char *cp
= dev
->printfbuf
;
736 if (dev
->printf_enabled
)
738 int length
= val
& 0xffff;
739 int level
= (val
>> 16) & 0xffff;
742 * The size of the printfbuf is set in port.c
743 * There is no variable or define for it
749 if (level
== LOG_AAC_HIGH_ERROR
)
750 printk(KERN_WARNING
"%s:%s", dev
->name
, cp
);
752 printk(KERN_INFO
"%s:%s", dev
->name
, cp
);
759 * aac_handle_aif - Handle a message from the firmware
760 * @dev: Which adapter this fib is from
761 * @fibptr: Pointer to fibptr from adapter
763 * This routine handles a driver notify fib from the adapter and
764 * dispatches it to the appropriate routine for handling.
767 #define AIF_SNIFF_TIMEOUT (30*HZ)
768 static void aac_handle_aif(struct aac_dev
* dev
, struct fib
* fibptr
)
770 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
771 struct aac_aifcmd
* aifcmd
= (struct aac_aifcmd
*)hw_fib
->data
;
773 struct scsi_device
*device
;
779 } device_config_needed
;
781 /* Sniff for container changes */
783 if (!dev
|| !dev
->fsa_dev
)
788 * We have set this up to try and minimize the number of
789 * re-configures that take place. As a result of this when
790 * certain AIF's come in we will set a flag waiting for another
791 * type of AIF before setting the re-config flag.
793 switch (le32_to_cpu(aifcmd
->command
)) {
794 case AifCmdDriverNotify
:
795 switch (le32_to_cpu(((u32
*)aifcmd
->data
)[0])) {
797 * Morph or Expand complete
799 case AifDenMorphComplete
:
800 case AifDenVolumeExtendComplete
:
801 container
= le32_to_cpu(((u32
*)aifcmd
->data
)[1]);
802 if (container
>= dev
->maximum_num_containers
)
806 * Find the scsi_device associated with the SCSI
807 * address. Make sure we have the right array, and if
808 * so set the flag to initiate a new re-config once we
809 * see an AifEnConfigChange AIF come through.
812 if ((dev
!= NULL
) && (dev
->scsi_host_ptr
!= NULL
)) {
813 device
= scsi_device_lookup(dev
->scsi_host_ptr
,
814 CONTAINER_TO_CHANNEL(container
),
815 CONTAINER_TO_ID(container
),
816 CONTAINER_TO_LUN(container
));
818 dev
->fsa_dev
[container
].config_needed
= CHANGE
;
819 dev
->fsa_dev
[container
].config_waiting_on
= AifEnConfigChange
;
820 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
821 scsi_device_put(device
);
827 * If we are waiting on something and this happens to be
828 * that thing then set the re-configure flag.
830 if (container
!= (u32
)-1) {
831 if (container
>= dev
->maximum_num_containers
)
833 if ((dev
->fsa_dev
[container
].config_waiting_on
==
834 le32_to_cpu(*(u32
*)aifcmd
->data
)) &&
835 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
836 dev
->fsa_dev
[container
].config_waiting_on
= 0;
837 } else for (container
= 0;
838 container
< dev
->maximum_num_containers
; ++container
) {
839 if ((dev
->fsa_dev
[container
].config_waiting_on
==
840 le32_to_cpu(*(u32
*)aifcmd
->data
)) &&
841 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
842 dev
->fsa_dev
[container
].config_waiting_on
= 0;
846 case AifCmdEventNotify
:
847 switch (le32_to_cpu(((u32
*)aifcmd
->data
)[0])) {
851 case AifEnAddContainer
:
852 container
= le32_to_cpu(((u32
*)aifcmd
->data
)[1]);
853 if (container
>= dev
->maximum_num_containers
)
855 dev
->fsa_dev
[container
].config_needed
= ADD
;
856 dev
->fsa_dev
[container
].config_waiting_on
=
858 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
864 case AifEnDeleteContainer
:
865 container
= le32_to_cpu(((u32
*)aifcmd
->data
)[1]);
866 if (container
>= dev
->maximum_num_containers
)
868 dev
->fsa_dev
[container
].config_needed
= DELETE
;
869 dev
->fsa_dev
[container
].config_waiting_on
=
871 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
875 * Container change detected. If we currently are not
876 * waiting on something else, setup to wait on a Config Change.
878 case AifEnContainerChange
:
879 container
= le32_to_cpu(((u32
*)aifcmd
->data
)[1]);
880 if (container
>= dev
->maximum_num_containers
)
882 if (dev
->fsa_dev
[container
].config_waiting_on
&&
883 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
885 dev
->fsa_dev
[container
].config_needed
= CHANGE
;
886 dev
->fsa_dev
[container
].config_waiting_on
=
888 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
891 case AifEnConfigChange
:
897 * If we are waiting on something and this happens to be
898 * that thing then set the re-configure flag.
900 if (container
!= (u32
)-1) {
901 if (container
>= dev
->maximum_num_containers
)
903 if ((dev
->fsa_dev
[container
].config_waiting_on
==
904 le32_to_cpu(*(u32
*)aifcmd
->data
)) &&
905 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
906 dev
->fsa_dev
[container
].config_waiting_on
= 0;
907 } else for (container
= 0;
908 container
< dev
->maximum_num_containers
; ++container
) {
909 if ((dev
->fsa_dev
[container
].config_waiting_on
==
910 le32_to_cpu(*(u32
*)aifcmd
->data
)) &&
911 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
912 dev
->fsa_dev
[container
].config_waiting_on
= 0;
916 case AifCmdJobProgress
:
918 * These are job progress AIF's. When a Clear is being
919 * done on a container it is initially created then hidden from
920 * the OS. When the clear completes we don't get a config
921 * change so we monitor the job status complete on a clear then
922 * wait for a container change.
925 if ((((u32
*)aifcmd
->data
)[1] == cpu_to_le32(AifJobCtrZero
))
926 && ((((u32
*)aifcmd
->data
)[6] == ((u32
*)aifcmd
->data
)[5])
927 || (((u32
*)aifcmd
->data
)[4] == cpu_to_le32(AifJobStsSuccess
)))) {
929 container
< dev
->maximum_num_containers
;
932 * Stomp on all config sequencing for all
935 dev
->fsa_dev
[container
].config_waiting_on
=
936 AifEnContainerChange
;
937 dev
->fsa_dev
[container
].config_needed
= ADD
;
938 dev
->fsa_dev
[container
].config_waiting_stamp
=
942 if ((((u32
*)aifcmd
->data
)[1] == cpu_to_le32(AifJobCtrZero
))
943 && (((u32
*)aifcmd
->data
)[6] == 0)
944 && (((u32
*)aifcmd
->data
)[4] == cpu_to_le32(AifJobStsRunning
))) {
946 container
< dev
->maximum_num_containers
;
949 * Stomp on all config sequencing for all
952 dev
->fsa_dev
[container
].config_waiting_on
=
953 AifEnContainerChange
;
954 dev
->fsa_dev
[container
].config_needed
= DELETE
;
955 dev
->fsa_dev
[container
].config_waiting_stamp
=
962 device_config_needed
= NOTHING
;
963 for (container
= 0; container
< dev
->maximum_num_containers
;
965 if ((dev
->fsa_dev
[container
].config_waiting_on
== 0) &&
966 (dev
->fsa_dev
[container
].config_needed
!= NOTHING
) &&
967 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
)) {
968 device_config_needed
=
969 dev
->fsa_dev
[container
].config_needed
;
970 dev
->fsa_dev
[container
].config_needed
= NOTHING
;
974 if (device_config_needed
== NOTHING
)
978 * If we decided that a re-configuration needs to be done,
979 * schedule it here on the way out the door, please close the door
984 * Find the scsi_device associated with the SCSI address,
985 * and mark it as changed, invalidating the cache. This deals
986 * with changes to existing device IDs.
989 if (!dev
|| !dev
->scsi_host_ptr
)
992 * force reload of disk info via aac_probe_container
994 if ((device_config_needed
== CHANGE
)
995 && (dev
->fsa_dev
[container
].valid
== 1))
996 dev
->fsa_dev
[container
].valid
= 2;
997 if ((device_config_needed
== CHANGE
) ||
998 (device_config_needed
== ADD
))
999 aac_probe_container(dev
, container
);
1000 device
= scsi_device_lookup(dev
->scsi_host_ptr
,
1001 CONTAINER_TO_CHANNEL(container
),
1002 CONTAINER_TO_ID(container
),
1003 CONTAINER_TO_LUN(container
));
1005 switch (device_config_needed
) {
1008 scsi_rescan_device(&device
->sdev_gendev
);
1013 scsi_device_put(device
);
1015 if (device_config_needed
== ADD
) {
1016 scsi_add_device(dev
->scsi_host_ptr
,
1017 CONTAINER_TO_CHANNEL(container
),
1018 CONTAINER_TO_ID(container
),
1019 CONTAINER_TO_LUN(container
));
1024 static int _aac_reset_adapter(struct aac_dev
*aac
)
1028 struct Scsi_Host
*host
;
1029 struct scsi_device
*dev
;
1030 struct scsi_cmnd
*command
;
1031 struct scsi_cmnd
*command_list
;
1036 * - in_reset is asserted, so no new i/o is getting to the
1038 * - The card is dead.
1040 host
= aac
->scsi_host_ptr
;
1041 scsi_block_requests(host
);
1042 aac_adapter_disable_int(aac
);
1043 spin_unlock_irq(host
->host_lock
);
1044 kthread_stop(aac
->thread
);
1047 * If a positive health, means in a known DEAD PANIC
1048 * state and the adapter could be reset to `try again'.
1050 retval
= aac_adapter_restart(aac
, aac_adapter_check_health(aac
));
1056 * Loop through the fibs, close the synchronous FIBS
1058 for (retval
= 1, index
= 0; index
< (aac
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
); index
++) {
1059 struct fib
*fib
= &aac
->fibs
[index
];
1060 if (!(fib
->hw_fib_va
->header
.XferState
& cpu_to_le32(NoResponseExpected
| Async
)) &&
1061 (fib
->hw_fib_va
->header
.XferState
& cpu_to_le32(ResponseExpected
))) {
1062 unsigned long flagv
;
1063 spin_lock_irqsave(&fib
->event_lock
, flagv
);
1064 up(&fib
->event_wait
);
1065 spin_unlock_irqrestore(&fib
->event_lock
, flagv
);
1070 /* Give some extra time for ioctls to complete. */
1073 index
= aac
->cardtype
;
1076 * Re-initialize the adapter, first free resources, then carefully
1077 * apply the initialization sequence to come back again. Only risk
1078 * is a change in Firmware dropping cache, it is assumed the caller
1079 * will ensure that i/o is queisced and the card is flushed in that
1082 aac_fib_map_free(aac
);
1083 aac
->hw_fib_va
= NULL
;
1085 pci_free_consistent(aac
->pdev
, aac
->comm_size
, aac
->comm_addr
, aac
->comm_phys
);
1086 aac
->comm_addr
= NULL
;
1090 free_irq(aac
->pdev
->irq
, aac
);
1091 kfree(aac
->fsa_dev
);
1092 aac
->fsa_dev
= NULL
;
1093 if (aac_get_driver_ident(index
)->quirks
& AAC_QUIRK_31BIT
) {
1094 if (((retval
= pci_set_dma_mask(aac
->pdev
, DMA_32BIT_MASK
))) ||
1095 ((retval
= pci_set_consistent_dma_mask(aac
->pdev
, DMA_32BIT_MASK
))))
1098 if (((retval
= pci_set_dma_mask(aac
->pdev
, 0x7FFFFFFFULL
))) ||
1099 ((retval
= pci_set_consistent_dma_mask(aac
->pdev
, 0x7FFFFFFFULL
))))
1102 if ((retval
= (*(aac_get_driver_ident(index
)->init
))(aac
)))
1104 if (aac_get_driver_ident(index
)->quirks
& AAC_QUIRK_31BIT
)
1105 if ((retval
= pci_set_dma_mask(aac
->pdev
, DMA_32BIT_MASK
)))
1107 aac
->thread
= kthread_run(aac_command_thread
, aac
, aac
->name
);
1108 if (IS_ERR(aac
->thread
)) {
1109 retval
= PTR_ERR(aac
->thread
);
1112 (void)aac_get_adapter_info(aac
);
1113 quirks
= aac_get_driver_ident(index
)->quirks
;
1114 if ((quirks
& AAC_QUIRK_34SG
) && (host
->sg_tablesize
> 34)) {
1115 host
->sg_tablesize
= 34;
1116 host
->max_sectors
= (host
->sg_tablesize
* 8) + 112;
1118 if ((quirks
& AAC_QUIRK_17SG
) && (host
->sg_tablesize
> 17)) {
1119 host
->sg_tablesize
= 17;
1120 host
->max_sectors
= (host
->sg_tablesize
* 8) + 112;
1122 aac_get_config_status(aac
, 1);
1123 aac_get_containers(aac
);
1125 * This is where the assumption that the Adapter is quiesced
1128 command_list
= NULL
;
1129 __shost_for_each_device(dev
, host
) {
1130 unsigned long flags
;
1131 spin_lock_irqsave(&dev
->list_lock
, flags
);
1132 list_for_each_entry(command
, &dev
->cmd_list
, list
)
1133 if (command
->SCp
.phase
== AAC_OWNER_FIRMWARE
) {
1134 command
->SCp
.buffer
= (struct scatterlist
*)command_list
;
1135 command_list
= command
;
1137 spin_unlock_irqrestore(&dev
->list_lock
, flags
);
1139 while ((command
= command_list
)) {
1140 command_list
= (struct scsi_cmnd
*)command
->SCp
.buffer
;
1141 command
->SCp
.buffer
= NULL
;
1142 command
->result
= DID_OK
<< 16
1143 | COMMAND_COMPLETE
<< 8
1144 | SAM_STAT_TASK_SET_FULL
;
1145 command
->SCp
.phase
= AAC_OWNER_ERROR_HANDLER
;
1146 command
->scsi_done(command
);
1152 scsi_unblock_requests(host
);
1153 spin_lock_irq(host
->host_lock
);
1157 int aac_check_health(struct aac_dev
* aac
)
1160 unsigned long time_now
, flagv
= 0;
1161 struct list_head
* entry
;
1162 struct Scsi_Host
* host
;
1164 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1165 if (spin_trylock_irqsave(&aac
->fib_lock
, flagv
) == 0)
1168 if (aac
->in_reset
|| !(BlinkLED
= aac_adapter_check_health(aac
))) {
1169 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1176 * aac_aifcmd.command = AifCmdEventNotify = 1
1177 * aac_aifcmd.seqnum = 0xFFFFFFFF
1178 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1179 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1180 * aac.aifcmd.data[2] = AifHighPriority = 3
1181 * aac.aifcmd.data[3] = BlinkLED
1184 time_now
= jiffies
/HZ
;
1185 entry
= aac
->fib_list
.next
;
1188 * For each Context that is on the
1189 * fibctxList, make a copy of the
1190 * fib, and then set the event to wake up the
1191 * thread that is waiting for it.
1193 while (entry
!= &aac
->fib_list
) {
1195 * Extract the fibctx
1197 struct aac_fib_context
*fibctx
= list_entry(entry
, struct aac_fib_context
, next
);
1198 struct hw_fib
* hw_fib
;
1201 * Check if the queue is getting
1204 if (fibctx
->count
> 20) {
1206 * It's *not* jiffies folks,
1207 * but jiffies / HZ, so do not
1210 u32 time_last
= fibctx
->jiffies
;
1212 * Has it been > 2 minutes
1213 * since the last read off
1216 if ((time_now
- time_last
) > aif_timeout
) {
1217 entry
= entry
->next
;
1218 aac_close_fib_context(aac
, fibctx
);
1223 * Warning: no sleep allowed while
1226 hw_fib
= kzalloc(sizeof(struct hw_fib
), GFP_ATOMIC
);
1227 fib
= kzalloc(sizeof(struct fib
), GFP_ATOMIC
);
1228 if (fib
&& hw_fib
) {
1229 struct aac_aifcmd
* aif
;
1231 fib
->hw_fib_va
= hw_fib
;
1234 fib
->type
= FSAFS_NTC_FIB_CONTEXT
;
1235 fib
->size
= sizeof (struct fib
);
1236 fib
->data
= hw_fib
->data
;
1237 aif
= (struct aac_aifcmd
*)hw_fib
->data
;
1238 aif
->command
= cpu_to_le32(AifCmdEventNotify
);
1239 aif
->seqnum
= cpu_to_le32(0xFFFFFFFF);
1240 aif
->data
[0] = cpu_to_le32(AifEnExpEvent
);
1241 aif
->data
[1] = cpu_to_le32(AifExeFirmwarePanic
);
1242 aif
->data
[2] = cpu_to_le32(AifHighPriority
);
1243 aif
->data
[3] = cpu_to_le32(BlinkLED
);
1246 * Put the FIB onto the
1249 list_add_tail(&fib
->fiblink
, &fibctx
->fib_list
);
1252 * Set the event to wake up the
1253 * thread that will waiting.
1255 up(&fibctx
->wait_sem
);
1257 printk(KERN_WARNING
"aifd: didn't allocate NewFib.\n");
1261 entry
= entry
->next
;
1264 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1267 printk(KERN_ERR
"%s: Host adapter dead %d\n", aac
->name
, BlinkLED
);
1271 printk(KERN_ERR
"%s: Host adapter BLINK LED 0x%x\n", aac
->name
, BlinkLED
);
1273 host
= aac
->scsi_host_ptr
;
1274 spin_lock_irqsave(host
->host_lock
, flagv
);
1275 BlinkLED
= _aac_reset_adapter(aac
);
1276 spin_unlock_irqrestore(host
->host_lock
, flagv
);
1286 * aac_command_thread - command processing thread
1287 * @dev: Adapter to monitor
1289 * Waits on the commandready event in it's queue. When the event gets set
1290 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1291 * until the queue is empty. When the queue is empty it will wait for
1295 int aac_command_thread(void *data
)
1297 struct aac_dev
*dev
= data
;
1298 struct hw_fib
*hw_fib
, *hw_newfib
;
1299 struct fib
*fib
, *newfib
;
1300 struct aac_fib_context
*fibctx
;
1301 unsigned long flags
;
1302 DECLARE_WAITQUEUE(wait
, current
);
1305 * We can only have one thread per adapter for AIF's.
1307 if (dev
->aif_thread
)
1311 * Let the DPC know it has a place to send the AIF's to.
1313 dev
->aif_thread
= 1;
1314 add_wait_queue(&dev
->queues
->queue
[HostNormCmdQueue
].cmdready
, &wait
);
1315 set_current_state(TASK_INTERRUPTIBLE
);
1316 dprintk ((KERN_INFO
"aac_command_thread start\n"));
1319 spin_lock_irqsave(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1320 while(!list_empty(&(dev
->queues
->queue
[HostNormCmdQueue
].cmdq
))) {
1321 struct list_head
*entry
;
1322 struct aac_aifcmd
* aifcmd
;
1324 set_current_state(TASK_RUNNING
);
1326 entry
= dev
->queues
->queue
[HostNormCmdQueue
].cmdq
.next
;
1329 spin_unlock_irqrestore(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1330 fib
= list_entry(entry
, struct fib
, fiblink
);
1332 * We will process the FIB here or pass it to a
1333 * worker thread that is TBD. We Really can't
1334 * do anything at this point since we don't have
1335 * anything defined for this thread to do.
1337 hw_fib
= fib
->hw_fib_va
;
1338 memset(fib
, 0, sizeof(struct fib
));
1339 fib
->type
= FSAFS_NTC_FIB_CONTEXT
;
1340 fib
->size
= sizeof( struct fib
);
1341 fib
->hw_fib_va
= hw_fib
;
1342 fib
->data
= hw_fib
->data
;
1345 * We only handle AifRequest fibs from the adapter.
1347 aifcmd
= (struct aac_aifcmd
*) hw_fib
->data
;
1348 if (aifcmd
->command
== cpu_to_le32(AifCmdDriverNotify
)) {
1349 /* Handle Driver Notify Events */
1350 aac_handle_aif(dev
, fib
);
1351 *(__le32
*)hw_fib
->data
= cpu_to_le32(ST_OK
);
1352 aac_fib_adapter_complete(fib
, (u16
)sizeof(u32
));
1354 struct list_head
*entry
;
1355 /* The u32 here is important and intended. We are using
1356 32bit wrapping time to fit the adapter field */
1358 u32 time_now
, time_last
;
1359 unsigned long flagv
;
1361 struct hw_fib
** hw_fib_pool
, ** hw_fib_p
;
1362 struct fib
** fib_pool
, ** fib_p
;
1365 if ((aifcmd
->command
==
1366 cpu_to_le32(AifCmdEventNotify
)) ||
1368 cpu_to_le32(AifCmdJobProgress
))) {
1369 aac_handle_aif(dev
, fib
);
1372 time_now
= jiffies
/HZ
;
1375 * Warning: no sleep allowed while
1376 * holding spinlock. We take the estimate
1377 * and pre-allocate a set of fibs outside the
1380 num
= le32_to_cpu(dev
->init
->AdapterFibsSize
)
1381 / sizeof(struct hw_fib
); /* some extra */
1382 spin_lock_irqsave(&dev
->fib_lock
, flagv
);
1383 entry
= dev
->fib_list
.next
;
1384 while (entry
!= &dev
->fib_list
) {
1385 entry
= entry
->next
;
1388 spin_unlock_irqrestore(&dev
->fib_lock
, flagv
);
1392 && ((hw_fib_pool
= kmalloc(sizeof(struct hw_fib
*) * num
, GFP_KERNEL
)))
1393 && ((fib_pool
= kmalloc(sizeof(struct fib
*) * num
, GFP_KERNEL
)))) {
1394 hw_fib_p
= hw_fib_pool
;
1396 while (hw_fib_p
< &hw_fib_pool
[num
]) {
1397 if (!(*(hw_fib_p
++) = kmalloc(sizeof(struct hw_fib
), GFP_KERNEL
))) {
1401 if (!(*(fib_p
++) = kmalloc(sizeof(struct fib
), GFP_KERNEL
))) {
1402 kfree(*(--hw_fib_p
));
1406 if ((num
= hw_fib_p
- hw_fib_pool
) == 0) {
1416 spin_lock_irqsave(&dev
->fib_lock
, flagv
);
1417 entry
= dev
->fib_list
.next
;
1419 * For each Context that is on the
1420 * fibctxList, make a copy of the
1421 * fib, and then set the event to wake up the
1422 * thread that is waiting for it.
1424 hw_fib_p
= hw_fib_pool
;
1426 while (entry
!= &dev
->fib_list
) {
1428 * Extract the fibctx
1430 fibctx
= list_entry(entry
, struct aac_fib_context
, next
);
1432 * Check if the queue is getting
1435 if (fibctx
->count
> 20)
1438 * It's *not* jiffies folks,
1439 * but jiffies / HZ so do not
1442 time_last
= fibctx
->jiffies
;
1444 * Has it been > 2 minutes
1445 * since the last read off
1448 if ((time_now
- time_last
) > aif_timeout
) {
1449 entry
= entry
->next
;
1450 aac_close_fib_context(dev
, fibctx
);
1455 * Warning: no sleep allowed while
1458 if (hw_fib_p
< &hw_fib_pool
[num
]) {
1459 hw_newfib
= *hw_fib_p
;
1460 *(hw_fib_p
++) = NULL
;
1464 * Make the copy of the FIB
1466 memcpy(hw_newfib
, hw_fib
, sizeof(struct hw_fib
));
1467 memcpy(newfib
, fib
, sizeof(struct fib
));
1468 newfib
->hw_fib_va
= hw_newfib
;
1470 * Put the FIB onto the
1473 list_add_tail(&newfib
->fiblink
, &fibctx
->fib_list
);
1476 * Set the event to wake up the
1477 * thread that is waiting.
1479 up(&fibctx
->wait_sem
);
1481 printk(KERN_WARNING
"aifd: didn't allocate NewFib.\n");
1483 entry
= entry
->next
;
1486 * Set the status of this FIB
1488 *(__le32
*)hw_fib
->data
= cpu_to_le32(ST_OK
);
1489 aac_fib_adapter_complete(fib
, sizeof(u32
));
1490 spin_unlock_irqrestore(&dev
->fib_lock
, flagv
);
1491 /* Free up the remaining resources */
1492 hw_fib_p
= hw_fib_pool
;
1494 while (hw_fib_p
< &hw_fib_pool
[num
]) {
1504 spin_lock_irqsave(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1507 * There are no more AIF's
1509 spin_unlock_irqrestore(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1512 if (kthread_should_stop())
1514 set_current_state(TASK_INTERRUPTIBLE
);
1517 remove_wait_queue(&dev
->queues
->queue
[HostNormCmdQueue
].cmdready
, &wait
);
1518 dev
->aif_thread
= 0;