uml: kernel_thread shouldn't panic
[pv_ops_mirror.git] / arch / powerpc / oprofile / op_model_cell.c
blob626b29f38304e3c8339e61b52ddb619a5c5dd0f5
1 /*
2 * Cell Broadband Engine OProfile Support
4 * (C) Copyright IBM Corporation 2006
6 * Author: David Erb (djerb@us.ibm.com)
7 * Modifications:
8 * Carl Love <carll@us.ibm.com>
9 * Maynard Johnson <maynardj@us.ibm.com>
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/cpufreq.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/jiffies.h>
21 #include <linux/kthread.h>
22 #include <linux/oprofile.h>
23 #include <linux/percpu.h>
24 #include <linux/smp.h>
25 #include <linux/spinlock.h>
26 #include <linux/timer.h>
27 #include <asm/cell-pmu.h>
28 #include <asm/cputable.h>
29 #include <asm/firmware.h>
30 #include <asm/io.h>
31 #include <asm/oprofile_impl.h>
32 #include <asm/processor.h>
33 #include <asm/prom.h>
34 #include <asm/ptrace.h>
35 #include <asm/reg.h>
36 #include <asm/rtas.h>
37 #include <asm/system.h>
39 #include "../platforms/cell/interrupt.h"
40 #include "../platforms/cell/cbe_regs.h"
42 #define PPU_CYCLES_EVENT_NUM 1 /* event number for CYCLES */
43 #define PPU_CYCLES_GRP_NUM 1 /* special group number for identifying
44 * PPU_CYCLES event
46 #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
48 #define NUM_THREADS 2 /* number of physical threads in
49 * physical processor
51 #define NUM_TRACE_BUS_WORDS 4
52 #define NUM_INPUT_BUS_WORDS 2
55 struct pmc_cntrl_data {
56 unsigned long vcntr;
57 unsigned long evnts;
58 unsigned long masks;
59 unsigned long enabled;
63 * ibm,cbe-perftools rtas parameters
66 struct pm_signal {
67 u16 cpu; /* Processor to modify */
68 u16 sub_unit; /* hw subunit this applies to (if applicable) */
69 short int signal_group; /* Signal Group to Enable/Disable */
70 u8 bus_word; /* Enable/Disable on this Trace/Trigger/Event
71 * Bus Word(s) (bitmask)
73 u8 bit; /* Trigger/Event bit (if applicable) */
77 * rtas call arguments
79 enum {
80 SUBFUNC_RESET = 1,
81 SUBFUNC_ACTIVATE = 2,
82 SUBFUNC_DEACTIVATE = 3,
84 PASSTHRU_IGNORE = 0,
85 PASSTHRU_ENABLE = 1,
86 PASSTHRU_DISABLE = 2,
89 struct pm_cntrl {
90 u16 enable;
91 u16 stop_at_max;
92 u16 trace_mode;
93 u16 freeze;
94 u16 count_mode;
97 static struct {
98 u32 group_control;
99 u32 debug_bus_control;
100 struct pm_cntrl pm_cntrl;
101 u32 pm07_cntrl[NR_PHYS_CTRS];
102 } pm_regs;
104 #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
105 #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
106 #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
107 #define GET_POLARITY(x) ((x & 0x00000002) >> 1)
108 #define GET_COUNT_CYCLES(x) (x & 0x00000001)
109 #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
111 static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
113 static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
115 /* Interpetation of hdw_thread:
116 * 0 - even virtual cpus 0, 2, 4,...
117 * 1 - odd virtual cpus 1, 3, 5, ...
119 static u32 hdw_thread;
121 static u32 virt_cntr_inter_mask;
122 static struct timer_list timer_virt_cntr;
124 /* pm_signal needs to be global since it is initialized in
125 * cell_reg_setup at the time when the necessary information
126 * is available.
128 static struct pm_signal pm_signal[NR_PHYS_CTRS];
129 static int pm_rtas_token;
131 static u32 reset_value[NR_PHYS_CTRS];
132 static int num_counters;
133 static int oprofile_running;
134 static DEFINE_SPINLOCK(virt_cntr_lock);
136 static u32 ctr_enabled;
138 static unsigned char trace_bus[NUM_TRACE_BUS_WORDS];
139 static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
142 * Firmware interface functions
144 static int
145 rtas_ibm_cbe_perftools(int subfunc, int passthru,
146 void *address, unsigned long length)
148 u64 paddr = __pa(address);
150 return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc, passthru,
151 paddr >> 32, paddr & 0xffffffff, length);
154 static void pm_rtas_reset_signals(u32 node)
156 int ret;
157 struct pm_signal pm_signal_local;
159 /* The debug bus is being set to the passthru disable state.
160 * However, the FW still expects atleast one legal signal routing
161 * entry or it will return an error on the arguments. If we don't
162 * supply a valid entry, we must ignore all return values. Ignoring
163 * all return values means we might miss an error we should be
164 * concerned about.
167 /* fw expects physical cpu #. */
168 pm_signal_local.cpu = node;
169 pm_signal_local.signal_group = 21;
170 pm_signal_local.bus_word = 1;
171 pm_signal_local.sub_unit = 0;
172 pm_signal_local.bit = 0;
174 ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
175 &pm_signal_local,
176 sizeof(struct pm_signal));
178 if (ret)
179 printk(KERN_WARNING "%s: rtas returned: %d\n",
180 __FUNCTION__, ret);
183 static void pm_rtas_activate_signals(u32 node, u32 count)
185 int ret;
186 int i, j;
187 struct pm_signal pm_signal_local[NR_PHYS_CTRS];
189 /* There is no debug setup required for the cycles event.
190 * Note that only events in the same group can be used.
191 * Otherwise, there will be conflicts in correctly routing
192 * the signals on the debug bus. It is the responsiblity
193 * of the OProfile user tool to check the events are in
194 * the same group.
196 i = 0;
197 for (j = 0; j < count; j++) {
198 if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
200 /* fw expects physical cpu # */
201 pm_signal_local[i].cpu = node;
202 pm_signal_local[i].signal_group
203 = pm_signal[j].signal_group;
204 pm_signal_local[i].bus_word = pm_signal[j].bus_word;
205 pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
206 pm_signal_local[i].bit = pm_signal[j].bit;
207 i++;
211 if (i != 0) {
212 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
213 pm_signal_local,
214 i * sizeof(struct pm_signal));
216 if (ret)
217 printk(KERN_WARNING "%s: rtas returned: %d\n",
218 __FUNCTION__, ret);
223 * PM Signal functions
225 static void set_pm_event(u32 ctr, int event, u32 unit_mask)
227 struct pm_signal *p;
228 u32 signal_bit;
229 u32 bus_word, bus_type, count_cycles, polarity, input_control;
230 int j, i;
232 if (event == PPU_CYCLES_EVENT_NUM) {
233 /* Special Event: Count all cpu cycles */
234 pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
235 p = &(pm_signal[ctr]);
236 p->signal_group = PPU_CYCLES_GRP_NUM;
237 p->bus_word = 1;
238 p->sub_unit = 0;
239 p->bit = 0;
240 goto out;
241 } else {
242 pm_regs.pm07_cntrl[ctr] = 0;
245 bus_word = GET_BUS_WORD(unit_mask);
246 bus_type = GET_BUS_TYPE(unit_mask);
247 count_cycles = GET_COUNT_CYCLES(unit_mask);
248 polarity = GET_POLARITY(unit_mask);
249 input_control = GET_INPUT_CONTROL(unit_mask);
250 signal_bit = (event % 100);
252 p = &(pm_signal[ctr]);
254 p->signal_group = event / 100;
255 p->bus_word = bus_word;
256 p->sub_unit = (unit_mask & 0x0000f000) >> 12;
258 pm_regs.pm07_cntrl[ctr] = 0;
259 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
260 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
261 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
263 /* Some of the islands signal selection is based on 64 bit words.
264 * The debug bus words are 32 bits, the input words to the performance
265 * counters are defined as 32 bits. Need to convert the 64 bit island
266 * specification to the appropriate 32 input bit and bus word for the
267 * performance counter event selection. See the CELL Performance
268 * monitoring signals manual and the Perf cntr hardware descriptions
269 * for the details.
271 if (input_control == 0) {
272 if (signal_bit > 31) {
273 signal_bit -= 32;
274 if (bus_word == 0x3)
275 bus_word = 0x2;
276 else if (bus_word == 0xc)
277 bus_word = 0x8;
280 if ((bus_type == 0) && p->signal_group >= 60)
281 bus_type = 2;
282 if ((bus_type == 1) && p->signal_group >= 50)
283 bus_type = 0;
285 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
286 } else {
287 pm_regs.pm07_cntrl[ctr] = 0;
288 p->bit = signal_bit;
291 for (i = 0; i < NUM_TRACE_BUS_WORDS; i++) {
292 if (bus_word & (1 << i)) {
293 pm_regs.debug_bus_control |=
294 (bus_type << (31 - (2 * i) + 1));
296 for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
297 if (input_bus[j] == 0xff) {
298 input_bus[j] = i;
299 pm_regs.group_control |=
300 (i << (31 - i));
301 break;
306 out:
310 static void write_pm_cntrl(int cpu)
312 /* Oprofile will use 32 bit counters, set bits 7:10 to 0
313 * pmregs.pm_cntrl is a global
316 u32 val = 0;
317 if (pm_regs.pm_cntrl.enable == 1)
318 val |= CBE_PM_ENABLE_PERF_MON;
320 if (pm_regs.pm_cntrl.stop_at_max == 1)
321 val |= CBE_PM_STOP_AT_MAX;
323 if (pm_regs.pm_cntrl.trace_mode == 1)
324 val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
326 if (pm_regs.pm_cntrl.freeze == 1)
327 val |= CBE_PM_FREEZE_ALL_CTRS;
329 /* Routine set_count_mode must be called previously to set
330 * the count mode based on the user selection of user and kernel.
332 val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
333 cbe_write_pm(cpu, pm_control, val);
336 static inline void
337 set_count_mode(u32 kernel, u32 user)
339 /* The user must specify user and kernel if they want them. If
340 * neither is specified, OProfile will count in hypervisor mode.
341 * pm_regs.pm_cntrl is a global
343 if (kernel) {
344 if (user)
345 pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
346 else
347 pm_regs.pm_cntrl.count_mode =
348 CBE_COUNT_SUPERVISOR_MODE;
349 } else {
350 if (user)
351 pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
352 else
353 pm_regs.pm_cntrl.count_mode =
354 CBE_COUNT_HYPERVISOR_MODE;
358 static inline void enable_ctr(u32 cpu, u32 ctr, u32 * pm07_cntrl)
361 pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
362 cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
366 * Oprofile is expected to collect data on all CPUs simultaneously.
367 * However, there is one set of performance counters per node. There are
368 * two hardware threads or virtual CPUs on each node. Hence, OProfile must
369 * multiplex in time the performance counter collection on the two virtual
370 * CPUs. The multiplexing of the performance counters is done by this
371 * virtual counter routine.
373 * The pmc_values used below is defined as 'per-cpu' but its use is
374 * more akin to 'per-node'. We need to store two sets of counter
375 * values per node -- one for the previous run and one for the next.
376 * The per-cpu[NR_PHYS_CTRS] gives us the storage we need. Each odd/even
377 * pair of per-cpu arrays is used for storing the previous and next
378 * pmc values for a given node.
379 * NOTE: We use the per-cpu variable to improve cache performance.
381 static void cell_virtual_cntr(unsigned long data)
383 /* This routine will alternate loading the virtual counters for
384 * virtual CPUs
386 int i, prev_hdw_thread, next_hdw_thread;
387 u32 cpu;
388 unsigned long flags;
390 /* Make sure that the interrupt_hander and
391 * the virt counter are not both playing with
392 * the counters on the same node.
395 spin_lock_irqsave(&virt_cntr_lock, flags);
397 prev_hdw_thread = hdw_thread;
399 /* switch the cpu handling the interrupts */
400 hdw_thread = 1 ^ hdw_thread;
401 next_hdw_thread = hdw_thread;
403 for (i = 0; i < num_counters; i++)
404 /* There are some per thread events. Must do the
405 * set event, for the thread that is being started
407 set_pm_event(i,
408 pmc_cntrl[next_hdw_thread][i].evnts,
409 pmc_cntrl[next_hdw_thread][i].masks);
411 /* The following is done only once per each node, but
412 * we need cpu #, not node #, to pass to the cbe_xxx functions.
414 for_each_online_cpu(cpu) {
415 if (cbe_get_hw_thread_id(cpu))
416 continue;
418 /* stop counters, save counter values, restore counts
419 * for previous thread
421 cbe_disable_pm(cpu);
422 cbe_disable_pm_interrupts(cpu);
423 for (i = 0; i < num_counters; i++) {
424 per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
425 = cbe_read_ctr(cpu, i);
427 if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
428 == 0xFFFFFFFF)
429 /* If the cntr value is 0xffffffff, we must
430 * reset that to 0xfffffff0 when the current
431 * thread is restarted. This will generate a
432 * new interrupt and make sure that we never
433 * restore the counters to the max value. If
434 * the counters were restored to the max value,
435 * they do not increment and no interrupts are
436 * generated. Hence no more samples will be
437 * collected on that cpu.
439 cbe_write_ctr(cpu, i, 0xFFFFFFF0);
440 else
441 cbe_write_ctr(cpu, i,
442 per_cpu(pmc_values,
443 cpu +
444 next_hdw_thread)[i]);
447 /* Switch to the other thread. Change the interrupt
448 * and control regs to be scheduled on the CPU
449 * corresponding to the thread to execute.
451 for (i = 0; i < num_counters; i++) {
452 if (pmc_cntrl[next_hdw_thread][i].enabled) {
453 /* There are some per thread events.
454 * Must do the set event, enable_cntr
455 * for each cpu.
457 enable_ctr(cpu, i,
458 pm_regs.pm07_cntrl);
459 } else {
460 cbe_write_pm07_control(cpu, i, 0);
464 /* Enable interrupts on the CPU thread that is starting */
465 cbe_enable_pm_interrupts(cpu, next_hdw_thread,
466 virt_cntr_inter_mask);
467 cbe_enable_pm(cpu);
470 spin_unlock_irqrestore(&virt_cntr_lock, flags);
472 mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
475 static void start_virt_cntrs(void)
477 init_timer(&timer_virt_cntr);
478 timer_virt_cntr.function = cell_virtual_cntr;
479 timer_virt_cntr.data = 0UL;
480 timer_virt_cntr.expires = jiffies + HZ / 10;
481 add_timer(&timer_virt_cntr);
484 /* This function is called once for all cpus combined */
485 static void
486 cell_reg_setup(struct op_counter_config *ctr,
487 struct op_system_config *sys, int num_ctrs)
489 int i, j, cpu;
491 pm_rtas_token = rtas_token("ibm,cbe-perftools");
492 if (pm_rtas_token == RTAS_UNKNOWN_SERVICE) {
493 printk(KERN_WARNING "%s: RTAS_UNKNOWN_SERVICE\n",
494 __FUNCTION__);
495 goto out;
498 num_counters = num_ctrs;
500 pm_regs.group_control = 0;
501 pm_regs.debug_bus_control = 0;
503 /* setup the pm_control register */
504 memset(&pm_regs.pm_cntrl, 0, sizeof(struct pm_cntrl));
505 pm_regs.pm_cntrl.stop_at_max = 1;
506 pm_regs.pm_cntrl.trace_mode = 0;
507 pm_regs.pm_cntrl.freeze = 1;
509 set_count_mode(sys->enable_kernel, sys->enable_user);
511 /* Setup the thread 0 events */
512 for (i = 0; i < num_ctrs; ++i) {
514 pmc_cntrl[0][i].evnts = ctr[i].event;
515 pmc_cntrl[0][i].masks = ctr[i].unit_mask;
516 pmc_cntrl[0][i].enabled = ctr[i].enabled;
517 pmc_cntrl[0][i].vcntr = i;
519 for_each_possible_cpu(j)
520 per_cpu(pmc_values, j)[i] = 0;
523 /* Setup the thread 1 events, map the thread 0 event to the
524 * equivalent thread 1 event.
526 for (i = 0; i < num_ctrs; ++i) {
527 if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
528 pmc_cntrl[1][i].evnts = ctr[i].event + 19;
529 else if (ctr[i].event == 2203)
530 pmc_cntrl[1][i].evnts = ctr[i].event;
531 else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
532 pmc_cntrl[1][i].evnts = ctr[i].event + 16;
533 else
534 pmc_cntrl[1][i].evnts = ctr[i].event;
536 pmc_cntrl[1][i].masks = ctr[i].unit_mask;
537 pmc_cntrl[1][i].enabled = ctr[i].enabled;
538 pmc_cntrl[1][i].vcntr = i;
541 for (i = 0; i < NUM_TRACE_BUS_WORDS; i++)
542 trace_bus[i] = 0xff;
544 for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
545 input_bus[i] = 0xff;
547 /* Our counters count up, and "count" refers to
548 * how much before the next interrupt, and we interrupt
549 * on overflow. So we calculate the starting value
550 * which will give us "count" until overflow.
551 * Then we set the events on the enabled counters.
553 for (i = 0; i < num_counters; ++i) {
554 /* start with virtual counter set 0 */
555 if (pmc_cntrl[0][i].enabled) {
556 /* Using 32bit counters, reset max - count */
557 reset_value[i] = 0xFFFFFFFF - ctr[i].count;
558 set_pm_event(i,
559 pmc_cntrl[0][i].evnts,
560 pmc_cntrl[0][i].masks);
562 /* global, used by cell_cpu_setup */
563 ctr_enabled |= (1 << i);
567 /* initialize the previous counts for the virtual cntrs */
568 for_each_online_cpu(cpu)
569 for (i = 0; i < num_counters; ++i) {
570 per_cpu(pmc_values, cpu)[i] = reset_value[i];
572 out:
576 /* This function is called once for each cpu */
577 static void cell_cpu_setup(struct op_counter_config *cntr)
579 u32 cpu = smp_processor_id();
580 u32 num_enabled = 0;
581 int i;
583 /* There is one performance monitor per processor chip (i.e. node),
584 * so we only need to perform this function once per node.
586 if (cbe_get_hw_thread_id(cpu))
587 goto out;
589 if (pm_rtas_token == RTAS_UNKNOWN_SERVICE) {
590 printk(KERN_WARNING "%s: RTAS_UNKNOWN_SERVICE\n",
591 __FUNCTION__);
592 goto out;
595 /* Stop all counters */
596 cbe_disable_pm(cpu);
597 cbe_disable_pm_interrupts(cpu);
599 cbe_write_pm(cpu, pm_interval, 0);
600 cbe_write_pm(cpu, pm_start_stop, 0);
601 cbe_write_pm(cpu, group_control, pm_regs.group_control);
602 cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
603 write_pm_cntrl(cpu);
605 for (i = 0; i < num_counters; ++i) {
606 if (ctr_enabled & (1 << i)) {
607 pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
608 num_enabled++;
612 pm_rtas_activate_signals(cbe_cpu_to_node(cpu), num_enabled);
613 out:
617 static void cell_global_start(struct op_counter_config *ctr)
619 u32 cpu;
620 u32 interrupt_mask = 0;
621 u32 i;
623 /* This routine gets called once for the system.
624 * There is one performance monitor per node, so we
625 * only need to perform this function once per node.
627 for_each_online_cpu(cpu) {
628 if (cbe_get_hw_thread_id(cpu))
629 continue;
631 interrupt_mask = 0;
633 for (i = 0; i < num_counters; ++i) {
634 if (ctr_enabled & (1 << i)) {
635 cbe_write_ctr(cpu, i, reset_value[i]);
636 enable_ctr(cpu, i, pm_regs.pm07_cntrl);
637 interrupt_mask |=
638 CBE_PM_CTR_OVERFLOW_INTR(i);
639 } else {
640 /* Disable counter */
641 cbe_write_pm07_control(cpu, i, 0);
645 cbe_get_and_clear_pm_interrupts(cpu);
646 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
647 cbe_enable_pm(cpu);
650 virt_cntr_inter_mask = interrupt_mask;
651 oprofile_running = 1;
652 smp_wmb();
654 /* NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
655 * executed which manipulates the PMU. We start the "virtual counter"
656 * here so that we do not need to synchronize access to the PMU in
657 * the above for-loop.
659 start_virt_cntrs();
662 static void cell_global_stop(void)
664 int cpu;
666 /* This routine will be called once for the system.
667 * There is one performance monitor per node, so we
668 * only need to perform this function once per node.
670 del_timer_sync(&timer_virt_cntr);
671 oprofile_running = 0;
672 smp_wmb();
674 for_each_online_cpu(cpu) {
675 if (cbe_get_hw_thread_id(cpu))
676 continue;
678 cbe_sync_irq(cbe_cpu_to_node(cpu));
679 /* Stop the counters */
680 cbe_disable_pm(cpu);
682 /* Deactivate the signals */
683 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
685 /* Deactivate interrupts */
686 cbe_disable_pm_interrupts(cpu);
690 static void
691 cell_handle_interrupt(struct pt_regs *regs, struct op_counter_config *ctr)
693 u32 cpu;
694 u64 pc;
695 int is_kernel;
696 unsigned long flags = 0;
697 u32 interrupt_mask;
698 int i;
700 cpu = smp_processor_id();
702 /* Need to make sure the interrupt handler and the virt counter
703 * routine are not running at the same time. See the
704 * cell_virtual_cntr() routine for additional comments.
706 spin_lock_irqsave(&virt_cntr_lock, flags);
708 /* Need to disable and reenable the performance counters
709 * to get the desired behavior from the hardware. This
710 * is hardware specific.
713 cbe_disable_pm(cpu);
715 interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
717 /* If the interrupt mask has been cleared, then the virt cntr
718 * has cleared the interrupt. When the thread that generated
719 * the interrupt is restored, the data count will be restored to
720 * 0xffffff0 to cause the interrupt to be regenerated.
723 if ((oprofile_running == 1) && (interrupt_mask != 0)) {
724 pc = regs->nip;
725 is_kernel = is_kernel_addr(pc);
727 for (i = 0; i < num_counters; ++i) {
728 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
729 && ctr[i].enabled) {
730 oprofile_add_pc(pc, is_kernel, i);
731 cbe_write_ctr(cpu, i, reset_value[i]);
735 /* The counters were frozen by the interrupt.
736 * Reenable the interrupt and restart the counters.
737 * If there was a race between the interrupt handler and
738 * the virtual counter routine. The virutal counter
739 * routine may have cleared the interrupts. Hence must
740 * use the virt_cntr_inter_mask to re-enable the interrupts.
742 cbe_enable_pm_interrupts(cpu, hdw_thread,
743 virt_cntr_inter_mask);
745 /* The writes to the various performance counters only writes
746 * to a latch. The new values (interrupt setting bits, reset
747 * counter value etc.) are not copied to the actual registers
748 * until the performance monitor is enabled. In order to get
749 * this to work as desired, the permormance monitor needs to
750 * be disabled while writting to the latches. This is a
751 * HW design issue.
753 cbe_enable_pm(cpu);
755 spin_unlock_irqrestore(&virt_cntr_lock, flags);
758 struct op_powerpc_model op_model_cell = {
759 .reg_setup = cell_reg_setup,
760 .cpu_setup = cell_cpu_setup,
761 .global_start = cell_global_start,
762 .global_stop = cell_global_stop,
763 .handle_interrupt = cell_handle_interrupt,