2 * Block device elevator/IO-scheduler.
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
13 * - elevator_dequeue_fn, called when a request is taken off the active list
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
25 #include <linux/kernel.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
38 #include <asm/uaccess.h>
40 static DEFINE_SPINLOCK(elv_list_lock
);
41 static LIST_HEAD(elv_list
);
46 static const int elv_hash_shift
= 6;
47 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
48 #define ELV_HASH_FN(sec) (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
49 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
50 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
51 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
54 * Query io scheduler to see if the current process issuing bio may be
57 static int elv_iosched_allow_merge(struct request
*rq
, struct bio
*bio
)
59 struct request_queue
*q
= rq
->q
;
60 elevator_t
*e
= q
->elevator
;
62 if (e
->ops
->elevator_allow_merge_fn
)
63 return e
->ops
->elevator_allow_merge_fn(q
, rq
, bio
);
69 * can we safely merge with this request?
71 inline int elv_rq_merge_ok(struct request
*rq
, struct bio
*bio
)
73 if (!rq_mergeable(rq
))
77 * different data direction or already started, don't merge
79 if (bio_data_dir(bio
) != rq_data_dir(rq
))
83 * must be same device and not a special request
85 if (rq
->rq_disk
!= bio
->bi_bdev
->bd_disk
|| rq
->special
)
88 if (!elv_iosched_allow_merge(rq
, bio
))
93 EXPORT_SYMBOL(elv_rq_merge_ok
);
95 static inline int elv_try_merge(struct request
*__rq
, struct bio
*bio
)
97 int ret
= ELEVATOR_NO_MERGE
;
100 * we can merge and sequence is ok, check if it's possible
102 if (elv_rq_merge_ok(__rq
, bio
)) {
103 if (__rq
->sector
+ __rq
->nr_sectors
== bio
->bi_sector
)
104 ret
= ELEVATOR_BACK_MERGE
;
105 else if (__rq
->sector
- bio_sectors(bio
) == bio
->bi_sector
)
106 ret
= ELEVATOR_FRONT_MERGE
;
112 static struct elevator_type
*elevator_find(const char *name
)
114 struct elevator_type
*e
;
116 list_for_each_entry(e
, &elv_list
, list
) {
117 if (!strcmp(e
->elevator_name
, name
))
124 static void elevator_put(struct elevator_type
*e
)
126 module_put(e
->elevator_owner
);
129 static struct elevator_type
*elevator_get(const char *name
)
131 struct elevator_type
*e
;
133 spin_lock(&elv_list_lock
);
135 e
= elevator_find(name
);
136 if (e
&& !try_module_get(e
->elevator_owner
))
139 spin_unlock(&elv_list_lock
);
144 static void *elevator_init_queue(struct request_queue
*q
,
145 struct elevator_queue
*eq
)
147 return eq
->ops
->elevator_init_fn(q
);
150 static void elevator_attach(struct request_queue
*q
, struct elevator_queue
*eq
,
154 eq
->elevator_data
= data
;
157 static char chosen_elevator
[16];
159 static int __init
elevator_setup(char *str
)
162 * Be backwards-compatible with previous kernels, so users
163 * won't get the wrong elevator.
165 if (!strcmp(str
, "as"))
166 strcpy(chosen_elevator
, "anticipatory");
168 strncpy(chosen_elevator
, str
, sizeof(chosen_elevator
) - 1);
172 __setup("elevator=", elevator_setup
);
174 static struct kobj_type elv_ktype
;
176 static elevator_t
*elevator_alloc(struct request_queue
*q
,
177 struct elevator_type
*e
)
182 eq
= kmalloc_node(sizeof(elevator_t
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
187 eq
->elevator_type
= e
;
188 kobject_init(&eq
->kobj
);
189 kobject_set_name(&eq
->kobj
, "%s", "iosched");
190 eq
->kobj
.ktype
= &elv_ktype
;
191 mutex_init(&eq
->sysfs_lock
);
193 eq
->hash
= kmalloc_node(sizeof(struct hlist_head
) * ELV_HASH_ENTRIES
,
194 GFP_KERNEL
, q
->node
);
198 for (i
= 0; i
< ELV_HASH_ENTRIES
; i
++)
199 INIT_HLIST_HEAD(&eq
->hash
[i
]);
208 static void elevator_release(struct kobject
*kobj
)
210 elevator_t
*e
= container_of(kobj
, elevator_t
, kobj
);
212 elevator_put(e
->elevator_type
);
217 int elevator_init(struct request_queue
*q
, char *name
)
219 struct elevator_type
*e
= NULL
;
220 struct elevator_queue
*eq
;
224 INIT_LIST_HEAD(&q
->queue_head
);
225 q
->last_merge
= NULL
;
227 q
->boundary_rq
= NULL
;
229 if (name
&& !(e
= elevator_get(name
)))
232 if (!e
&& *chosen_elevator
&& !(e
= elevator_get(chosen_elevator
)))
233 printk("I/O scheduler %s not found\n", chosen_elevator
);
235 if (!e
&& !(e
= elevator_get(CONFIG_DEFAULT_IOSCHED
))) {
236 printk("Default I/O scheduler not found, using no-op\n");
237 e
= elevator_get("noop");
240 eq
= elevator_alloc(q
, e
);
244 data
= elevator_init_queue(q
, eq
);
246 kobject_put(&eq
->kobj
);
250 elevator_attach(q
, eq
, data
);
254 EXPORT_SYMBOL(elevator_init
);
256 void elevator_exit(elevator_t
*e
)
258 mutex_lock(&e
->sysfs_lock
);
259 if (e
->ops
->elevator_exit_fn
)
260 e
->ops
->elevator_exit_fn(e
);
262 mutex_unlock(&e
->sysfs_lock
);
264 kobject_put(&e
->kobj
);
267 EXPORT_SYMBOL(elevator_exit
);
269 static void elv_activate_rq(struct request_queue
*q
, struct request
*rq
)
271 elevator_t
*e
= q
->elevator
;
273 if (e
->ops
->elevator_activate_req_fn
)
274 e
->ops
->elevator_activate_req_fn(q
, rq
);
277 static void elv_deactivate_rq(struct request_queue
*q
, struct request
*rq
)
279 elevator_t
*e
= q
->elevator
;
281 if (e
->ops
->elevator_deactivate_req_fn
)
282 e
->ops
->elevator_deactivate_req_fn(q
, rq
);
285 static inline void __elv_rqhash_del(struct request
*rq
)
287 hlist_del_init(&rq
->hash
);
290 static void elv_rqhash_del(struct request_queue
*q
, struct request
*rq
)
293 __elv_rqhash_del(rq
);
296 static void elv_rqhash_add(struct request_queue
*q
, struct request
*rq
)
298 elevator_t
*e
= q
->elevator
;
300 BUG_ON(ELV_ON_HASH(rq
));
301 hlist_add_head(&rq
->hash
, &e
->hash
[ELV_HASH_FN(rq_hash_key(rq
))]);
304 static void elv_rqhash_reposition(struct request_queue
*q
, struct request
*rq
)
306 __elv_rqhash_del(rq
);
307 elv_rqhash_add(q
, rq
);
310 static struct request
*elv_rqhash_find(struct request_queue
*q
, sector_t offset
)
312 elevator_t
*e
= q
->elevator
;
313 struct hlist_head
*hash_list
= &e
->hash
[ELV_HASH_FN(offset
)];
314 struct hlist_node
*entry
, *next
;
317 hlist_for_each_entry_safe(rq
, entry
, next
, hash_list
, hash
) {
318 BUG_ON(!ELV_ON_HASH(rq
));
320 if (unlikely(!rq_mergeable(rq
))) {
321 __elv_rqhash_del(rq
);
325 if (rq_hash_key(rq
) == offset
)
333 * RB-tree support functions for inserting/lookup/removal of requests
334 * in a sorted RB tree.
336 struct request
*elv_rb_add(struct rb_root
*root
, struct request
*rq
)
338 struct rb_node
**p
= &root
->rb_node
;
339 struct rb_node
*parent
= NULL
;
340 struct request
*__rq
;
344 __rq
= rb_entry(parent
, struct request
, rb_node
);
346 if (rq
->sector
< __rq
->sector
)
348 else if (rq
->sector
> __rq
->sector
)
354 rb_link_node(&rq
->rb_node
, parent
, p
);
355 rb_insert_color(&rq
->rb_node
, root
);
359 EXPORT_SYMBOL(elv_rb_add
);
361 void elv_rb_del(struct rb_root
*root
, struct request
*rq
)
363 BUG_ON(RB_EMPTY_NODE(&rq
->rb_node
));
364 rb_erase(&rq
->rb_node
, root
);
365 RB_CLEAR_NODE(&rq
->rb_node
);
368 EXPORT_SYMBOL(elv_rb_del
);
370 struct request
*elv_rb_find(struct rb_root
*root
, sector_t sector
)
372 struct rb_node
*n
= root
->rb_node
;
376 rq
= rb_entry(n
, struct request
, rb_node
);
378 if (sector
< rq
->sector
)
380 else if (sector
> rq
->sector
)
389 EXPORT_SYMBOL(elv_rb_find
);
392 * Insert rq into dispatch queue of q. Queue lock must be held on
393 * entry. rq is sort instead into the dispatch queue. To be used by
394 * specific elevators.
396 void elv_dispatch_sort(struct request_queue
*q
, struct request
*rq
)
399 struct list_head
*entry
;
401 if (q
->last_merge
== rq
)
402 q
->last_merge
= NULL
;
404 elv_rqhash_del(q
, rq
);
408 boundary
= q
->end_sector
;
410 list_for_each_prev(entry
, &q
->queue_head
) {
411 struct request
*pos
= list_entry_rq(entry
);
413 if (rq_data_dir(rq
) != rq_data_dir(pos
))
415 if (pos
->cmd_flags
& (REQ_SOFTBARRIER
|REQ_HARDBARRIER
|REQ_STARTED
))
417 if (rq
->sector
>= boundary
) {
418 if (pos
->sector
< boundary
)
421 if (pos
->sector
>= boundary
)
424 if (rq
->sector
>= pos
->sector
)
428 list_add(&rq
->queuelist
, entry
);
431 EXPORT_SYMBOL(elv_dispatch_sort
);
434 * Insert rq into dispatch queue of q. Queue lock must be held on
435 * entry. rq is added to the back of the dispatch queue. To be used by
436 * specific elevators.
438 void elv_dispatch_add_tail(struct request_queue
*q
, struct request
*rq
)
440 if (q
->last_merge
== rq
)
441 q
->last_merge
= NULL
;
443 elv_rqhash_del(q
, rq
);
447 q
->end_sector
= rq_end_sector(rq
);
449 list_add_tail(&rq
->queuelist
, &q
->queue_head
);
452 EXPORT_SYMBOL(elv_dispatch_add_tail
);
454 int elv_merge(struct request_queue
*q
, struct request
**req
, struct bio
*bio
)
456 elevator_t
*e
= q
->elevator
;
457 struct request
*__rq
;
461 * First try one-hit cache.
464 ret
= elv_try_merge(q
->last_merge
, bio
);
465 if (ret
!= ELEVATOR_NO_MERGE
) {
466 *req
= q
->last_merge
;
472 * See if our hash lookup can find a potential backmerge.
474 __rq
= elv_rqhash_find(q
, bio
->bi_sector
);
475 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
477 return ELEVATOR_BACK_MERGE
;
480 if (e
->ops
->elevator_merge_fn
)
481 return e
->ops
->elevator_merge_fn(q
, req
, bio
);
483 return ELEVATOR_NO_MERGE
;
486 void elv_merged_request(struct request_queue
*q
, struct request
*rq
, int type
)
488 elevator_t
*e
= q
->elevator
;
490 if (e
->ops
->elevator_merged_fn
)
491 e
->ops
->elevator_merged_fn(q
, rq
, type
);
493 if (type
== ELEVATOR_BACK_MERGE
)
494 elv_rqhash_reposition(q
, rq
);
499 void elv_merge_requests(struct request_queue
*q
, struct request
*rq
,
500 struct request
*next
)
502 elevator_t
*e
= q
->elevator
;
504 if (e
->ops
->elevator_merge_req_fn
)
505 e
->ops
->elevator_merge_req_fn(q
, rq
, next
);
507 elv_rqhash_reposition(q
, rq
);
508 elv_rqhash_del(q
, next
);
514 void elv_requeue_request(struct request_queue
*q
, struct request
*rq
)
517 * it already went through dequeue, we need to decrement the
518 * in_flight count again
520 if (blk_account_rq(rq
)) {
522 if (blk_sorted_rq(rq
))
523 elv_deactivate_rq(q
, rq
);
526 rq
->cmd_flags
&= ~REQ_STARTED
;
528 elv_insert(q
, rq
, ELEVATOR_INSERT_REQUEUE
);
531 static void elv_drain_elevator(struct request_queue
*q
)
534 while (q
->elevator
->ops
->elevator_dispatch_fn(q
, 1))
536 if (q
->nr_sorted
== 0)
538 if (printed
++ < 10) {
539 printk(KERN_ERR
"%s: forced dispatching is broken "
540 "(nr_sorted=%u), please report this\n",
541 q
->elevator
->elevator_type
->elevator_name
, q
->nr_sorted
);
545 void elv_insert(struct request_queue
*q
, struct request
*rq
, int where
)
547 struct list_head
*pos
;
551 blk_add_trace_rq(q
, rq
, BLK_TA_INSERT
);
556 case ELEVATOR_INSERT_FRONT
:
557 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
559 list_add(&rq
->queuelist
, &q
->queue_head
);
562 case ELEVATOR_INSERT_BACK
:
563 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
564 elv_drain_elevator(q
);
565 list_add_tail(&rq
->queuelist
, &q
->queue_head
);
567 * We kick the queue here for the following reasons.
568 * - The elevator might have returned NULL previously
569 * to delay requests and returned them now. As the
570 * queue wasn't empty before this request, ll_rw_blk
571 * won't run the queue on return, resulting in hang.
572 * - Usually, back inserted requests won't be merged
573 * with anything. There's no point in delaying queue
580 case ELEVATOR_INSERT_SORT
:
581 BUG_ON(!blk_fs_request(rq
));
582 rq
->cmd_flags
|= REQ_SORTED
;
584 if (rq_mergeable(rq
)) {
585 elv_rqhash_add(q
, rq
);
591 * Some ioscheds (cfq) run q->request_fn directly, so
592 * rq cannot be accessed after calling
593 * elevator_add_req_fn.
595 q
->elevator
->ops
->elevator_add_req_fn(q
, rq
);
598 case ELEVATOR_INSERT_REQUEUE
:
600 * If ordered flush isn't in progress, we do front
601 * insertion; otherwise, requests should be requeued
604 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
607 * Most requeues happen because of a busy condition,
608 * don't force unplug of the queue for that case.
612 if (q
->ordseq
== 0) {
613 list_add(&rq
->queuelist
, &q
->queue_head
);
617 ordseq
= blk_ordered_req_seq(rq
);
619 list_for_each(pos
, &q
->queue_head
) {
620 struct request
*pos_rq
= list_entry_rq(pos
);
621 if (ordseq
<= blk_ordered_req_seq(pos_rq
))
625 list_add_tail(&rq
->queuelist
, pos
);
629 printk(KERN_ERR
"%s: bad insertion point %d\n",
630 __FUNCTION__
, where
);
634 if (unplug_it
&& blk_queue_plugged(q
)) {
635 int nrq
= q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]
638 if (nrq
>= q
->unplug_thresh
)
639 __generic_unplug_device(q
);
643 void __elv_add_request(struct request_queue
*q
, struct request
*rq
, int where
,
647 rq
->cmd_flags
|= REQ_ORDERED_COLOR
;
649 if (rq
->cmd_flags
& (REQ_SOFTBARRIER
| REQ_HARDBARRIER
)) {
651 * toggle ordered color
653 if (blk_barrier_rq(rq
))
657 * barriers implicitly indicate back insertion
659 if (where
== ELEVATOR_INSERT_SORT
)
660 where
= ELEVATOR_INSERT_BACK
;
663 * this request is scheduling boundary, update
666 if (blk_fs_request(rq
)) {
667 q
->end_sector
= rq_end_sector(rq
);
670 } else if (!(rq
->cmd_flags
& REQ_ELVPRIV
) && where
== ELEVATOR_INSERT_SORT
)
671 where
= ELEVATOR_INSERT_BACK
;
676 elv_insert(q
, rq
, where
);
679 EXPORT_SYMBOL(__elv_add_request
);
681 void elv_add_request(struct request_queue
*q
, struct request
*rq
, int where
,
686 spin_lock_irqsave(q
->queue_lock
, flags
);
687 __elv_add_request(q
, rq
, where
, plug
);
688 spin_unlock_irqrestore(q
->queue_lock
, flags
);
691 EXPORT_SYMBOL(elv_add_request
);
693 static inline struct request
*__elv_next_request(struct request_queue
*q
)
698 while (!list_empty(&q
->queue_head
)) {
699 rq
= list_entry_rq(q
->queue_head
.next
);
700 if (blk_do_ordered(q
, &rq
))
704 if (!q
->elevator
->ops
->elevator_dispatch_fn(q
, 0))
709 struct request
*elv_next_request(struct request_queue
*q
)
714 while ((rq
= __elv_next_request(q
)) != NULL
) {
716 * Kill the empty barrier place holder, the driver must
719 if (blk_empty_barrier(rq
)) {
720 end_queued_request(rq
, 1);
723 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
725 * This is the first time the device driver
726 * sees this request (possibly after
727 * requeueing). Notify IO scheduler.
729 if (blk_sorted_rq(rq
))
730 elv_activate_rq(q
, rq
);
733 * just mark as started even if we don't start
734 * it, a request that has been delayed should
735 * not be passed by new incoming requests
737 rq
->cmd_flags
|= REQ_STARTED
;
738 blk_add_trace_rq(q
, rq
, BLK_TA_ISSUE
);
741 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
742 q
->end_sector
= rq_end_sector(rq
);
743 q
->boundary_rq
= NULL
;
746 if ((rq
->cmd_flags
& REQ_DONTPREP
) || !q
->prep_rq_fn
)
749 ret
= q
->prep_rq_fn(q
, rq
);
750 if (ret
== BLKPREP_OK
) {
752 } else if (ret
== BLKPREP_DEFER
) {
754 * the request may have been (partially) prepped.
755 * we need to keep this request in the front to
756 * avoid resource deadlock. REQ_STARTED will
757 * prevent other fs requests from passing this one.
761 } else if (ret
== BLKPREP_KILL
) {
762 rq
->cmd_flags
|= REQ_QUIET
;
763 end_queued_request(rq
, 0);
765 printk(KERN_ERR
"%s: bad return=%d\n", __FUNCTION__
,
774 EXPORT_SYMBOL(elv_next_request
);
776 void elv_dequeue_request(struct request_queue
*q
, struct request
*rq
)
778 BUG_ON(list_empty(&rq
->queuelist
));
779 BUG_ON(ELV_ON_HASH(rq
));
781 list_del_init(&rq
->queuelist
);
784 * the time frame between a request being removed from the lists
785 * and to it is freed is accounted as io that is in progress at
788 if (blk_account_rq(rq
))
792 EXPORT_SYMBOL(elv_dequeue_request
);
794 int elv_queue_empty(struct request_queue
*q
)
796 elevator_t
*e
= q
->elevator
;
798 if (!list_empty(&q
->queue_head
))
801 if (e
->ops
->elevator_queue_empty_fn
)
802 return e
->ops
->elevator_queue_empty_fn(q
);
807 EXPORT_SYMBOL(elv_queue_empty
);
809 struct request
*elv_latter_request(struct request_queue
*q
, struct request
*rq
)
811 elevator_t
*e
= q
->elevator
;
813 if (e
->ops
->elevator_latter_req_fn
)
814 return e
->ops
->elevator_latter_req_fn(q
, rq
);
818 struct request
*elv_former_request(struct request_queue
*q
, struct request
*rq
)
820 elevator_t
*e
= q
->elevator
;
822 if (e
->ops
->elevator_former_req_fn
)
823 return e
->ops
->elevator_former_req_fn(q
, rq
);
827 int elv_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
829 elevator_t
*e
= q
->elevator
;
831 if (e
->ops
->elevator_set_req_fn
)
832 return e
->ops
->elevator_set_req_fn(q
, rq
, gfp_mask
);
834 rq
->elevator_private
= NULL
;
838 void elv_put_request(struct request_queue
*q
, struct request
*rq
)
840 elevator_t
*e
= q
->elevator
;
842 if (e
->ops
->elevator_put_req_fn
)
843 e
->ops
->elevator_put_req_fn(rq
);
846 int elv_may_queue(struct request_queue
*q
, int rw
)
848 elevator_t
*e
= q
->elevator
;
850 if (e
->ops
->elevator_may_queue_fn
)
851 return e
->ops
->elevator_may_queue_fn(q
, rw
);
853 return ELV_MQUEUE_MAY
;
856 void elv_completed_request(struct request_queue
*q
, struct request
*rq
)
858 elevator_t
*e
= q
->elevator
;
861 * request is released from the driver, io must be done
863 if (blk_account_rq(rq
)) {
865 if (blk_sorted_rq(rq
) && e
->ops
->elevator_completed_req_fn
)
866 e
->ops
->elevator_completed_req_fn(q
, rq
);
870 * Check if the queue is waiting for fs requests to be
871 * drained for flush sequence.
873 if (unlikely(q
->ordseq
)) {
874 struct request
*first_rq
= list_entry_rq(q
->queue_head
.next
);
875 if (q
->in_flight
== 0 &&
876 blk_ordered_cur_seq(q
) == QUEUE_ORDSEQ_DRAIN
&&
877 blk_ordered_req_seq(first_rq
) > QUEUE_ORDSEQ_DRAIN
) {
878 blk_ordered_complete_seq(q
, QUEUE_ORDSEQ_DRAIN
, 0);
884 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
887 elv_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
889 elevator_t
*e
= container_of(kobj
, elevator_t
, kobj
);
890 struct elv_fs_entry
*entry
= to_elv(attr
);
896 mutex_lock(&e
->sysfs_lock
);
897 error
= e
->ops
? entry
->show(e
, page
) : -ENOENT
;
898 mutex_unlock(&e
->sysfs_lock
);
903 elv_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
904 const char *page
, size_t length
)
906 elevator_t
*e
= container_of(kobj
, elevator_t
, kobj
);
907 struct elv_fs_entry
*entry
= to_elv(attr
);
913 mutex_lock(&e
->sysfs_lock
);
914 error
= e
->ops
? entry
->store(e
, page
, length
) : -ENOENT
;
915 mutex_unlock(&e
->sysfs_lock
);
919 static struct sysfs_ops elv_sysfs_ops
= {
920 .show
= elv_attr_show
,
921 .store
= elv_attr_store
,
924 static struct kobj_type elv_ktype
= {
925 .sysfs_ops
= &elv_sysfs_ops
,
926 .release
= elevator_release
,
929 int elv_register_queue(struct request_queue
*q
)
931 elevator_t
*e
= q
->elevator
;
934 e
->kobj
.parent
= &q
->kobj
;
936 error
= kobject_add(&e
->kobj
);
938 struct elv_fs_entry
*attr
= e
->elevator_type
->elevator_attrs
;
940 while (attr
->attr
.name
) {
941 if (sysfs_create_file(&e
->kobj
, &attr
->attr
))
946 kobject_uevent(&e
->kobj
, KOBJ_ADD
);
951 static void __elv_unregister_queue(elevator_t
*e
)
953 kobject_uevent(&e
->kobj
, KOBJ_REMOVE
);
954 kobject_del(&e
->kobj
);
957 void elv_unregister_queue(struct request_queue
*q
)
960 __elv_unregister_queue(q
->elevator
);
963 void elv_register(struct elevator_type
*e
)
967 spin_lock(&elv_list_lock
);
968 BUG_ON(elevator_find(e
->elevator_name
));
969 list_add_tail(&e
->list
, &elv_list
);
970 spin_unlock(&elv_list_lock
);
972 if (!strcmp(e
->elevator_name
, chosen_elevator
) ||
973 (!*chosen_elevator
&&
974 !strcmp(e
->elevator_name
, CONFIG_DEFAULT_IOSCHED
)))
977 printk(KERN_INFO
"io scheduler %s registered%s\n", e
->elevator_name
, def
);
979 EXPORT_SYMBOL_GPL(elv_register
);
981 void elv_unregister(struct elevator_type
*e
)
983 struct task_struct
*g
, *p
;
986 * Iterate every thread in the process to remove the io contexts.
989 read_lock(&tasklist_lock
);
990 do_each_thread(g
, p
) {
993 e
->ops
.trim(p
->io_context
);
995 } while_each_thread(g
, p
);
996 read_unlock(&tasklist_lock
);
999 spin_lock(&elv_list_lock
);
1000 list_del_init(&e
->list
);
1001 spin_unlock(&elv_list_lock
);
1003 EXPORT_SYMBOL_GPL(elv_unregister
);
1006 * switch to new_e io scheduler. be careful not to introduce deadlocks -
1007 * we don't free the old io scheduler, before we have allocated what we
1008 * need for the new one. this way we have a chance of going back to the old
1009 * one, if the new one fails init for some reason.
1011 static int elevator_switch(struct request_queue
*q
, struct elevator_type
*new_e
)
1013 elevator_t
*old_elevator
, *e
;
1017 * Allocate new elevator
1019 e
= elevator_alloc(q
, new_e
);
1023 data
= elevator_init_queue(q
, e
);
1025 kobject_put(&e
->kobj
);
1030 * Turn on BYPASS and drain all requests w/ elevator private data
1032 spin_lock_irq(q
->queue_lock
);
1034 set_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
1036 elv_drain_elevator(q
);
1038 while (q
->rq
.elvpriv
) {
1041 spin_unlock_irq(q
->queue_lock
);
1043 spin_lock_irq(q
->queue_lock
);
1044 elv_drain_elevator(q
);
1048 * Remember old elevator.
1050 old_elevator
= q
->elevator
;
1053 * attach and start new elevator
1055 elevator_attach(q
, e
, data
);
1057 spin_unlock_irq(q
->queue_lock
);
1059 __elv_unregister_queue(old_elevator
);
1061 if (elv_register_queue(q
))
1065 * finally exit old elevator and turn off BYPASS.
1067 elevator_exit(old_elevator
);
1068 clear_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
1073 * switch failed, exit the new io scheduler and reattach the old
1074 * one again (along with re-adding the sysfs dir)
1077 q
->elevator
= old_elevator
;
1078 elv_register_queue(q
);
1079 clear_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
1083 ssize_t
elv_iosched_store(struct request_queue
*q
, const char *name
,
1086 char elevator_name
[ELV_NAME_MAX
];
1088 struct elevator_type
*e
;
1090 elevator_name
[sizeof(elevator_name
) - 1] = '\0';
1091 strncpy(elevator_name
, name
, sizeof(elevator_name
) - 1);
1092 len
= strlen(elevator_name
);
1094 if (len
&& elevator_name
[len
- 1] == '\n')
1095 elevator_name
[len
- 1] = '\0';
1097 e
= elevator_get(elevator_name
);
1099 printk(KERN_ERR
"elevator: type %s not found\n", elevator_name
);
1103 if (!strcmp(elevator_name
, q
->elevator
->elevator_type
->elevator_name
)) {
1108 if (!elevator_switch(q
, e
))
1109 printk(KERN_ERR
"elevator: switch to %s failed\n",elevator_name
);
1113 ssize_t
elv_iosched_show(struct request_queue
*q
, char *name
)
1115 elevator_t
*e
= q
->elevator
;
1116 struct elevator_type
*elv
= e
->elevator_type
;
1117 struct elevator_type
*__e
;
1120 spin_lock(&elv_list_lock
);
1121 list_for_each_entry(__e
, &elv_list
, list
) {
1122 if (!strcmp(elv
->elevator_name
, __e
->elevator_name
))
1123 len
+= sprintf(name
+len
, "[%s] ", elv
->elevator_name
);
1125 len
+= sprintf(name
+len
, "%s ", __e
->elevator_name
);
1127 spin_unlock(&elv_list_lock
);
1129 len
+= sprintf(len
+name
, "\n");
1133 struct request
*elv_rb_former_request(struct request_queue
*q
,
1136 struct rb_node
*rbprev
= rb_prev(&rq
->rb_node
);
1139 return rb_entry_rq(rbprev
);
1144 EXPORT_SYMBOL(elv_rb_former_request
);
1146 struct request
*elv_rb_latter_request(struct request_queue
*q
,
1149 struct rb_node
*rbnext
= rb_next(&rq
->rb_node
);
1152 return rb_entry_rq(rbnext
);
1157 EXPORT_SYMBOL(elv_rb_latter_request
);