Linux 2.6.24-rc8
[pv_ops_mirror.git] / fs / jffs2 / wbuf.c
blobd1d4f27464baf879825eb72ac4ad4812acfaa0fd
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
5 * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de>
7 * Created by David Woodhouse <dwmw2@infradead.org>
8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
10 * For licensing information, see the file 'LICENCE' in this directory.
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/crc32.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/jiffies.h>
20 #include <linux/sched.h>
22 #include "nodelist.h"
24 /* For testing write failures */
25 #undef BREAKME
26 #undef BREAKMEHEADER
28 #ifdef BREAKME
29 static unsigned char *brokenbuf;
30 #endif
32 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
33 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
35 /* max. erase failures before we mark a block bad */
36 #define MAX_ERASE_FAILURES 2
38 struct jffs2_inodirty {
39 uint32_t ino;
40 struct jffs2_inodirty *next;
43 static struct jffs2_inodirty inodirty_nomem;
45 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
47 struct jffs2_inodirty *this = c->wbuf_inodes;
49 /* If a malloc failed, consider _everything_ dirty */
50 if (this == &inodirty_nomem)
51 return 1;
53 /* If ino == 0, _any_ non-GC writes mean 'yes' */
54 if (this && !ino)
55 return 1;
57 /* Look to see if the inode in question is pending in the wbuf */
58 while (this) {
59 if (this->ino == ino)
60 return 1;
61 this = this->next;
63 return 0;
66 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
68 struct jffs2_inodirty *this;
70 this = c->wbuf_inodes;
72 if (this != &inodirty_nomem) {
73 while (this) {
74 struct jffs2_inodirty *next = this->next;
75 kfree(this);
76 this = next;
79 c->wbuf_inodes = NULL;
82 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
84 struct jffs2_inodirty *new;
86 /* Mark the superblock dirty so that kupdated will flush... */
87 jffs2_erase_pending_trigger(c);
89 if (jffs2_wbuf_pending_for_ino(c, ino))
90 return;
92 new = kmalloc(sizeof(*new), GFP_KERNEL);
93 if (!new) {
94 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
95 jffs2_clear_wbuf_ino_list(c);
96 c->wbuf_inodes = &inodirty_nomem;
97 return;
99 new->ino = ino;
100 new->next = c->wbuf_inodes;
101 c->wbuf_inodes = new;
102 return;
105 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
107 struct list_head *this, *next;
108 static int n;
110 if (list_empty(&c->erasable_pending_wbuf_list))
111 return;
113 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
114 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
116 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
117 list_del(this);
118 if ((jiffies + (n++)) & 127) {
119 /* Most of the time, we just erase it immediately. Otherwise we
120 spend ages scanning it on mount, etc. */
121 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
122 list_add_tail(&jeb->list, &c->erase_pending_list);
123 c->nr_erasing_blocks++;
124 jffs2_erase_pending_trigger(c);
125 } else {
126 /* Sometimes, however, we leave it elsewhere so it doesn't get
127 immediately reused, and we spread the load a bit. */
128 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
129 list_add_tail(&jeb->list, &c->erasable_list);
134 #define REFILE_NOTEMPTY 0
135 #define REFILE_ANYWAY 1
137 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
139 D1(printk("About to refile bad block at %08x\n", jeb->offset));
141 /* File the existing block on the bad_used_list.... */
142 if (c->nextblock == jeb)
143 c->nextblock = NULL;
144 else /* Not sure this should ever happen... need more coffee */
145 list_del(&jeb->list);
146 if (jeb->first_node) {
147 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
148 list_add(&jeb->list, &c->bad_used_list);
149 } else {
150 BUG_ON(allow_empty == REFILE_NOTEMPTY);
151 /* It has to have had some nodes or we couldn't be here */
152 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
153 list_add(&jeb->list, &c->erase_pending_list);
154 c->nr_erasing_blocks++;
155 jffs2_erase_pending_trigger(c);
158 if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
159 uint32_t oldfree = jeb->free_size;
161 jffs2_link_node_ref(c, jeb,
162 (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
163 oldfree, NULL);
164 /* convert to wasted */
165 c->wasted_size += oldfree;
166 jeb->wasted_size += oldfree;
167 c->dirty_size -= oldfree;
168 jeb->dirty_size -= oldfree;
171 jffs2_dbg_dump_block_lists_nolock(c);
172 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
173 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
176 static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
177 struct jffs2_inode_info *f,
178 struct jffs2_raw_node_ref *raw,
179 union jffs2_node_union *node)
181 struct jffs2_node_frag *frag;
182 struct jffs2_full_dirent *fd;
184 dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
185 node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
187 BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
188 je16_to_cpu(node->u.magic) != 0);
190 switch (je16_to_cpu(node->u.nodetype)) {
191 case JFFS2_NODETYPE_INODE:
192 if (f->metadata && f->metadata->raw == raw) {
193 dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
194 return &f->metadata->raw;
196 frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
197 BUG_ON(!frag);
198 /* Find a frag which refers to the full_dnode we want to modify */
199 while (!frag->node || frag->node->raw != raw) {
200 frag = frag_next(frag);
201 BUG_ON(!frag);
203 dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
204 return &frag->node->raw;
206 case JFFS2_NODETYPE_DIRENT:
207 for (fd = f->dents; fd; fd = fd->next) {
208 if (fd->raw == raw) {
209 dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
210 return &fd->raw;
213 BUG();
215 default:
216 dbg_noderef("Don't care about replacing raw for nodetype %x\n",
217 je16_to_cpu(node->u.nodetype));
218 break;
220 return NULL;
223 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
224 static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf,
225 uint32_t ofs)
227 int ret;
228 size_t retlen;
229 char *eccstr;
231 ret = c->mtd->read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify);
232 if (ret && ret != -EUCLEAN && ret != -EBADMSG) {
233 printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x failed: %d\n", c->wbuf_ofs, ret);
234 return ret;
235 } else if (retlen != c->wbuf_pagesize) {
236 printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x gave short read: %zd not %d.\n", ofs, retlen, c->wbuf_pagesize);
237 return -EIO;
239 if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize))
240 return 0;
242 if (ret == -EUCLEAN)
243 eccstr = "corrected";
244 else if (ret == -EBADMSG)
245 eccstr = "correction failed";
246 else
247 eccstr = "OK or unused";
249 printk(KERN_WARNING "Write verify error (ECC %s) at %08x. Wrote:\n",
250 eccstr, c->wbuf_ofs);
251 print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
252 c->wbuf, c->wbuf_pagesize, 0);
254 printk(KERN_WARNING "Read back:\n");
255 print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
256 c->wbuf_verify, c->wbuf_pagesize, 0);
258 return -EIO;
260 #else
261 #define jffs2_verify_write(c,b,o) (0)
262 #endif
264 /* Recover from failure to write wbuf. Recover the nodes up to the
265 * wbuf, not the one which we were starting to try to write. */
267 static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
269 struct jffs2_eraseblock *jeb, *new_jeb;
270 struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
271 size_t retlen;
272 int ret;
273 int nr_refile = 0;
274 unsigned char *buf;
275 uint32_t start, end, ofs, len;
277 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
279 spin_lock(&c->erase_completion_lock);
280 if (c->wbuf_ofs % c->mtd->erasesize)
281 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
282 else
283 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
284 spin_unlock(&c->erase_completion_lock);
286 BUG_ON(!ref_obsolete(jeb->last_node));
288 /* Find the first node to be recovered, by skipping over every
289 node which ends before the wbuf starts, or which is obsolete. */
290 for (next = raw = jeb->first_node; next; raw = next) {
291 next = ref_next(raw);
293 if (ref_obsolete(raw) ||
294 (next && ref_offset(next) <= c->wbuf_ofs)) {
295 dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
296 ref_offset(raw), ref_flags(raw),
297 (ref_offset(raw) + ref_totlen(c, jeb, raw)),
298 c->wbuf_ofs);
299 continue;
301 dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
302 ref_offset(raw), ref_flags(raw),
303 (ref_offset(raw) + ref_totlen(c, jeb, raw)));
305 first_raw = raw;
306 break;
309 if (!first_raw) {
310 /* All nodes were obsolete. Nothing to recover. */
311 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
312 c->wbuf_len = 0;
313 return;
316 start = ref_offset(first_raw);
317 end = ref_offset(jeb->last_node);
318 nr_refile = 1;
320 /* Count the number of refs which need to be copied */
321 while ((raw = ref_next(raw)) != jeb->last_node)
322 nr_refile++;
324 dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
325 start, end, end - start, nr_refile);
327 buf = NULL;
328 if (start < c->wbuf_ofs) {
329 /* First affected node was already partially written.
330 * Attempt to reread the old data into our buffer. */
332 buf = kmalloc(end - start, GFP_KERNEL);
333 if (!buf) {
334 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
336 goto read_failed;
339 /* Do the read... */
340 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
342 /* ECC recovered ? */
343 if ((ret == -EUCLEAN || ret == -EBADMSG) &&
344 (retlen == c->wbuf_ofs - start))
345 ret = 0;
347 if (ret || retlen != c->wbuf_ofs - start) {
348 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
350 kfree(buf);
351 buf = NULL;
352 read_failed:
353 first_raw = ref_next(first_raw);
354 nr_refile--;
355 while (first_raw && ref_obsolete(first_raw)) {
356 first_raw = ref_next(first_raw);
357 nr_refile--;
360 /* If this was the only node to be recovered, give up */
361 if (!first_raw) {
362 c->wbuf_len = 0;
363 return;
366 /* It wasn't. Go on and try to recover nodes complete in the wbuf */
367 start = ref_offset(first_raw);
368 dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
369 start, end, end - start, nr_refile);
371 } else {
372 /* Read succeeded. Copy the remaining data from the wbuf */
373 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
376 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
377 Either 'buf' contains the data, or we find it in the wbuf */
379 /* ... and get an allocation of space from a shiny new block instead */
380 ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
381 if (ret) {
382 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
383 kfree(buf);
384 return;
387 /* The summary is not recovered, so it must be disabled for this erase block */
388 jffs2_sum_disable_collecting(c->summary);
390 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
391 if (ret) {
392 printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
393 kfree(buf);
394 return;
397 ofs = write_ofs(c);
399 if (end-start >= c->wbuf_pagesize) {
400 /* Need to do another write immediately, but it's possible
401 that this is just because the wbuf itself is completely
402 full, and there's nothing earlier read back from the
403 flash. Hence 'buf' isn't necessarily what we're writing
404 from. */
405 unsigned char *rewrite_buf = buf?:c->wbuf;
406 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
408 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
409 towrite, ofs));
411 #ifdef BREAKMEHEADER
412 static int breakme;
413 if (breakme++ == 20) {
414 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
415 breakme = 0;
416 c->mtd->write(c->mtd, ofs, towrite, &retlen,
417 brokenbuf);
418 ret = -EIO;
419 } else
420 #endif
421 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen,
422 rewrite_buf);
424 if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) {
425 /* Argh. We tried. Really we did. */
426 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
427 kfree(buf);
429 if (retlen)
430 jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
432 return;
434 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
436 c->wbuf_len = (end - start) - towrite;
437 c->wbuf_ofs = ofs + towrite;
438 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
439 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */
440 } else {
441 /* OK, now we're left with the dregs in whichever buffer we're using */
442 if (buf) {
443 memcpy(c->wbuf, buf, end-start);
444 } else {
445 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
447 c->wbuf_ofs = ofs;
448 c->wbuf_len = end - start;
451 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
452 new_jeb = &c->blocks[ofs / c->sector_size];
454 spin_lock(&c->erase_completion_lock);
455 for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
456 uint32_t rawlen = ref_totlen(c, jeb, raw);
457 struct jffs2_inode_cache *ic;
458 struct jffs2_raw_node_ref *new_ref;
459 struct jffs2_raw_node_ref **adjust_ref = NULL;
460 struct jffs2_inode_info *f = NULL;
462 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
463 rawlen, ref_offset(raw), ref_flags(raw), ofs));
465 ic = jffs2_raw_ref_to_ic(raw);
467 /* Ick. This XATTR mess should be fixed shortly... */
468 if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
469 struct jffs2_xattr_datum *xd = (void *)ic;
470 BUG_ON(xd->node != raw);
471 adjust_ref = &xd->node;
472 raw->next_in_ino = NULL;
473 ic = NULL;
474 } else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
475 struct jffs2_xattr_datum *xr = (void *)ic;
476 BUG_ON(xr->node != raw);
477 adjust_ref = &xr->node;
478 raw->next_in_ino = NULL;
479 ic = NULL;
480 } else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
481 struct jffs2_raw_node_ref **p = &ic->nodes;
483 /* Remove the old node from the per-inode list */
484 while (*p && *p != (void *)ic) {
485 if (*p == raw) {
486 (*p) = (raw->next_in_ino);
487 raw->next_in_ino = NULL;
488 break;
490 p = &((*p)->next_in_ino);
493 if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
494 /* If it's an in-core inode, then we have to adjust any
495 full_dirent or full_dnode structure to point to the
496 new version instead of the old */
497 f = jffs2_gc_fetch_inode(c, ic->ino, ic->nlink);
498 if (IS_ERR(f)) {
499 /* Should never happen; it _must_ be present */
500 JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
501 ic->ino, PTR_ERR(f));
502 BUG();
504 /* We don't lock f->sem. There's a number of ways we could
505 end up in here with it already being locked, and nobody's
506 going to modify it on us anyway because we hold the
507 alloc_sem. We're only changing one ->raw pointer too,
508 which we can get away with without upsetting readers. */
509 adjust_ref = jffs2_incore_replace_raw(c, f, raw,
510 (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
511 } else if (unlikely(ic->state != INO_STATE_PRESENT &&
512 ic->state != INO_STATE_CHECKEDABSENT &&
513 ic->state != INO_STATE_GC)) {
514 JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
515 BUG();
519 new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
521 if (adjust_ref) {
522 BUG_ON(*adjust_ref != raw);
523 *adjust_ref = new_ref;
525 if (f)
526 jffs2_gc_release_inode(c, f);
528 if (!ref_obsolete(raw)) {
529 jeb->dirty_size += rawlen;
530 jeb->used_size -= rawlen;
531 c->dirty_size += rawlen;
532 c->used_size -= rawlen;
533 raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
534 BUG_ON(raw->next_in_ino);
536 ofs += rawlen;
539 kfree(buf);
541 /* Fix up the original jeb now it's on the bad_list */
542 if (first_raw == jeb->first_node) {
543 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
544 list_move(&jeb->list, &c->erase_pending_list);
545 c->nr_erasing_blocks++;
546 jffs2_erase_pending_trigger(c);
549 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
550 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
552 jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
553 jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
555 spin_unlock(&c->erase_completion_lock);
557 D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len));
561 /* Meaning of pad argument:
562 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
563 1: Pad, do not adjust nextblock free_size
564 2: Pad, adjust nextblock free_size
566 #define NOPAD 0
567 #define PAD_NOACCOUNT 1
568 #define PAD_ACCOUNTING 2
570 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
572 struct jffs2_eraseblock *wbuf_jeb;
573 int ret;
574 size_t retlen;
576 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't
577 del_timer() the timer we never initialised. */
578 if (!jffs2_is_writebuffered(c))
579 return 0;
581 if (!down_trylock(&c->alloc_sem)) {
582 up(&c->alloc_sem);
583 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
584 BUG();
587 if (!c->wbuf_len) /* already checked c->wbuf above */
588 return 0;
590 wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
591 if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
592 return -ENOMEM;
594 /* claim remaining space on the page
595 this happens, if we have a change to a new block,
596 or if fsync forces us to flush the writebuffer.
597 if we have a switch to next page, we will not have
598 enough remaining space for this.
600 if (pad ) {
601 c->wbuf_len = PAD(c->wbuf_len);
603 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
604 with 8 byte page size */
605 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
607 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
608 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
609 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
610 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
611 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
612 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
615 /* else jffs2_flash_writev has actually filled in the rest of the
616 buffer for us, and will deal with the node refs etc. later. */
618 #ifdef BREAKME
619 static int breakme;
620 if (breakme++ == 20) {
621 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
622 breakme = 0;
623 c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
624 brokenbuf);
625 ret = -EIO;
626 } else
627 #endif
629 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
631 if (ret) {
632 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n", ret);
633 goto wfail;
634 } else if (retlen != c->wbuf_pagesize) {
635 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
636 retlen, c->wbuf_pagesize);
637 ret = -EIO;
638 goto wfail;
639 } else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) {
640 wfail:
641 jffs2_wbuf_recover(c);
643 return ret;
646 /* Adjust free size of the block if we padded. */
647 if (pad) {
648 uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
650 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
651 (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset));
653 /* wbuf_pagesize - wbuf_len is the amount of space that's to be
654 padded. If there is less free space in the block than that,
655 something screwed up */
656 if (wbuf_jeb->free_size < waste) {
657 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
658 c->wbuf_ofs, c->wbuf_len, waste);
659 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
660 wbuf_jeb->offset, wbuf_jeb->free_size);
661 BUG();
664 spin_lock(&c->erase_completion_lock);
666 jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
667 /* FIXME: that made it count as dirty. Convert to wasted */
668 wbuf_jeb->dirty_size -= waste;
669 c->dirty_size -= waste;
670 wbuf_jeb->wasted_size += waste;
671 c->wasted_size += waste;
672 } else
673 spin_lock(&c->erase_completion_lock);
675 /* Stick any now-obsoleted blocks on the erase_pending_list */
676 jffs2_refile_wbuf_blocks(c);
677 jffs2_clear_wbuf_ino_list(c);
678 spin_unlock(&c->erase_completion_lock);
680 memset(c->wbuf,0xff,c->wbuf_pagesize);
681 /* adjust write buffer offset, else we get a non contiguous write bug */
682 if (SECTOR_ADDR(c->wbuf_ofs) == SECTOR_ADDR(c->wbuf_ofs+c->wbuf_pagesize))
683 c->wbuf_ofs += c->wbuf_pagesize;
684 else
685 c->wbuf_ofs = 0xffffffff;
686 c->wbuf_len = 0;
687 return 0;
690 /* Trigger garbage collection to flush the write-buffer.
691 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
692 outstanding. If ino arg non-zero, do it only if a write for the
693 given inode is outstanding. */
694 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
696 uint32_t old_wbuf_ofs;
697 uint32_t old_wbuf_len;
698 int ret = 0;
700 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
702 if (!c->wbuf)
703 return 0;
705 down(&c->alloc_sem);
706 if (!jffs2_wbuf_pending_for_ino(c, ino)) {
707 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
708 up(&c->alloc_sem);
709 return 0;
712 old_wbuf_ofs = c->wbuf_ofs;
713 old_wbuf_len = c->wbuf_len;
715 if (c->unchecked_size) {
716 /* GC won't make any progress for a while */
717 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
718 down_write(&c->wbuf_sem);
719 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
720 /* retry flushing wbuf in case jffs2_wbuf_recover
721 left some data in the wbuf */
722 if (ret)
723 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
724 up_write(&c->wbuf_sem);
725 } else while (old_wbuf_len &&
726 old_wbuf_ofs == c->wbuf_ofs) {
728 up(&c->alloc_sem);
730 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
732 ret = jffs2_garbage_collect_pass(c);
733 if (ret) {
734 /* GC failed. Flush it with padding instead */
735 down(&c->alloc_sem);
736 down_write(&c->wbuf_sem);
737 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
738 /* retry flushing wbuf in case jffs2_wbuf_recover
739 left some data in the wbuf */
740 if (ret)
741 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
742 up_write(&c->wbuf_sem);
743 break;
745 down(&c->alloc_sem);
748 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
750 up(&c->alloc_sem);
751 return ret;
754 /* Pad write-buffer to end and write it, wasting space. */
755 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
757 int ret;
759 if (!c->wbuf)
760 return 0;
762 down_write(&c->wbuf_sem);
763 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
764 /* retry - maybe wbuf recover left some data in wbuf. */
765 if (ret)
766 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
767 up_write(&c->wbuf_sem);
769 return ret;
772 static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
773 size_t len)
775 if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
776 return 0;
778 if (len > (c->wbuf_pagesize - c->wbuf_len))
779 len = c->wbuf_pagesize - c->wbuf_len;
780 memcpy(c->wbuf + c->wbuf_len, buf, len);
781 c->wbuf_len += (uint32_t) len;
782 return len;
785 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
786 unsigned long count, loff_t to, size_t *retlen,
787 uint32_t ino)
789 struct jffs2_eraseblock *jeb;
790 size_t wbuf_retlen, donelen = 0;
791 uint32_t outvec_to = to;
792 int ret, invec;
794 /* If not writebuffered flash, don't bother */
795 if (!jffs2_is_writebuffered(c))
796 return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
798 down_write(&c->wbuf_sem);
800 /* If wbuf_ofs is not initialized, set it to target address */
801 if (c->wbuf_ofs == 0xFFFFFFFF) {
802 c->wbuf_ofs = PAGE_DIV(to);
803 c->wbuf_len = PAGE_MOD(to);
804 memset(c->wbuf,0xff,c->wbuf_pagesize);
808 * Sanity checks on target address. It's permitted to write
809 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
810 * write at the beginning of a new erase block. Anything else,
811 * and you die. New block starts at xxx000c (0-b = block
812 * header)
814 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
815 /* It's a write to a new block */
816 if (c->wbuf_len) {
817 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx "
818 "causes flush of wbuf at 0x%08x\n",
819 (unsigned long)to, c->wbuf_ofs));
820 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
821 if (ret)
822 goto outerr;
824 /* set pointer to new block */
825 c->wbuf_ofs = PAGE_DIV(to);
826 c->wbuf_len = PAGE_MOD(to);
829 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
830 /* We're not writing immediately after the writebuffer. Bad. */
831 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write "
832 "to %08lx\n", (unsigned long)to);
833 if (c->wbuf_len)
834 printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
835 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
836 BUG();
839 /* adjust alignment offset */
840 if (c->wbuf_len != PAGE_MOD(to)) {
841 c->wbuf_len = PAGE_MOD(to);
842 /* take care of alignment to next page */
843 if (!c->wbuf_len) {
844 c->wbuf_len = c->wbuf_pagesize;
845 ret = __jffs2_flush_wbuf(c, NOPAD);
846 if (ret)
847 goto outerr;
851 for (invec = 0; invec < count; invec++) {
852 int vlen = invecs[invec].iov_len;
853 uint8_t *v = invecs[invec].iov_base;
855 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
857 if (c->wbuf_len == c->wbuf_pagesize) {
858 ret = __jffs2_flush_wbuf(c, NOPAD);
859 if (ret)
860 goto outerr;
862 vlen -= wbuf_retlen;
863 outvec_to += wbuf_retlen;
864 donelen += wbuf_retlen;
865 v += wbuf_retlen;
867 if (vlen >= c->wbuf_pagesize) {
868 ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen),
869 &wbuf_retlen, v);
870 if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
871 goto outfile;
873 vlen -= wbuf_retlen;
874 outvec_to += wbuf_retlen;
875 c->wbuf_ofs = outvec_to;
876 donelen += wbuf_retlen;
877 v += wbuf_retlen;
880 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
881 if (c->wbuf_len == c->wbuf_pagesize) {
882 ret = __jffs2_flush_wbuf(c, NOPAD);
883 if (ret)
884 goto outerr;
887 outvec_to += wbuf_retlen;
888 donelen += wbuf_retlen;
892 * If there's a remainder in the wbuf and it's a non-GC write,
893 * remember that the wbuf affects this ino
895 *retlen = donelen;
897 if (jffs2_sum_active()) {
898 int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
899 if (res)
900 return res;
903 if (c->wbuf_len && ino)
904 jffs2_wbuf_dirties_inode(c, ino);
906 ret = 0;
907 up_write(&c->wbuf_sem);
908 return ret;
910 outfile:
912 * At this point we have no problem, c->wbuf is empty. However
913 * refile nextblock to avoid writing again to same address.
916 spin_lock(&c->erase_completion_lock);
918 jeb = &c->blocks[outvec_to / c->sector_size];
919 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
921 spin_unlock(&c->erase_completion_lock);
923 outerr:
924 *retlen = 0;
925 up_write(&c->wbuf_sem);
926 return ret;
930 * This is the entry for flash write.
931 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
933 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
934 size_t *retlen, const u_char *buf)
936 struct kvec vecs[1];
938 if (!jffs2_is_writebuffered(c))
939 return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
941 vecs[0].iov_base = (unsigned char *) buf;
942 vecs[0].iov_len = len;
943 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
947 Handle readback from writebuffer and ECC failure return
949 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
951 loff_t orbf = 0, owbf = 0, lwbf = 0;
952 int ret;
954 if (!jffs2_is_writebuffered(c))
955 return c->mtd->read(c->mtd, ofs, len, retlen, buf);
957 /* Read flash */
958 down_read(&c->wbuf_sem);
959 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
961 if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
962 if (ret == -EBADMSG)
963 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)"
964 " returned ECC error\n", len, ofs);
966 * We have the raw data without ECC correction in the buffer,
967 * maybe we are lucky and all data or parts are correct. We
968 * check the node. If data are corrupted node check will sort
969 * it out. We keep this block, it will fail on write or erase
970 * and the we mark it bad. Or should we do that now? But we
971 * should give him a chance. Maybe we had a system crash or
972 * power loss before the ecc write or a erase was completed.
973 * So we return success. :)
975 ret = 0;
978 /* if no writebuffer available or write buffer empty, return */
979 if (!c->wbuf_pagesize || !c->wbuf_len)
980 goto exit;
982 /* if we read in a different block, return */
983 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
984 goto exit;
986 if (ofs >= c->wbuf_ofs) {
987 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */
988 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */
989 goto exit;
990 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */
991 if (lwbf > len)
992 lwbf = len;
993 } else {
994 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */
995 if (orbf > len) /* is write beyond write buffer ? */
996 goto exit;
997 lwbf = len - orbf; /* number of bytes to copy */
998 if (lwbf > c->wbuf_len)
999 lwbf = c->wbuf_len;
1001 if (lwbf > 0)
1002 memcpy(buf+orbf,c->wbuf+owbf,lwbf);
1004 exit:
1005 up_read(&c->wbuf_sem);
1006 return ret;
1009 #define NR_OOB_SCAN_PAGES 4
1011 /* For historical reasons we use only 8 bytes for OOB clean marker */
1012 #define OOB_CM_SIZE 8
1014 static const struct jffs2_unknown_node oob_cleanmarker =
1016 .magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK),
1017 .nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
1018 .totlen = constant_cpu_to_je32(8)
1022 * Check, if the out of band area is empty. This function knows about the clean
1023 * marker and if it is present in OOB, treats the OOB as empty anyway.
1025 int jffs2_check_oob_empty(struct jffs2_sb_info *c,
1026 struct jffs2_eraseblock *jeb, int mode)
1028 int i, ret;
1029 int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1030 struct mtd_oob_ops ops;
1032 ops.mode = MTD_OOB_AUTO;
1033 ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail;
1034 ops.oobbuf = c->oobbuf;
1035 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1036 ops.datbuf = NULL;
1038 ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
1039 if (ret || ops.oobretlen != ops.ooblen) {
1040 printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
1041 " bytes, read %zd bytes, error %d\n",
1042 jeb->offset, ops.ooblen, ops.oobretlen, ret);
1043 if (!ret)
1044 ret = -EIO;
1045 return ret;
1048 for(i = 0; i < ops.ooblen; i++) {
1049 if (mode && i < cmlen)
1050 /* Yeah, we know about the cleanmarker */
1051 continue;
1053 if (ops.oobbuf[i] != 0xFF) {
1054 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for "
1055 "%08x\n", ops.oobbuf[i], i, jeb->offset));
1056 return 1;
1060 return 0;
1064 * Check for a valid cleanmarker.
1065 * Returns: 0 if a valid cleanmarker was found
1066 * 1 if no cleanmarker was found
1067 * negative error code if an error occurred
1069 int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
1070 struct jffs2_eraseblock *jeb)
1072 struct mtd_oob_ops ops;
1073 int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1075 ops.mode = MTD_OOB_AUTO;
1076 ops.ooblen = cmlen;
1077 ops.oobbuf = c->oobbuf;
1078 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1079 ops.datbuf = NULL;
1081 ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
1082 if (ret || ops.oobretlen != ops.ooblen) {
1083 printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
1084 " bytes, read %zd bytes, error %d\n",
1085 jeb->offset, ops.ooblen, ops.oobretlen, ret);
1086 if (!ret)
1087 ret = -EIO;
1088 return ret;
1091 return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen);
1094 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1095 struct jffs2_eraseblock *jeb)
1097 int ret;
1098 struct mtd_oob_ops ops;
1099 int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1101 ops.mode = MTD_OOB_AUTO;
1102 ops.ooblen = cmlen;
1103 ops.oobbuf = (uint8_t *)&oob_cleanmarker;
1104 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1105 ops.datbuf = NULL;
1107 ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops);
1108 if (ret || ops.oobretlen != ops.ooblen) {
1109 printk(KERN_ERR "cannot write OOB for EB at %08x, requested %zd"
1110 " bytes, read %zd bytes, error %d\n",
1111 jeb->offset, ops.ooblen, ops.oobretlen, ret);
1112 if (!ret)
1113 ret = -EIO;
1114 return ret;
1117 return 0;
1121 * On NAND we try to mark this block bad. If the block was erased more
1122 * than MAX_ERASE_FAILURES we mark it finaly bad.
1123 * Don't care about failures. This block remains on the erase-pending
1124 * or badblock list as long as nobody manipulates the flash with
1125 * a bootloader or something like that.
1128 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1130 int ret;
1132 /* if the count is < max, we try to write the counter to the 2nd page oob area */
1133 if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1134 return 0;
1136 if (!c->mtd->block_markbad)
1137 return 1; // What else can we do?
1139 printk(KERN_WARNING "JFFS2: marking eraseblock at %08x\n as bad", bad_offset);
1140 ret = c->mtd->block_markbad(c->mtd, bad_offset);
1142 if (ret) {
1143 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1144 return ret;
1146 return 1;
1149 int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1151 struct nand_ecclayout *oinfo = c->mtd->ecclayout;
1153 if (!c->mtd->oobsize)
1154 return 0;
1156 /* Cleanmarker is out-of-band, so inline size zero */
1157 c->cleanmarker_size = 0;
1159 if (!oinfo || oinfo->oobavail == 0) {
1160 printk(KERN_ERR "inconsistent device description\n");
1161 return -EINVAL;
1164 D1(printk(KERN_DEBUG "JFFS2 using OOB on NAND\n"));
1166 c->oobavail = oinfo->oobavail;
1168 /* Initialise write buffer */
1169 init_rwsem(&c->wbuf_sem);
1170 c->wbuf_pagesize = c->mtd->writesize;
1171 c->wbuf_ofs = 0xFFFFFFFF;
1173 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1174 if (!c->wbuf)
1175 return -ENOMEM;
1177 c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->oobavail, GFP_KERNEL);
1178 if (!c->oobbuf) {
1179 kfree(c->wbuf);
1180 return -ENOMEM;
1183 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1184 c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1185 if (!c->wbuf_verify) {
1186 kfree(c->oobbuf);
1187 kfree(c->wbuf);
1188 return -ENOMEM;
1190 #endif
1191 return 0;
1194 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1196 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1197 kfree(c->wbuf_verify);
1198 #endif
1199 kfree(c->wbuf);
1200 kfree(c->oobbuf);
1203 int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1204 c->cleanmarker_size = 0; /* No cleanmarkers needed */
1206 /* Initialize write buffer */
1207 init_rwsem(&c->wbuf_sem);
1210 c->wbuf_pagesize = c->mtd->erasesize;
1212 /* Find a suitable c->sector_size
1213 * - Not too much sectors
1214 * - Sectors have to be at least 4 K + some bytes
1215 * - All known dataflashes have erase sizes of 528 or 1056
1216 * - we take at least 8 eraseblocks and want to have at least 8K size
1217 * - The concatenation should be a power of 2
1220 c->sector_size = 8 * c->mtd->erasesize;
1222 while (c->sector_size < 8192) {
1223 c->sector_size *= 2;
1226 /* It may be necessary to adjust the flash size */
1227 c->flash_size = c->mtd->size;
1229 if ((c->flash_size % c->sector_size) != 0) {
1230 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1231 printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
1234 c->wbuf_ofs = 0xFFFFFFFF;
1235 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1236 if (!c->wbuf)
1237 return -ENOMEM;
1239 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1241 return 0;
1244 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1245 kfree(c->wbuf);
1248 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1249 /* Cleanmarker currently occupies whole programming regions,
1250 * either one or 2 for 8Byte STMicro flashes. */
1251 c->cleanmarker_size = max(16u, c->mtd->writesize);
1253 /* Initialize write buffer */
1254 init_rwsem(&c->wbuf_sem);
1255 c->wbuf_pagesize = c->mtd->writesize;
1256 c->wbuf_ofs = 0xFFFFFFFF;
1258 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1259 if (!c->wbuf)
1260 return -ENOMEM;
1262 return 0;
1265 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1266 kfree(c->wbuf);
1269 int jffs2_ubivol_setup(struct jffs2_sb_info *c) {
1270 c->cleanmarker_size = 0;
1272 if (c->mtd->writesize == 1)
1273 /* We do not need write-buffer */
1274 return 0;
1276 init_rwsem(&c->wbuf_sem);
1278 c->wbuf_pagesize = c->mtd->writesize;
1279 c->wbuf_ofs = 0xFFFFFFFF;
1280 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1281 if (!c->wbuf)
1282 return -ENOMEM;
1284 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1286 return 0;
1289 void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) {
1290 kfree(c->wbuf);