2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
37 #include <scsi/scsi_cmnd.h>
39 static void blk_unplug_work(struct work_struct
*work
);
40 static void blk_unplug_timeout(unsigned long data
);
41 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
);
42 static void init_request_from_bio(struct request
*req
, struct bio
*bio
);
43 static int __make_request(struct request_queue
*q
, struct bio
*bio
);
44 static struct io_context
*current_io_context(gfp_t gfp_flags
, int node
);
45 static void blk_recalc_rq_segments(struct request
*rq
);
46 static void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
50 * For the allocated request tables
52 static struct kmem_cache
*request_cachep
;
55 * For queue allocation
57 static struct kmem_cache
*requestq_cachep
;
60 * For io context allocations
62 static struct kmem_cache
*iocontext_cachep
;
65 * Controlling structure to kblockd
67 static struct workqueue_struct
*kblockd_workqueue
;
69 unsigned long blk_max_low_pfn
, blk_max_pfn
;
71 EXPORT_SYMBOL(blk_max_low_pfn
);
72 EXPORT_SYMBOL(blk_max_pfn
);
74 static DEFINE_PER_CPU(struct list_head
, blk_cpu_done
);
76 /* Amount of time in which a process may batch requests */
77 #define BLK_BATCH_TIME (HZ/50UL)
79 /* Number of requests a "batching" process may submit */
80 #define BLK_BATCH_REQ 32
83 * Return the threshold (number of used requests) at which the queue is
84 * considered to be congested. It include a little hysteresis to keep the
85 * context switch rate down.
87 static inline int queue_congestion_on_threshold(struct request_queue
*q
)
89 return q
->nr_congestion_on
;
93 * The threshold at which a queue is considered to be uncongested
95 static inline int queue_congestion_off_threshold(struct request_queue
*q
)
97 return q
->nr_congestion_off
;
100 static void blk_queue_congestion_threshold(struct request_queue
*q
)
104 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
105 if (nr
> q
->nr_requests
)
107 q
->nr_congestion_on
= nr
;
109 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
112 q
->nr_congestion_off
= nr
;
116 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
119 * Locates the passed device's request queue and returns the address of its
122 * Will return NULL if the request queue cannot be located.
124 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
126 struct backing_dev_info
*ret
= NULL
;
127 struct request_queue
*q
= bdev_get_queue(bdev
);
130 ret
= &q
->backing_dev_info
;
133 EXPORT_SYMBOL(blk_get_backing_dev_info
);
136 * blk_queue_prep_rq - set a prepare_request function for queue
138 * @pfn: prepare_request function
140 * It's possible for a queue to register a prepare_request callback which
141 * is invoked before the request is handed to the request_fn. The goal of
142 * the function is to prepare a request for I/O, it can be used to build a
143 * cdb from the request data for instance.
146 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
151 EXPORT_SYMBOL(blk_queue_prep_rq
);
154 * blk_queue_merge_bvec - set a merge_bvec function for queue
156 * @mbfn: merge_bvec_fn
158 * Usually queues have static limitations on the max sectors or segments that
159 * we can put in a request. Stacking drivers may have some settings that
160 * are dynamic, and thus we have to query the queue whether it is ok to
161 * add a new bio_vec to a bio at a given offset or not. If the block device
162 * has such limitations, it needs to register a merge_bvec_fn to control
163 * the size of bio's sent to it. Note that a block device *must* allow a
164 * single page to be added to an empty bio. The block device driver may want
165 * to use the bio_split() function to deal with these bio's. By default
166 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
169 void blk_queue_merge_bvec(struct request_queue
*q
, merge_bvec_fn
*mbfn
)
171 q
->merge_bvec_fn
= mbfn
;
174 EXPORT_SYMBOL(blk_queue_merge_bvec
);
176 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
178 q
->softirq_done_fn
= fn
;
181 EXPORT_SYMBOL(blk_queue_softirq_done
);
184 * blk_queue_make_request - define an alternate make_request function for a device
185 * @q: the request queue for the device to be affected
186 * @mfn: the alternate make_request function
189 * The normal way for &struct bios to be passed to a device
190 * driver is for them to be collected into requests on a request
191 * queue, and then to allow the device driver to select requests
192 * off that queue when it is ready. This works well for many block
193 * devices. However some block devices (typically virtual devices
194 * such as md or lvm) do not benefit from the processing on the
195 * request queue, and are served best by having the requests passed
196 * directly to them. This can be achieved by providing a function
197 * to blk_queue_make_request().
200 * The driver that does this *must* be able to deal appropriately
201 * with buffers in "highmemory". This can be accomplished by either calling
202 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
203 * blk_queue_bounce() to create a buffer in normal memory.
205 void blk_queue_make_request(struct request_queue
* q
, make_request_fn
* mfn
)
210 q
->nr_requests
= BLKDEV_MAX_RQ
;
211 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
212 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
213 q
->make_request_fn
= mfn
;
214 q
->backing_dev_info
.ra_pages
= (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
215 q
->backing_dev_info
.state
= 0;
216 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
217 blk_queue_max_sectors(q
, SAFE_MAX_SECTORS
);
218 blk_queue_hardsect_size(q
, 512);
219 blk_queue_dma_alignment(q
, 511);
220 blk_queue_congestion_threshold(q
);
221 q
->nr_batching
= BLK_BATCH_REQ
;
223 q
->unplug_thresh
= 4; /* hmm */
224 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
225 if (q
->unplug_delay
== 0)
228 INIT_WORK(&q
->unplug_work
, blk_unplug_work
);
230 q
->unplug_timer
.function
= blk_unplug_timeout
;
231 q
->unplug_timer
.data
= (unsigned long)q
;
234 * by default assume old behaviour and bounce for any highmem page
236 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
239 EXPORT_SYMBOL(blk_queue_make_request
);
241 static void rq_init(struct request_queue
*q
, struct request
*rq
)
243 INIT_LIST_HEAD(&rq
->queuelist
);
244 INIT_LIST_HEAD(&rq
->donelist
);
247 rq
->bio
= rq
->biotail
= NULL
;
248 INIT_HLIST_NODE(&rq
->hash
);
249 RB_CLEAR_NODE(&rq
->rb_node
);
257 rq
->nr_phys_segments
= 0;
260 rq
->end_io_data
= NULL
;
261 rq
->completion_data
= NULL
;
266 * blk_queue_ordered - does this queue support ordered writes
267 * @q: the request queue
268 * @ordered: one of QUEUE_ORDERED_*
269 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
272 * For journalled file systems, doing ordered writes on a commit
273 * block instead of explicitly doing wait_on_buffer (which is bad
274 * for performance) can be a big win. Block drivers supporting this
275 * feature should call this function and indicate so.
278 int blk_queue_ordered(struct request_queue
*q
, unsigned ordered
,
279 prepare_flush_fn
*prepare_flush_fn
)
281 if (ordered
& (QUEUE_ORDERED_PREFLUSH
| QUEUE_ORDERED_POSTFLUSH
) &&
282 prepare_flush_fn
== NULL
) {
283 printk(KERN_ERR
"blk_queue_ordered: prepare_flush_fn required\n");
287 if (ordered
!= QUEUE_ORDERED_NONE
&&
288 ordered
!= QUEUE_ORDERED_DRAIN
&&
289 ordered
!= QUEUE_ORDERED_DRAIN_FLUSH
&&
290 ordered
!= QUEUE_ORDERED_DRAIN_FUA
&&
291 ordered
!= QUEUE_ORDERED_TAG
&&
292 ordered
!= QUEUE_ORDERED_TAG_FLUSH
&&
293 ordered
!= QUEUE_ORDERED_TAG_FUA
) {
294 printk(KERN_ERR
"blk_queue_ordered: bad value %d\n", ordered
);
298 q
->ordered
= ordered
;
299 q
->next_ordered
= ordered
;
300 q
->prepare_flush_fn
= prepare_flush_fn
;
305 EXPORT_SYMBOL(blk_queue_ordered
);
308 * blk_queue_issue_flush_fn - set function for issuing a flush
309 * @q: the request queue
310 * @iff: the function to be called issuing the flush
313 * If a driver supports issuing a flush command, the support is notified
314 * to the block layer by defining it through this call.
317 void blk_queue_issue_flush_fn(struct request_queue
*q
, issue_flush_fn
*iff
)
319 q
->issue_flush_fn
= iff
;
322 EXPORT_SYMBOL(blk_queue_issue_flush_fn
);
325 * Cache flushing for ordered writes handling
327 inline unsigned blk_ordered_cur_seq(struct request_queue
*q
)
331 return 1 << ffz(q
->ordseq
);
334 unsigned blk_ordered_req_seq(struct request
*rq
)
336 struct request_queue
*q
= rq
->q
;
338 BUG_ON(q
->ordseq
== 0);
340 if (rq
== &q
->pre_flush_rq
)
341 return QUEUE_ORDSEQ_PREFLUSH
;
342 if (rq
== &q
->bar_rq
)
343 return QUEUE_ORDSEQ_BAR
;
344 if (rq
== &q
->post_flush_rq
)
345 return QUEUE_ORDSEQ_POSTFLUSH
;
348 * !fs requests don't need to follow barrier ordering. Always
349 * put them at the front. This fixes the following deadlock.
351 * http://thread.gmane.org/gmane.linux.kernel/537473
353 if (!blk_fs_request(rq
))
354 return QUEUE_ORDSEQ_DRAIN
;
356 if ((rq
->cmd_flags
& REQ_ORDERED_COLOR
) ==
357 (q
->orig_bar_rq
->cmd_flags
& REQ_ORDERED_COLOR
))
358 return QUEUE_ORDSEQ_DRAIN
;
360 return QUEUE_ORDSEQ_DONE
;
363 void blk_ordered_complete_seq(struct request_queue
*q
, unsigned seq
, int error
)
368 if (error
&& !q
->orderr
)
371 BUG_ON(q
->ordseq
& seq
);
374 if (blk_ordered_cur_seq(q
) != QUEUE_ORDSEQ_DONE
)
378 * Okay, sequence complete.
381 uptodate
= q
->orderr
? q
->orderr
: 1;
385 end_that_request_first(rq
, uptodate
, rq
->hard_nr_sectors
);
386 end_that_request_last(rq
, uptodate
);
389 static void pre_flush_end_io(struct request
*rq
, int error
)
391 elv_completed_request(rq
->q
, rq
);
392 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_PREFLUSH
, error
);
395 static void bar_end_io(struct request
*rq
, int error
)
397 elv_completed_request(rq
->q
, rq
);
398 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_BAR
, error
);
401 static void post_flush_end_io(struct request
*rq
, int error
)
403 elv_completed_request(rq
->q
, rq
);
404 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_POSTFLUSH
, error
);
407 static void queue_flush(struct request_queue
*q
, unsigned which
)
410 rq_end_io_fn
*end_io
;
412 if (which
== QUEUE_ORDERED_PREFLUSH
) {
413 rq
= &q
->pre_flush_rq
;
414 end_io
= pre_flush_end_io
;
416 rq
= &q
->post_flush_rq
;
417 end_io
= post_flush_end_io
;
420 rq
->cmd_flags
= REQ_HARDBARRIER
;
422 rq
->elevator_private
= NULL
;
423 rq
->elevator_private2
= NULL
;
424 rq
->rq_disk
= q
->bar_rq
.rq_disk
;
426 q
->prepare_flush_fn(q
, rq
);
428 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
431 static inline struct request
*start_ordered(struct request_queue
*q
,
435 q
->ordered
= q
->next_ordered
;
436 q
->ordseq
|= QUEUE_ORDSEQ_STARTED
;
439 * Prep proxy barrier request.
441 blkdev_dequeue_request(rq
);
446 if (bio_data_dir(q
->orig_bar_rq
->bio
) == WRITE
)
447 rq
->cmd_flags
|= REQ_RW
;
448 rq
->cmd_flags
|= q
->ordered
& QUEUE_ORDERED_FUA
? REQ_FUA
: 0;
449 rq
->elevator_private
= NULL
;
450 rq
->elevator_private2
= NULL
;
451 init_request_from_bio(rq
, q
->orig_bar_rq
->bio
);
452 rq
->end_io
= bar_end_io
;
455 * Queue ordered sequence. As we stack them at the head, we
456 * need to queue in reverse order. Note that we rely on that
457 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
458 * request gets inbetween ordered sequence.
460 if (q
->ordered
& QUEUE_ORDERED_POSTFLUSH
)
461 queue_flush(q
, QUEUE_ORDERED_POSTFLUSH
);
463 q
->ordseq
|= QUEUE_ORDSEQ_POSTFLUSH
;
465 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
467 if (q
->ordered
& QUEUE_ORDERED_PREFLUSH
) {
468 queue_flush(q
, QUEUE_ORDERED_PREFLUSH
);
469 rq
= &q
->pre_flush_rq
;
471 q
->ordseq
|= QUEUE_ORDSEQ_PREFLUSH
;
473 if ((q
->ordered
& QUEUE_ORDERED_TAG
) || q
->in_flight
== 0)
474 q
->ordseq
|= QUEUE_ORDSEQ_DRAIN
;
481 int blk_do_ordered(struct request_queue
*q
, struct request
**rqp
)
483 struct request
*rq
= *rqp
;
484 int is_barrier
= blk_fs_request(rq
) && blk_barrier_rq(rq
);
490 if (q
->next_ordered
!= QUEUE_ORDERED_NONE
) {
491 *rqp
= start_ordered(q
, rq
);
495 * This can happen when the queue switches to
496 * ORDERED_NONE while this request is on it.
498 blkdev_dequeue_request(rq
);
499 end_that_request_first(rq
, -EOPNOTSUPP
,
500 rq
->hard_nr_sectors
);
501 end_that_request_last(rq
, -EOPNOTSUPP
);
508 * Ordered sequence in progress
511 /* Special requests are not subject to ordering rules. */
512 if (!blk_fs_request(rq
) &&
513 rq
!= &q
->pre_flush_rq
&& rq
!= &q
->post_flush_rq
)
516 if (q
->ordered
& QUEUE_ORDERED_TAG
) {
517 /* Ordered by tag. Blocking the next barrier is enough. */
518 if (is_barrier
&& rq
!= &q
->bar_rq
)
521 /* Ordered by draining. Wait for turn. */
522 WARN_ON(blk_ordered_req_seq(rq
) < blk_ordered_cur_seq(q
));
523 if (blk_ordered_req_seq(rq
) > blk_ordered_cur_seq(q
))
530 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
531 unsigned int nbytes
, int error
)
533 struct request_queue
*q
= rq
->q
;
535 if (&q
->bar_rq
!= rq
) {
537 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
538 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
541 if (unlikely(nbytes
> bio
->bi_size
)) {
542 printk("%s: want %u bytes done, only %u left\n",
543 __FUNCTION__
, nbytes
, bio
->bi_size
);
544 nbytes
= bio
->bi_size
;
547 bio
->bi_size
-= nbytes
;
548 bio
->bi_sector
+= (nbytes
>> 9);
549 if (bio
->bi_size
== 0)
550 bio_endio(bio
, error
);
554 * Okay, this is the barrier request in progress, just
557 if (error
&& !q
->orderr
)
563 * blk_queue_bounce_limit - set bounce buffer limit for queue
564 * @q: the request queue for the device
565 * @dma_addr: bus address limit
568 * Different hardware can have different requirements as to what pages
569 * it can do I/O directly to. A low level driver can call
570 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
571 * buffers for doing I/O to pages residing above @page.
573 void blk_queue_bounce_limit(struct request_queue
*q
, u64 dma_addr
)
575 unsigned long bounce_pfn
= dma_addr
>> PAGE_SHIFT
;
578 q
->bounce_gfp
= GFP_NOIO
;
579 #if BITS_PER_LONG == 64
580 /* Assume anything <= 4GB can be handled by IOMMU.
581 Actually some IOMMUs can handle everything, but I don't
582 know of a way to test this here. */
583 if (bounce_pfn
< (min_t(u64
,0xffffffff,BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
585 q
->bounce_pfn
= max_low_pfn
;
587 if (bounce_pfn
< blk_max_low_pfn
)
589 q
->bounce_pfn
= bounce_pfn
;
592 init_emergency_isa_pool();
593 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
594 q
->bounce_pfn
= bounce_pfn
;
598 EXPORT_SYMBOL(blk_queue_bounce_limit
);
601 * blk_queue_max_sectors - set max sectors for a request for this queue
602 * @q: the request queue for the device
603 * @max_sectors: max sectors in the usual 512b unit
606 * Enables a low level driver to set an upper limit on the size of
609 void blk_queue_max_sectors(struct request_queue
*q
, unsigned int max_sectors
)
611 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
612 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
613 printk("%s: set to minimum %d\n", __FUNCTION__
, max_sectors
);
616 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
617 q
->max_hw_sectors
= q
->max_sectors
= max_sectors
;
619 q
->max_sectors
= BLK_DEF_MAX_SECTORS
;
620 q
->max_hw_sectors
= max_sectors
;
624 EXPORT_SYMBOL(blk_queue_max_sectors
);
627 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
628 * @q: the request queue for the device
629 * @max_segments: max number of segments
632 * Enables a low level driver to set an upper limit on the number of
633 * physical data segments in a request. This would be the largest sized
634 * scatter list the driver could handle.
636 void blk_queue_max_phys_segments(struct request_queue
*q
,
637 unsigned short max_segments
)
641 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
644 q
->max_phys_segments
= max_segments
;
647 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
650 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
651 * @q: the request queue for the device
652 * @max_segments: max number of segments
655 * Enables a low level driver to set an upper limit on the number of
656 * hw data segments in a request. This would be the largest number of
657 * address/length pairs the host adapter can actually give as once
660 void blk_queue_max_hw_segments(struct request_queue
*q
,
661 unsigned short max_segments
)
665 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
668 q
->max_hw_segments
= max_segments
;
671 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
674 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
675 * @q: the request queue for the device
676 * @max_size: max size of segment in bytes
679 * Enables a low level driver to set an upper limit on the size of a
682 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
684 if (max_size
< PAGE_CACHE_SIZE
) {
685 max_size
= PAGE_CACHE_SIZE
;
686 printk("%s: set to minimum %d\n", __FUNCTION__
, max_size
);
689 q
->max_segment_size
= max_size
;
692 EXPORT_SYMBOL(blk_queue_max_segment_size
);
695 * blk_queue_hardsect_size - set hardware sector size for the queue
696 * @q: the request queue for the device
697 * @size: the hardware sector size, in bytes
700 * This should typically be set to the lowest possible sector size
701 * that the hardware can operate on (possible without reverting to
702 * even internal read-modify-write operations). Usually the default
703 * of 512 covers most hardware.
705 void blk_queue_hardsect_size(struct request_queue
*q
, unsigned short size
)
707 q
->hardsect_size
= size
;
710 EXPORT_SYMBOL(blk_queue_hardsect_size
);
713 * Returns the minimum that is _not_ zero, unless both are zero.
715 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
718 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
719 * @t: the stacking driver (top)
720 * @b: the underlying device (bottom)
722 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
724 /* zero is "infinity" */
725 t
->max_sectors
= min_not_zero(t
->max_sectors
,b
->max_sectors
);
726 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
,b
->max_hw_sectors
);
728 t
->max_phys_segments
= min(t
->max_phys_segments
,b
->max_phys_segments
);
729 t
->max_hw_segments
= min(t
->max_hw_segments
,b
->max_hw_segments
);
730 t
->max_segment_size
= min(t
->max_segment_size
,b
->max_segment_size
);
731 t
->hardsect_size
= max(t
->hardsect_size
,b
->hardsect_size
);
732 if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
))
733 clear_bit(QUEUE_FLAG_CLUSTER
, &t
->queue_flags
);
736 EXPORT_SYMBOL(blk_queue_stack_limits
);
739 * blk_queue_segment_boundary - set boundary rules for segment merging
740 * @q: the request queue for the device
741 * @mask: the memory boundary mask
743 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
745 if (mask
< PAGE_CACHE_SIZE
- 1) {
746 mask
= PAGE_CACHE_SIZE
- 1;
747 printk("%s: set to minimum %lx\n", __FUNCTION__
, mask
);
750 q
->seg_boundary_mask
= mask
;
753 EXPORT_SYMBOL(blk_queue_segment_boundary
);
756 * blk_queue_dma_alignment - set dma length and memory alignment
757 * @q: the request queue for the device
758 * @mask: alignment mask
761 * set required memory and length aligment for direct dma transactions.
762 * this is used when buiding direct io requests for the queue.
765 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
767 q
->dma_alignment
= mask
;
770 EXPORT_SYMBOL(blk_queue_dma_alignment
);
773 * blk_queue_find_tag - find a request by its tag and queue
774 * @q: The request queue for the device
775 * @tag: The tag of the request
778 * Should be used when a device returns a tag and you want to match
781 * no locks need be held.
783 struct request
*blk_queue_find_tag(struct request_queue
*q
, int tag
)
785 return blk_map_queue_find_tag(q
->queue_tags
, tag
);
788 EXPORT_SYMBOL(blk_queue_find_tag
);
791 * __blk_free_tags - release a given set of tag maintenance info
792 * @bqt: the tag map to free
794 * Tries to free the specified @bqt@. Returns true if it was
795 * actually freed and false if there are still references using it
797 static int __blk_free_tags(struct blk_queue_tag
*bqt
)
801 retval
= atomic_dec_and_test(&bqt
->refcnt
);
804 BUG_ON(!list_empty(&bqt
->busy_list
));
806 kfree(bqt
->tag_index
);
807 bqt
->tag_index
= NULL
;
820 * __blk_queue_free_tags - release tag maintenance info
821 * @q: the request queue for the device
824 * blk_cleanup_queue() will take care of calling this function, if tagging
825 * has been used. So there's no need to call this directly.
827 static void __blk_queue_free_tags(struct request_queue
*q
)
829 struct blk_queue_tag
*bqt
= q
->queue_tags
;
834 __blk_free_tags(bqt
);
836 q
->queue_tags
= NULL
;
837 q
->queue_flags
&= ~(1 << QUEUE_FLAG_QUEUED
);
842 * blk_free_tags - release a given set of tag maintenance info
843 * @bqt: the tag map to free
845 * For externally managed @bqt@ frees the map. Callers of this
846 * function must guarantee to have released all the queues that
847 * might have been using this tag map.
849 void blk_free_tags(struct blk_queue_tag
*bqt
)
851 if (unlikely(!__blk_free_tags(bqt
)))
854 EXPORT_SYMBOL(blk_free_tags
);
857 * blk_queue_free_tags - release tag maintenance info
858 * @q: the request queue for the device
861 * This is used to disabled tagged queuing to a device, yet leave
864 void blk_queue_free_tags(struct request_queue
*q
)
866 clear_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
869 EXPORT_SYMBOL(blk_queue_free_tags
);
872 init_tag_map(struct request_queue
*q
, struct blk_queue_tag
*tags
, int depth
)
874 struct request
**tag_index
;
875 unsigned long *tag_map
;
878 if (q
&& depth
> q
->nr_requests
* 2) {
879 depth
= q
->nr_requests
* 2;
880 printk(KERN_ERR
"%s: adjusted depth to %d\n",
881 __FUNCTION__
, depth
);
884 tag_index
= kzalloc(depth
* sizeof(struct request
*), GFP_ATOMIC
);
888 nr_ulongs
= ALIGN(depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
889 tag_map
= kzalloc(nr_ulongs
* sizeof(unsigned long), GFP_ATOMIC
);
893 tags
->real_max_depth
= depth
;
894 tags
->max_depth
= depth
;
895 tags
->tag_index
= tag_index
;
896 tags
->tag_map
= tag_map
;
904 static struct blk_queue_tag
*__blk_queue_init_tags(struct request_queue
*q
,
907 struct blk_queue_tag
*tags
;
909 tags
= kmalloc(sizeof(struct blk_queue_tag
), GFP_ATOMIC
);
913 if (init_tag_map(q
, tags
, depth
))
916 INIT_LIST_HEAD(&tags
->busy_list
);
918 atomic_set(&tags
->refcnt
, 1);
926 * blk_init_tags - initialize the tag info for an external tag map
927 * @depth: the maximum queue depth supported
928 * @tags: the tag to use
930 struct blk_queue_tag
*blk_init_tags(int depth
)
932 return __blk_queue_init_tags(NULL
, depth
);
934 EXPORT_SYMBOL(blk_init_tags
);
937 * blk_queue_init_tags - initialize the queue tag info
938 * @q: the request queue for the device
939 * @depth: the maximum queue depth supported
940 * @tags: the tag to use
942 int blk_queue_init_tags(struct request_queue
*q
, int depth
,
943 struct blk_queue_tag
*tags
)
947 BUG_ON(tags
&& q
->queue_tags
&& tags
!= q
->queue_tags
);
949 if (!tags
&& !q
->queue_tags
) {
950 tags
= __blk_queue_init_tags(q
, depth
);
954 } else if (q
->queue_tags
) {
955 if ((rc
= blk_queue_resize_tags(q
, depth
)))
957 set_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
960 atomic_inc(&tags
->refcnt
);
963 * assign it, all done
965 q
->queue_tags
= tags
;
966 q
->queue_flags
|= (1 << QUEUE_FLAG_QUEUED
);
973 EXPORT_SYMBOL(blk_queue_init_tags
);
976 * blk_queue_resize_tags - change the queueing depth
977 * @q: the request queue for the device
978 * @new_depth: the new max command queueing depth
981 * Must be called with the queue lock held.
983 int blk_queue_resize_tags(struct request_queue
*q
, int new_depth
)
985 struct blk_queue_tag
*bqt
= q
->queue_tags
;
986 struct request
**tag_index
;
987 unsigned long *tag_map
;
988 int max_depth
, nr_ulongs
;
994 * if we already have large enough real_max_depth. just
995 * adjust max_depth. *NOTE* as requests with tag value
996 * between new_depth and real_max_depth can be in-flight, tag
997 * map can not be shrunk blindly here.
999 if (new_depth
<= bqt
->real_max_depth
) {
1000 bqt
->max_depth
= new_depth
;
1005 * Currently cannot replace a shared tag map with a new
1006 * one, so error out if this is the case
1008 if (atomic_read(&bqt
->refcnt
) != 1)
1012 * save the old state info, so we can copy it back
1014 tag_index
= bqt
->tag_index
;
1015 tag_map
= bqt
->tag_map
;
1016 max_depth
= bqt
->real_max_depth
;
1018 if (init_tag_map(q
, bqt
, new_depth
))
1021 memcpy(bqt
->tag_index
, tag_index
, max_depth
* sizeof(struct request
*));
1022 nr_ulongs
= ALIGN(max_depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
1023 memcpy(bqt
->tag_map
, tag_map
, nr_ulongs
* sizeof(unsigned long));
1030 EXPORT_SYMBOL(blk_queue_resize_tags
);
1033 * blk_queue_end_tag - end tag operations for a request
1034 * @q: the request queue for the device
1035 * @rq: the request that has completed
1038 * Typically called when end_that_request_first() returns 0, meaning
1039 * all transfers have been done for a request. It's important to call
1040 * this function before end_that_request_last(), as that will put the
1041 * request back on the free list thus corrupting the internal tag list.
1044 * queue lock must be held.
1046 void blk_queue_end_tag(struct request_queue
*q
, struct request
*rq
)
1048 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1053 if (unlikely(tag
>= bqt
->real_max_depth
))
1055 * This can happen after tag depth has been reduced.
1056 * FIXME: how about a warning or info message here?
1060 list_del_init(&rq
->queuelist
);
1061 rq
->cmd_flags
&= ~REQ_QUEUED
;
1064 if (unlikely(bqt
->tag_index
[tag
] == NULL
))
1065 printk(KERN_ERR
"%s: tag %d is missing\n",
1068 bqt
->tag_index
[tag
] = NULL
;
1071 * We use test_and_clear_bit's memory ordering properties here.
1072 * The tag_map bit acts as a lock for tag_index[bit], so we need
1073 * a barrer before clearing the bit (precisely: release semantics).
1074 * Could use clear_bit_unlock when it is merged.
1076 if (unlikely(!test_and_clear_bit(tag
, bqt
->tag_map
))) {
1077 printk(KERN_ERR
"%s: attempt to clear non-busy tag (%d)\n",
1085 EXPORT_SYMBOL(blk_queue_end_tag
);
1088 * blk_queue_start_tag - find a free tag and assign it
1089 * @q: the request queue for the device
1090 * @rq: the block request that needs tagging
1093 * This can either be used as a stand-alone helper, or possibly be
1094 * assigned as the queue &prep_rq_fn (in which case &struct request
1095 * automagically gets a tag assigned). Note that this function
1096 * assumes that any type of request can be queued! if this is not
1097 * true for your device, you must check the request type before
1098 * calling this function. The request will also be removed from
1099 * the request queue, so it's the drivers responsibility to readd
1100 * it if it should need to be restarted for some reason.
1103 * queue lock must be held.
1105 int blk_queue_start_tag(struct request_queue
*q
, struct request
*rq
)
1107 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1110 if (unlikely((rq
->cmd_flags
& REQ_QUEUED
))) {
1112 "%s: request %p for device [%s] already tagged %d",
1114 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->tag
);
1119 * Protect against shared tag maps, as we may not have exclusive
1120 * access to the tag map.
1123 tag
= find_first_zero_bit(bqt
->tag_map
, bqt
->max_depth
);
1124 if (tag
>= bqt
->max_depth
)
1127 } while (test_and_set_bit(tag
, bqt
->tag_map
));
1129 * We rely on test_and_set_bit providing lock memory ordering semantics
1130 * (could use test_and_set_bit_lock when it is merged).
1133 rq
->cmd_flags
|= REQ_QUEUED
;
1135 bqt
->tag_index
[tag
] = rq
;
1136 blkdev_dequeue_request(rq
);
1137 list_add(&rq
->queuelist
, &bqt
->busy_list
);
1142 EXPORT_SYMBOL(blk_queue_start_tag
);
1145 * blk_queue_invalidate_tags - invalidate all pending tags
1146 * @q: the request queue for the device
1149 * Hardware conditions may dictate a need to stop all pending requests.
1150 * In this case, we will safely clear the block side of the tag queue and
1151 * readd all requests to the request queue in the right order.
1154 * queue lock must be held.
1156 void blk_queue_invalidate_tags(struct request_queue
*q
)
1158 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1159 struct list_head
*tmp
, *n
;
1162 list_for_each_safe(tmp
, n
, &bqt
->busy_list
) {
1163 rq
= list_entry_rq(tmp
);
1165 if (rq
->tag
== -1) {
1167 "%s: bad tag found on list\n", __FUNCTION__
);
1168 list_del_init(&rq
->queuelist
);
1169 rq
->cmd_flags
&= ~REQ_QUEUED
;
1171 blk_queue_end_tag(q
, rq
);
1173 rq
->cmd_flags
&= ~REQ_STARTED
;
1174 __elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 0);
1178 EXPORT_SYMBOL(blk_queue_invalidate_tags
);
1180 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
1184 printk("%s: dev %s: type=%x, flags=%x\n", msg
,
1185 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
1188 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq
->sector
,
1190 rq
->current_nr_sectors
);
1191 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq
->bio
, rq
->biotail
, rq
->buffer
, rq
->data
, rq
->data_len
);
1193 if (blk_pc_request(rq
)) {
1195 for (bit
= 0; bit
< sizeof(rq
->cmd
); bit
++)
1196 printk("%02x ", rq
->cmd
[bit
]);
1201 EXPORT_SYMBOL(blk_dump_rq_flags
);
1203 void blk_recount_segments(struct request_queue
*q
, struct bio
*bio
)
1206 struct bio
*nxt
= bio
->bi_next
;
1208 rq
.bio
= rq
.biotail
= bio
;
1209 bio
->bi_next
= NULL
;
1210 blk_recalc_rq_segments(&rq
);
1212 bio
->bi_phys_segments
= rq
.nr_phys_segments
;
1213 bio
->bi_hw_segments
= rq
.nr_hw_segments
;
1214 bio
->bi_flags
|= (1 << BIO_SEG_VALID
);
1216 EXPORT_SYMBOL(blk_recount_segments
);
1218 static void blk_recalc_rq_segments(struct request
*rq
)
1222 unsigned int phys_size
;
1223 unsigned int hw_size
;
1224 struct bio_vec
*bv
, *bvprv
= NULL
;
1228 struct req_iterator iter
;
1229 int high
, highprv
= 1;
1230 struct request_queue
*q
= rq
->q
;
1235 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1236 hw_seg_size
= seg_size
= 0;
1237 phys_size
= hw_size
= nr_phys_segs
= nr_hw_segs
= 0;
1238 rq_for_each_segment(bv
, rq
, iter
) {
1240 * the trick here is making sure that a high page is never
1241 * considered part of another segment, since that might
1242 * change with the bounce page.
1244 high
= page_to_pfn(bv
->bv_page
) > q
->bounce_pfn
;
1245 if (high
|| highprv
)
1246 goto new_hw_segment
;
1248 if (seg_size
+ bv
->bv_len
> q
->max_segment_size
)
1250 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bv
))
1252 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bv
))
1254 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1255 goto new_hw_segment
;
1257 seg_size
+= bv
->bv_len
;
1258 hw_seg_size
+= bv
->bv_len
;
1263 if (BIOVEC_VIRT_MERGEABLE(bvprv
, bv
) &&
1264 !BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1265 hw_seg_size
+= bv
->bv_len
;
1268 if (nr_hw_segs
== 1 &&
1269 hw_seg_size
> rq
->bio
->bi_hw_front_size
)
1270 rq
->bio
->bi_hw_front_size
= hw_seg_size
;
1271 hw_seg_size
= BIOVEC_VIRT_START_SIZE(bv
) + bv
->bv_len
;
1277 seg_size
= bv
->bv_len
;
1281 if (nr_hw_segs
== 1 &&
1282 hw_seg_size
> rq
->bio
->bi_hw_front_size
)
1283 rq
->bio
->bi_hw_front_size
= hw_seg_size
;
1284 if (hw_seg_size
> rq
->biotail
->bi_hw_back_size
)
1285 rq
->biotail
->bi_hw_back_size
= hw_seg_size
;
1286 rq
->nr_phys_segments
= nr_phys_segs
;
1287 rq
->nr_hw_segments
= nr_hw_segs
;
1290 static int blk_phys_contig_segment(struct request_queue
*q
, struct bio
*bio
,
1293 if (!(q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
)))
1296 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)))
1298 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1302 * bio and nxt are contigous in memory, check if the queue allows
1303 * these two to be merged into one
1305 if (BIO_SEG_BOUNDARY(q
, bio
, nxt
))
1311 static int blk_hw_contig_segment(struct request_queue
*q
, struct bio
*bio
,
1314 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1315 blk_recount_segments(q
, bio
);
1316 if (unlikely(!bio_flagged(nxt
, BIO_SEG_VALID
)))
1317 blk_recount_segments(q
, nxt
);
1318 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)) ||
1319 BIOVEC_VIRT_OVERSIZE(bio
->bi_hw_back_size
+ nxt
->bi_hw_front_size
))
1321 if (bio
->bi_hw_back_size
+ nxt
->bi_hw_front_size
> q
->max_segment_size
)
1328 * map a request to scatterlist, return number of sg entries setup. Caller
1329 * must make sure sg can hold rq->nr_phys_segments entries
1331 int blk_rq_map_sg(struct request_queue
*q
, struct request
*rq
,
1332 struct scatterlist
*sg
)
1334 struct bio_vec
*bvec
, *bvprv
;
1335 struct req_iterator iter
;
1339 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1342 * for each bio in rq
1345 rq_for_each_segment(bvec
, rq
, iter
) {
1346 int nbytes
= bvec
->bv_len
;
1348 if (bvprv
&& cluster
) {
1349 if (sg
[nsegs
- 1].length
+ nbytes
> q
->max_segment_size
)
1352 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bvec
))
1354 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bvec
))
1357 sg
[nsegs
- 1].length
+= nbytes
;
1360 memset(&sg
[nsegs
],0,sizeof(struct scatterlist
));
1361 sg
[nsegs
].page
= bvec
->bv_page
;
1362 sg
[nsegs
].length
= nbytes
;
1363 sg
[nsegs
].offset
= bvec
->bv_offset
;
1368 } /* segments in rq */
1373 EXPORT_SYMBOL(blk_rq_map_sg
);
1376 * the standard queue merge functions, can be overridden with device
1377 * specific ones if so desired
1380 static inline int ll_new_mergeable(struct request_queue
*q
,
1381 struct request
*req
,
1384 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1386 if (req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1387 req
->cmd_flags
|= REQ_NOMERGE
;
1388 if (req
== q
->last_merge
)
1389 q
->last_merge
= NULL
;
1394 * A hw segment is just getting larger, bump just the phys
1397 req
->nr_phys_segments
+= nr_phys_segs
;
1401 static inline int ll_new_hw_segment(struct request_queue
*q
,
1402 struct request
*req
,
1405 int nr_hw_segs
= bio_hw_segments(q
, bio
);
1406 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1408 if (req
->nr_hw_segments
+ nr_hw_segs
> q
->max_hw_segments
1409 || req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1410 req
->cmd_flags
|= REQ_NOMERGE
;
1411 if (req
== q
->last_merge
)
1412 q
->last_merge
= NULL
;
1417 * This will form the start of a new hw segment. Bump both
1420 req
->nr_hw_segments
+= nr_hw_segs
;
1421 req
->nr_phys_segments
+= nr_phys_segs
;
1425 static int ll_back_merge_fn(struct request_queue
*q
, struct request
*req
,
1428 unsigned short max_sectors
;
1431 if (unlikely(blk_pc_request(req
)))
1432 max_sectors
= q
->max_hw_sectors
;
1434 max_sectors
= q
->max_sectors
;
1436 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1437 req
->cmd_flags
|= REQ_NOMERGE
;
1438 if (req
== q
->last_merge
)
1439 q
->last_merge
= NULL
;
1442 if (unlikely(!bio_flagged(req
->biotail
, BIO_SEG_VALID
)))
1443 blk_recount_segments(q
, req
->biotail
);
1444 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1445 blk_recount_segments(q
, bio
);
1446 len
= req
->biotail
->bi_hw_back_size
+ bio
->bi_hw_front_size
;
1447 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req
->biotail
), __BVEC_START(bio
)) &&
1448 !BIOVEC_VIRT_OVERSIZE(len
)) {
1449 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1452 if (req
->nr_hw_segments
== 1)
1453 req
->bio
->bi_hw_front_size
= len
;
1454 if (bio
->bi_hw_segments
== 1)
1455 bio
->bi_hw_back_size
= len
;
1460 return ll_new_hw_segment(q
, req
, bio
);
1463 static int ll_front_merge_fn(struct request_queue
*q
, struct request
*req
,
1466 unsigned short max_sectors
;
1469 if (unlikely(blk_pc_request(req
)))
1470 max_sectors
= q
->max_hw_sectors
;
1472 max_sectors
= q
->max_sectors
;
1475 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1476 req
->cmd_flags
|= REQ_NOMERGE
;
1477 if (req
== q
->last_merge
)
1478 q
->last_merge
= NULL
;
1481 len
= bio
->bi_hw_back_size
+ req
->bio
->bi_hw_front_size
;
1482 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1483 blk_recount_segments(q
, bio
);
1484 if (unlikely(!bio_flagged(req
->bio
, BIO_SEG_VALID
)))
1485 blk_recount_segments(q
, req
->bio
);
1486 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(req
->bio
)) &&
1487 !BIOVEC_VIRT_OVERSIZE(len
)) {
1488 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1491 if (bio
->bi_hw_segments
== 1)
1492 bio
->bi_hw_front_size
= len
;
1493 if (req
->nr_hw_segments
== 1)
1494 req
->biotail
->bi_hw_back_size
= len
;
1499 return ll_new_hw_segment(q
, req
, bio
);
1502 static int ll_merge_requests_fn(struct request_queue
*q
, struct request
*req
,
1503 struct request
*next
)
1505 int total_phys_segments
;
1506 int total_hw_segments
;
1509 * First check if the either of the requests are re-queued
1510 * requests. Can't merge them if they are.
1512 if (req
->special
|| next
->special
)
1516 * Will it become too large?
1518 if ((req
->nr_sectors
+ next
->nr_sectors
) > q
->max_sectors
)
1521 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
1522 if (blk_phys_contig_segment(q
, req
->biotail
, next
->bio
))
1523 total_phys_segments
--;
1525 if (total_phys_segments
> q
->max_phys_segments
)
1528 total_hw_segments
= req
->nr_hw_segments
+ next
->nr_hw_segments
;
1529 if (blk_hw_contig_segment(q
, req
->biotail
, next
->bio
)) {
1530 int len
= req
->biotail
->bi_hw_back_size
+ next
->bio
->bi_hw_front_size
;
1532 * propagate the combined length to the end of the requests
1534 if (req
->nr_hw_segments
== 1)
1535 req
->bio
->bi_hw_front_size
= len
;
1536 if (next
->nr_hw_segments
== 1)
1537 next
->biotail
->bi_hw_back_size
= len
;
1538 total_hw_segments
--;
1541 if (total_hw_segments
> q
->max_hw_segments
)
1544 /* Merge is OK... */
1545 req
->nr_phys_segments
= total_phys_segments
;
1546 req
->nr_hw_segments
= total_hw_segments
;
1551 * "plug" the device if there are no outstanding requests: this will
1552 * force the transfer to start only after we have put all the requests
1555 * This is called with interrupts off and no requests on the queue and
1556 * with the queue lock held.
1558 void blk_plug_device(struct request_queue
*q
)
1560 WARN_ON(!irqs_disabled());
1563 * don't plug a stopped queue, it must be paired with blk_start_queue()
1564 * which will restart the queueing
1566 if (blk_queue_stopped(q
))
1569 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
)) {
1570 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
1571 blk_add_trace_generic(q
, NULL
, 0, BLK_TA_PLUG
);
1575 EXPORT_SYMBOL(blk_plug_device
);
1578 * remove the queue from the plugged list, if present. called with
1579 * queue lock held and interrupts disabled.
1581 int blk_remove_plug(struct request_queue
*q
)
1583 WARN_ON(!irqs_disabled());
1585 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1588 del_timer(&q
->unplug_timer
);
1592 EXPORT_SYMBOL(blk_remove_plug
);
1595 * remove the plug and let it rip..
1597 void __generic_unplug_device(struct request_queue
*q
)
1599 if (unlikely(blk_queue_stopped(q
)))
1602 if (!blk_remove_plug(q
))
1607 EXPORT_SYMBOL(__generic_unplug_device
);
1610 * generic_unplug_device - fire a request queue
1611 * @q: The &struct request_queue in question
1614 * Linux uses plugging to build bigger requests queues before letting
1615 * the device have at them. If a queue is plugged, the I/O scheduler
1616 * is still adding and merging requests on the queue. Once the queue
1617 * gets unplugged, the request_fn defined for the queue is invoked and
1618 * transfers started.
1620 void generic_unplug_device(struct request_queue
*q
)
1622 spin_lock_irq(q
->queue_lock
);
1623 __generic_unplug_device(q
);
1624 spin_unlock_irq(q
->queue_lock
);
1626 EXPORT_SYMBOL(generic_unplug_device
);
1628 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
1631 struct request_queue
*q
= bdi
->unplug_io_data
;
1634 * devices don't necessarily have an ->unplug_fn defined
1637 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
1638 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1644 static void blk_unplug_work(struct work_struct
*work
)
1646 struct request_queue
*q
=
1647 container_of(work
, struct request_queue
, unplug_work
);
1649 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
1650 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1655 static void blk_unplug_timeout(unsigned long data
)
1657 struct request_queue
*q
= (struct request_queue
*)data
;
1659 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_TIMER
, NULL
,
1660 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1662 kblockd_schedule_work(&q
->unplug_work
);
1666 * blk_start_queue - restart a previously stopped queue
1667 * @q: The &struct request_queue in question
1670 * blk_start_queue() will clear the stop flag on the queue, and call
1671 * the request_fn for the queue if it was in a stopped state when
1672 * entered. Also see blk_stop_queue(). Queue lock must be held.
1674 void blk_start_queue(struct request_queue
*q
)
1676 WARN_ON(!irqs_disabled());
1678 clear_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1681 * one level of recursion is ok and is much faster than kicking
1682 * the unplug handling
1684 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1686 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1689 kblockd_schedule_work(&q
->unplug_work
);
1693 EXPORT_SYMBOL(blk_start_queue
);
1696 * blk_stop_queue - stop a queue
1697 * @q: The &struct request_queue in question
1700 * The Linux block layer assumes that a block driver will consume all
1701 * entries on the request queue when the request_fn strategy is called.
1702 * Often this will not happen, because of hardware limitations (queue
1703 * depth settings). If a device driver gets a 'queue full' response,
1704 * or if it simply chooses not to queue more I/O at one point, it can
1705 * call this function to prevent the request_fn from being called until
1706 * the driver has signalled it's ready to go again. This happens by calling
1707 * blk_start_queue() to restart queue operations. Queue lock must be held.
1709 void blk_stop_queue(struct request_queue
*q
)
1712 set_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1714 EXPORT_SYMBOL(blk_stop_queue
);
1717 * blk_sync_queue - cancel any pending callbacks on a queue
1721 * The block layer may perform asynchronous callback activity
1722 * on a queue, such as calling the unplug function after a timeout.
1723 * A block device may call blk_sync_queue to ensure that any
1724 * such activity is cancelled, thus allowing it to release resources
1725 * that the callbacks might use. The caller must already have made sure
1726 * that its ->make_request_fn will not re-add plugging prior to calling
1730 void blk_sync_queue(struct request_queue
*q
)
1732 del_timer_sync(&q
->unplug_timer
);
1734 EXPORT_SYMBOL(blk_sync_queue
);
1737 * blk_run_queue - run a single device queue
1738 * @q: The queue to run
1740 void blk_run_queue(struct request_queue
*q
)
1742 unsigned long flags
;
1744 spin_lock_irqsave(q
->queue_lock
, flags
);
1748 * Only recurse once to avoid overrunning the stack, let the unplug
1749 * handling reinvoke the handler shortly if we already got there.
1751 if (!elv_queue_empty(q
)) {
1752 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1754 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1757 kblockd_schedule_work(&q
->unplug_work
);
1761 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1763 EXPORT_SYMBOL(blk_run_queue
);
1766 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
1767 * @kobj: the kobj belonging of the request queue to be released
1770 * blk_cleanup_queue is the pair to blk_init_queue() or
1771 * blk_queue_make_request(). It should be called when a request queue is
1772 * being released; typically when a block device is being de-registered.
1773 * Currently, its primary task it to free all the &struct request
1774 * structures that were allocated to the queue and the queue itself.
1777 * Hopefully the low level driver will have finished any
1778 * outstanding requests first...
1780 static void blk_release_queue(struct kobject
*kobj
)
1782 struct request_queue
*q
=
1783 container_of(kobj
, struct request_queue
, kobj
);
1784 struct request_list
*rl
= &q
->rq
;
1789 mempool_destroy(rl
->rq_pool
);
1792 __blk_queue_free_tags(q
);
1794 blk_trace_shutdown(q
);
1796 kmem_cache_free(requestq_cachep
, q
);
1799 void blk_put_queue(struct request_queue
*q
)
1801 kobject_put(&q
->kobj
);
1803 EXPORT_SYMBOL(blk_put_queue
);
1805 void blk_cleanup_queue(struct request_queue
* q
)
1807 mutex_lock(&q
->sysfs_lock
);
1808 set_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
);
1809 mutex_unlock(&q
->sysfs_lock
);
1812 elevator_exit(q
->elevator
);
1817 EXPORT_SYMBOL(blk_cleanup_queue
);
1819 static int blk_init_free_list(struct request_queue
*q
)
1821 struct request_list
*rl
= &q
->rq
;
1823 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
1824 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
1826 init_waitqueue_head(&rl
->wait
[READ
]);
1827 init_waitqueue_head(&rl
->wait
[WRITE
]);
1829 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
1830 mempool_free_slab
, request_cachep
, q
->node
);
1838 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
1840 return blk_alloc_queue_node(gfp_mask
, -1);
1842 EXPORT_SYMBOL(blk_alloc_queue
);
1844 static struct kobj_type queue_ktype
;
1846 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
1848 struct request_queue
*q
;
1850 q
= kmem_cache_alloc_node(requestq_cachep
,
1851 gfp_mask
| __GFP_ZERO
, node_id
);
1855 init_timer(&q
->unplug_timer
);
1857 snprintf(q
->kobj
.name
, KOBJ_NAME_LEN
, "%s", "queue");
1858 q
->kobj
.ktype
= &queue_ktype
;
1859 kobject_init(&q
->kobj
);
1861 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
1862 q
->backing_dev_info
.unplug_io_data
= q
;
1864 mutex_init(&q
->sysfs_lock
);
1868 EXPORT_SYMBOL(blk_alloc_queue_node
);
1871 * blk_init_queue - prepare a request queue for use with a block device
1872 * @rfn: The function to be called to process requests that have been
1873 * placed on the queue.
1874 * @lock: Request queue spin lock
1877 * If a block device wishes to use the standard request handling procedures,
1878 * which sorts requests and coalesces adjacent requests, then it must
1879 * call blk_init_queue(). The function @rfn will be called when there
1880 * are requests on the queue that need to be processed. If the device
1881 * supports plugging, then @rfn may not be called immediately when requests
1882 * are available on the queue, but may be called at some time later instead.
1883 * Plugged queues are generally unplugged when a buffer belonging to one
1884 * of the requests on the queue is needed, or due to memory pressure.
1886 * @rfn is not required, or even expected, to remove all requests off the
1887 * queue, but only as many as it can handle at a time. If it does leave
1888 * requests on the queue, it is responsible for arranging that the requests
1889 * get dealt with eventually.
1891 * The queue spin lock must be held while manipulating the requests on the
1892 * request queue; this lock will be taken also from interrupt context, so irq
1893 * disabling is needed for it.
1895 * Function returns a pointer to the initialized request queue, or NULL if
1896 * it didn't succeed.
1899 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1900 * when the block device is deactivated (such as at module unload).
1903 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1905 return blk_init_queue_node(rfn
, lock
, -1);
1907 EXPORT_SYMBOL(blk_init_queue
);
1909 struct request_queue
*
1910 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1912 struct request_queue
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
1918 if (blk_init_free_list(q
)) {
1919 kmem_cache_free(requestq_cachep
, q
);
1924 * if caller didn't supply a lock, they get per-queue locking with
1928 spin_lock_init(&q
->__queue_lock
);
1929 lock
= &q
->__queue_lock
;
1932 q
->request_fn
= rfn
;
1933 q
->prep_rq_fn
= NULL
;
1934 q
->unplug_fn
= generic_unplug_device
;
1935 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
1936 q
->queue_lock
= lock
;
1938 blk_queue_segment_boundary(q
, 0xffffffff);
1940 blk_queue_make_request(q
, __make_request
);
1941 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
1943 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
1944 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
1946 q
->sg_reserved_size
= INT_MAX
;
1951 if (!elevator_init(q
, NULL
)) {
1952 blk_queue_congestion_threshold(q
);
1959 EXPORT_SYMBOL(blk_init_queue_node
);
1961 int blk_get_queue(struct request_queue
*q
)
1963 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
1964 kobject_get(&q
->kobj
);
1971 EXPORT_SYMBOL(blk_get_queue
);
1973 static inline void blk_free_request(struct request_queue
*q
, struct request
*rq
)
1975 if (rq
->cmd_flags
& REQ_ELVPRIV
)
1976 elv_put_request(q
, rq
);
1977 mempool_free(rq
, q
->rq
.rq_pool
);
1980 static struct request
*
1981 blk_alloc_request(struct request_queue
*q
, int rw
, int priv
, gfp_t gfp_mask
)
1983 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
1989 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1990 * see bio.h and blkdev.h
1992 rq
->cmd_flags
= rw
| REQ_ALLOCED
;
1995 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
1996 mempool_free(rq
, q
->rq
.rq_pool
);
1999 rq
->cmd_flags
|= REQ_ELVPRIV
;
2006 * ioc_batching returns true if the ioc is a valid batching request and
2007 * should be given priority access to a request.
2009 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
2015 * Make sure the process is able to allocate at least 1 request
2016 * even if the batch times out, otherwise we could theoretically
2019 return ioc
->nr_batch_requests
== q
->nr_batching
||
2020 (ioc
->nr_batch_requests
> 0
2021 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
2025 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2026 * will cause the process to be a "batcher" on all queues in the system. This
2027 * is the behaviour we want though - once it gets a wakeup it should be given
2030 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
2032 if (!ioc
|| ioc_batching(q
, ioc
))
2035 ioc
->nr_batch_requests
= q
->nr_batching
;
2036 ioc
->last_waited
= jiffies
;
2039 static void __freed_request(struct request_queue
*q
, int rw
)
2041 struct request_list
*rl
= &q
->rq
;
2043 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
2044 blk_clear_queue_congested(q
, rw
);
2046 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
2047 if (waitqueue_active(&rl
->wait
[rw
]))
2048 wake_up(&rl
->wait
[rw
]);
2050 blk_clear_queue_full(q
, rw
);
2055 * A request has just been released. Account for it, update the full and
2056 * congestion status, wake up any waiters. Called under q->queue_lock.
2058 static void freed_request(struct request_queue
*q
, int rw
, int priv
)
2060 struct request_list
*rl
= &q
->rq
;
2066 __freed_request(q
, rw
);
2068 if (unlikely(rl
->starved
[rw
^ 1]))
2069 __freed_request(q
, rw
^ 1);
2072 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2074 * Get a free request, queue_lock must be held.
2075 * Returns NULL on failure, with queue_lock held.
2076 * Returns !NULL on success, with queue_lock *not held*.
2078 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
2079 struct bio
*bio
, gfp_t gfp_mask
)
2081 struct request
*rq
= NULL
;
2082 struct request_list
*rl
= &q
->rq
;
2083 struct io_context
*ioc
= NULL
;
2084 const int rw
= rw_flags
& 0x01;
2085 int may_queue
, priv
;
2087 may_queue
= elv_may_queue(q
, rw_flags
);
2088 if (may_queue
== ELV_MQUEUE_NO
)
2091 if (rl
->count
[rw
]+1 >= queue_congestion_on_threshold(q
)) {
2092 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
2093 ioc
= current_io_context(GFP_ATOMIC
, q
->node
);
2095 * The queue will fill after this allocation, so set
2096 * it as full, and mark this process as "batching".
2097 * This process will be allowed to complete a batch of
2098 * requests, others will be blocked.
2100 if (!blk_queue_full(q
, rw
)) {
2101 ioc_set_batching(q
, ioc
);
2102 blk_set_queue_full(q
, rw
);
2104 if (may_queue
!= ELV_MQUEUE_MUST
2105 && !ioc_batching(q
, ioc
)) {
2107 * The queue is full and the allocating
2108 * process is not a "batcher", and not
2109 * exempted by the IO scheduler
2115 blk_set_queue_congested(q
, rw
);
2119 * Only allow batching queuers to allocate up to 50% over the defined
2120 * limit of requests, otherwise we could have thousands of requests
2121 * allocated with any setting of ->nr_requests
2123 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
2127 rl
->starved
[rw
] = 0;
2129 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
2133 spin_unlock_irq(q
->queue_lock
);
2135 rq
= blk_alloc_request(q
, rw_flags
, priv
, gfp_mask
);
2136 if (unlikely(!rq
)) {
2138 * Allocation failed presumably due to memory. Undo anything
2139 * we might have messed up.
2141 * Allocating task should really be put onto the front of the
2142 * wait queue, but this is pretty rare.
2144 spin_lock_irq(q
->queue_lock
);
2145 freed_request(q
, rw
, priv
);
2148 * in the very unlikely event that allocation failed and no
2149 * requests for this direction was pending, mark us starved
2150 * so that freeing of a request in the other direction will
2151 * notice us. another possible fix would be to split the
2152 * rq mempool into READ and WRITE
2155 if (unlikely(rl
->count
[rw
] == 0))
2156 rl
->starved
[rw
] = 1;
2162 * ioc may be NULL here, and ioc_batching will be false. That's
2163 * OK, if the queue is under the request limit then requests need
2164 * not count toward the nr_batch_requests limit. There will always
2165 * be some limit enforced by BLK_BATCH_TIME.
2167 if (ioc_batching(q
, ioc
))
2168 ioc
->nr_batch_requests
--;
2172 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_GETRQ
);
2178 * No available requests for this queue, unplug the device and wait for some
2179 * requests to become available.
2181 * Called with q->queue_lock held, and returns with it unlocked.
2183 static struct request
*get_request_wait(struct request_queue
*q
, int rw_flags
,
2186 const int rw
= rw_flags
& 0x01;
2189 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
2192 struct request_list
*rl
= &q
->rq
;
2194 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
2195 TASK_UNINTERRUPTIBLE
);
2197 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
2200 struct io_context
*ioc
;
2202 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_SLEEPRQ
);
2204 __generic_unplug_device(q
);
2205 spin_unlock_irq(q
->queue_lock
);
2209 * After sleeping, we become a "batching" process and
2210 * will be able to allocate at least one request, and
2211 * up to a big batch of them for a small period time.
2212 * See ioc_batching, ioc_set_batching
2214 ioc
= current_io_context(GFP_NOIO
, q
->node
);
2215 ioc_set_batching(q
, ioc
);
2217 spin_lock_irq(q
->queue_lock
);
2219 finish_wait(&rl
->wait
[rw
], &wait
);
2225 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
2229 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
2231 spin_lock_irq(q
->queue_lock
);
2232 if (gfp_mask
& __GFP_WAIT
) {
2233 rq
= get_request_wait(q
, rw
, NULL
);
2235 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
2237 spin_unlock_irq(q
->queue_lock
);
2239 /* q->queue_lock is unlocked at this point */
2243 EXPORT_SYMBOL(blk_get_request
);
2246 * blk_start_queueing - initiate dispatch of requests to device
2247 * @q: request queue to kick into gear
2249 * This is basically a helper to remove the need to know whether a queue
2250 * is plugged or not if someone just wants to initiate dispatch of requests
2253 * The queue lock must be held with interrupts disabled.
2255 void blk_start_queueing(struct request_queue
*q
)
2257 if (!blk_queue_plugged(q
))
2260 __generic_unplug_device(q
);
2262 EXPORT_SYMBOL(blk_start_queueing
);
2265 * blk_requeue_request - put a request back on queue
2266 * @q: request queue where request should be inserted
2267 * @rq: request to be inserted
2270 * Drivers often keep queueing requests until the hardware cannot accept
2271 * more, when that condition happens we need to put the request back
2272 * on the queue. Must be called with queue lock held.
2274 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
2276 blk_add_trace_rq(q
, rq
, BLK_TA_REQUEUE
);
2278 if (blk_rq_tagged(rq
))
2279 blk_queue_end_tag(q
, rq
);
2281 elv_requeue_request(q
, rq
);
2284 EXPORT_SYMBOL(blk_requeue_request
);
2287 * blk_insert_request - insert a special request in to a request queue
2288 * @q: request queue where request should be inserted
2289 * @rq: request to be inserted
2290 * @at_head: insert request at head or tail of queue
2291 * @data: private data
2294 * Many block devices need to execute commands asynchronously, so they don't
2295 * block the whole kernel from preemption during request execution. This is
2296 * accomplished normally by inserting aritficial requests tagged as
2297 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2298 * scheduled for actual execution by the request queue.
2300 * We have the option of inserting the head or the tail of the queue.
2301 * Typically we use the tail for new ioctls and so forth. We use the head
2302 * of the queue for things like a QUEUE_FULL message from a device, or a
2303 * host that is unable to accept a particular command.
2305 void blk_insert_request(struct request_queue
*q
, struct request
*rq
,
2306 int at_head
, void *data
)
2308 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2309 unsigned long flags
;
2312 * tell I/O scheduler that this isn't a regular read/write (ie it
2313 * must not attempt merges on this) and that it acts as a soft
2316 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
2317 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
2321 spin_lock_irqsave(q
->queue_lock
, flags
);
2324 * If command is tagged, release the tag
2326 if (blk_rq_tagged(rq
))
2327 blk_queue_end_tag(q
, rq
);
2329 drive_stat_acct(rq
, rq
->nr_sectors
, 1);
2330 __elv_add_request(q
, rq
, where
, 0);
2331 blk_start_queueing(q
);
2332 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2335 EXPORT_SYMBOL(blk_insert_request
);
2337 static int __blk_rq_unmap_user(struct bio
*bio
)
2342 if (bio_flagged(bio
, BIO_USER_MAPPED
))
2343 bio_unmap_user(bio
);
2345 ret
= bio_uncopy_user(bio
);
2351 int blk_rq_append_bio(struct request_queue
*q
, struct request
*rq
,
2355 blk_rq_bio_prep(q
, rq
, bio
);
2356 else if (!ll_back_merge_fn(q
, rq
, bio
))
2359 rq
->biotail
->bi_next
= bio
;
2362 rq
->data_len
+= bio
->bi_size
;
2366 EXPORT_SYMBOL(blk_rq_append_bio
);
2368 static int __blk_rq_map_user(struct request_queue
*q
, struct request
*rq
,
2369 void __user
*ubuf
, unsigned int len
)
2371 unsigned long uaddr
;
2372 struct bio
*bio
, *orig_bio
;
2375 reading
= rq_data_dir(rq
) == READ
;
2378 * if alignment requirement is satisfied, map in user pages for
2379 * direct dma. else, set up kernel bounce buffers
2381 uaddr
= (unsigned long) ubuf
;
2382 if (!(uaddr
& queue_dma_alignment(q
)) && !(len
& queue_dma_alignment(q
)))
2383 bio
= bio_map_user(q
, NULL
, uaddr
, len
, reading
);
2385 bio
= bio_copy_user(q
, uaddr
, len
, reading
);
2388 return PTR_ERR(bio
);
2391 blk_queue_bounce(q
, &bio
);
2394 * We link the bounce buffer in and could have to traverse it
2395 * later so we have to get a ref to prevent it from being freed
2399 ret
= blk_rq_append_bio(q
, rq
, bio
);
2401 return bio
->bi_size
;
2403 /* if it was boucned we must call the end io function */
2405 __blk_rq_unmap_user(orig_bio
);
2411 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2412 * @q: request queue where request should be inserted
2413 * @rq: request structure to fill
2414 * @ubuf: the user buffer
2415 * @len: length of user data
2418 * Data will be mapped directly for zero copy io, if possible. Otherwise
2419 * a kernel bounce buffer is used.
2421 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2422 * still in process context.
2424 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2425 * before being submitted to the device, as pages mapped may be out of
2426 * reach. It's the callers responsibility to make sure this happens. The
2427 * original bio must be passed back in to blk_rq_unmap_user() for proper
2430 int blk_rq_map_user(struct request_queue
*q
, struct request
*rq
,
2431 void __user
*ubuf
, unsigned long len
)
2433 unsigned long bytes_read
= 0;
2434 struct bio
*bio
= NULL
;
2437 if (len
> (q
->max_hw_sectors
<< 9))
2442 while (bytes_read
!= len
) {
2443 unsigned long map_len
, end
, start
;
2445 map_len
= min_t(unsigned long, len
- bytes_read
, BIO_MAX_SIZE
);
2446 end
= ((unsigned long)ubuf
+ map_len
+ PAGE_SIZE
- 1)
2448 start
= (unsigned long)ubuf
>> PAGE_SHIFT
;
2451 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2452 * pages. If this happens we just lower the requested
2453 * mapping len by a page so that we can fit
2455 if (end
- start
> BIO_MAX_PAGES
)
2456 map_len
-= PAGE_SIZE
;
2458 ret
= __blk_rq_map_user(q
, rq
, ubuf
, map_len
);
2467 rq
->buffer
= rq
->data
= NULL
;
2470 blk_rq_unmap_user(bio
);
2474 EXPORT_SYMBOL(blk_rq_map_user
);
2477 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2478 * @q: request queue where request should be inserted
2479 * @rq: request to map data to
2480 * @iov: pointer to the iovec
2481 * @iov_count: number of elements in the iovec
2482 * @len: I/O byte count
2485 * Data will be mapped directly for zero copy io, if possible. Otherwise
2486 * a kernel bounce buffer is used.
2488 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2489 * still in process context.
2491 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2492 * before being submitted to the device, as pages mapped may be out of
2493 * reach. It's the callers responsibility to make sure this happens. The
2494 * original bio must be passed back in to blk_rq_unmap_user() for proper
2497 int blk_rq_map_user_iov(struct request_queue
*q
, struct request
*rq
,
2498 struct sg_iovec
*iov
, int iov_count
, unsigned int len
)
2502 if (!iov
|| iov_count
<= 0)
2505 /* we don't allow misaligned data like bio_map_user() does. If the
2506 * user is using sg, they're expected to know the alignment constraints
2507 * and respect them accordingly */
2508 bio
= bio_map_user_iov(q
, NULL
, iov
, iov_count
, rq_data_dir(rq
)== READ
);
2510 return PTR_ERR(bio
);
2512 if (bio
->bi_size
!= len
) {
2514 bio_unmap_user(bio
);
2519 blk_rq_bio_prep(q
, rq
, bio
);
2520 rq
->buffer
= rq
->data
= NULL
;
2524 EXPORT_SYMBOL(blk_rq_map_user_iov
);
2527 * blk_rq_unmap_user - unmap a request with user data
2528 * @bio: start of bio list
2531 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2532 * supply the original rq->bio from the blk_rq_map_user() return, since
2533 * the io completion may have changed rq->bio.
2535 int blk_rq_unmap_user(struct bio
*bio
)
2537 struct bio
*mapped_bio
;
2542 if (unlikely(bio_flagged(bio
, BIO_BOUNCED
)))
2543 mapped_bio
= bio
->bi_private
;
2545 ret2
= __blk_rq_unmap_user(mapped_bio
);
2551 bio_put(mapped_bio
);
2557 EXPORT_SYMBOL(blk_rq_unmap_user
);
2560 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2561 * @q: request queue where request should be inserted
2562 * @rq: request to fill
2563 * @kbuf: the kernel buffer
2564 * @len: length of user data
2565 * @gfp_mask: memory allocation flags
2567 int blk_rq_map_kern(struct request_queue
*q
, struct request
*rq
, void *kbuf
,
2568 unsigned int len
, gfp_t gfp_mask
)
2572 if (len
> (q
->max_hw_sectors
<< 9))
2577 bio
= bio_map_kern(q
, kbuf
, len
, gfp_mask
);
2579 return PTR_ERR(bio
);
2581 if (rq_data_dir(rq
) == WRITE
)
2582 bio
->bi_rw
|= (1 << BIO_RW
);
2584 blk_rq_bio_prep(q
, rq
, bio
);
2585 blk_queue_bounce(q
, &rq
->bio
);
2586 rq
->buffer
= rq
->data
= NULL
;
2590 EXPORT_SYMBOL(blk_rq_map_kern
);
2593 * blk_execute_rq_nowait - insert a request into queue for execution
2594 * @q: queue to insert the request in
2595 * @bd_disk: matching gendisk
2596 * @rq: request to insert
2597 * @at_head: insert request at head or tail of queue
2598 * @done: I/O completion handler
2601 * Insert a fully prepared request at the back of the io scheduler queue
2602 * for execution. Don't wait for completion.
2604 void blk_execute_rq_nowait(struct request_queue
*q
, struct gendisk
*bd_disk
,
2605 struct request
*rq
, int at_head
,
2608 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2610 rq
->rq_disk
= bd_disk
;
2611 rq
->cmd_flags
|= REQ_NOMERGE
;
2613 WARN_ON(irqs_disabled());
2614 spin_lock_irq(q
->queue_lock
);
2615 __elv_add_request(q
, rq
, where
, 1);
2616 __generic_unplug_device(q
);
2617 spin_unlock_irq(q
->queue_lock
);
2619 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait
);
2622 * blk_execute_rq - insert a request into queue for execution
2623 * @q: queue to insert the request in
2624 * @bd_disk: matching gendisk
2625 * @rq: request to insert
2626 * @at_head: insert request at head or tail of queue
2629 * Insert a fully prepared request at the back of the io scheduler queue
2630 * for execution and wait for completion.
2632 int blk_execute_rq(struct request_queue
*q
, struct gendisk
*bd_disk
,
2633 struct request
*rq
, int at_head
)
2635 DECLARE_COMPLETION_ONSTACK(wait
);
2636 char sense
[SCSI_SENSE_BUFFERSIZE
];
2640 * we need an extra reference to the request, so we can look at
2641 * it after io completion
2646 memset(sense
, 0, sizeof(sense
));
2651 rq
->end_io_data
= &wait
;
2652 blk_execute_rq_nowait(q
, bd_disk
, rq
, at_head
, blk_end_sync_rq
);
2653 wait_for_completion(&wait
);
2661 EXPORT_SYMBOL(blk_execute_rq
);
2664 * blkdev_issue_flush - queue a flush
2665 * @bdev: blockdev to issue flush for
2666 * @error_sector: error sector
2669 * Issue a flush for the block device in question. Caller can supply
2670 * room for storing the error offset in case of a flush error, if they
2671 * wish to. Caller must run wait_for_completion() on its own.
2673 int blkdev_issue_flush(struct block_device
*bdev
, sector_t
*error_sector
)
2675 struct request_queue
*q
;
2677 if (bdev
->bd_disk
== NULL
)
2680 q
= bdev_get_queue(bdev
);
2683 if (!q
->issue_flush_fn
)
2686 return q
->issue_flush_fn(q
, bdev
->bd_disk
, error_sector
);
2689 EXPORT_SYMBOL(blkdev_issue_flush
);
2691 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
)
2693 int rw
= rq_data_dir(rq
);
2695 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
2699 __disk_stat_inc(rq
->rq_disk
, merges
[rw
]);
2701 disk_round_stats(rq
->rq_disk
);
2702 rq
->rq_disk
->in_flight
++;
2707 * add-request adds a request to the linked list.
2708 * queue lock is held and interrupts disabled, as we muck with the
2709 * request queue list.
2711 static inline void add_request(struct request_queue
* q
, struct request
* req
)
2713 drive_stat_acct(req
, req
->nr_sectors
, 1);
2716 * elevator indicated where it wants this request to be
2717 * inserted at elevator_merge time
2719 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
2723 * disk_round_stats() - Round off the performance stats on a struct
2726 * The average IO queue length and utilisation statistics are maintained
2727 * by observing the current state of the queue length and the amount of
2728 * time it has been in this state for.
2730 * Normally, that accounting is done on IO completion, but that can result
2731 * in more than a second's worth of IO being accounted for within any one
2732 * second, leading to >100% utilisation. To deal with that, we call this
2733 * function to do a round-off before returning the results when reading
2734 * /proc/diskstats. This accounts immediately for all queue usage up to
2735 * the current jiffies and restarts the counters again.
2737 void disk_round_stats(struct gendisk
*disk
)
2739 unsigned long now
= jiffies
;
2741 if (now
== disk
->stamp
)
2744 if (disk
->in_flight
) {
2745 __disk_stat_add(disk
, time_in_queue
,
2746 disk
->in_flight
* (now
- disk
->stamp
));
2747 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
2752 EXPORT_SYMBOL_GPL(disk_round_stats
);
2755 * queue lock must be held
2757 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
2761 if (unlikely(--req
->ref_count
))
2764 elv_completed_request(q
, req
);
2767 * Request may not have originated from ll_rw_blk. if not,
2768 * it didn't come out of our reserved rq pools
2770 if (req
->cmd_flags
& REQ_ALLOCED
) {
2771 int rw
= rq_data_dir(req
);
2772 int priv
= req
->cmd_flags
& REQ_ELVPRIV
;
2774 BUG_ON(!list_empty(&req
->queuelist
));
2775 BUG_ON(!hlist_unhashed(&req
->hash
));
2777 blk_free_request(q
, req
);
2778 freed_request(q
, rw
, priv
);
2782 EXPORT_SYMBOL_GPL(__blk_put_request
);
2784 void blk_put_request(struct request
*req
)
2786 unsigned long flags
;
2787 struct request_queue
*q
= req
->q
;
2790 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2791 * following if (q) test.
2794 spin_lock_irqsave(q
->queue_lock
, flags
);
2795 __blk_put_request(q
, req
);
2796 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2800 EXPORT_SYMBOL(blk_put_request
);
2803 * blk_end_sync_rq - executes a completion event on a request
2804 * @rq: request to complete
2805 * @error: end io status of the request
2807 void blk_end_sync_rq(struct request
*rq
, int error
)
2809 struct completion
*waiting
= rq
->end_io_data
;
2811 rq
->end_io_data
= NULL
;
2812 __blk_put_request(rq
->q
, rq
);
2815 * complete last, if this is a stack request the process (and thus
2816 * the rq pointer) could be invalid right after this complete()
2820 EXPORT_SYMBOL(blk_end_sync_rq
);
2823 * Has to be called with the request spinlock acquired
2825 static int attempt_merge(struct request_queue
*q
, struct request
*req
,
2826 struct request
*next
)
2828 if (!rq_mergeable(req
) || !rq_mergeable(next
))
2834 if (req
->sector
+ req
->nr_sectors
!= next
->sector
)
2837 if (rq_data_dir(req
) != rq_data_dir(next
)
2838 || req
->rq_disk
!= next
->rq_disk
2843 * If we are allowed to merge, then append bio list
2844 * from next to rq and release next. merge_requests_fn
2845 * will have updated segment counts, update sector
2848 if (!ll_merge_requests_fn(q
, req
, next
))
2852 * At this point we have either done a back merge
2853 * or front merge. We need the smaller start_time of
2854 * the merged requests to be the current request
2855 * for accounting purposes.
2857 if (time_after(req
->start_time
, next
->start_time
))
2858 req
->start_time
= next
->start_time
;
2860 req
->biotail
->bi_next
= next
->bio
;
2861 req
->biotail
= next
->biotail
;
2863 req
->nr_sectors
= req
->hard_nr_sectors
+= next
->hard_nr_sectors
;
2865 elv_merge_requests(q
, req
, next
);
2868 disk_round_stats(req
->rq_disk
);
2869 req
->rq_disk
->in_flight
--;
2872 req
->ioprio
= ioprio_best(req
->ioprio
, next
->ioprio
);
2874 __blk_put_request(q
, next
);
2878 static inline int attempt_back_merge(struct request_queue
*q
,
2881 struct request
*next
= elv_latter_request(q
, rq
);
2884 return attempt_merge(q
, rq
, next
);
2889 static inline int attempt_front_merge(struct request_queue
*q
,
2892 struct request
*prev
= elv_former_request(q
, rq
);
2895 return attempt_merge(q
, prev
, rq
);
2900 static void init_request_from_bio(struct request
*req
, struct bio
*bio
)
2902 req
->cmd_type
= REQ_TYPE_FS
;
2905 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2907 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
2908 req
->cmd_flags
|= REQ_FAILFAST
;
2911 * REQ_BARRIER implies no merging, but lets make it explicit
2913 if (unlikely(bio_barrier(bio
)))
2914 req
->cmd_flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
2917 req
->cmd_flags
|= REQ_RW_SYNC
;
2918 if (bio_rw_meta(bio
))
2919 req
->cmd_flags
|= REQ_RW_META
;
2922 req
->hard_sector
= req
->sector
= bio
->bi_sector
;
2923 req
->ioprio
= bio_prio(bio
);
2924 req
->start_time
= jiffies
;
2925 blk_rq_bio_prep(req
->q
, req
, bio
);
2928 static int __make_request(struct request_queue
*q
, struct bio
*bio
)
2930 struct request
*req
;
2931 int el_ret
, nr_sectors
, barrier
, err
;
2932 const unsigned short prio
= bio_prio(bio
);
2933 const int sync
= bio_sync(bio
);
2936 nr_sectors
= bio_sectors(bio
);
2939 * low level driver can indicate that it wants pages above a
2940 * certain limit bounced to low memory (ie for highmem, or even
2941 * ISA dma in theory)
2943 blk_queue_bounce(q
, &bio
);
2945 barrier
= bio_barrier(bio
);
2946 if (unlikely(barrier
) && (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
2951 spin_lock_irq(q
->queue_lock
);
2953 if (unlikely(barrier
) || elv_queue_empty(q
))
2956 el_ret
= elv_merge(q
, &req
, bio
);
2958 case ELEVATOR_BACK_MERGE
:
2959 BUG_ON(!rq_mergeable(req
));
2961 if (!ll_back_merge_fn(q
, req
, bio
))
2964 blk_add_trace_bio(q
, bio
, BLK_TA_BACKMERGE
);
2966 req
->biotail
->bi_next
= bio
;
2968 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2969 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2970 drive_stat_acct(req
, nr_sectors
, 0);
2971 if (!attempt_back_merge(q
, req
))
2972 elv_merged_request(q
, req
, el_ret
);
2975 case ELEVATOR_FRONT_MERGE
:
2976 BUG_ON(!rq_mergeable(req
));
2978 if (!ll_front_merge_fn(q
, req
, bio
))
2981 blk_add_trace_bio(q
, bio
, BLK_TA_FRONTMERGE
);
2983 bio
->bi_next
= req
->bio
;
2987 * may not be valid. if the low level driver said
2988 * it didn't need a bounce buffer then it better
2989 * not touch req->buffer either...
2991 req
->buffer
= bio_data(bio
);
2992 req
->current_nr_sectors
= bio_cur_sectors(bio
);
2993 req
->hard_cur_sectors
= req
->current_nr_sectors
;
2994 req
->sector
= req
->hard_sector
= bio
->bi_sector
;
2995 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2996 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2997 drive_stat_acct(req
, nr_sectors
, 0);
2998 if (!attempt_front_merge(q
, req
))
2999 elv_merged_request(q
, req
, el_ret
);
3002 /* ELV_NO_MERGE: elevator says don't/can't merge. */
3009 * This sync check and mask will be re-done in init_request_from_bio(),
3010 * but we need to set it earlier to expose the sync flag to the
3011 * rq allocator and io schedulers.
3013 rw_flags
= bio_data_dir(bio
);
3015 rw_flags
|= REQ_RW_SYNC
;
3018 * Grab a free request. This is might sleep but can not fail.
3019 * Returns with the queue unlocked.
3021 req
= get_request_wait(q
, rw_flags
, bio
);
3024 * After dropping the lock and possibly sleeping here, our request
3025 * may now be mergeable after it had proven unmergeable (above).
3026 * We don't worry about that case for efficiency. It won't happen
3027 * often, and the elevators are able to handle it.
3029 init_request_from_bio(req
, bio
);
3031 spin_lock_irq(q
->queue_lock
);
3032 if (elv_queue_empty(q
))
3034 add_request(q
, req
);
3037 __generic_unplug_device(q
);
3039 spin_unlock_irq(q
->queue_lock
);
3043 bio_endio(bio
, err
);
3048 * If bio->bi_dev is a partition, remap the location
3050 static inline void blk_partition_remap(struct bio
*bio
)
3052 struct block_device
*bdev
= bio
->bi_bdev
;
3054 if (bdev
!= bdev
->bd_contains
) {
3055 struct hd_struct
*p
= bdev
->bd_part
;
3056 const int rw
= bio_data_dir(bio
);
3058 p
->sectors
[rw
] += bio_sectors(bio
);
3061 bio
->bi_sector
+= p
->start_sect
;
3062 bio
->bi_bdev
= bdev
->bd_contains
;
3064 blk_add_trace_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
3065 bdev
->bd_dev
, bio
->bi_sector
,
3066 bio
->bi_sector
- p
->start_sect
);
3070 static void handle_bad_sector(struct bio
*bio
)
3072 char b
[BDEVNAME_SIZE
];
3074 printk(KERN_INFO
"attempt to access beyond end of device\n");
3075 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
3076 bdevname(bio
->bi_bdev
, b
),
3078 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
3079 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
3081 set_bit(BIO_EOF
, &bio
->bi_flags
);
3084 #ifdef CONFIG_FAIL_MAKE_REQUEST
3086 static DECLARE_FAULT_ATTR(fail_make_request
);
3088 static int __init
setup_fail_make_request(char *str
)
3090 return setup_fault_attr(&fail_make_request
, str
);
3092 __setup("fail_make_request=", setup_fail_make_request
);
3094 static int should_fail_request(struct bio
*bio
)
3096 if ((bio
->bi_bdev
->bd_disk
->flags
& GENHD_FL_FAIL
) ||
3097 (bio
->bi_bdev
->bd_part
&& bio
->bi_bdev
->bd_part
->make_it_fail
))
3098 return should_fail(&fail_make_request
, bio
->bi_size
);
3103 static int __init
fail_make_request_debugfs(void)
3105 return init_fault_attr_dentries(&fail_make_request
,
3106 "fail_make_request");
3109 late_initcall(fail_make_request_debugfs
);
3111 #else /* CONFIG_FAIL_MAKE_REQUEST */
3113 static inline int should_fail_request(struct bio
*bio
)
3118 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3121 * generic_make_request: hand a buffer to its device driver for I/O
3122 * @bio: The bio describing the location in memory and on the device.
3124 * generic_make_request() is used to make I/O requests of block
3125 * devices. It is passed a &struct bio, which describes the I/O that needs
3128 * generic_make_request() does not return any status. The
3129 * success/failure status of the request, along with notification of
3130 * completion, is delivered asynchronously through the bio->bi_end_io
3131 * function described (one day) else where.
3133 * The caller of generic_make_request must make sure that bi_io_vec
3134 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3135 * set to describe the device address, and the
3136 * bi_end_io and optionally bi_private are set to describe how
3137 * completion notification should be signaled.
3139 * generic_make_request and the drivers it calls may use bi_next if this
3140 * bio happens to be merged with someone else, and may change bi_dev and
3141 * bi_sector for remaps as it sees fit. So the values of these fields
3142 * should NOT be depended on after the call to generic_make_request.
3144 static inline void __generic_make_request(struct bio
*bio
)
3146 struct request_queue
*q
;
3148 sector_t old_sector
;
3149 int ret
, nr_sectors
= bio_sectors(bio
);
3153 /* Test device or partition size, when known. */
3154 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
3156 sector_t sector
= bio
->bi_sector
;
3158 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
3160 * This may well happen - the kernel calls bread()
3161 * without checking the size of the device, e.g., when
3162 * mounting a device.
3164 handle_bad_sector(bio
);
3170 * Resolve the mapping until finished. (drivers are
3171 * still free to implement/resolve their own stacking
3172 * by explicitly returning 0)
3174 * NOTE: we don't repeat the blk_size check for each new device.
3175 * Stacking drivers are expected to know what they are doing.
3180 char b
[BDEVNAME_SIZE
];
3182 q
= bdev_get_queue(bio
->bi_bdev
);
3185 "generic_make_request: Trying to access "
3186 "nonexistent block-device %s (%Lu)\n",
3187 bdevname(bio
->bi_bdev
, b
),
3188 (long long) bio
->bi_sector
);
3190 bio_endio(bio
, -EIO
);
3194 if (unlikely(bio_sectors(bio
) > q
->max_hw_sectors
)) {
3195 printk("bio too big device %s (%u > %u)\n",
3196 bdevname(bio
->bi_bdev
, b
),
3202 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
3205 if (should_fail_request(bio
))
3209 * If this device has partitions, remap block n
3210 * of partition p to block n+start(p) of the disk.
3212 blk_partition_remap(bio
);
3214 if (old_sector
!= -1)
3215 blk_add_trace_remap(q
, bio
, old_dev
, bio
->bi_sector
,
3218 blk_add_trace_bio(q
, bio
, BLK_TA_QUEUE
);
3220 old_sector
= bio
->bi_sector
;
3221 old_dev
= bio
->bi_bdev
->bd_dev
;
3223 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
3225 sector_t sector
= bio
->bi_sector
;
3227 if (maxsector
< nr_sectors
||
3228 maxsector
- nr_sectors
< sector
) {
3230 * This may well happen - partitions are not
3231 * checked to make sure they are within the size
3232 * of the whole device.
3234 handle_bad_sector(bio
);
3239 ret
= q
->make_request_fn(q
, bio
);
3244 * We only want one ->make_request_fn to be active at a time,
3245 * else stack usage with stacked devices could be a problem.
3246 * So use current->bio_{list,tail} to keep a list of requests
3247 * submited by a make_request_fn function.
3248 * current->bio_tail is also used as a flag to say if
3249 * generic_make_request is currently active in this task or not.
3250 * If it is NULL, then no make_request is active. If it is non-NULL,
3251 * then a make_request is active, and new requests should be added
3254 void generic_make_request(struct bio
*bio
)
3256 if (current
->bio_tail
) {
3257 /* make_request is active */
3258 *(current
->bio_tail
) = bio
;
3259 bio
->bi_next
= NULL
;
3260 current
->bio_tail
= &bio
->bi_next
;
3263 /* following loop may be a bit non-obvious, and so deserves some
3265 * Before entering the loop, bio->bi_next is NULL (as all callers
3266 * ensure that) so we have a list with a single bio.
3267 * We pretend that we have just taken it off a longer list, so
3268 * we assign bio_list to the next (which is NULL) and bio_tail
3269 * to &bio_list, thus initialising the bio_list of new bios to be
3270 * added. __generic_make_request may indeed add some more bios
3271 * through a recursive call to generic_make_request. If it
3272 * did, we find a non-NULL value in bio_list and re-enter the loop
3273 * from the top. In this case we really did just take the bio
3274 * of the top of the list (no pretending) and so fixup bio_list and
3275 * bio_tail or bi_next, and call into __generic_make_request again.
3277 * The loop was structured like this to make only one call to
3278 * __generic_make_request (which is important as it is large and
3279 * inlined) and to keep the structure simple.
3281 BUG_ON(bio
->bi_next
);
3283 current
->bio_list
= bio
->bi_next
;
3284 if (bio
->bi_next
== NULL
)
3285 current
->bio_tail
= ¤t
->bio_list
;
3287 bio
->bi_next
= NULL
;
3288 __generic_make_request(bio
);
3289 bio
= current
->bio_list
;
3291 current
->bio_tail
= NULL
; /* deactivate */
3294 EXPORT_SYMBOL(generic_make_request
);
3297 * submit_bio: submit a bio to the block device layer for I/O
3298 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3299 * @bio: The &struct bio which describes the I/O
3301 * submit_bio() is very similar in purpose to generic_make_request(), and
3302 * uses that function to do most of the work. Both are fairly rough
3303 * interfaces, @bio must be presetup and ready for I/O.
3306 void submit_bio(int rw
, struct bio
*bio
)
3308 int count
= bio_sectors(bio
);
3310 BIO_BUG_ON(!bio
->bi_size
);
3311 BIO_BUG_ON(!bio
->bi_io_vec
);
3314 count_vm_events(PGPGOUT
, count
);
3316 task_io_account_read(bio
->bi_size
);
3317 count_vm_events(PGPGIN
, count
);
3320 if (unlikely(block_dump
)) {
3321 char b
[BDEVNAME_SIZE
];
3322 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
3323 current
->comm
, current
->pid
,
3324 (rw
& WRITE
) ? "WRITE" : "READ",
3325 (unsigned long long)bio
->bi_sector
,
3326 bdevname(bio
->bi_bdev
,b
));
3329 generic_make_request(bio
);
3332 EXPORT_SYMBOL(submit_bio
);
3334 static void blk_recalc_rq_sectors(struct request
*rq
, int nsect
)
3336 if (blk_fs_request(rq
)) {
3337 rq
->hard_sector
+= nsect
;
3338 rq
->hard_nr_sectors
-= nsect
;
3341 * Move the I/O submission pointers ahead if required.
3343 if ((rq
->nr_sectors
>= rq
->hard_nr_sectors
) &&
3344 (rq
->sector
<= rq
->hard_sector
)) {
3345 rq
->sector
= rq
->hard_sector
;
3346 rq
->nr_sectors
= rq
->hard_nr_sectors
;
3347 rq
->hard_cur_sectors
= bio_cur_sectors(rq
->bio
);
3348 rq
->current_nr_sectors
= rq
->hard_cur_sectors
;
3349 rq
->buffer
= bio_data(rq
->bio
);
3353 * if total number of sectors is less than the first segment
3354 * size, something has gone terribly wrong
3356 if (rq
->nr_sectors
< rq
->current_nr_sectors
) {
3357 printk("blk: request botched\n");
3358 rq
->nr_sectors
= rq
->current_nr_sectors
;
3363 static int __end_that_request_first(struct request
*req
, int uptodate
,
3366 int total_bytes
, bio_nbytes
, error
, next_idx
= 0;
3369 blk_add_trace_rq(req
->q
, req
, BLK_TA_COMPLETE
);
3372 * extend uptodate bool to allow < 0 value to be direct io error
3375 if (end_io_error(uptodate
))
3376 error
= !uptodate
? -EIO
: uptodate
;
3379 * for a REQ_BLOCK_PC request, we want to carry any eventual
3380 * sense key with us all the way through
3382 if (!blk_pc_request(req
))
3386 if (blk_fs_request(req
) && !(req
->cmd_flags
& REQ_QUIET
))
3387 printk("end_request: I/O error, dev %s, sector %llu\n",
3388 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
3389 (unsigned long long)req
->sector
);
3392 if (blk_fs_request(req
) && req
->rq_disk
) {
3393 const int rw
= rq_data_dir(req
);
3395 disk_stat_add(req
->rq_disk
, sectors
[rw
], nr_bytes
>> 9);
3398 total_bytes
= bio_nbytes
= 0;
3399 while ((bio
= req
->bio
) != NULL
) {
3402 if (nr_bytes
>= bio
->bi_size
) {
3403 req
->bio
= bio
->bi_next
;
3404 nbytes
= bio
->bi_size
;
3405 req_bio_endio(req
, bio
, nbytes
, error
);
3409 int idx
= bio
->bi_idx
+ next_idx
;
3411 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
3412 blk_dump_rq_flags(req
, "__end_that");
3413 printk("%s: bio idx %d >= vcnt %d\n",
3415 bio
->bi_idx
, bio
->bi_vcnt
);
3419 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
3420 BIO_BUG_ON(nbytes
> bio
->bi_size
);
3423 * not a complete bvec done
3425 if (unlikely(nbytes
> nr_bytes
)) {
3426 bio_nbytes
+= nr_bytes
;
3427 total_bytes
+= nr_bytes
;
3432 * advance to the next vector
3435 bio_nbytes
+= nbytes
;
3438 total_bytes
+= nbytes
;
3441 if ((bio
= req
->bio
)) {
3443 * end more in this run, or just return 'not-done'
3445 if (unlikely(nr_bytes
<= 0))
3457 * if the request wasn't completed, update state
3460 req_bio_endio(req
, bio
, bio_nbytes
, error
);
3461 bio
->bi_idx
+= next_idx
;
3462 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
3463 bio_iovec(bio
)->bv_len
-= nr_bytes
;
3466 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
3467 blk_recalc_rq_segments(req
);
3472 * end_that_request_first - end I/O on a request
3473 * @req: the request being processed
3474 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3475 * @nr_sectors: number of sectors to end I/O on
3478 * Ends I/O on a number of sectors attached to @req, and sets it up
3479 * for the next range of segments (if any) in the cluster.
3482 * 0 - we are done with this request, call end_that_request_last()
3483 * 1 - still buffers pending for this request
3485 int end_that_request_first(struct request
*req
, int uptodate
, int nr_sectors
)
3487 return __end_that_request_first(req
, uptodate
, nr_sectors
<< 9);
3490 EXPORT_SYMBOL(end_that_request_first
);
3493 * end_that_request_chunk - end I/O on a request
3494 * @req: the request being processed
3495 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3496 * @nr_bytes: number of bytes to complete
3499 * Ends I/O on a number of bytes attached to @req, and sets it up
3500 * for the next range of segments (if any). Like end_that_request_first(),
3501 * but deals with bytes instead of sectors.
3504 * 0 - we are done with this request, call end_that_request_last()
3505 * 1 - still buffers pending for this request
3507 int end_that_request_chunk(struct request
*req
, int uptodate
, int nr_bytes
)
3509 return __end_that_request_first(req
, uptodate
, nr_bytes
);
3512 EXPORT_SYMBOL(end_that_request_chunk
);
3515 * splice the completion data to a local structure and hand off to
3516 * process_completion_queue() to complete the requests
3518 static void blk_done_softirq(struct softirq_action
*h
)
3520 struct list_head
*cpu_list
, local_list
;
3522 local_irq_disable();
3523 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3524 list_replace_init(cpu_list
, &local_list
);
3527 while (!list_empty(&local_list
)) {
3528 struct request
*rq
= list_entry(local_list
.next
, struct request
, donelist
);
3530 list_del_init(&rq
->donelist
);
3531 rq
->q
->softirq_done_fn(rq
);
3535 static int __cpuinit
blk_cpu_notify(struct notifier_block
*self
, unsigned long action
,
3539 * If a CPU goes away, splice its entries to the current CPU
3540 * and trigger a run of the softirq
3542 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
3543 int cpu
= (unsigned long) hcpu
;
3545 local_irq_disable();
3546 list_splice_init(&per_cpu(blk_cpu_done
, cpu
),
3547 &__get_cpu_var(blk_cpu_done
));
3548 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3556 static struct notifier_block blk_cpu_notifier __cpuinitdata
= {
3557 .notifier_call
= blk_cpu_notify
,
3561 * blk_complete_request - end I/O on a request
3562 * @req: the request being processed
3565 * Ends all I/O on a request. It does not handle partial completions,
3566 * unless the driver actually implements this in its completion callback
3567 * through requeueing. Theh actual completion happens out-of-order,
3568 * through a softirq handler. The user must have registered a completion
3569 * callback through blk_queue_softirq_done().
3572 void blk_complete_request(struct request
*req
)
3574 struct list_head
*cpu_list
;
3575 unsigned long flags
;
3577 BUG_ON(!req
->q
->softirq_done_fn
);
3579 local_irq_save(flags
);
3581 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3582 list_add_tail(&req
->donelist
, cpu_list
);
3583 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3585 local_irq_restore(flags
);
3588 EXPORT_SYMBOL(blk_complete_request
);
3591 * queue lock must be held
3593 void end_that_request_last(struct request
*req
, int uptodate
)
3595 struct gendisk
*disk
= req
->rq_disk
;
3599 * extend uptodate bool to allow < 0 value to be direct io error
3602 if (end_io_error(uptodate
))
3603 error
= !uptodate
? -EIO
: uptodate
;
3605 if (unlikely(laptop_mode
) && blk_fs_request(req
))
3606 laptop_io_completion();
3609 * Account IO completion. bar_rq isn't accounted as a normal
3610 * IO on queueing nor completion. Accounting the containing
3611 * request is enough.
3613 if (disk
&& blk_fs_request(req
) && req
!= &req
->q
->bar_rq
) {
3614 unsigned long duration
= jiffies
- req
->start_time
;
3615 const int rw
= rq_data_dir(req
);
3617 __disk_stat_inc(disk
, ios
[rw
]);
3618 __disk_stat_add(disk
, ticks
[rw
], duration
);
3619 disk_round_stats(disk
);
3623 req
->end_io(req
, error
);
3625 __blk_put_request(req
->q
, req
);
3628 EXPORT_SYMBOL(end_that_request_last
);
3630 void end_request(struct request
*req
, int uptodate
)
3632 if (!end_that_request_first(req
, uptodate
, req
->hard_cur_sectors
)) {
3633 add_disk_randomness(req
->rq_disk
);
3634 blkdev_dequeue_request(req
);
3635 end_that_request_last(req
, uptodate
);
3639 EXPORT_SYMBOL(end_request
);
3641 static void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
3644 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3645 rq
->cmd_flags
|= (bio
->bi_rw
& 3);
3647 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3648 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
3649 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
3650 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
3651 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
3652 rq
->buffer
= bio_data(bio
);
3653 rq
->data_len
= bio
->bi_size
;
3655 rq
->bio
= rq
->biotail
= bio
;
3658 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
3661 int kblockd_schedule_work(struct work_struct
*work
)
3663 return queue_work(kblockd_workqueue
, work
);
3666 EXPORT_SYMBOL(kblockd_schedule_work
);
3668 void kblockd_flush_work(struct work_struct
*work
)
3670 cancel_work_sync(work
);
3672 EXPORT_SYMBOL(kblockd_flush_work
);
3674 int __init
blk_dev_init(void)
3678 kblockd_workqueue
= create_workqueue("kblockd");
3679 if (!kblockd_workqueue
)
3680 panic("Failed to create kblockd\n");
3682 request_cachep
= kmem_cache_create("blkdev_requests",
3683 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3685 requestq_cachep
= kmem_cache_create("blkdev_queue",
3686 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
3688 iocontext_cachep
= kmem_cache_create("blkdev_ioc",
3689 sizeof(struct io_context
), 0, SLAB_PANIC
, NULL
);
3691 for_each_possible_cpu(i
)
3692 INIT_LIST_HEAD(&per_cpu(blk_cpu_done
, i
));
3694 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
, NULL
);
3695 register_hotcpu_notifier(&blk_cpu_notifier
);
3697 blk_max_low_pfn
= max_low_pfn
- 1;
3698 blk_max_pfn
= max_pfn
- 1;
3704 * IO Context helper functions
3706 void put_io_context(struct io_context
*ioc
)
3711 BUG_ON(atomic_read(&ioc
->refcount
) == 0);
3713 if (atomic_dec_and_test(&ioc
->refcount
)) {
3714 struct cfq_io_context
*cic
;
3717 if (ioc
->aic
&& ioc
->aic
->dtor
)
3718 ioc
->aic
->dtor(ioc
->aic
);
3719 if (ioc
->cic_root
.rb_node
!= NULL
) {
3720 struct rb_node
*n
= rb_first(&ioc
->cic_root
);
3722 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
3727 kmem_cache_free(iocontext_cachep
, ioc
);
3730 EXPORT_SYMBOL(put_io_context
);
3732 /* Called by the exitting task */
3733 void exit_io_context(void)
3735 struct io_context
*ioc
;
3736 struct cfq_io_context
*cic
;
3739 ioc
= current
->io_context
;
3740 current
->io_context
= NULL
;
3741 task_unlock(current
);
3744 if (ioc
->aic
&& ioc
->aic
->exit
)
3745 ioc
->aic
->exit(ioc
->aic
);
3746 if (ioc
->cic_root
.rb_node
!= NULL
) {
3747 cic
= rb_entry(rb_first(&ioc
->cic_root
), struct cfq_io_context
, rb_node
);
3751 put_io_context(ioc
);
3755 * If the current task has no IO context then create one and initialise it.
3756 * Otherwise, return its existing IO context.
3758 * This returned IO context doesn't have a specifically elevated refcount,
3759 * but since the current task itself holds a reference, the context can be
3760 * used in general code, so long as it stays within `current` context.
3762 static struct io_context
*current_io_context(gfp_t gfp_flags
, int node
)
3764 struct task_struct
*tsk
= current
;
3765 struct io_context
*ret
;
3767 ret
= tsk
->io_context
;
3771 ret
= kmem_cache_alloc_node(iocontext_cachep
, gfp_flags
, node
);
3773 atomic_set(&ret
->refcount
, 1);
3774 ret
->task
= current
;
3775 ret
->ioprio_changed
= 0;
3776 ret
->last_waited
= jiffies
; /* doesn't matter... */
3777 ret
->nr_batch_requests
= 0; /* because this is 0 */
3779 ret
->cic_root
.rb_node
= NULL
;
3780 ret
->ioc_data
= NULL
;
3781 /* make sure set_task_ioprio() sees the settings above */
3783 tsk
->io_context
= ret
;
3790 * If the current task has no IO context then create one and initialise it.
3791 * If it does have a context, take a ref on it.
3793 * This is always called in the context of the task which submitted the I/O.
3795 struct io_context
*get_io_context(gfp_t gfp_flags
, int node
)
3797 struct io_context
*ret
;
3798 ret
= current_io_context(gfp_flags
, node
);
3800 atomic_inc(&ret
->refcount
);
3803 EXPORT_SYMBOL(get_io_context
);
3805 void copy_io_context(struct io_context
**pdst
, struct io_context
**psrc
)
3807 struct io_context
*src
= *psrc
;
3808 struct io_context
*dst
= *pdst
;
3811 BUG_ON(atomic_read(&src
->refcount
) == 0);
3812 atomic_inc(&src
->refcount
);
3813 put_io_context(dst
);
3817 EXPORT_SYMBOL(copy_io_context
);
3819 void swap_io_context(struct io_context
**ioc1
, struct io_context
**ioc2
)
3821 struct io_context
*temp
;
3826 EXPORT_SYMBOL(swap_io_context
);
3831 struct queue_sysfs_entry
{
3832 struct attribute attr
;
3833 ssize_t (*show
)(struct request_queue
*, char *);
3834 ssize_t (*store
)(struct request_queue
*, const char *, size_t);
3838 queue_var_show(unsigned int var
, char *page
)
3840 return sprintf(page
, "%d\n", var
);
3844 queue_var_store(unsigned long *var
, const char *page
, size_t count
)
3846 char *p
= (char *) page
;
3848 *var
= simple_strtoul(p
, &p
, 10);
3852 static ssize_t
queue_requests_show(struct request_queue
*q
, char *page
)
3854 return queue_var_show(q
->nr_requests
, (page
));
3858 queue_requests_store(struct request_queue
*q
, const char *page
, size_t count
)
3860 struct request_list
*rl
= &q
->rq
;
3862 int ret
= queue_var_store(&nr
, page
, count
);
3863 if (nr
< BLKDEV_MIN_RQ
)
3866 spin_lock_irq(q
->queue_lock
);
3867 q
->nr_requests
= nr
;
3868 blk_queue_congestion_threshold(q
);
3870 if (rl
->count
[READ
] >= queue_congestion_on_threshold(q
))
3871 blk_set_queue_congested(q
, READ
);
3872 else if (rl
->count
[READ
] < queue_congestion_off_threshold(q
))
3873 blk_clear_queue_congested(q
, READ
);
3875 if (rl
->count
[WRITE
] >= queue_congestion_on_threshold(q
))
3876 blk_set_queue_congested(q
, WRITE
);
3877 else if (rl
->count
[WRITE
] < queue_congestion_off_threshold(q
))
3878 blk_clear_queue_congested(q
, WRITE
);
3880 if (rl
->count
[READ
] >= q
->nr_requests
) {
3881 blk_set_queue_full(q
, READ
);
3882 } else if (rl
->count
[READ
]+1 <= q
->nr_requests
) {
3883 blk_clear_queue_full(q
, READ
);
3884 wake_up(&rl
->wait
[READ
]);
3887 if (rl
->count
[WRITE
] >= q
->nr_requests
) {
3888 blk_set_queue_full(q
, WRITE
);
3889 } else if (rl
->count
[WRITE
]+1 <= q
->nr_requests
) {
3890 blk_clear_queue_full(q
, WRITE
);
3891 wake_up(&rl
->wait
[WRITE
]);
3893 spin_unlock_irq(q
->queue_lock
);
3897 static ssize_t
queue_ra_show(struct request_queue
*q
, char *page
)
3899 int ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3901 return queue_var_show(ra_kb
, (page
));
3905 queue_ra_store(struct request_queue
*q
, const char *page
, size_t count
)
3907 unsigned long ra_kb
;
3908 ssize_t ret
= queue_var_store(&ra_kb
, page
, count
);
3910 spin_lock_irq(q
->queue_lock
);
3911 q
->backing_dev_info
.ra_pages
= ra_kb
>> (PAGE_CACHE_SHIFT
- 10);
3912 spin_unlock_irq(q
->queue_lock
);
3917 static ssize_t
queue_max_sectors_show(struct request_queue
*q
, char *page
)
3919 int max_sectors_kb
= q
->max_sectors
>> 1;
3921 return queue_var_show(max_sectors_kb
, (page
));
3925 queue_max_sectors_store(struct request_queue
*q
, const char *page
, size_t count
)
3927 unsigned long max_sectors_kb
,
3928 max_hw_sectors_kb
= q
->max_hw_sectors
>> 1,
3929 page_kb
= 1 << (PAGE_CACHE_SHIFT
- 10);
3930 ssize_t ret
= queue_var_store(&max_sectors_kb
, page
, count
);
3933 if (max_sectors_kb
> max_hw_sectors_kb
|| max_sectors_kb
< page_kb
)
3936 * Take the queue lock to update the readahead and max_sectors
3937 * values synchronously:
3939 spin_lock_irq(q
->queue_lock
);
3941 * Trim readahead window as well, if necessary:
3943 ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3944 if (ra_kb
> max_sectors_kb
)
3945 q
->backing_dev_info
.ra_pages
=
3946 max_sectors_kb
>> (PAGE_CACHE_SHIFT
- 10);
3948 q
->max_sectors
= max_sectors_kb
<< 1;
3949 spin_unlock_irq(q
->queue_lock
);
3954 static ssize_t
queue_max_hw_sectors_show(struct request_queue
*q
, char *page
)
3956 int max_hw_sectors_kb
= q
->max_hw_sectors
>> 1;
3958 return queue_var_show(max_hw_sectors_kb
, (page
));
3962 static struct queue_sysfs_entry queue_requests_entry
= {
3963 .attr
= {.name
= "nr_requests", .mode
= S_IRUGO
| S_IWUSR
},
3964 .show
= queue_requests_show
,
3965 .store
= queue_requests_store
,
3968 static struct queue_sysfs_entry queue_ra_entry
= {
3969 .attr
= {.name
= "read_ahead_kb", .mode
= S_IRUGO
| S_IWUSR
},
3970 .show
= queue_ra_show
,
3971 .store
= queue_ra_store
,
3974 static struct queue_sysfs_entry queue_max_sectors_entry
= {
3975 .attr
= {.name
= "max_sectors_kb", .mode
= S_IRUGO
| S_IWUSR
},
3976 .show
= queue_max_sectors_show
,
3977 .store
= queue_max_sectors_store
,
3980 static struct queue_sysfs_entry queue_max_hw_sectors_entry
= {
3981 .attr
= {.name
= "max_hw_sectors_kb", .mode
= S_IRUGO
},
3982 .show
= queue_max_hw_sectors_show
,
3985 static struct queue_sysfs_entry queue_iosched_entry
= {
3986 .attr
= {.name
= "scheduler", .mode
= S_IRUGO
| S_IWUSR
},
3987 .show
= elv_iosched_show
,
3988 .store
= elv_iosched_store
,
3991 static struct attribute
*default_attrs
[] = {
3992 &queue_requests_entry
.attr
,
3993 &queue_ra_entry
.attr
,
3994 &queue_max_hw_sectors_entry
.attr
,
3995 &queue_max_sectors_entry
.attr
,
3996 &queue_iosched_entry
.attr
,
4000 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4003 queue_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
4005 struct queue_sysfs_entry
*entry
= to_queue(attr
);
4006 struct request_queue
*q
=
4007 container_of(kobj
, struct request_queue
, kobj
);
4012 mutex_lock(&q
->sysfs_lock
);
4013 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
4014 mutex_unlock(&q
->sysfs_lock
);
4017 res
= entry
->show(q
, page
);
4018 mutex_unlock(&q
->sysfs_lock
);
4023 queue_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
4024 const char *page
, size_t length
)
4026 struct queue_sysfs_entry
*entry
= to_queue(attr
);
4027 struct request_queue
*q
= container_of(kobj
, struct request_queue
, kobj
);
4033 mutex_lock(&q
->sysfs_lock
);
4034 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
4035 mutex_unlock(&q
->sysfs_lock
);
4038 res
= entry
->store(q
, page
, length
);
4039 mutex_unlock(&q
->sysfs_lock
);
4043 static struct sysfs_ops queue_sysfs_ops
= {
4044 .show
= queue_attr_show
,
4045 .store
= queue_attr_store
,
4048 static struct kobj_type queue_ktype
= {
4049 .sysfs_ops
= &queue_sysfs_ops
,
4050 .default_attrs
= default_attrs
,
4051 .release
= blk_release_queue
,
4054 int blk_register_queue(struct gendisk
*disk
)
4058 struct request_queue
*q
= disk
->queue
;
4060 if (!q
|| !q
->request_fn
)
4063 q
->kobj
.parent
= kobject_get(&disk
->kobj
);
4065 ret
= kobject_add(&q
->kobj
);
4069 kobject_uevent(&q
->kobj
, KOBJ_ADD
);
4071 ret
= elv_register_queue(q
);
4073 kobject_uevent(&q
->kobj
, KOBJ_REMOVE
);
4074 kobject_del(&q
->kobj
);
4081 void blk_unregister_queue(struct gendisk
*disk
)
4083 struct request_queue
*q
= disk
->queue
;
4085 if (q
&& q
->request_fn
) {
4086 elv_unregister_queue(q
);
4088 kobject_uevent(&q
->kobj
, KOBJ_REMOVE
);
4089 kobject_del(&q
->kobj
);
4090 kobject_put(&disk
->kobj
);