1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2007 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #ifdef NETIF_F_HW_VLAN_TX
39 #include <linux/if_vlan.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/zlib.h>
55 #define FW_BUF_SIZE 0x8000
57 #define DRV_MODULE_NAME "bnx2"
58 #define PFX DRV_MODULE_NAME ": "
59 #define DRV_MODULE_VERSION "1.6.9"
60 #define DRV_MODULE_RELDATE "December 8, 2007"
62 #define RUN_AT(x) (jiffies + (x))
64 /* Time in jiffies before concluding the transmitter is hung. */
65 #define TX_TIMEOUT (5*HZ)
67 static const char version
[] __devinitdata
=
68 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
70 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
71 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver");
72 MODULE_LICENSE("GPL");
73 MODULE_VERSION(DRV_MODULE_VERSION
);
75 static int disable_msi
= 0;
77 module_param(disable_msi
, int, 0);
78 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
92 /* indexed by board_t, above */
95 } board_info
[] __devinitdata
= {
96 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
97 { "HP NC370T Multifunction Gigabit Server Adapter" },
98 { "HP NC370i Multifunction Gigabit Server Adapter" },
99 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
100 { "HP NC370F Multifunction Gigabit Server Adapter" },
101 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
102 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
103 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
104 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
107 static struct pci_device_id bnx2_pci_tbl
[] = {
108 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
109 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
110 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
111 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
112 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
113 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
114 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
115 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
116 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
117 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
118 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
119 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
120 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
121 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
122 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
123 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
124 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
125 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
129 static struct flash_spec flash_table
[] =
131 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
132 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
134 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
135 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
136 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
138 /* Expansion entry 0001 */
139 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
140 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
141 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
143 /* Saifun SA25F010 (non-buffered flash) */
144 /* strap, cfg1, & write1 need updates */
145 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
146 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
147 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
148 "Non-buffered flash (128kB)"},
149 /* Saifun SA25F020 (non-buffered flash) */
150 /* strap, cfg1, & write1 need updates */
151 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
152 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
153 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
154 "Non-buffered flash (256kB)"},
155 /* Expansion entry 0100 */
156 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
157 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
158 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
160 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
161 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
162 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
163 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
164 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
165 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
166 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
167 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
168 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
169 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
170 /* Saifun SA25F005 (non-buffered flash) */
171 /* strap, cfg1, & write1 need updates */
172 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
173 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
174 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
175 "Non-buffered flash (64kB)"},
177 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
178 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
179 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
181 /* Expansion entry 1001 */
182 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
183 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
184 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
186 /* Expansion entry 1010 */
187 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
188 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
189 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
191 /* ATMEL AT45DB011B (buffered flash) */
192 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
193 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
194 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
195 "Buffered flash (128kB)"},
196 /* Expansion entry 1100 */
197 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
198 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
199 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
201 /* Expansion entry 1101 */
202 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
203 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
204 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
206 /* Ateml Expansion entry 1110 */
207 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
208 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
209 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
210 "Entry 1110 (Atmel)"},
211 /* ATMEL AT45DB021B (buffered flash) */
212 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
213 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
214 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
215 "Buffered flash (256kB)"},
218 static struct flash_spec flash_5709
= {
219 .flags
= BNX2_NV_BUFFERED
,
220 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
221 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
222 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
223 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
224 .name
= "5709 Buffered flash (256kB)",
227 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
229 static inline u32
bnx2_tx_avail(struct bnx2
*bp
)
235 /* The ring uses 256 indices for 255 entries, one of them
236 * needs to be skipped.
238 diff
= bp
->tx_prod
- bp
->tx_cons
;
239 if (unlikely(diff
>= TX_DESC_CNT
)) {
241 if (diff
== TX_DESC_CNT
)
242 diff
= MAX_TX_DESC_CNT
;
244 return (bp
->tx_ring_size
- diff
);
248 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
252 spin_lock_bh(&bp
->indirect_lock
);
253 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
254 val
= REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
255 spin_unlock_bh(&bp
->indirect_lock
);
260 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
262 spin_lock_bh(&bp
->indirect_lock
);
263 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
264 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
265 spin_unlock_bh(&bp
->indirect_lock
);
269 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
272 spin_lock_bh(&bp
->indirect_lock
);
273 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
276 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
277 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
278 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
279 for (i
= 0; i
< 5; i
++) {
281 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
282 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
287 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
288 REG_WR(bp
, BNX2_CTX_DATA
, val
);
290 spin_unlock_bh(&bp
->indirect_lock
);
294 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
299 if (bp
->phy_flags
& PHY_INT_MODE_AUTO_POLLING_FLAG
) {
300 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
301 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
303 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
304 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
309 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
310 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
311 BNX2_EMAC_MDIO_COMM_START_BUSY
;
312 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
314 for (i
= 0; i
< 50; i
++) {
317 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
318 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
321 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
322 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
328 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
337 if (bp
->phy_flags
& PHY_INT_MODE_AUTO_POLLING_FLAG
) {
338 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
339 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
341 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
342 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
351 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
356 if (bp
->phy_flags
& PHY_INT_MODE_AUTO_POLLING_FLAG
) {
357 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
358 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
360 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
361 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
366 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
367 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
368 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
369 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
371 for (i
= 0; i
< 50; i
++) {
374 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
375 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
381 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
386 if (bp
->phy_flags
& PHY_INT_MODE_AUTO_POLLING_FLAG
) {
387 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
388 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
390 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
391 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
400 bnx2_disable_int(struct bnx2
*bp
)
402 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
403 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
404 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
408 bnx2_enable_int(struct bnx2
*bp
)
410 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
411 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
412 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
| bp
->last_status_idx
);
414 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
415 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
| bp
->last_status_idx
);
417 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
421 bnx2_disable_int_sync(struct bnx2
*bp
)
423 atomic_inc(&bp
->intr_sem
);
424 bnx2_disable_int(bp
);
425 synchronize_irq(bp
->pdev
->irq
);
429 bnx2_netif_stop(struct bnx2
*bp
)
431 bnx2_disable_int_sync(bp
);
432 if (netif_running(bp
->dev
)) {
433 napi_disable(&bp
->napi
);
434 netif_tx_disable(bp
->dev
);
435 bp
->dev
->trans_start
= jiffies
; /* prevent tx timeout */
440 bnx2_netif_start(struct bnx2
*bp
)
442 if (atomic_dec_and_test(&bp
->intr_sem
)) {
443 if (netif_running(bp
->dev
)) {
444 netif_wake_queue(bp
->dev
);
445 napi_enable(&bp
->napi
);
452 bnx2_free_mem(struct bnx2
*bp
)
456 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
457 if (bp
->ctx_blk
[i
]) {
458 pci_free_consistent(bp
->pdev
, BCM_PAGE_SIZE
,
460 bp
->ctx_blk_mapping
[i
]);
461 bp
->ctx_blk
[i
] = NULL
;
464 if (bp
->status_blk
) {
465 pci_free_consistent(bp
->pdev
, bp
->status_stats_size
,
466 bp
->status_blk
, bp
->status_blk_mapping
);
467 bp
->status_blk
= NULL
;
468 bp
->stats_blk
= NULL
;
470 if (bp
->tx_desc_ring
) {
471 pci_free_consistent(bp
->pdev
,
472 sizeof(struct tx_bd
) * TX_DESC_CNT
,
473 bp
->tx_desc_ring
, bp
->tx_desc_mapping
);
474 bp
->tx_desc_ring
= NULL
;
476 kfree(bp
->tx_buf_ring
);
477 bp
->tx_buf_ring
= NULL
;
478 for (i
= 0; i
< bp
->rx_max_ring
; i
++) {
479 if (bp
->rx_desc_ring
[i
])
480 pci_free_consistent(bp
->pdev
,
481 sizeof(struct rx_bd
) * RX_DESC_CNT
,
483 bp
->rx_desc_mapping
[i
]);
484 bp
->rx_desc_ring
[i
] = NULL
;
486 vfree(bp
->rx_buf_ring
);
487 bp
->rx_buf_ring
= NULL
;
491 bnx2_alloc_mem(struct bnx2
*bp
)
493 int i
, status_blk_size
;
495 bp
->tx_buf_ring
= kzalloc(sizeof(struct sw_bd
) * TX_DESC_CNT
,
497 if (bp
->tx_buf_ring
== NULL
)
500 bp
->tx_desc_ring
= pci_alloc_consistent(bp
->pdev
,
501 sizeof(struct tx_bd
) *
503 &bp
->tx_desc_mapping
);
504 if (bp
->tx_desc_ring
== NULL
)
507 bp
->rx_buf_ring
= vmalloc(sizeof(struct sw_bd
) * RX_DESC_CNT
*
509 if (bp
->rx_buf_ring
== NULL
)
512 memset(bp
->rx_buf_ring
, 0, sizeof(struct sw_bd
) * RX_DESC_CNT
*
515 for (i
= 0; i
< bp
->rx_max_ring
; i
++) {
516 bp
->rx_desc_ring
[i
] =
517 pci_alloc_consistent(bp
->pdev
,
518 sizeof(struct rx_bd
) * RX_DESC_CNT
,
519 &bp
->rx_desc_mapping
[i
]);
520 if (bp
->rx_desc_ring
[i
] == NULL
)
525 /* Combine status and statistics blocks into one allocation. */
526 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
527 bp
->status_stats_size
= status_blk_size
+
528 sizeof(struct statistics_block
);
530 bp
->status_blk
= pci_alloc_consistent(bp
->pdev
, bp
->status_stats_size
,
531 &bp
->status_blk_mapping
);
532 if (bp
->status_blk
== NULL
)
535 memset(bp
->status_blk
, 0, bp
->status_stats_size
);
537 bp
->stats_blk
= (void *) ((unsigned long) bp
->status_blk
+
540 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
542 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
543 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
544 if (bp
->ctx_pages
== 0)
546 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
547 bp
->ctx_blk
[i
] = pci_alloc_consistent(bp
->pdev
,
549 &bp
->ctx_blk_mapping
[i
]);
550 if (bp
->ctx_blk
[i
] == NULL
)
562 bnx2_report_fw_link(struct bnx2
*bp
)
564 u32 fw_link_status
= 0;
566 if (bp
->phy_flags
& REMOTE_PHY_CAP_FLAG
)
572 switch (bp
->line_speed
) {
574 if (bp
->duplex
== DUPLEX_HALF
)
575 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
577 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
580 if (bp
->duplex
== DUPLEX_HALF
)
581 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
583 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
586 if (bp
->duplex
== DUPLEX_HALF
)
587 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
589 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
592 if (bp
->duplex
== DUPLEX_HALF
)
593 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
595 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
599 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
602 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
604 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
605 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
607 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
608 bp
->phy_flags
& PHY_PARALLEL_DETECT_FLAG
)
609 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
611 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
615 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
617 REG_WR_IND(bp
, bp
->shmem_base
+ BNX2_LINK_STATUS
, fw_link_status
);
621 bnx2_xceiver_str(struct bnx2
*bp
)
623 return ((bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
624 ((bp
->phy_flags
& PHY_SERDES_FLAG
) ? "Remote Copper" :
629 bnx2_report_link(struct bnx2
*bp
)
632 netif_carrier_on(bp
->dev
);
633 printk(KERN_INFO PFX
"%s NIC %s Link is Up, ", bp
->dev
->name
,
634 bnx2_xceiver_str(bp
));
636 printk("%d Mbps ", bp
->line_speed
);
638 if (bp
->duplex
== DUPLEX_FULL
)
639 printk("full duplex");
641 printk("half duplex");
644 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
645 printk(", receive ");
646 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
647 printk("& transmit ");
650 printk(", transmit ");
652 printk("flow control ON");
657 netif_carrier_off(bp
->dev
);
658 printk(KERN_ERR PFX
"%s NIC %s Link is Down\n", bp
->dev
->name
,
659 bnx2_xceiver_str(bp
));
662 bnx2_report_fw_link(bp
);
666 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
668 u32 local_adv
, remote_adv
;
671 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
672 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
674 if (bp
->duplex
== DUPLEX_FULL
) {
675 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
680 if (bp
->duplex
!= DUPLEX_FULL
) {
684 if ((bp
->phy_flags
& PHY_SERDES_FLAG
) &&
685 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
688 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
689 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
690 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
691 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
692 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
696 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
697 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
699 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
700 u32 new_local_adv
= 0;
701 u32 new_remote_adv
= 0;
703 if (local_adv
& ADVERTISE_1000XPAUSE
)
704 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
705 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
706 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
707 if (remote_adv
& ADVERTISE_1000XPAUSE
)
708 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
709 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
710 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
712 local_adv
= new_local_adv
;
713 remote_adv
= new_remote_adv
;
716 /* See Table 28B-3 of 802.3ab-1999 spec. */
717 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
718 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
719 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
720 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
722 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
723 bp
->flow_ctrl
= FLOW_CTRL_RX
;
727 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
728 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
732 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
733 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
734 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
736 bp
->flow_ctrl
= FLOW_CTRL_TX
;
742 bnx2_5709s_linkup(struct bnx2
*bp
)
748 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
749 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
750 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
752 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
753 bp
->line_speed
= bp
->req_line_speed
;
754 bp
->duplex
= bp
->req_duplex
;
757 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
759 case MII_BNX2_GP_TOP_AN_SPEED_10
:
760 bp
->line_speed
= SPEED_10
;
762 case MII_BNX2_GP_TOP_AN_SPEED_100
:
763 bp
->line_speed
= SPEED_100
;
765 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
766 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
767 bp
->line_speed
= SPEED_1000
;
769 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
770 bp
->line_speed
= SPEED_2500
;
773 if (val
& MII_BNX2_GP_TOP_AN_FD
)
774 bp
->duplex
= DUPLEX_FULL
;
776 bp
->duplex
= DUPLEX_HALF
;
781 bnx2_5708s_linkup(struct bnx2
*bp
)
786 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
787 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
788 case BCM5708S_1000X_STAT1_SPEED_10
:
789 bp
->line_speed
= SPEED_10
;
791 case BCM5708S_1000X_STAT1_SPEED_100
:
792 bp
->line_speed
= SPEED_100
;
794 case BCM5708S_1000X_STAT1_SPEED_1G
:
795 bp
->line_speed
= SPEED_1000
;
797 case BCM5708S_1000X_STAT1_SPEED_2G5
:
798 bp
->line_speed
= SPEED_2500
;
801 if (val
& BCM5708S_1000X_STAT1_FD
)
802 bp
->duplex
= DUPLEX_FULL
;
804 bp
->duplex
= DUPLEX_HALF
;
810 bnx2_5706s_linkup(struct bnx2
*bp
)
812 u32 bmcr
, local_adv
, remote_adv
, common
;
815 bp
->line_speed
= SPEED_1000
;
817 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
818 if (bmcr
& BMCR_FULLDPLX
) {
819 bp
->duplex
= DUPLEX_FULL
;
822 bp
->duplex
= DUPLEX_HALF
;
825 if (!(bmcr
& BMCR_ANENABLE
)) {
829 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
830 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
832 common
= local_adv
& remote_adv
;
833 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
835 if (common
& ADVERTISE_1000XFULL
) {
836 bp
->duplex
= DUPLEX_FULL
;
839 bp
->duplex
= DUPLEX_HALF
;
847 bnx2_copper_linkup(struct bnx2
*bp
)
851 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
852 if (bmcr
& BMCR_ANENABLE
) {
853 u32 local_adv
, remote_adv
, common
;
855 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
856 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
858 common
= local_adv
& (remote_adv
>> 2);
859 if (common
& ADVERTISE_1000FULL
) {
860 bp
->line_speed
= SPEED_1000
;
861 bp
->duplex
= DUPLEX_FULL
;
863 else if (common
& ADVERTISE_1000HALF
) {
864 bp
->line_speed
= SPEED_1000
;
865 bp
->duplex
= DUPLEX_HALF
;
868 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
869 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
871 common
= local_adv
& remote_adv
;
872 if (common
& ADVERTISE_100FULL
) {
873 bp
->line_speed
= SPEED_100
;
874 bp
->duplex
= DUPLEX_FULL
;
876 else if (common
& ADVERTISE_100HALF
) {
877 bp
->line_speed
= SPEED_100
;
878 bp
->duplex
= DUPLEX_HALF
;
880 else if (common
& ADVERTISE_10FULL
) {
881 bp
->line_speed
= SPEED_10
;
882 bp
->duplex
= DUPLEX_FULL
;
884 else if (common
& ADVERTISE_10HALF
) {
885 bp
->line_speed
= SPEED_10
;
886 bp
->duplex
= DUPLEX_HALF
;
895 if (bmcr
& BMCR_SPEED100
) {
896 bp
->line_speed
= SPEED_100
;
899 bp
->line_speed
= SPEED_10
;
901 if (bmcr
& BMCR_FULLDPLX
) {
902 bp
->duplex
= DUPLEX_FULL
;
905 bp
->duplex
= DUPLEX_HALF
;
913 bnx2_set_mac_link(struct bnx2
*bp
)
917 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
918 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
919 (bp
->duplex
== DUPLEX_HALF
)) {
920 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
923 /* Configure the EMAC mode register. */
924 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
926 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
927 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
928 BNX2_EMAC_MODE_25G_MODE
);
931 switch (bp
->line_speed
) {
933 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
934 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
939 val
|= BNX2_EMAC_MODE_PORT_MII
;
942 val
|= BNX2_EMAC_MODE_25G_MODE
;
945 val
|= BNX2_EMAC_MODE_PORT_GMII
;
950 val
|= BNX2_EMAC_MODE_PORT_GMII
;
953 /* Set the MAC to operate in the appropriate duplex mode. */
954 if (bp
->duplex
== DUPLEX_HALF
)
955 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
956 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
958 /* Enable/disable rx PAUSE. */
959 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
961 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
962 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
963 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
965 /* Enable/disable tx PAUSE. */
966 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
967 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
969 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
970 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
971 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
973 /* Acknowledge the interrupt. */
974 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
980 bnx2_enable_bmsr1(struct bnx2
*bp
)
982 if ((bp
->phy_flags
& PHY_SERDES_FLAG
) &&
983 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
984 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
985 MII_BNX2_BLK_ADDR_GP_STATUS
);
989 bnx2_disable_bmsr1(struct bnx2
*bp
)
991 if ((bp
->phy_flags
& PHY_SERDES_FLAG
) &&
992 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
993 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
994 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
998 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1003 if (!(bp
->phy_flags
& PHY_2_5G_CAPABLE_FLAG
))
1006 if (bp
->autoneg
& AUTONEG_SPEED
)
1007 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1009 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1010 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1012 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1013 if (!(up1
& BCM5708S_UP1_2G5
)) {
1014 up1
|= BCM5708S_UP1_2G5
;
1015 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1019 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1020 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1021 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1027 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1032 if (!(bp
->phy_flags
& PHY_2_5G_CAPABLE_FLAG
))
1035 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1036 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1038 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1039 if (up1
& BCM5708S_UP1_2G5
) {
1040 up1
&= ~BCM5708S_UP1_2G5
;
1041 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1045 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1046 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1047 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1053 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1057 if (!(bp
->phy_flags
& PHY_2_5G_CAPABLE_FLAG
))
1060 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1063 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1064 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1065 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1066 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1067 val
|= MII_BNX2_SD_MISC1_FORCE
| MII_BNX2_SD_MISC1_FORCE_2_5G
;
1068 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1070 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1071 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1072 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1074 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1075 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1076 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1079 if (bp
->autoneg
& AUTONEG_SPEED
) {
1080 bmcr
&= ~BMCR_ANENABLE
;
1081 if (bp
->req_duplex
== DUPLEX_FULL
)
1082 bmcr
|= BMCR_FULLDPLX
;
1084 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1088 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1092 if (!(bp
->phy_flags
& PHY_2_5G_CAPABLE_FLAG
))
1095 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1098 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1099 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1100 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1101 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1102 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1104 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1105 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1106 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1108 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1109 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1110 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1113 if (bp
->autoneg
& AUTONEG_SPEED
)
1114 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1115 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1119 bnx2_set_link(struct bnx2
*bp
)
1124 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1129 if (bp
->phy_flags
& REMOTE_PHY_CAP_FLAG
)
1132 link_up
= bp
->link_up
;
1134 bnx2_enable_bmsr1(bp
);
1135 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1136 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1137 bnx2_disable_bmsr1(bp
);
1139 if ((bp
->phy_flags
& PHY_SERDES_FLAG
) &&
1140 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
1143 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
1144 if (val
& BNX2_EMAC_STATUS_LINK
)
1145 bmsr
|= BMSR_LSTATUS
;
1147 bmsr
&= ~BMSR_LSTATUS
;
1150 if (bmsr
& BMSR_LSTATUS
) {
1153 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
1154 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1155 bnx2_5706s_linkup(bp
);
1156 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1157 bnx2_5708s_linkup(bp
);
1158 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1159 bnx2_5709s_linkup(bp
);
1162 bnx2_copper_linkup(bp
);
1164 bnx2_resolve_flow_ctrl(bp
);
1167 if ((bp
->phy_flags
& PHY_SERDES_FLAG
) &&
1168 (bp
->autoneg
& AUTONEG_SPEED
))
1169 bnx2_disable_forced_2g5(bp
);
1171 bp
->phy_flags
&= ~PHY_PARALLEL_DETECT_FLAG
;
1175 if (bp
->link_up
!= link_up
) {
1176 bnx2_report_link(bp
);
1179 bnx2_set_mac_link(bp
);
1185 bnx2_reset_phy(struct bnx2
*bp
)
1190 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1192 #define PHY_RESET_MAX_WAIT 100
1193 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1196 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1197 if (!(reg
& BMCR_RESET
)) {
1202 if (i
== PHY_RESET_MAX_WAIT
) {
1209 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1213 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1214 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1216 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
1217 adv
= ADVERTISE_1000XPAUSE
;
1220 adv
= ADVERTISE_PAUSE_CAP
;
1223 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1224 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
1225 adv
= ADVERTISE_1000XPSE_ASYM
;
1228 adv
= ADVERTISE_PAUSE_ASYM
;
1231 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1232 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
1233 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1236 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1242 static int bnx2_fw_sync(struct bnx2
*, u32
, int);
1245 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1247 u32 speed_arg
= 0, pause_adv
;
1249 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1251 if (bp
->autoneg
& AUTONEG_SPEED
) {
1252 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1253 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1254 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1255 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1256 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1257 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1258 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1259 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1260 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1261 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1262 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1263 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1264 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1266 if (bp
->req_line_speed
== SPEED_2500
)
1267 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1268 else if (bp
->req_line_speed
== SPEED_1000
)
1269 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1270 else if (bp
->req_line_speed
== SPEED_100
) {
1271 if (bp
->req_duplex
== DUPLEX_FULL
)
1272 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1274 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1275 } else if (bp
->req_line_speed
== SPEED_10
) {
1276 if (bp
->req_duplex
== DUPLEX_FULL
)
1277 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1279 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1283 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1284 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1285 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_1000XPSE_ASYM
))
1286 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1288 if (port
== PORT_TP
)
1289 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1290 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1292 REG_WR_IND(bp
, bp
->shmem_base
+ BNX2_DRV_MB_ARG0
, speed_arg
);
1294 spin_unlock_bh(&bp
->phy_lock
);
1295 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 0);
1296 spin_lock_bh(&bp
->phy_lock
);
1302 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1307 if (bp
->phy_flags
& REMOTE_PHY_CAP_FLAG
)
1308 return (bnx2_setup_remote_phy(bp
, port
));
1310 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1312 int force_link_down
= 0;
1314 if (bp
->req_line_speed
== SPEED_2500
) {
1315 if (!bnx2_test_and_enable_2g5(bp
))
1316 force_link_down
= 1;
1317 } else if (bp
->req_line_speed
== SPEED_1000
) {
1318 if (bnx2_test_and_disable_2g5(bp
))
1319 force_link_down
= 1;
1321 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1322 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1324 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1325 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1326 new_bmcr
|= BMCR_SPEED1000
;
1328 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1329 if (bp
->req_line_speed
== SPEED_2500
)
1330 bnx2_enable_forced_2g5(bp
);
1331 else if (bp
->req_line_speed
== SPEED_1000
) {
1332 bnx2_disable_forced_2g5(bp
);
1333 new_bmcr
&= ~0x2000;
1336 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1337 if (bp
->req_line_speed
== SPEED_2500
)
1338 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1340 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1343 if (bp
->req_duplex
== DUPLEX_FULL
) {
1344 adv
|= ADVERTISE_1000XFULL
;
1345 new_bmcr
|= BMCR_FULLDPLX
;
1348 adv
|= ADVERTISE_1000XHALF
;
1349 new_bmcr
&= ~BMCR_FULLDPLX
;
1351 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1352 /* Force a link down visible on the other side */
1354 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1355 ~(ADVERTISE_1000XFULL
|
1356 ADVERTISE_1000XHALF
));
1357 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1358 BMCR_ANRESTART
| BMCR_ANENABLE
);
1361 netif_carrier_off(bp
->dev
);
1362 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1363 bnx2_report_link(bp
);
1365 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1366 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1368 bnx2_resolve_flow_ctrl(bp
);
1369 bnx2_set_mac_link(bp
);
1374 bnx2_test_and_enable_2g5(bp
);
1376 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1377 new_adv
|= ADVERTISE_1000XFULL
;
1379 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1381 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1382 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1384 bp
->serdes_an_pending
= 0;
1385 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1386 /* Force a link down visible on the other side */
1388 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1389 spin_unlock_bh(&bp
->phy_lock
);
1391 spin_lock_bh(&bp
->phy_lock
);
1394 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1395 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1397 /* Speed up link-up time when the link partner
1398 * does not autonegotiate which is very common
1399 * in blade servers. Some blade servers use
1400 * IPMI for kerboard input and it's important
1401 * to minimize link disruptions. Autoneg. involves
1402 * exchanging base pages plus 3 next pages and
1403 * normally completes in about 120 msec.
1405 bp
->current_interval
= SERDES_AN_TIMEOUT
;
1406 bp
->serdes_an_pending
= 1;
1407 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1409 bnx2_resolve_flow_ctrl(bp
);
1410 bnx2_set_mac_link(bp
);
1416 #define ETHTOOL_ALL_FIBRE_SPEED \
1417 (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) ? \
1418 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1419 (ADVERTISED_1000baseT_Full)
1421 #define ETHTOOL_ALL_COPPER_SPEED \
1422 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1423 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1424 ADVERTISED_1000baseT_Full)
1426 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1427 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1429 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1432 bnx2_set_default_remote_link(struct bnx2
*bp
)
1436 if (bp
->phy_port
== PORT_TP
)
1437 link
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_RPHY_COPPER_LINK
);
1439 link
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_RPHY_SERDES_LINK
);
1441 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1442 bp
->req_line_speed
= 0;
1443 bp
->autoneg
|= AUTONEG_SPEED
;
1444 bp
->advertising
= ADVERTISED_Autoneg
;
1445 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1446 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1447 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1448 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1449 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1450 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1451 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1452 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1453 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1454 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1455 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1456 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1459 bp
->advertising
= 0;
1460 bp
->req_duplex
= DUPLEX_FULL
;
1461 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1462 bp
->req_line_speed
= SPEED_10
;
1463 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1464 bp
->req_duplex
= DUPLEX_HALF
;
1466 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1467 bp
->req_line_speed
= SPEED_100
;
1468 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1469 bp
->req_duplex
= DUPLEX_HALF
;
1471 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1472 bp
->req_line_speed
= SPEED_1000
;
1473 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1474 bp
->req_line_speed
= SPEED_2500
;
1479 bnx2_set_default_link(struct bnx2
*bp
)
1481 if (bp
->phy_flags
& REMOTE_PHY_CAP_FLAG
)
1482 return bnx2_set_default_remote_link(bp
);
1484 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1485 bp
->req_line_speed
= 0;
1486 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
1489 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1491 reg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_PORT_HW_CFG_CONFIG
);
1492 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1493 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1495 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1496 bp
->req_duplex
= DUPLEX_FULL
;
1499 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1503 bnx2_send_heart_beat(struct bnx2
*bp
)
1508 spin_lock(&bp
->indirect_lock
);
1509 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1510 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1511 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1512 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1513 spin_unlock(&bp
->indirect_lock
);
1517 bnx2_remote_phy_event(struct bnx2
*bp
)
1520 u8 link_up
= bp
->link_up
;
1523 msg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_LINK_STATUS
);
1525 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1526 bnx2_send_heart_beat(bp
);
1528 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1530 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1536 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1537 bp
->duplex
= DUPLEX_FULL
;
1539 case BNX2_LINK_STATUS_10HALF
:
1540 bp
->duplex
= DUPLEX_HALF
;
1541 case BNX2_LINK_STATUS_10FULL
:
1542 bp
->line_speed
= SPEED_10
;
1544 case BNX2_LINK_STATUS_100HALF
:
1545 bp
->duplex
= DUPLEX_HALF
;
1546 case BNX2_LINK_STATUS_100BASE_T4
:
1547 case BNX2_LINK_STATUS_100FULL
:
1548 bp
->line_speed
= SPEED_100
;
1550 case BNX2_LINK_STATUS_1000HALF
:
1551 bp
->duplex
= DUPLEX_HALF
;
1552 case BNX2_LINK_STATUS_1000FULL
:
1553 bp
->line_speed
= SPEED_1000
;
1555 case BNX2_LINK_STATUS_2500HALF
:
1556 bp
->duplex
= DUPLEX_HALF
;
1557 case BNX2_LINK_STATUS_2500FULL
:
1558 bp
->line_speed
= SPEED_2500
;
1565 spin_lock(&bp
->phy_lock
);
1567 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1568 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1569 if (bp
->duplex
== DUPLEX_FULL
)
1570 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1572 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
1573 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1574 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
1575 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1578 old_port
= bp
->phy_port
;
1579 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
1580 bp
->phy_port
= PORT_FIBRE
;
1582 bp
->phy_port
= PORT_TP
;
1584 if (old_port
!= bp
->phy_port
)
1585 bnx2_set_default_link(bp
);
1587 spin_unlock(&bp
->phy_lock
);
1589 if (bp
->link_up
!= link_up
)
1590 bnx2_report_link(bp
);
1592 bnx2_set_mac_link(bp
);
1596 bnx2_set_remote_link(struct bnx2
*bp
)
1600 evt_code
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_FW_EVT_CODE_MB
);
1602 case BNX2_FW_EVT_CODE_LINK_EVENT
:
1603 bnx2_remote_phy_event(bp
);
1605 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
1607 bnx2_send_heart_beat(bp
);
1614 bnx2_setup_copper_phy(struct bnx2
*bp
)
1619 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1621 if (bp
->autoneg
& AUTONEG_SPEED
) {
1622 u32 adv_reg
, adv1000_reg
;
1623 u32 new_adv_reg
= 0;
1624 u32 new_adv1000_reg
= 0;
1626 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
1627 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
1628 ADVERTISE_PAUSE_ASYM
);
1630 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
1631 adv1000_reg
&= PHY_ALL_1000_SPEED
;
1633 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1634 new_adv_reg
|= ADVERTISE_10HALF
;
1635 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1636 new_adv_reg
|= ADVERTISE_10FULL
;
1637 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1638 new_adv_reg
|= ADVERTISE_100HALF
;
1639 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1640 new_adv_reg
|= ADVERTISE_100FULL
;
1641 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1642 new_adv1000_reg
|= ADVERTISE_1000FULL
;
1644 new_adv_reg
|= ADVERTISE_CSMA
;
1646 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
1648 if ((adv1000_reg
!= new_adv1000_reg
) ||
1649 (adv_reg
!= new_adv_reg
) ||
1650 ((bmcr
& BMCR_ANENABLE
) == 0)) {
1652 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv_reg
);
1653 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
1654 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
1657 else if (bp
->link_up
) {
1658 /* Flow ctrl may have changed from auto to forced */
1659 /* or vice-versa. */
1661 bnx2_resolve_flow_ctrl(bp
);
1662 bnx2_set_mac_link(bp
);
1668 if (bp
->req_line_speed
== SPEED_100
) {
1669 new_bmcr
|= BMCR_SPEED100
;
1671 if (bp
->req_duplex
== DUPLEX_FULL
) {
1672 new_bmcr
|= BMCR_FULLDPLX
;
1674 if (new_bmcr
!= bmcr
) {
1677 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1678 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1680 if (bmsr
& BMSR_LSTATUS
) {
1681 /* Force link down */
1682 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1683 spin_unlock_bh(&bp
->phy_lock
);
1685 spin_lock_bh(&bp
->phy_lock
);
1687 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1688 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1691 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1693 /* Normally, the new speed is setup after the link has
1694 * gone down and up again. In some cases, link will not go
1695 * down so we need to set up the new speed here.
1697 if (bmsr
& BMSR_LSTATUS
) {
1698 bp
->line_speed
= bp
->req_line_speed
;
1699 bp
->duplex
= bp
->req_duplex
;
1700 bnx2_resolve_flow_ctrl(bp
);
1701 bnx2_set_mac_link(bp
);
1704 bnx2_resolve_flow_ctrl(bp
);
1705 bnx2_set_mac_link(bp
);
1711 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
1713 if (bp
->loopback
== MAC_LOOPBACK
)
1716 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
1717 return (bnx2_setup_serdes_phy(bp
, port
));
1720 return (bnx2_setup_copper_phy(bp
));
1725 bnx2_init_5709s_phy(struct bnx2
*bp
)
1729 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
1730 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
1731 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
1732 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
1733 bp
->mii_lpa
= MII_LPA
+ 0x10;
1734 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
1736 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
1737 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
1739 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1742 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
1744 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
1745 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
1746 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
1747 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
1749 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1750 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
1751 if (bp
->phy_flags
& PHY_2_5G_CAPABLE_FLAG
)
1752 val
|= BCM5708S_UP1_2G5
;
1754 val
&= ~BCM5708S_UP1_2G5
;
1755 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
1757 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
1758 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
1759 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
1760 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
1762 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
1764 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
1765 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
1766 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
1768 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1774 bnx2_init_5708s_phy(struct bnx2
*bp
)
1780 bp
->mii_up1
= BCM5708S_UP1
;
1782 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
1783 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
1784 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
1786 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
1787 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
1788 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
1790 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
1791 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
1792 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
1794 if (bp
->phy_flags
& PHY_2_5G_CAPABLE_FLAG
) {
1795 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
1796 val
|= BCM5708S_UP1_2G5
;
1797 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
1800 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
1801 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
1802 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
1803 /* increase tx signal amplitude */
1804 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
1805 BCM5708S_BLK_ADDR_TX_MISC
);
1806 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
1807 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
1808 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
1809 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
1812 val
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_PORT_HW_CFG_CONFIG
) &
1813 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
1818 is_backplane
= REG_RD_IND(bp
, bp
->shmem_base
+
1819 BNX2_SHARED_HW_CFG_CONFIG
);
1820 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
1821 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
1822 BCM5708S_BLK_ADDR_TX_MISC
);
1823 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
1824 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
1825 BCM5708S_BLK_ADDR_DIG
);
1832 bnx2_init_5706s_phy(struct bnx2
*bp
)
1836 bp
->phy_flags
&= ~PHY_PARALLEL_DETECT_FLAG
;
1838 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1839 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
1841 if (bp
->dev
->mtu
> 1500) {
1844 /* Set extended packet length bit */
1845 bnx2_write_phy(bp
, 0x18, 0x7);
1846 bnx2_read_phy(bp
, 0x18, &val
);
1847 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
1849 bnx2_write_phy(bp
, 0x1c, 0x6c00);
1850 bnx2_read_phy(bp
, 0x1c, &val
);
1851 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
1856 bnx2_write_phy(bp
, 0x18, 0x7);
1857 bnx2_read_phy(bp
, 0x18, &val
);
1858 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
1860 bnx2_write_phy(bp
, 0x1c, 0x6c00);
1861 bnx2_read_phy(bp
, 0x1c, &val
);
1862 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
1869 bnx2_init_copper_phy(struct bnx2
*bp
)
1875 if (bp
->phy_flags
& PHY_CRC_FIX_FLAG
) {
1876 bnx2_write_phy(bp
, 0x18, 0x0c00);
1877 bnx2_write_phy(bp
, 0x17, 0x000a);
1878 bnx2_write_phy(bp
, 0x15, 0x310b);
1879 bnx2_write_phy(bp
, 0x17, 0x201f);
1880 bnx2_write_phy(bp
, 0x15, 0x9506);
1881 bnx2_write_phy(bp
, 0x17, 0x401f);
1882 bnx2_write_phy(bp
, 0x15, 0x14e2);
1883 bnx2_write_phy(bp
, 0x18, 0x0400);
1886 if (bp
->phy_flags
& PHY_DIS_EARLY_DAC_FLAG
) {
1887 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
1888 MII_BNX2_DSP_EXPAND_REG
| 0x8);
1889 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1891 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
1894 if (bp
->dev
->mtu
> 1500) {
1895 /* Set extended packet length bit */
1896 bnx2_write_phy(bp
, 0x18, 0x7);
1897 bnx2_read_phy(bp
, 0x18, &val
);
1898 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
1900 bnx2_read_phy(bp
, 0x10, &val
);
1901 bnx2_write_phy(bp
, 0x10, val
| 0x1);
1904 bnx2_write_phy(bp
, 0x18, 0x7);
1905 bnx2_read_phy(bp
, 0x18, &val
);
1906 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
1908 bnx2_read_phy(bp
, 0x10, &val
);
1909 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
1912 /* ethernet@wirespeed */
1913 bnx2_write_phy(bp
, 0x18, 0x7007);
1914 bnx2_read_phy(bp
, 0x18, &val
);
1915 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
1921 bnx2_init_phy(struct bnx2
*bp
)
1926 bp
->phy_flags
&= ~PHY_INT_MODE_MASK_FLAG
;
1927 bp
->phy_flags
|= PHY_INT_MODE_LINK_READY_FLAG
;
1929 bp
->mii_bmcr
= MII_BMCR
;
1930 bp
->mii_bmsr
= MII_BMSR
;
1931 bp
->mii_bmsr1
= MII_BMSR
;
1932 bp
->mii_adv
= MII_ADVERTISE
;
1933 bp
->mii_lpa
= MII_LPA
;
1935 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
1937 if (bp
->phy_flags
& REMOTE_PHY_CAP_FLAG
)
1940 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
1941 bp
->phy_id
= val
<< 16;
1942 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
1943 bp
->phy_id
|= val
& 0xffff;
1945 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
1946 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1947 rc
= bnx2_init_5706s_phy(bp
);
1948 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1949 rc
= bnx2_init_5708s_phy(bp
);
1950 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1951 rc
= bnx2_init_5709s_phy(bp
);
1954 rc
= bnx2_init_copper_phy(bp
);
1959 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
1965 bnx2_set_mac_loopback(struct bnx2
*bp
)
1969 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
1970 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
1971 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
1972 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
1977 static int bnx2_test_link(struct bnx2
*);
1980 bnx2_set_phy_loopback(struct bnx2
*bp
)
1985 spin_lock_bh(&bp
->phy_lock
);
1986 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
1988 spin_unlock_bh(&bp
->phy_lock
);
1992 for (i
= 0; i
< 10; i
++) {
1993 if (bnx2_test_link(bp
) == 0)
1998 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
1999 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2000 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2001 BNX2_EMAC_MODE_25G_MODE
);
2003 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2004 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2010 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int silent
)
2016 msg_data
|= bp
->fw_wr_seq
;
2018 REG_WR_IND(bp
, bp
->shmem_base
+ BNX2_DRV_MB
, msg_data
);
2020 /* wait for an acknowledgement. */
2021 for (i
= 0; i
< (FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2024 val
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_FW_MB
);
2026 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2029 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2032 /* If we timed out, inform the firmware that this is the case. */
2033 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2035 printk(KERN_ERR PFX
"fw sync timeout, reset code = "
2038 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2039 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2041 REG_WR_IND(bp
, bp
->shmem_base
+ BNX2_DRV_MB
, msg_data
);
2046 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2053 bnx2_init_5709_context(struct bnx2
*bp
)
2058 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2059 val
|= (BCM_PAGE_BITS
- 8) << 16;
2060 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
2061 for (i
= 0; i
< 10; i
++) {
2062 val
= REG_RD(bp
, BNX2_CTX_COMMAND
);
2063 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2067 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2070 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2073 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2074 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2075 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2076 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2077 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2078 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2079 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2080 for (j
= 0; j
< 10; j
++) {
2082 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2083 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2087 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2096 bnx2_init_context(struct bnx2
*bp
)
2102 u32 vcid_addr
, pcid_addr
, offset
;
2107 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2110 vcid_addr
= GET_PCID_ADDR(vcid
);
2112 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2117 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2120 vcid_addr
= GET_CID_ADDR(vcid
);
2121 pcid_addr
= vcid_addr
;
2124 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2125 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2126 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2128 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, 0x00);
2129 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2131 /* Zero out the context. */
2132 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2133 CTX_WR(bp
, 0x00, offset
, 0);
2135 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2136 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2142 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2148 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2149 if (good_mbuf
== NULL
) {
2150 printk(KERN_ERR PFX
"Failed to allocate memory in "
2151 "bnx2_alloc_bad_rbuf\n");
2155 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2156 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2160 /* Allocate a bunch of mbufs and save the good ones in an array. */
2161 val
= REG_RD_IND(bp
, BNX2_RBUF_STATUS1
);
2162 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2163 REG_WR_IND(bp
, BNX2_RBUF_COMMAND
, BNX2_RBUF_COMMAND_ALLOC_REQ
);
2165 val
= REG_RD_IND(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2167 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2169 /* The addresses with Bit 9 set are bad memory blocks. */
2170 if (!(val
& (1 << 9))) {
2171 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2175 val
= REG_RD_IND(bp
, BNX2_RBUF_STATUS1
);
2178 /* Free the good ones back to the mbuf pool thus discarding
2179 * all the bad ones. */
2180 while (good_mbuf_cnt
) {
2183 val
= good_mbuf
[good_mbuf_cnt
];
2184 val
= (val
<< 9) | val
| 1;
2186 REG_WR_IND(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2193 bnx2_set_mac_addr(struct bnx2
*bp
)
2196 u8
*mac_addr
= bp
->dev
->dev_addr
;
2198 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2200 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
, val
);
2202 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2203 (mac_addr
[4] << 8) | mac_addr
[5];
2205 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
, val
);
2209 bnx2_alloc_rx_skb(struct bnx2
*bp
, u16 index
)
2211 struct sk_buff
*skb
;
2212 struct sw_bd
*rx_buf
= &bp
->rx_buf_ring
[index
];
2214 struct rx_bd
*rxbd
= &bp
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2215 unsigned long align
;
2217 skb
= netdev_alloc_skb(bp
->dev
, bp
->rx_buf_size
);
2222 if (unlikely((align
= (unsigned long) skb
->data
& (BNX2_RX_ALIGN
- 1))))
2223 skb_reserve(skb
, BNX2_RX_ALIGN
- align
);
2225 mapping
= pci_map_single(bp
->pdev
, skb
->data
, bp
->rx_buf_use_size
,
2226 PCI_DMA_FROMDEVICE
);
2229 pci_unmap_addr_set(rx_buf
, mapping
, mapping
);
2231 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2232 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2234 bp
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2240 bnx2_phy_event_is_set(struct bnx2
*bp
, u32 event
)
2242 struct status_block
*sblk
= bp
->status_blk
;
2243 u32 new_link_state
, old_link_state
;
2246 new_link_state
= sblk
->status_attn_bits
& event
;
2247 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2248 if (new_link_state
!= old_link_state
) {
2250 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2252 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2260 bnx2_phy_int(struct bnx2
*bp
)
2262 if (bnx2_phy_event_is_set(bp
, STATUS_ATTN_BITS_LINK_STATE
)) {
2263 spin_lock(&bp
->phy_lock
);
2265 spin_unlock(&bp
->phy_lock
);
2267 if (bnx2_phy_event_is_set(bp
, STATUS_ATTN_BITS_TIMER_ABORT
))
2268 bnx2_set_remote_link(bp
);
2273 bnx2_tx_int(struct bnx2
*bp
)
2275 struct status_block
*sblk
= bp
->status_blk
;
2276 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2279 hw_cons
= bp
->hw_tx_cons
= sblk
->status_tx_quick_consumer_index0
;
2280 if ((hw_cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
) {
2283 sw_cons
= bp
->tx_cons
;
2285 while (sw_cons
!= hw_cons
) {
2286 struct sw_bd
*tx_buf
;
2287 struct sk_buff
*skb
;
2290 sw_ring_cons
= TX_RING_IDX(sw_cons
);
2292 tx_buf
= &bp
->tx_buf_ring
[sw_ring_cons
];
2295 /* partial BD completions possible with TSO packets */
2296 if (skb_is_gso(skb
)) {
2297 u16 last_idx
, last_ring_idx
;
2299 last_idx
= sw_cons
+
2300 skb_shinfo(skb
)->nr_frags
+ 1;
2301 last_ring_idx
= sw_ring_cons
+
2302 skb_shinfo(skb
)->nr_frags
+ 1;
2303 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
2306 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2311 pci_unmap_single(bp
->pdev
, pci_unmap_addr(tx_buf
, mapping
),
2312 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2315 last
= skb_shinfo(skb
)->nr_frags
;
2317 for (i
= 0; i
< last
; i
++) {
2318 sw_cons
= NEXT_TX_BD(sw_cons
);
2320 pci_unmap_page(bp
->pdev
,
2322 &bp
->tx_buf_ring
[TX_RING_IDX(sw_cons
)],
2324 skb_shinfo(skb
)->frags
[i
].size
,
2328 sw_cons
= NEXT_TX_BD(sw_cons
);
2330 tx_free_bd
+= last
+ 1;
2334 hw_cons
= bp
->hw_tx_cons
=
2335 sblk
->status_tx_quick_consumer_index0
;
2337 if ((hw_cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
) {
2342 bp
->tx_cons
= sw_cons
;
2343 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2344 * before checking for netif_queue_stopped(). Without the
2345 * memory barrier, there is a small possibility that bnx2_start_xmit()
2346 * will miss it and cause the queue to be stopped forever.
2350 if (unlikely(netif_queue_stopped(bp
->dev
)) &&
2351 (bnx2_tx_avail(bp
) > bp
->tx_wake_thresh
)) {
2352 netif_tx_lock(bp
->dev
);
2353 if ((netif_queue_stopped(bp
->dev
)) &&
2354 (bnx2_tx_avail(bp
) > bp
->tx_wake_thresh
))
2355 netif_wake_queue(bp
->dev
);
2356 netif_tx_unlock(bp
->dev
);
2361 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct sk_buff
*skb
,
2364 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2365 struct rx_bd
*cons_bd
, *prod_bd
;
2367 cons_rx_buf
= &bp
->rx_buf_ring
[cons
];
2368 prod_rx_buf
= &bp
->rx_buf_ring
[prod
];
2370 pci_dma_sync_single_for_device(bp
->pdev
,
2371 pci_unmap_addr(cons_rx_buf
, mapping
),
2372 bp
->rx_offset
+ RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2374 bp
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2376 prod_rx_buf
->skb
= skb
;
2381 pci_unmap_addr_set(prod_rx_buf
, mapping
,
2382 pci_unmap_addr(cons_rx_buf
, mapping
));
2384 cons_bd
= &bp
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2385 prod_bd
= &bp
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2386 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2387 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2391 bnx2_get_hw_rx_cons(struct bnx2
*bp
)
2393 u16 cons
= bp
->status_blk
->status_rx_quick_consumer_index0
;
2395 if (unlikely((cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
))
2401 bnx2_rx_int(struct bnx2
*bp
, int budget
)
2403 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
2404 struct l2_fhdr
*rx_hdr
;
2407 hw_cons
= bnx2_get_hw_rx_cons(bp
);
2408 sw_cons
= bp
->rx_cons
;
2409 sw_prod
= bp
->rx_prod
;
2411 /* Memory barrier necessary as speculative reads of the rx
2412 * buffer can be ahead of the index in the status block
2415 while (sw_cons
!= hw_cons
) {
2418 struct sw_bd
*rx_buf
;
2419 struct sk_buff
*skb
;
2420 dma_addr_t dma_addr
;
2422 sw_ring_cons
= RX_RING_IDX(sw_cons
);
2423 sw_ring_prod
= RX_RING_IDX(sw_prod
);
2425 rx_buf
= &bp
->rx_buf_ring
[sw_ring_cons
];
2430 dma_addr
= pci_unmap_addr(rx_buf
, mapping
);
2432 pci_dma_sync_single_for_cpu(bp
->pdev
, dma_addr
,
2433 bp
->rx_offset
+ RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2435 rx_hdr
= (struct l2_fhdr
*) skb
->data
;
2436 len
= rx_hdr
->l2_fhdr_pkt_len
- 4;
2438 if ((status
= rx_hdr
->l2_fhdr_status
) &
2439 (L2_FHDR_ERRORS_BAD_CRC
|
2440 L2_FHDR_ERRORS_PHY_DECODE
|
2441 L2_FHDR_ERRORS_ALIGNMENT
|
2442 L2_FHDR_ERRORS_TOO_SHORT
|
2443 L2_FHDR_ERRORS_GIANT_FRAME
)) {
2448 /* Since we don't have a jumbo ring, copy small packets
2451 if ((bp
->dev
->mtu
> 1500) && (len
<= RX_COPY_THRESH
)) {
2452 struct sk_buff
*new_skb
;
2454 new_skb
= netdev_alloc_skb(bp
->dev
, len
+ 2);
2455 if (new_skb
== NULL
)
2459 skb_copy_from_linear_data_offset(skb
, bp
->rx_offset
- 2,
2460 new_skb
->data
, len
+ 2);
2461 skb_reserve(new_skb
, 2);
2462 skb_put(new_skb
, len
);
2464 bnx2_reuse_rx_skb(bp
, skb
,
2465 sw_ring_cons
, sw_ring_prod
);
2469 else if (bnx2_alloc_rx_skb(bp
, sw_ring_prod
) == 0) {
2470 pci_unmap_single(bp
->pdev
, dma_addr
,
2471 bp
->rx_buf_use_size
, PCI_DMA_FROMDEVICE
);
2473 skb_reserve(skb
, bp
->rx_offset
);
2478 bnx2_reuse_rx_skb(bp
, skb
,
2479 sw_ring_cons
, sw_ring_prod
);
2483 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
2485 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
2486 (ntohs(skb
->protocol
) != 0x8100)) {
2493 skb
->ip_summed
= CHECKSUM_NONE
;
2495 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
2496 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
2498 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
2499 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
2500 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2504 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) && (bp
->vlgrp
!= 0)) {
2505 vlan_hwaccel_receive_skb(skb
, bp
->vlgrp
,
2506 rx_hdr
->l2_fhdr_vlan_tag
);
2510 netif_receive_skb(skb
);
2512 bp
->dev
->last_rx
= jiffies
;
2516 sw_cons
= NEXT_RX_BD(sw_cons
);
2517 sw_prod
= NEXT_RX_BD(sw_prod
);
2519 if ((rx_pkt
== budget
))
2522 /* Refresh hw_cons to see if there is new work */
2523 if (sw_cons
== hw_cons
) {
2524 hw_cons
= bnx2_get_hw_rx_cons(bp
);
2528 bp
->rx_cons
= sw_cons
;
2529 bp
->rx_prod
= sw_prod
;
2531 REG_WR16(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BDIDX
, sw_prod
);
2533 REG_WR(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BSEQ
, bp
->rx_prod_bseq
);
2541 /* MSI ISR - The only difference between this and the INTx ISR
2542 * is that the MSI interrupt is always serviced.
2545 bnx2_msi(int irq
, void *dev_instance
)
2547 struct net_device
*dev
= dev_instance
;
2548 struct bnx2
*bp
= netdev_priv(dev
);
2550 prefetch(bp
->status_blk
);
2551 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
2552 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
2553 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
2555 /* Return here if interrupt is disabled. */
2556 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
2559 netif_rx_schedule(dev
, &bp
->napi
);
2565 bnx2_msi_1shot(int irq
, void *dev_instance
)
2567 struct net_device
*dev
= dev_instance
;
2568 struct bnx2
*bp
= netdev_priv(dev
);
2570 prefetch(bp
->status_blk
);
2572 /* Return here if interrupt is disabled. */
2573 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
2576 netif_rx_schedule(dev
, &bp
->napi
);
2582 bnx2_interrupt(int irq
, void *dev_instance
)
2584 struct net_device
*dev
= dev_instance
;
2585 struct bnx2
*bp
= netdev_priv(dev
);
2586 struct status_block
*sblk
= bp
->status_blk
;
2588 /* When using INTx, it is possible for the interrupt to arrive
2589 * at the CPU before the status block posted prior to the
2590 * interrupt. Reading a register will flush the status block.
2591 * When using MSI, the MSI message will always complete after
2592 * the status block write.
2594 if ((sblk
->status_idx
== bp
->last_status_idx
) &&
2595 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
2596 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
2599 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
2600 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
2601 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
2603 /* Read back to deassert IRQ immediately to avoid too many
2604 * spurious interrupts.
2606 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
2608 /* Return here if interrupt is shared and is disabled. */
2609 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
2612 if (netif_rx_schedule_prep(dev
, &bp
->napi
)) {
2613 bp
->last_status_idx
= sblk
->status_idx
;
2614 __netif_rx_schedule(dev
, &bp
->napi
);
2620 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
2621 STATUS_ATTN_BITS_TIMER_ABORT)
2624 bnx2_has_work(struct bnx2
*bp
)
2626 struct status_block
*sblk
= bp
->status_blk
;
2628 if ((bnx2_get_hw_rx_cons(bp
) != bp
->rx_cons
) ||
2629 (sblk
->status_tx_quick_consumer_index0
!= bp
->hw_tx_cons
))
2632 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
2633 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
2639 static int bnx2_poll_work(struct bnx2
*bp
, int work_done
, int budget
)
2641 struct status_block
*sblk
= bp
->status_blk
;
2642 u32 status_attn_bits
= sblk
->status_attn_bits
;
2643 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
2645 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
2646 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
2650 /* This is needed to take care of transient status
2651 * during link changes.
2653 REG_WR(bp
, BNX2_HC_COMMAND
,
2654 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
2655 REG_RD(bp
, BNX2_HC_COMMAND
);
2658 if (sblk
->status_tx_quick_consumer_index0
!= bp
->hw_tx_cons
)
2661 if (bnx2_get_hw_rx_cons(bp
) != bp
->rx_cons
)
2662 work_done
+= bnx2_rx_int(bp
, budget
- work_done
);
2667 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
2669 struct bnx2
*bp
= container_of(napi
, struct bnx2
, napi
);
2671 struct status_block
*sblk
= bp
->status_blk
;
2674 work_done
= bnx2_poll_work(bp
, work_done
, budget
);
2676 if (unlikely(work_done
>= budget
))
2679 /* bp->last_status_idx is used below to tell the hw how
2680 * much work has been processed, so we must read it before
2681 * checking for more work.
2683 bp
->last_status_idx
= sblk
->status_idx
;
2685 if (likely(!bnx2_has_work(bp
))) {
2686 netif_rx_complete(bp
->dev
, napi
);
2687 if (likely(bp
->flags
& USING_MSI_FLAG
)) {
2688 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
2689 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
2690 bp
->last_status_idx
);
2693 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
2694 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
2695 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
2696 bp
->last_status_idx
);
2698 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
2699 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
2700 bp
->last_status_idx
);
2708 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
2709 * from set_multicast.
2712 bnx2_set_rx_mode(struct net_device
*dev
)
2714 struct bnx2
*bp
= netdev_priv(dev
);
2715 u32 rx_mode
, sort_mode
;
2718 spin_lock_bh(&bp
->phy_lock
);
2720 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
2721 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
2722 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
2724 if (!bp
->vlgrp
&& !(bp
->flags
& ASF_ENABLE_FLAG
))
2725 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
2727 if (!(bp
->flags
& ASF_ENABLE_FLAG
))
2728 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
2730 if (dev
->flags
& IFF_PROMISC
) {
2731 /* Promiscuous mode. */
2732 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
2733 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
2734 BNX2_RPM_SORT_USER0_PROM_VLAN
;
2736 else if (dev
->flags
& IFF_ALLMULTI
) {
2737 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
2738 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
2741 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
2744 /* Accept one or more multicast(s). */
2745 struct dev_mc_list
*mclist
;
2746 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
2751 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
2753 for (i
= 0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
2754 i
++, mclist
= mclist
->next
) {
2756 crc
= ether_crc_le(ETH_ALEN
, mclist
->dmi_addr
);
2758 regidx
= (bit
& 0xe0) >> 5;
2760 mc_filter
[regidx
] |= (1 << bit
);
2763 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
2764 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
2768 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
2771 if (rx_mode
!= bp
->rx_mode
) {
2772 bp
->rx_mode
= rx_mode
;
2773 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
2776 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
2777 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
2778 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
2780 spin_unlock_bh(&bp
->phy_lock
);
2784 load_rv2p_fw(struct bnx2
*bp
, u32
*rv2p_code
, u32 rv2p_code_len
,
2791 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
2792 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, cpu_to_le32(*rv2p_code
));
2794 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, cpu_to_le32(*rv2p_code
));
2797 if (rv2p_proc
== RV2P_PROC1
) {
2798 val
= (i
/ 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
2799 REG_WR(bp
, BNX2_RV2P_PROC1_ADDR_CMD
, val
);
2802 val
= (i
/ 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
2803 REG_WR(bp
, BNX2_RV2P_PROC2_ADDR_CMD
, val
);
2807 /* Reset the processor, un-stall is done later. */
2808 if (rv2p_proc
== RV2P_PROC1
) {
2809 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
2812 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
2817 load_cpu_fw(struct bnx2
*bp
, struct cpu_reg
*cpu_reg
, struct fw_info
*fw
)
2824 val
= REG_RD_IND(bp
, cpu_reg
->mode
);
2825 val
|= cpu_reg
->mode_value_halt
;
2826 REG_WR_IND(bp
, cpu_reg
->mode
, val
);
2827 REG_WR_IND(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
2829 /* Load the Text area. */
2830 offset
= cpu_reg
->spad_base
+ (fw
->text_addr
- cpu_reg
->mips_view_base
);
2834 rc
= zlib_inflate_blob(fw
->text
, FW_BUF_SIZE
, fw
->gz_text
,
2839 for (j
= 0; j
< (fw
->text_len
/ 4); j
++, offset
+= 4) {
2840 REG_WR_IND(bp
, offset
, cpu_to_le32(fw
->text
[j
]));
2844 /* Load the Data area. */
2845 offset
= cpu_reg
->spad_base
+ (fw
->data_addr
- cpu_reg
->mips_view_base
);
2849 for (j
= 0; j
< (fw
->data_len
/ 4); j
++, offset
+= 4) {
2850 REG_WR_IND(bp
, offset
, fw
->data
[j
]);
2854 /* Load the SBSS area. */
2855 offset
= cpu_reg
->spad_base
+ (fw
->sbss_addr
- cpu_reg
->mips_view_base
);
2859 for (j
= 0; j
< (fw
->sbss_len
/ 4); j
++, offset
+= 4) {
2860 REG_WR_IND(bp
, offset
, 0);
2864 /* Load the BSS area. */
2865 offset
= cpu_reg
->spad_base
+ (fw
->bss_addr
- cpu_reg
->mips_view_base
);
2869 for (j
= 0; j
< (fw
->bss_len
/4); j
++, offset
+= 4) {
2870 REG_WR_IND(bp
, offset
, 0);
2874 /* Load the Read-Only area. */
2875 offset
= cpu_reg
->spad_base
+
2876 (fw
->rodata_addr
- cpu_reg
->mips_view_base
);
2880 for (j
= 0; j
< (fw
->rodata_len
/ 4); j
++, offset
+= 4) {
2881 REG_WR_IND(bp
, offset
, fw
->rodata
[j
]);
2885 /* Clear the pre-fetch instruction. */
2886 REG_WR_IND(bp
, cpu_reg
->inst
, 0);
2887 REG_WR_IND(bp
, cpu_reg
->pc
, fw
->start_addr
);
2889 /* Start the CPU. */
2890 val
= REG_RD_IND(bp
, cpu_reg
->mode
);
2891 val
&= ~cpu_reg
->mode_value_halt
;
2892 REG_WR_IND(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
2893 REG_WR_IND(bp
, cpu_reg
->mode
, val
);
2899 bnx2_init_cpus(struct bnx2
*bp
)
2901 struct cpu_reg cpu_reg
;
2906 /* Initialize the RV2P processor. */
2907 text
= vmalloc(FW_BUF_SIZE
);
2910 rc
= zlib_inflate_blob(text
, FW_BUF_SIZE
, bnx2_rv2p_proc1
, sizeof(bnx2_rv2p_proc1
));
2914 load_rv2p_fw(bp
, text
, rc
/* == len */, RV2P_PROC1
);
2916 rc
= zlib_inflate_blob(text
, FW_BUF_SIZE
, bnx2_rv2p_proc2
, sizeof(bnx2_rv2p_proc2
));
2920 load_rv2p_fw(bp
, text
, rc
/* == len */, RV2P_PROC2
);
2922 /* Initialize the RX Processor. */
2923 cpu_reg
.mode
= BNX2_RXP_CPU_MODE
;
2924 cpu_reg
.mode_value_halt
= BNX2_RXP_CPU_MODE_SOFT_HALT
;
2925 cpu_reg
.mode_value_sstep
= BNX2_RXP_CPU_MODE_STEP_ENA
;
2926 cpu_reg
.state
= BNX2_RXP_CPU_STATE
;
2927 cpu_reg
.state_value_clear
= 0xffffff;
2928 cpu_reg
.gpr0
= BNX2_RXP_CPU_REG_FILE
;
2929 cpu_reg
.evmask
= BNX2_RXP_CPU_EVENT_MASK
;
2930 cpu_reg
.pc
= BNX2_RXP_CPU_PROGRAM_COUNTER
;
2931 cpu_reg
.inst
= BNX2_RXP_CPU_INSTRUCTION
;
2932 cpu_reg
.bp
= BNX2_RXP_CPU_HW_BREAKPOINT
;
2933 cpu_reg
.spad_base
= BNX2_RXP_SCRATCH
;
2934 cpu_reg
.mips_view_base
= 0x8000000;
2936 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2937 fw
= &bnx2_rxp_fw_09
;
2939 fw
= &bnx2_rxp_fw_06
;
2942 rc
= load_cpu_fw(bp
, &cpu_reg
, fw
);
2946 /* Initialize the TX Processor. */
2947 cpu_reg
.mode
= BNX2_TXP_CPU_MODE
;
2948 cpu_reg
.mode_value_halt
= BNX2_TXP_CPU_MODE_SOFT_HALT
;
2949 cpu_reg
.mode_value_sstep
= BNX2_TXP_CPU_MODE_STEP_ENA
;
2950 cpu_reg
.state
= BNX2_TXP_CPU_STATE
;
2951 cpu_reg
.state_value_clear
= 0xffffff;
2952 cpu_reg
.gpr0
= BNX2_TXP_CPU_REG_FILE
;
2953 cpu_reg
.evmask
= BNX2_TXP_CPU_EVENT_MASK
;
2954 cpu_reg
.pc
= BNX2_TXP_CPU_PROGRAM_COUNTER
;
2955 cpu_reg
.inst
= BNX2_TXP_CPU_INSTRUCTION
;
2956 cpu_reg
.bp
= BNX2_TXP_CPU_HW_BREAKPOINT
;
2957 cpu_reg
.spad_base
= BNX2_TXP_SCRATCH
;
2958 cpu_reg
.mips_view_base
= 0x8000000;
2960 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2961 fw
= &bnx2_txp_fw_09
;
2963 fw
= &bnx2_txp_fw_06
;
2966 rc
= load_cpu_fw(bp
, &cpu_reg
, fw
);
2970 /* Initialize the TX Patch-up Processor. */
2971 cpu_reg
.mode
= BNX2_TPAT_CPU_MODE
;
2972 cpu_reg
.mode_value_halt
= BNX2_TPAT_CPU_MODE_SOFT_HALT
;
2973 cpu_reg
.mode_value_sstep
= BNX2_TPAT_CPU_MODE_STEP_ENA
;
2974 cpu_reg
.state
= BNX2_TPAT_CPU_STATE
;
2975 cpu_reg
.state_value_clear
= 0xffffff;
2976 cpu_reg
.gpr0
= BNX2_TPAT_CPU_REG_FILE
;
2977 cpu_reg
.evmask
= BNX2_TPAT_CPU_EVENT_MASK
;
2978 cpu_reg
.pc
= BNX2_TPAT_CPU_PROGRAM_COUNTER
;
2979 cpu_reg
.inst
= BNX2_TPAT_CPU_INSTRUCTION
;
2980 cpu_reg
.bp
= BNX2_TPAT_CPU_HW_BREAKPOINT
;
2981 cpu_reg
.spad_base
= BNX2_TPAT_SCRATCH
;
2982 cpu_reg
.mips_view_base
= 0x8000000;
2984 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2985 fw
= &bnx2_tpat_fw_09
;
2987 fw
= &bnx2_tpat_fw_06
;
2990 rc
= load_cpu_fw(bp
, &cpu_reg
, fw
);
2994 /* Initialize the Completion Processor. */
2995 cpu_reg
.mode
= BNX2_COM_CPU_MODE
;
2996 cpu_reg
.mode_value_halt
= BNX2_COM_CPU_MODE_SOFT_HALT
;
2997 cpu_reg
.mode_value_sstep
= BNX2_COM_CPU_MODE_STEP_ENA
;
2998 cpu_reg
.state
= BNX2_COM_CPU_STATE
;
2999 cpu_reg
.state_value_clear
= 0xffffff;
3000 cpu_reg
.gpr0
= BNX2_COM_CPU_REG_FILE
;
3001 cpu_reg
.evmask
= BNX2_COM_CPU_EVENT_MASK
;
3002 cpu_reg
.pc
= BNX2_COM_CPU_PROGRAM_COUNTER
;
3003 cpu_reg
.inst
= BNX2_COM_CPU_INSTRUCTION
;
3004 cpu_reg
.bp
= BNX2_COM_CPU_HW_BREAKPOINT
;
3005 cpu_reg
.spad_base
= BNX2_COM_SCRATCH
;
3006 cpu_reg
.mips_view_base
= 0x8000000;
3008 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3009 fw
= &bnx2_com_fw_09
;
3011 fw
= &bnx2_com_fw_06
;
3014 rc
= load_cpu_fw(bp
, &cpu_reg
, fw
);
3018 /* Initialize the Command Processor. */
3019 cpu_reg
.mode
= BNX2_CP_CPU_MODE
;
3020 cpu_reg
.mode_value_halt
= BNX2_CP_CPU_MODE_SOFT_HALT
;
3021 cpu_reg
.mode_value_sstep
= BNX2_CP_CPU_MODE_STEP_ENA
;
3022 cpu_reg
.state
= BNX2_CP_CPU_STATE
;
3023 cpu_reg
.state_value_clear
= 0xffffff;
3024 cpu_reg
.gpr0
= BNX2_CP_CPU_REG_FILE
;
3025 cpu_reg
.evmask
= BNX2_CP_CPU_EVENT_MASK
;
3026 cpu_reg
.pc
= BNX2_CP_CPU_PROGRAM_COUNTER
;
3027 cpu_reg
.inst
= BNX2_CP_CPU_INSTRUCTION
;
3028 cpu_reg
.bp
= BNX2_CP_CPU_HW_BREAKPOINT
;
3029 cpu_reg
.spad_base
= BNX2_CP_SCRATCH
;
3030 cpu_reg
.mips_view_base
= 0x8000000;
3032 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3033 fw
= &bnx2_cp_fw_09
;
3036 rc
= load_cpu_fw(bp
, &cpu_reg
, fw
);
3046 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
3050 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3056 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3057 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3058 PCI_PM_CTRL_PME_STATUS
);
3060 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3061 /* delay required during transition out of D3hot */
3064 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3065 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
3066 val
&= ~BNX2_EMAC_MODE_MPKT
;
3067 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3069 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3070 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3071 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3082 autoneg
= bp
->autoneg
;
3083 advertising
= bp
->advertising
;
3085 if (bp
->phy_port
== PORT_TP
) {
3086 bp
->autoneg
= AUTONEG_SPEED
;
3087 bp
->advertising
= ADVERTISED_10baseT_Half
|
3088 ADVERTISED_10baseT_Full
|
3089 ADVERTISED_100baseT_Half
|
3090 ADVERTISED_100baseT_Full
|
3094 spin_lock_bh(&bp
->phy_lock
);
3095 bnx2_setup_phy(bp
, bp
->phy_port
);
3096 spin_unlock_bh(&bp
->phy_lock
);
3098 bp
->autoneg
= autoneg
;
3099 bp
->advertising
= advertising
;
3101 bnx2_set_mac_addr(bp
);
3103 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3105 /* Enable port mode. */
3106 val
&= ~BNX2_EMAC_MODE_PORT
;
3107 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3108 BNX2_EMAC_MODE_ACPI_RCVD
|
3109 BNX2_EMAC_MODE_MPKT
;
3110 if (bp
->phy_port
== PORT_TP
)
3111 val
|= BNX2_EMAC_MODE_PORT_MII
;
3113 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3114 if (bp
->line_speed
== SPEED_2500
)
3115 val
|= BNX2_EMAC_MODE_25G_MODE
;
3118 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3120 /* receive all multicast */
3121 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3122 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3125 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
3126 BNX2_EMAC_RX_MODE_SORT_MODE
);
3128 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
3129 BNX2_RPM_SORT_USER0_MC_EN
;
3130 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3131 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3132 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
3133 BNX2_RPM_SORT_USER0_ENA
);
3135 /* Need to enable EMAC and RPM for WOL. */
3136 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3137 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
3138 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
3139 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
3141 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3142 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3143 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3145 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
3148 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
3151 if (!(bp
->flags
& NO_WOL_FLAG
))
3152 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
, 0);
3154 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3155 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
3156 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
3165 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
3167 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3170 /* No more memory access after this point until
3171 * device is brought back to D0.
3183 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
3188 /* Request access to the flash interface. */
3189 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
3190 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3191 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
3192 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
3198 if (j
>= NVRAM_TIMEOUT_COUNT
)
3205 bnx2_release_nvram_lock(struct bnx2
*bp
)
3210 /* Relinquish nvram interface. */
3211 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
3213 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3214 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
3215 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
3221 if (j
>= NVRAM_TIMEOUT_COUNT
)
3229 bnx2_enable_nvram_write(struct bnx2
*bp
)
3233 val
= REG_RD(bp
, BNX2_MISC_CFG
);
3234 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
3236 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
3239 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3240 REG_WR(bp
, BNX2_NVM_COMMAND
,
3241 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
3243 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3246 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3247 if (val
& BNX2_NVM_COMMAND_DONE
)
3251 if (j
>= NVRAM_TIMEOUT_COUNT
)
3258 bnx2_disable_nvram_write(struct bnx2
*bp
)
3262 val
= REG_RD(bp
, BNX2_MISC_CFG
);
3263 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
3268 bnx2_enable_nvram_access(struct bnx2
*bp
)
3272 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
3273 /* Enable both bits, even on read. */
3274 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
3275 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
3279 bnx2_disable_nvram_access(struct bnx2
*bp
)
3283 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
3284 /* Disable both bits, even after read. */
3285 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
3286 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
3287 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
3291 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
3296 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
3297 /* Buffered flash, no erase needed */
3300 /* Build an erase command */
3301 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
3302 BNX2_NVM_COMMAND_DOIT
;
3304 /* Need to clear DONE bit separately. */
3305 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3307 /* Address of the NVRAM to read from. */
3308 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3310 /* Issue an erase command. */
3311 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3313 /* Wait for completion. */
3314 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3319 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3320 if (val
& BNX2_NVM_COMMAND_DONE
)
3324 if (j
>= NVRAM_TIMEOUT_COUNT
)
3331 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
3336 /* Build the command word. */
3337 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
3339 /* Calculate an offset of a buffered flash, not needed for 5709. */
3340 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
3341 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
3342 bp
->flash_info
->page_bits
) +
3343 (offset
% bp
->flash_info
->page_size
);
3346 /* Need to clear DONE bit separately. */
3347 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3349 /* Address of the NVRAM to read from. */
3350 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3352 /* Issue a read command. */
3353 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3355 /* Wait for completion. */
3356 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3361 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3362 if (val
& BNX2_NVM_COMMAND_DONE
) {
3363 val
= REG_RD(bp
, BNX2_NVM_READ
);
3365 val
= be32_to_cpu(val
);
3366 memcpy(ret_val
, &val
, 4);
3370 if (j
>= NVRAM_TIMEOUT_COUNT
)
3378 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
3383 /* Build the command word. */
3384 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
3386 /* Calculate an offset of a buffered flash, not needed for 5709. */
3387 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
3388 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
3389 bp
->flash_info
->page_bits
) +
3390 (offset
% bp
->flash_info
->page_size
);
3393 /* Need to clear DONE bit separately. */
3394 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3396 memcpy(&val32
, val
, 4);
3397 val32
= cpu_to_be32(val32
);
3399 /* Write the data. */
3400 REG_WR(bp
, BNX2_NVM_WRITE
, val32
);
3402 /* Address of the NVRAM to write to. */
3403 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3405 /* Issue the write command. */
3406 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3408 /* Wait for completion. */
3409 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3412 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
3415 if (j
>= NVRAM_TIMEOUT_COUNT
)
3422 bnx2_init_nvram(struct bnx2
*bp
)
3425 int j
, entry_count
, rc
= 0;
3426 struct flash_spec
*flash
;
3428 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3429 bp
->flash_info
= &flash_5709
;
3430 goto get_flash_size
;
3433 /* Determine the selected interface. */
3434 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
3436 entry_count
= ARRAY_SIZE(flash_table
);
3438 if (val
& 0x40000000) {
3440 /* Flash interface has been reconfigured */
3441 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
3443 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
3444 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
3445 bp
->flash_info
= flash
;
3452 /* Not yet been reconfigured */
3454 if (val
& (1 << 23))
3455 mask
= FLASH_BACKUP_STRAP_MASK
;
3457 mask
= FLASH_STRAP_MASK
;
3459 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
3462 if ((val
& mask
) == (flash
->strapping
& mask
)) {
3463 bp
->flash_info
= flash
;
3465 /* Request access to the flash interface. */
3466 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
3469 /* Enable access to flash interface */
3470 bnx2_enable_nvram_access(bp
);
3472 /* Reconfigure the flash interface */
3473 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
3474 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
3475 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
3476 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
3478 /* Disable access to flash interface */
3479 bnx2_disable_nvram_access(bp
);
3480 bnx2_release_nvram_lock(bp
);
3485 } /* if (val & 0x40000000) */
3487 if (j
== entry_count
) {
3488 bp
->flash_info
= NULL
;
3489 printk(KERN_ALERT PFX
"Unknown flash/EEPROM type.\n");
3494 val
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_SHARED_HW_CFG_CONFIG2
);
3495 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
3497 bp
->flash_size
= val
;
3499 bp
->flash_size
= bp
->flash_info
->total_size
;
3505 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
3509 u32 cmd_flags
, offset32
, len32
, extra
;
3514 /* Request access to the flash interface. */
3515 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
3518 /* Enable access to flash interface */
3519 bnx2_enable_nvram_access(bp
);
3532 pre_len
= 4 - (offset
& 3);
3534 if (pre_len
>= len32
) {
3536 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
3537 BNX2_NVM_COMMAND_LAST
;
3540 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
3543 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
3548 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
3555 extra
= 4 - (len32
& 3);
3556 len32
= (len32
+ 4) & ~3;
3563 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
3565 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
3566 BNX2_NVM_COMMAND_LAST
;
3568 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
3570 memcpy(ret_buf
, buf
, 4 - extra
);
3572 else if (len32
> 0) {
3575 /* Read the first word. */
3579 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
3581 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
3583 /* Advance to the next dword. */
3588 while (len32
> 4 && rc
== 0) {
3589 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
3591 /* Advance to the next dword. */
3600 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
3601 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
3603 memcpy(ret_buf
, buf
, 4 - extra
);
3606 /* Disable access to flash interface */
3607 bnx2_disable_nvram_access(bp
);
3609 bnx2_release_nvram_lock(bp
);
3615 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
3618 u32 written
, offset32
, len32
;
3619 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
3621 int align_start
, align_end
;
3626 align_start
= align_end
= 0;
3628 if ((align_start
= (offset32
& 3))) {
3630 len32
+= align_start
;
3633 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
3638 align_end
= 4 - (len32
& 3);
3640 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
3644 if (align_start
|| align_end
) {
3645 align_buf
= kmalloc(len32
, GFP_KERNEL
);
3646 if (align_buf
== NULL
)
3649 memcpy(align_buf
, start
, 4);
3652 memcpy(align_buf
+ len32
- 4, end
, 4);
3654 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
3658 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
3659 flash_buffer
= kmalloc(264, GFP_KERNEL
);
3660 if (flash_buffer
== NULL
) {
3662 goto nvram_write_end
;
3667 while ((written
< len32
) && (rc
== 0)) {
3668 u32 page_start
, page_end
, data_start
, data_end
;
3669 u32 addr
, cmd_flags
;
3672 /* Find the page_start addr */
3673 page_start
= offset32
+ written
;
3674 page_start
-= (page_start
% bp
->flash_info
->page_size
);
3675 /* Find the page_end addr */
3676 page_end
= page_start
+ bp
->flash_info
->page_size
;
3677 /* Find the data_start addr */
3678 data_start
= (written
== 0) ? offset32
: page_start
;
3679 /* Find the data_end addr */
3680 data_end
= (page_end
> offset32
+ len32
) ?
3681 (offset32
+ len32
) : page_end
;
3683 /* Request access to the flash interface. */
3684 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
3685 goto nvram_write_end
;
3687 /* Enable access to flash interface */
3688 bnx2_enable_nvram_access(bp
);
3690 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
3691 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
3694 /* Read the whole page into the buffer
3695 * (non-buffer flash only) */
3696 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
3697 if (j
== (bp
->flash_info
->page_size
- 4)) {
3698 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
3700 rc
= bnx2_nvram_read_dword(bp
,
3706 goto nvram_write_end
;
3712 /* Enable writes to flash interface (unlock write-protect) */
3713 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
3714 goto nvram_write_end
;
3716 /* Loop to write back the buffer data from page_start to
3719 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
3720 /* Erase the page */
3721 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
3722 goto nvram_write_end
;
3724 /* Re-enable the write again for the actual write */
3725 bnx2_enable_nvram_write(bp
);
3727 for (addr
= page_start
; addr
< data_start
;
3728 addr
+= 4, i
+= 4) {
3730 rc
= bnx2_nvram_write_dword(bp
, addr
,
3731 &flash_buffer
[i
], cmd_flags
);
3734 goto nvram_write_end
;
3740 /* Loop to write the new data from data_start to data_end */
3741 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
3742 if ((addr
== page_end
- 4) ||
3743 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
3744 (addr
== data_end
- 4))) {
3746 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
3748 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
3752 goto nvram_write_end
;
3758 /* Loop to write back the buffer data from data_end
3760 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
3761 for (addr
= data_end
; addr
< page_end
;
3762 addr
+= 4, i
+= 4) {
3764 if (addr
== page_end
-4) {
3765 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
3767 rc
= bnx2_nvram_write_dword(bp
, addr
,
3768 &flash_buffer
[i
], cmd_flags
);
3771 goto nvram_write_end
;
3777 /* Disable writes to flash interface (lock write-protect) */
3778 bnx2_disable_nvram_write(bp
);
3780 /* Disable access to flash interface */
3781 bnx2_disable_nvram_access(bp
);
3782 bnx2_release_nvram_lock(bp
);
3784 /* Increment written */
3785 written
+= data_end
- data_start
;
3789 kfree(flash_buffer
);
3795 bnx2_init_remote_phy(struct bnx2
*bp
)
3799 bp
->phy_flags
&= ~REMOTE_PHY_CAP_FLAG
;
3800 if (!(bp
->phy_flags
& PHY_SERDES_FLAG
))
3803 val
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_FW_CAP_MB
);
3804 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
3807 if (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
) {
3808 bp
->phy_flags
|= REMOTE_PHY_CAP_FLAG
;
3810 val
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_LINK_STATUS
);
3811 if (val
& BNX2_LINK_STATUS_SERDES_LINK
)
3812 bp
->phy_port
= PORT_FIBRE
;
3814 bp
->phy_port
= PORT_TP
;
3816 if (netif_running(bp
->dev
)) {
3819 if (val
& BNX2_LINK_STATUS_LINK_UP
) {
3821 netif_carrier_on(bp
->dev
);
3824 netif_carrier_off(bp
->dev
);
3826 sig
= BNX2_DRV_ACK_CAP_SIGNATURE
|
3827 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
3828 REG_WR_IND(bp
, bp
->shmem_base
+ BNX2_DRV_ACK_CAP_MB
,
3835 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
3841 /* Wait for the current PCI transaction to complete before
3842 * issuing a reset. */
3843 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
3844 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
3845 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
3846 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
3847 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
3848 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
3851 /* Wait for the firmware to tell us it is ok to issue a reset. */
3852 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1);
3854 /* Deposit a driver reset signature so the firmware knows that
3855 * this is a soft reset. */
3856 REG_WR_IND(bp
, bp
->shmem_base
+ BNX2_DRV_RESET_SIGNATURE
,
3857 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
3859 /* Do a dummy read to force the chip to complete all current transaction
3860 * before we issue a reset. */
3861 val
= REG_RD(bp
, BNX2_MISC_ID
);
3863 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3864 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
3865 REG_RD(bp
, BNX2_MISC_COMMAND
);
3868 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
3869 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
3871 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, val
);
3874 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
3875 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
3876 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
3879 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
3881 /* Reading back any register after chip reset will hang the
3882 * bus on 5706 A0 and A1. The msleep below provides plenty
3883 * of margin for write posting.
3885 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
3886 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
3889 /* Reset takes approximate 30 usec */
3890 for (i
= 0; i
< 10; i
++) {
3891 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
3892 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
3893 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
3898 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
3899 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
3900 printk(KERN_ERR PFX
"Chip reset did not complete\n");
3905 /* Make sure byte swapping is properly configured. */
3906 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
3907 if (val
!= 0x01020304) {
3908 printk(KERN_ERR PFX
"Chip not in correct endian mode\n");
3912 /* Wait for the firmware to finish its initialization. */
3913 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 0);
3917 spin_lock_bh(&bp
->phy_lock
);
3918 old_port
= bp
->phy_port
;
3919 bnx2_init_remote_phy(bp
);
3920 if ((bp
->phy_flags
& REMOTE_PHY_CAP_FLAG
) && old_port
!= bp
->phy_port
)
3921 bnx2_set_default_remote_link(bp
);
3922 spin_unlock_bh(&bp
->phy_lock
);
3924 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
3925 /* Adjust the voltage regular to two steps lower. The default
3926 * of this register is 0x0000000e. */
3927 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
3929 /* Remove bad rbuf memory from the free pool. */
3930 rc
= bnx2_alloc_bad_rbuf(bp
);
3937 bnx2_init_chip(struct bnx2
*bp
)
3942 /* Make sure the interrupt is not active. */
3943 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3945 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
3946 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
3948 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
3950 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
3951 DMA_READ_CHANS
<< 12 |
3952 DMA_WRITE_CHANS
<< 16;
3954 val
|= (0x2 << 20) | (1 << 11);
3956 if ((bp
->flags
& PCIX_FLAG
) && (bp
->bus_speed_mhz
== 133))
3959 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
3960 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& PCIX_FLAG
))
3961 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
3963 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
3965 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
3966 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
3967 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
3968 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
3971 if (bp
->flags
& PCIX_FLAG
) {
3974 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
3976 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
3977 val16
& ~PCI_X_CMD_ERO
);
3980 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3981 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
3982 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
3983 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
3985 /* Initialize context mapping and zero out the quick contexts. The
3986 * context block must have already been enabled. */
3987 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3988 rc
= bnx2_init_5709_context(bp
);
3992 bnx2_init_context(bp
);
3994 if ((rc
= bnx2_init_cpus(bp
)) != 0)
3997 bnx2_init_nvram(bp
);
3999 bnx2_set_mac_addr(bp
);
4001 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
4002 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4003 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4004 if (CHIP_ID(bp
) == CHIP_ID_5709_A0
|| CHIP_ID(bp
) == CHIP_ID_5709_A1
)
4005 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4007 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
4009 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4010 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4011 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4013 val
= (BCM_PAGE_BITS
- 8) << 24;
4014 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4016 /* Configure page size. */
4017 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
4018 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4019 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
4020 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4022 val
= bp
->mac_addr
[0] +
4023 (bp
->mac_addr
[1] << 8) +
4024 (bp
->mac_addr
[2] << 16) +
4026 (bp
->mac_addr
[4] << 8) +
4027 (bp
->mac_addr
[5] << 16);
4028 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4030 /* Program the MTU. Also include 4 bytes for CRC32. */
4031 val
= bp
->dev
->mtu
+ ETH_HLEN
+ 4;
4032 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4033 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4034 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4036 bp
->last_status_idx
= 0;
4037 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4039 /* Set up how to generate a link change interrupt. */
4040 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4042 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4043 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4044 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4046 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4047 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4048 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4049 (u64
) bp
->stats_blk_mapping
>> 32);
4051 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4052 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4054 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4055 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4057 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4058 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4060 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4062 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4064 REG_WR(bp
, BNX2_HC_COM_TICKS
,
4065 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4067 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
4068 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4070 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
4071 REG_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4073 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4074 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4076 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
4077 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4079 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4080 BNX2_HC_CONFIG_COLLECT_STATS
;
4083 if (bp
->flags
& ONE_SHOT_MSI_FLAG
)
4084 val
|= BNX2_HC_CONFIG_ONE_SHOT
;
4086 REG_WR(bp
, BNX2_HC_CONFIG
, val
);
4088 /* Clear internal stats counters. */
4089 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
4091 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
4093 /* Initialize the receive filter. */
4094 bnx2_set_rx_mode(bp
->dev
);
4096 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4097 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4098 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4099 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4101 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
4104 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
4105 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
4109 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
4115 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
)
4117 u32 val
, offset0
, offset1
, offset2
, offset3
;
4119 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4120 offset0
= BNX2_L2CTX_TYPE_XI
;
4121 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
4122 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
4123 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
4125 offset0
= BNX2_L2CTX_TYPE
;
4126 offset1
= BNX2_L2CTX_CMD_TYPE
;
4127 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
4128 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
4130 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
4131 CTX_WR(bp
, GET_CID_ADDR(cid
), offset0
, val
);
4133 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
4134 CTX_WR(bp
, GET_CID_ADDR(cid
), offset1
, val
);
4136 val
= (u64
) bp
->tx_desc_mapping
>> 32;
4137 CTX_WR(bp
, GET_CID_ADDR(cid
), offset2
, val
);
4139 val
= (u64
) bp
->tx_desc_mapping
& 0xffffffff;
4140 CTX_WR(bp
, GET_CID_ADDR(cid
), offset3
, val
);
4144 bnx2_init_tx_ring(struct bnx2
*bp
)
4149 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
4151 txbd
= &bp
->tx_desc_ring
[MAX_TX_DESC_CNT
];
4153 txbd
->tx_bd_haddr_hi
= (u64
) bp
->tx_desc_mapping
>> 32;
4154 txbd
->tx_bd_haddr_lo
= (u64
) bp
->tx_desc_mapping
& 0xffffffff;
4159 bp
->tx_prod_bseq
= 0;
4162 bp
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
4163 bp
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
4165 bnx2_init_tx_context(bp
, cid
);
4169 bnx2_init_rx_ring(struct bnx2
*bp
)
4173 u16 prod
, ring_prod
;
4176 /* 8 for CRC and VLAN */
4177 bp
->rx_buf_use_size
= bp
->dev
->mtu
+ ETH_HLEN
+ bp
->rx_offset
+ 8;
4179 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
;
4181 ring_prod
= prod
= bp
->rx_prod
= 0;
4183 bp
->rx_prod_bseq
= 0;
4185 for (i
= 0; i
< bp
->rx_max_ring
; i
++) {
4188 rxbd
= &bp
->rx_desc_ring
[i
][0];
4189 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
4190 rxbd
->rx_bd_len
= bp
->rx_buf_use_size
;
4191 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
4193 if (i
== (bp
->rx_max_ring
- 1))
4197 rxbd
->rx_bd_haddr_hi
= (u64
) bp
->rx_desc_mapping
[j
] >> 32;
4198 rxbd
->rx_bd_haddr_lo
= (u64
) bp
->rx_desc_mapping
[j
] &
4202 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
4203 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
4205 CTX_WR(bp
, GET_CID_ADDR(RX_CID
), BNX2_L2CTX_CTX_TYPE
, val
);
4207 val
= (u64
) bp
->rx_desc_mapping
[0] >> 32;
4208 CTX_WR(bp
, GET_CID_ADDR(RX_CID
), BNX2_L2CTX_NX_BDHADDR_HI
, val
);
4210 val
= (u64
) bp
->rx_desc_mapping
[0] & 0xffffffff;
4211 CTX_WR(bp
, GET_CID_ADDR(RX_CID
), BNX2_L2CTX_NX_BDHADDR_LO
, val
);
4213 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
4214 if (bnx2_alloc_rx_skb(bp
, ring_prod
) < 0) {
4217 prod
= NEXT_RX_BD(prod
);
4218 ring_prod
= RX_RING_IDX(prod
);
4222 REG_WR16(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BDIDX
, prod
);
4224 REG_WR(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BSEQ
, bp
->rx_prod_bseq
);
4228 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
4232 bp
->rx_ring_size
= size
;
4234 while (size
> MAX_RX_DESC_CNT
) {
4235 size
-= MAX_RX_DESC_CNT
;
4238 /* round to next power of 2 */
4240 while ((max
& num_rings
) == 0)
4243 if (num_rings
!= max
)
4246 bp
->rx_max_ring
= max
;
4247 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
4251 bnx2_free_tx_skbs(struct bnx2
*bp
)
4255 if (bp
->tx_buf_ring
== NULL
)
4258 for (i
= 0; i
< TX_DESC_CNT
; ) {
4259 struct sw_bd
*tx_buf
= &bp
->tx_buf_ring
[i
];
4260 struct sk_buff
*skb
= tx_buf
->skb
;
4268 pci_unmap_single(bp
->pdev
, pci_unmap_addr(tx_buf
, mapping
),
4269 skb_headlen(skb
), PCI_DMA_TODEVICE
);
4273 last
= skb_shinfo(skb
)->nr_frags
;
4274 for (j
= 0; j
< last
; j
++) {
4275 tx_buf
= &bp
->tx_buf_ring
[i
+ j
+ 1];
4276 pci_unmap_page(bp
->pdev
,
4277 pci_unmap_addr(tx_buf
, mapping
),
4278 skb_shinfo(skb
)->frags
[j
].size
,
4288 bnx2_free_rx_skbs(struct bnx2
*bp
)
4292 if (bp
->rx_buf_ring
== NULL
)
4295 for (i
= 0; i
< bp
->rx_max_ring_idx
; i
++) {
4296 struct sw_bd
*rx_buf
= &bp
->rx_buf_ring
[i
];
4297 struct sk_buff
*skb
= rx_buf
->skb
;
4302 pci_unmap_single(bp
->pdev
, pci_unmap_addr(rx_buf
, mapping
),
4303 bp
->rx_buf_use_size
, PCI_DMA_FROMDEVICE
);
4312 bnx2_free_skbs(struct bnx2
*bp
)
4314 bnx2_free_tx_skbs(bp
);
4315 bnx2_free_rx_skbs(bp
);
4319 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
4323 rc
= bnx2_reset_chip(bp
, reset_code
);
4328 if ((rc
= bnx2_init_chip(bp
)) != 0)
4331 bnx2_init_tx_ring(bp
);
4332 bnx2_init_rx_ring(bp
);
4337 bnx2_init_nic(struct bnx2
*bp
)
4341 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
4344 spin_lock_bh(&bp
->phy_lock
);
4347 spin_unlock_bh(&bp
->phy_lock
);
4352 bnx2_test_registers(struct bnx2
*bp
)
4356 static const struct {
4359 #define BNX2_FL_NOT_5709 1
4363 { 0x006c, 0, 0x00000000, 0x0000003f },
4364 { 0x0090, 0, 0xffffffff, 0x00000000 },
4365 { 0x0094, 0, 0x00000000, 0x00000000 },
4367 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
4368 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
4369 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
4370 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
4371 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
4372 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
4373 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
4374 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
4375 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
4377 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
4378 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
4379 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
4380 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
4381 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
4382 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
4384 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
4385 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
4386 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
4388 { 0x1000, 0, 0x00000000, 0x00000001 },
4389 { 0x1004, 0, 0x00000000, 0x000f0001 },
4391 { 0x1408, 0, 0x01c00800, 0x00000000 },
4392 { 0x149c, 0, 0x8000ffff, 0x00000000 },
4393 { 0x14a8, 0, 0x00000000, 0x000001ff },
4394 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
4395 { 0x14b0, 0, 0x00000002, 0x00000001 },
4396 { 0x14b8, 0, 0x00000000, 0x00000000 },
4397 { 0x14c0, 0, 0x00000000, 0x00000009 },
4398 { 0x14c4, 0, 0x00003fff, 0x00000000 },
4399 { 0x14cc, 0, 0x00000000, 0x00000001 },
4400 { 0x14d0, 0, 0xffffffff, 0x00000000 },
4402 { 0x1800, 0, 0x00000000, 0x00000001 },
4403 { 0x1804, 0, 0x00000000, 0x00000003 },
4405 { 0x2800, 0, 0x00000000, 0x00000001 },
4406 { 0x2804, 0, 0x00000000, 0x00003f01 },
4407 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
4408 { 0x2810, 0, 0xffff0000, 0x00000000 },
4409 { 0x2814, 0, 0xffff0000, 0x00000000 },
4410 { 0x2818, 0, 0xffff0000, 0x00000000 },
4411 { 0x281c, 0, 0xffff0000, 0x00000000 },
4412 { 0x2834, 0, 0xffffffff, 0x00000000 },
4413 { 0x2840, 0, 0x00000000, 0xffffffff },
4414 { 0x2844, 0, 0x00000000, 0xffffffff },
4415 { 0x2848, 0, 0xffffffff, 0x00000000 },
4416 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
4418 { 0x2c00, 0, 0x00000000, 0x00000011 },
4419 { 0x2c04, 0, 0x00000000, 0x00030007 },
4421 { 0x3c00, 0, 0x00000000, 0x00000001 },
4422 { 0x3c04, 0, 0x00000000, 0x00070000 },
4423 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
4424 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
4425 { 0x3c10, 0, 0xffffffff, 0x00000000 },
4426 { 0x3c14, 0, 0x00000000, 0xffffffff },
4427 { 0x3c18, 0, 0x00000000, 0xffffffff },
4428 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
4429 { 0x3c20, 0, 0xffffff00, 0x00000000 },
4431 { 0x5004, 0, 0x00000000, 0x0000007f },
4432 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
4434 { 0x5c00, 0, 0x00000000, 0x00000001 },
4435 { 0x5c04, 0, 0x00000000, 0x0003000f },
4436 { 0x5c08, 0, 0x00000003, 0x00000000 },
4437 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
4438 { 0x5c10, 0, 0x00000000, 0xffffffff },
4439 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
4440 { 0x5c84, 0, 0x00000000, 0x0000f333 },
4441 { 0x5c88, 0, 0x00000000, 0x00077373 },
4442 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
4444 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
4445 { 0x680c, 0, 0xffffffff, 0x00000000 },
4446 { 0x6810, 0, 0xffffffff, 0x00000000 },
4447 { 0x6814, 0, 0xffffffff, 0x00000000 },
4448 { 0x6818, 0, 0xffffffff, 0x00000000 },
4449 { 0x681c, 0, 0xffffffff, 0x00000000 },
4450 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
4451 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
4452 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
4453 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
4454 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
4455 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
4456 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
4457 { 0x683c, 0, 0x0000ffff, 0x00000000 },
4458 { 0x6840, 0, 0x00000ff0, 0x00000000 },
4459 { 0x6844, 0, 0x00ffff00, 0x00000000 },
4460 { 0x684c, 0, 0xffffffff, 0x00000000 },
4461 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
4462 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
4463 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
4464 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
4465 { 0x6908, 0, 0x00000000, 0x0001ff0f },
4466 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
4468 { 0xffff, 0, 0x00000000, 0x00000000 },
4473 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
4476 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
4477 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
4478 u16 flags
= reg_tbl
[i
].flags
;
4480 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
4483 offset
= (u32
) reg_tbl
[i
].offset
;
4484 rw_mask
= reg_tbl
[i
].rw_mask
;
4485 ro_mask
= reg_tbl
[i
].ro_mask
;
4487 save_val
= readl(bp
->regview
+ offset
);
4489 writel(0, bp
->regview
+ offset
);
4491 val
= readl(bp
->regview
+ offset
);
4492 if ((val
& rw_mask
) != 0) {
4496 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
4500 writel(0xffffffff, bp
->regview
+ offset
);
4502 val
= readl(bp
->regview
+ offset
);
4503 if ((val
& rw_mask
) != rw_mask
) {
4507 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
4511 writel(save_val
, bp
->regview
+ offset
);
4515 writel(save_val
, bp
->regview
+ offset
);
4523 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
4525 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
4526 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
4529 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
4532 for (offset
= 0; offset
< size
; offset
+= 4) {
4534 REG_WR_IND(bp
, start
+ offset
, test_pattern
[i
]);
4536 if (REG_RD_IND(bp
, start
+ offset
) !=
4546 bnx2_test_memory(struct bnx2
*bp
)
4550 static struct mem_entry
{
4553 } mem_tbl_5706
[] = {
4554 { 0x60000, 0x4000 },
4555 { 0xa0000, 0x3000 },
4556 { 0xe0000, 0x4000 },
4557 { 0x120000, 0x4000 },
4558 { 0x1a0000, 0x4000 },
4559 { 0x160000, 0x4000 },
4563 { 0x60000, 0x4000 },
4564 { 0xa0000, 0x3000 },
4565 { 0xe0000, 0x4000 },
4566 { 0x120000, 0x4000 },
4567 { 0x1a0000, 0x4000 },
4570 struct mem_entry
*mem_tbl
;
4572 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
4573 mem_tbl
= mem_tbl_5709
;
4575 mem_tbl
= mem_tbl_5706
;
4577 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
4578 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
4579 mem_tbl
[i
].len
)) != 0) {
4587 #define BNX2_MAC_LOOPBACK 0
4588 #define BNX2_PHY_LOOPBACK 1
4591 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
4593 unsigned int pkt_size
, num_pkts
, i
;
4594 struct sk_buff
*skb
, *rx_skb
;
4595 unsigned char *packet
;
4596 u16 rx_start_idx
, rx_idx
;
4599 struct sw_bd
*rx_buf
;
4600 struct l2_fhdr
*rx_hdr
;
4603 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
4604 bp
->loopback
= MAC_LOOPBACK
;
4605 bnx2_set_mac_loopback(bp
);
4607 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
4608 if (bp
->phy_flags
& REMOTE_PHY_CAP_FLAG
)
4611 bp
->loopback
= PHY_LOOPBACK
;
4612 bnx2_set_phy_loopback(bp
);
4618 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
4621 packet
= skb_put(skb
, pkt_size
);
4622 memcpy(packet
, bp
->dev
->dev_addr
, 6);
4623 memset(packet
+ 6, 0x0, 8);
4624 for (i
= 14; i
< pkt_size
; i
++)
4625 packet
[i
] = (unsigned char) (i
& 0xff);
4627 map
= pci_map_single(bp
->pdev
, skb
->data
, pkt_size
,
4630 REG_WR(bp
, BNX2_HC_COMMAND
,
4631 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
4633 REG_RD(bp
, BNX2_HC_COMMAND
);
4636 rx_start_idx
= bp
->status_blk
->status_rx_quick_consumer_index0
;
4640 txbd
= &bp
->tx_desc_ring
[TX_RING_IDX(bp
->tx_prod
)];
4642 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
4643 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
4644 txbd
->tx_bd_mss_nbytes
= pkt_size
;
4645 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
4648 bp
->tx_prod
= NEXT_TX_BD(bp
->tx_prod
);
4649 bp
->tx_prod_bseq
+= pkt_size
;
4651 REG_WR16(bp
, bp
->tx_bidx_addr
, bp
->tx_prod
);
4652 REG_WR(bp
, bp
->tx_bseq_addr
, bp
->tx_prod_bseq
);
4656 REG_WR(bp
, BNX2_HC_COMMAND
,
4657 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
4659 REG_RD(bp
, BNX2_HC_COMMAND
);
4663 pci_unmap_single(bp
->pdev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
4666 if (bp
->status_blk
->status_tx_quick_consumer_index0
!= bp
->tx_prod
) {
4667 goto loopback_test_done
;
4670 rx_idx
= bp
->status_blk
->status_rx_quick_consumer_index0
;
4671 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
4672 goto loopback_test_done
;
4675 rx_buf
= &bp
->rx_buf_ring
[rx_start_idx
];
4676 rx_skb
= rx_buf
->skb
;
4678 rx_hdr
= (struct l2_fhdr
*) rx_skb
->data
;
4679 skb_reserve(rx_skb
, bp
->rx_offset
);
4681 pci_dma_sync_single_for_cpu(bp
->pdev
,
4682 pci_unmap_addr(rx_buf
, mapping
),
4683 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
4685 if (rx_hdr
->l2_fhdr_status
&
4686 (L2_FHDR_ERRORS_BAD_CRC
|
4687 L2_FHDR_ERRORS_PHY_DECODE
|
4688 L2_FHDR_ERRORS_ALIGNMENT
|
4689 L2_FHDR_ERRORS_TOO_SHORT
|
4690 L2_FHDR_ERRORS_GIANT_FRAME
)) {
4692 goto loopback_test_done
;
4695 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
4696 goto loopback_test_done
;
4699 for (i
= 14; i
< pkt_size
; i
++) {
4700 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
4701 goto loopback_test_done
;
4712 #define BNX2_MAC_LOOPBACK_FAILED 1
4713 #define BNX2_PHY_LOOPBACK_FAILED 2
4714 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
4715 BNX2_PHY_LOOPBACK_FAILED)
4718 bnx2_test_loopback(struct bnx2
*bp
)
4722 if (!netif_running(bp
->dev
))
4723 return BNX2_LOOPBACK_FAILED
;
4725 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
4726 spin_lock_bh(&bp
->phy_lock
);
4728 spin_unlock_bh(&bp
->phy_lock
);
4729 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
4730 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
4731 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
4732 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
4736 #define NVRAM_SIZE 0x200
4737 #define CRC32_RESIDUAL 0xdebb20e3
4740 bnx2_test_nvram(struct bnx2
*bp
)
4742 u32 buf
[NVRAM_SIZE
/ 4];
4743 u8
*data
= (u8
*) buf
;
4747 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
4748 goto test_nvram_done
;
4750 magic
= be32_to_cpu(buf
[0]);
4751 if (magic
!= 0x669955aa) {
4753 goto test_nvram_done
;
4756 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
4757 goto test_nvram_done
;
4759 csum
= ether_crc_le(0x100, data
);
4760 if (csum
!= CRC32_RESIDUAL
) {
4762 goto test_nvram_done
;
4765 csum
= ether_crc_le(0x100, data
+ 0x100);
4766 if (csum
!= CRC32_RESIDUAL
) {
4775 bnx2_test_link(struct bnx2
*bp
)
4779 if (bp
->phy_flags
& REMOTE_PHY_CAP_FLAG
) {
4784 spin_lock_bh(&bp
->phy_lock
);
4785 bnx2_enable_bmsr1(bp
);
4786 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
4787 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
4788 bnx2_disable_bmsr1(bp
);
4789 spin_unlock_bh(&bp
->phy_lock
);
4791 if (bmsr
& BMSR_LSTATUS
) {
4798 bnx2_test_intr(struct bnx2
*bp
)
4803 if (!netif_running(bp
->dev
))
4806 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
4808 /* This register is not touched during run-time. */
4809 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
4810 REG_RD(bp
, BNX2_HC_COMMAND
);
4812 for (i
= 0; i
< 10; i
++) {
4813 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
4819 msleep_interruptible(10);
4828 bnx2_5706_serdes_timer(struct bnx2
*bp
)
4830 spin_lock(&bp
->phy_lock
);
4831 if (bp
->serdes_an_pending
)
4832 bp
->serdes_an_pending
--;
4833 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
4836 bp
->current_interval
= bp
->timer_interval
;
4838 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
4840 if (bmcr
& BMCR_ANENABLE
) {
4843 bnx2_write_phy(bp
, 0x1c, 0x7c00);
4844 bnx2_read_phy(bp
, 0x1c, &phy1
);
4846 bnx2_write_phy(bp
, 0x17, 0x0f01);
4847 bnx2_read_phy(bp
, 0x15, &phy2
);
4848 bnx2_write_phy(bp
, 0x17, 0x0f01);
4849 bnx2_read_phy(bp
, 0x15, &phy2
);
4851 if ((phy1
& 0x10) && /* SIGNAL DETECT */
4852 !(phy2
& 0x20)) { /* no CONFIG */
4854 bmcr
&= ~BMCR_ANENABLE
;
4855 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
4856 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
4857 bp
->phy_flags
|= PHY_PARALLEL_DETECT_FLAG
;
4861 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
4862 (bp
->phy_flags
& PHY_PARALLEL_DETECT_FLAG
)) {
4865 bnx2_write_phy(bp
, 0x17, 0x0f01);
4866 bnx2_read_phy(bp
, 0x15, &phy2
);
4870 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
4871 bmcr
|= BMCR_ANENABLE
;
4872 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
4874 bp
->phy_flags
&= ~PHY_PARALLEL_DETECT_FLAG
;
4877 bp
->current_interval
= bp
->timer_interval
;
4879 spin_unlock(&bp
->phy_lock
);
4883 bnx2_5708_serdes_timer(struct bnx2
*bp
)
4885 if (bp
->phy_flags
& REMOTE_PHY_CAP_FLAG
)
4888 if ((bp
->phy_flags
& PHY_2_5G_CAPABLE_FLAG
) == 0) {
4889 bp
->serdes_an_pending
= 0;
4893 spin_lock(&bp
->phy_lock
);
4894 if (bp
->serdes_an_pending
)
4895 bp
->serdes_an_pending
--;
4896 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
4899 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
4900 if (bmcr
& BMCR_ANENABLE
) {
4901 bnx2_enable_forced_2g5(bp
);
4902 bp
->current_interval
= SERDES_FORCED_TIMEOUT
;
4904 bnx2_disable_forced_2g5(bp
);
4905 bp
->serdes_an_pending
= 2;
4906 bp
->current_interval
= bp
->timer_interval
;
4910 bp
->current_interval
= bp
->timer_interval
;
4912 spin_unlock(&bp
->phy_lock
);
4916 bnx2_timer(unsigned long data
)
4918 struct bnx2
*bp
= (struct bnx2
*) data
;
4920 if (!netif_running(bp
->dev
))
4923 if (atomic_read(&bp
->intr_sem
) != 0)
4924 goto bnx2_restart_timer
;
4926 bnx2_send_heart_beat(bp
);
4928 bp
->stats_blk
->stat_FwRxDrop
= REG_RD_IND(bp
, BNX2_FW_RX_DROP_COUNT
);
4930 /* workaround occasional corrupted counters */
4931 if (CHIP_NUM(bp
) == CHIP_NUM_5708
&& bp
->stats_ticks
)
4932 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
4933 BNX2_HC_COMMAND_STATS_NOW
);
4935 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
4936 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
4937 bnx2_5706_serdes_timer(bp
);
4939 bnx2_5708_serdes_timer(bp
);
4943 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
4947 bnx2_request_irq(struct bnx2
*bp
)
4949 struct net_device
*dev
= bp
->dev
;
4952 if (bp
->flags
& USING_MSI_FLAG
) {
4953 irq_handler_t fn
= bnx2_msi
;
4955 if (bp
->flags
& ONE_SHOT_MSI_FLAG
)
4956 fn
= bnx2_msi_1shot
;
4958 rc
= request_irq(bp
->pdev
->irq
, fn
, 0, dev
->name
, dev
);
4960 rc
= request_irq(bp
->pdev
->irq
, bnx2_interrupt
,
4961 IRQF_SHARED
, dev
->name
, dev
);
4966 bnx2_free_irq(struct bnx2
*bp
)
4968 struct net_device
*dev
= bp
->dev
;
4970 if (bp
->flags
& USING_MSI_FLAG
) {
4971 free_irq(bp
->pdev
->irq
, dev
);
4972 pci_disable_msi(bp
->pdev
);
4973 bp
->flags
&= ~(USING_MSI_FLAG
| ONE_SHOT_MSI_FLAG
);
4975 free_irq(bp
->pdev
->irq
, dev
);
4978 /* Called with rtnl_lock */
4980 bnx2_open(struct net_device
*dev
)
4982 struct bnx2
*bp
= netdev_priv(dev
);
4985 netif_carrier_off(dev
);
4987 bnx2_set_power_state(bp
, PCI_D0
);
4988 bnx2_disable_int(bp
);
4990 rc
= bnx2_alloc_mem(bp
);
4994 napi_enable(&bp
->napi
);
4996 if ((bp
->flags
& MSI_CAP_FLAG
) && !disable_msi
) {
4997 if (pci_enable_msi(bp
->pdev
) == 0) {
4998 bp
->flags
|= USING_MSI_FLAG
;
4999 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5000 bp
->flags
|= ONE_SHOT_MSI_FLAG
;
5003 rc
= bnx2_request_irq(bp
);
5006 napi_disable(&bp
->napi
);
5011 rc
= bnx2_init_nic(bp
);
5014 napi_disable(&bp
->napi
);
5021 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
5023 atomic_set(&bp
->intr_sem
, 0);
5025 bnx2_enable_int(bp
);
5027 if (bp
->flags
& USING_MSI_FLAG
) {
5028 /* Test MSI to make sure it is working
5029 * If MSI test fails, go back to INTx mode
5031 if (bnx2_test_intr(bp
) != 0) {
5032 printk(KERN_WARNING PFX
"%s: No interrupt was generated"
5033 " using MSI, switching to INTx mode. Please"
5034 " report this failure to the PCI maintainer"
5035 " and include system chipset information.\n",
5038 bnx2_disable_int(bp
);
5041 rc
= bnx2_init_nic(bp
);
5044 rc
= bnx2_request_irq(bp
);
5047 napi_disable(&bp
->napi
);
5050 del_timer_sync(&bp
->timer
);
5053 bnx2_enable_int(bp
);
5056 if (bp
->flags
& USING_MSI_FLAG
) {
5057 printk(KERN_INFO PFX
"%s: using MSI\n", dev
->name
);
5060 netif_start_queue(dev
);
5066 bnx2_reset_task(struct work_struct
*work
)
5068 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
5070 if (!netif_running(bp
->dev
))
5073 bp
->in_reset_task
= 1;
5074 bnx2_netif_stop(bp
);
5078 atomic_set(&bp
->intr_sem
, 1);
5079 bnx2_netif_start(bp
);
5080 bp
->in_reset_task
= 0;
5084 bnx2_tx_timeout(struct net_device
*dev
)
5086 struct bnx2
*bp
= netdev_priv(dev
);
5088 /* This allows the netif to be shutdown gracefully before resetting */
5089 schedule_work(&bp
->reset_task
);
5093 /* Called with rtnl_lock */
5095 bnx2_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*vlgrp
)
5097 struct bnx2
*bp
= netdev_priv(dev
);
5099 bnx2_netif_stop(bp
);
5102 bnx2_set_rx_mode(dev
);
5104 bnx2_netif_start(bp
);
5108 /* Called with netif_tx_lock.
5109 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
5110 * netif_wake_queue().
5113 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
5115 struct bnx2
*bp
= netdev_priv(dev
);
5118 struct sw_bd
*tx_buf
;
5119 u32 len
, vlan_tag_flags
, last_frag
, mss
;
5120 u16 prod
, ring_prod
;
5123 if (unlikely(bnx2_tx_avail(bp
) < (skb_shinfo(skb
)->nr_frags
+ 1))) {
5124 netif_stop_queue(dev
);
5125 printk(KERN_ERR PFX
"%s: BUG! Tx ring full when queue awake!\n",
5128 return NETDEV_TX_BUSY
;
5130 len
= skb_headlen(skb
);
5132 ring_prod
= TX_RING_IDX(prod
);
5135 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
5136 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
5139 if (bp
->vlgrp
!= 0 && vlan_tx_tag_present(skb
)) {
5141 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
5143 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
5144 u32 tcp_opt_len
, ip_tcp_len
;
5147 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
5149 tcp_opt_len
= tcp_optlen(skb
);
5151 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
5152 u32 tcp_off
= skb_transport_offset(skb
) -
5153 sizeof(struct ipv6hdr
) - ETH_HLEN
;
5155 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
5156 TX_BD_FLAGS_SW_FLAGS
;
5157 if (likely(tcp_off
== 0))
5158 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
5161 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
5162 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
5163 ((tcp_off
& 0x10) <<
5164 TX_BD_FLAGS_TCP6_OFF4_SHL
);
5165 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
5168 if (skb_header_cloned(skb
) &&
5169 pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
)) {
5171 return NETDEV_TX_OK
;
5174 ip_tcp_len
= ip_hdrlen(skb
) + sizeof(struct tcphdr
);
5178 iph
->tot_len
= htons(mss
+ ip_tcp_len
+ tcp_opt_len
);
5179 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
5183 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
5184 vlan_tag_flags
|= ((iph
->ihl
- 5) +
5185 (tcp_opt_len
>> 2)) << 8;
5191 mapping
= pci_map_single(bp
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
5193 tx_buf
= &bp
->tx_buf_ring
[ring_prod
];
5195 pci_unmap_addr_set(tx_buf
, mapping
, mapping
);
5197 txbd
= &bp
->tx_desc_ring
[ring_prod
];
5199 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
5200 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
5201 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
5202 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
5204 last_frag
= skb_shinfo(skb
)->nr_frags
;
5206 for (i
= 0; i
< last_frag
; i
++) {
5207 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
5209 prod
= NEXT_TX_BD(prod
);
5210 ring_prod
= TX_RING_IDX(prod
);
5211 txbd
= &bp
->tx_desc_ring
[ring_prod
];
5214 mapping
= pci_map_page(bp
->pdev
, frag
->page
, frag
->page_offset
,
5215 len
, PCI_DMA_TODEVICE
);
5216 pci_unmap_addr_set(&bp
->tx_buf_ring
[ring_prod
],
5219 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
5220 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
5221 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
5222 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
5225 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
5227 prod
= NEXT_TX_BD(prod
);
5228 bp
->tx_prod_bseq
+= skb
->len
;
5230 REG_WR16(bp
, bp
->tx_bidx_addr
, prod
);
5231 REG_WR(bp
, bp
->tx_bseq_addr
, bp
->tx_prod_bseq
);
5236 dev
->trans_start
= jiffies
;
5238 if (unlikely(bnx2_tx_avail(bp
) <= MAX_SKB_FRAGS
)) {
5239 netif_stop_queue(dev
);
5240 if (bnx2_tx_avail(bp
) > bp
->tx_wake_thresh
)
5241 netif_wake_queue(dev
);
5244 return NETDEV_TX_OK
;
5247 /* Called with rtnl_lock */
5249 bnx2_close(struct net_device
*dev
)
5251 struct bnx2
*bp
= netdev_priv(dev
);
5254 /* Calling flush_scheduled_work() may deadlock because
5255 * linkwatch_event() may be on the workqueue and it will try to get
5256 * the rtnl_lock which we are holding.
5258 while (bp
->in_reset_task
)
5261 bnx2_disable_int_sync(bp
);
5262 napi_disable(&bp
->napi
);
5263 del_timer_sync(&bp
->timer
);
5264 if (bp
->flags
& NO_WOL_FLAG
)
5265 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5267 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5269 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5270 bnx2_reset_chip(bp
, reset_code
);
5275 netif_carrier_off(bp
->dev
);
5276 bnx2_set_power_state(bp
, PCI_D3hot
);
5280 #define GET_NET_STATS64(ctr) \
5281 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
5282 (unsigned long) (ctr##_lo)
5284 #define GET_NET_STATS32(ctr) \
5287 #if (BITS_PER_LONG == 64)
5288 #define GET_NET_STATS GET_NET_STATS64
5290 #define GET_NET_STATS GET_NET_STATS32
5293 static struct net_device_stats
*
5294 bnx2_get_stats(struct net_device
*dev
)
5296 struct bnx2
*bp
= netdev_priv(dev
);
5297 struct statistics_block
*stats_blk
= bp
->stats_blk
;
5298 struct net_device_stats
*net_stats
= &bp
->net_stats
;
5300 if (bp
->stats_blk
== NULL
) {
5303 net_stats
->rx_packets
=
5304 GET_NET_STATS(stats_blk
->stat_IfHCInUcastPkts
) +
5305 GET_NET_STATS(stats_blk
->stat_IfHCInMulticastPkts
) +
5306 GET_NET_STATS(stats_blk
->stat_IfHCInBroadcastPkts
);
5308 net_stats
->tx_packets
=
5309 GET_NET_STATS(stats_blk
->stat_IfHCOutUcastPkts
) +
5310 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
) +
5311 GET_NET_STATS(stats_blk
->stat_IfHCOutBroadcastPkts
);
5313 net_stats
->rx_bytes
=
5314 GET_NET_STATS(stats_blk
->stat_IfHCInOctets
);
5316 net_stats
->tx_bytes
=
5317 GET_NET_STATS(stats_blk
->stat_IfHCOutOctets
);
5319 net_stats
->multicast
=
5320 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
);
5322 net_stats
->collisions
=
5323 (unsigned long) stats_blk
->stat_EtherStatsCollisions
;
5325 net_stats
->rx_length_errors
=
5326 (unsigned long) (stats_blk
->stat_EtherStatsUndersizePkts
+
5327 stats_blk
->stat_EtherStatsOverrsizePkts
);
5329 net_stats
->rx_over_errors
=
5330 (unsigned long) stats_blk
->stat_IfInMBUFDiscards
;
5332 net_stats
->rx_frame_errors
=
5333 (unsigned long) stats_blk
->stat_Dot3StatsAlignmentErrors
;
5335 net_stats
->rx_crc_errors
=
5336 (unsigned long) stats_blk
->stat_Dot3StatsFCSErrors
;
5338 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
5339 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
5340 net_stats
->rx_crc_errors
;
5342 net_stats
->tx_aborted_errors
=
5343 (unsigned long) (stats_blk
->stat_Dot3StatsExcessiveCollisions
+
5344 stats_blk
->stat_Dot3StatsLateCollisions
);
5346 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
5347 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
5348 net_stats
->tx_carrier_errors
= 0;
5350 net_stats
->tx_carrier_errors
=
5352 stats_blk
->stat_Dot3StatsCarrierSenseErrors
;
5355 net_stats
->tx_errors
=
5357 stats_blk
->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
5359 net_stats
->tx_aborted_errors
+
5360 net_stats
->tx_carrier_errors
;
5362 net_stats
->rx_missed_errors
=
5363 (unsigned long) (stats_blk
->stat_IfInMBUFDiscards
+
5364 stats_blk
->stat_FwRxDrop
);
5369 /* All ethtool functions called with rtnl_lock */
5372 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
5374 struct bnx2
*bp
= netdev_priv(dev
);
5375 int support_serdes
= 0, support_copper
= 0;
5377 cmd
->supported
= SUPPORTED_Autoneg
;
5378 if (bp
->phy_flags
& REMOTE_PHY_CAP_FLAG
) {
5381 } else if (bp
->phy_port
== PORT_FIBRE
)
5386 if (support_serdes
) {
5387 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
5389 if (bp
->phy_flags
& PHY_2_5G_CAPABLE_FLAG
)
5390 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
5393 if (support_copper
) {
5394 cmd
->supported
|= SUPPORTED_10baseT_Half
|
5395 SUPPORTED_10baseT_Full
|
5396 SUPPORTED_100baseT_Half
|
5397 SUPPORTED_100baseT_Full
|
5398 SUPPORTED_1000baseT_Full
|
5403 spin_lock_bh(&bp
->phy_lock
);
5404 cmd
->port
= bp
->phy_port
;
5405 cmd
->advertising
= bp
->advertising
;
5407 if (bp
->autoneg
& AUTONEG_SPEED
) {
5408 cmd
->autoneg
= AUTONEG_ENABLE
;
5411 cmd
->autoneg
= AUTONEG_DISABLE
;
5414 if (netif_carrier_ok(dev
)) {
5415 cmd
->speed
= bp
->line_speed
;
5416 cmd
->duplex
= bp
->duplex
;
5422 spin_unlock_bh(&bp
->phy_lock
);
5424 cmd
->transceiver
= XCVR_INTERNAL
;
5425 cmd
->phy_address
= bp
->phy_addr
;
5431 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
5433 struct bnx2
*bp
= netdev_priv(dev
);
5434 u8 autoneg
= bp
->autoneg
;
5435 u8 req_duplex
= bp
->req_duplex
;
5436 u16 req_line_speed
= bp
->req_line_speed
;
5437 u32 advertising
= bp
->advertising
;
5440 spin_lock_bh(&bp
->phy_lock
);
5442 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
5443 goto err_out_unlock
;
5445 if (cmd
->port
!= bp
->phy_port
&& !(bp
->phy_flags
& REMOTE_PHY_CAP_FLAG
))
5446 goto err_out_unlock
;
5448 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
5449 autoneg
|= AUTONEG_SPEED
;
5451 cmd
->advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
5453 /* allow advertising 1 speed */
5454 if ((cmd
->advertising
== ADVERTISED_10baseT_Half
) ||
5455 (cmd
->advertising
== ADVERTISED_10baseT_Full
) ||
5456 (cmd
->advertising
== ADVERTISED_100baseT_Half
) ||
5457 (cmd
->advertising
== ADVERTISED_100baseT_Full
)) {
5459 if (cmd
->port
== PORT_FIBRE
)
5460 goto err_out_unlock
;
5462 advertising
= cmd
->advertising
;
5464 } else if (cmd
->advertising
== ADVERTISED_2500baseX_Full
) {
5465 if (!(bp
->phy_flags
& PHY_2_5G_CAPABLE_FLAG
) ||
5466 (cmd
->port
== PORT_TP
))
5467 goto err_out_unlock
;
5468 } else if (cmd
->advertising
== ADVERTISED_1000baseT_Full
)
5469 advertising
= cmd
->advertising
;
5470 else if (cmd
->advertising
== ADVERTISED_1000baseT_Half
)
5471 goto err_out_unlock
;
5473 if (cmd
->port
== PORT_FIBRE
)
5474 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
5476 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
5478 advertising
|= ADVERTISED_Autoneg
;
5481 if (cmd
->port
== PORT_FIBRE
) {
5482 if ((cmd
->speed
!= SPEED_1000
&&
5483 cmd
->speed
!= SPEED_2500
) ||
5484 (cmd
->duplex
!= DUPLEX_FULL
))
5485 goto err_out_unlock
;
5487 if (cmd
->speed
== SPEED_2500
&&
5488 !(bp
->phy_flags
& PHY_2_5G_CAPABLE_FLAG
))
5489 goto err_out_unlock
;
5491 else if (cmd
->speed
== SPEED_1000
|| cmd
->speed
== SPEED_2500
)
5492 goto err_out_unlock
;
5494 autoneg
&= ~AUTONEG_SPEED
;
5495 req_line_speed
= cmd
->speed
;
5496 req_duplex
= cmd
->duplex
;
5500 bp
->autoneg
= autoneg
;
5501 bp
->advertising
= advertising
;
5502 bp
->req_line_speed
= req_line_speed
;
5503 bp
->req_duplex
= req_duplex
;
5505 err
= bnx2_setup_phy(bp
, cmd
->port
);
5508 spin_unlock_bh(&bp
->phy_lock
);
5514 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
5516 struct bnx2
*bp
= netdev_priv(dev
);
5518 strcpy(info
->driver
, DRV_MODULE_NAME
);
5519 strcpy(info
->version
, DRV_MODULE_VERSION
);
5520 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
5521 strcpy(info
->fw_version
, bp
->fw_version
);
5524 #define BNX2_REGDUMP_LEN (32 * 1024)
5527 bnx2_get_regs_len(struct net_device
*dev
)
5529 return BNX2_REGDUMP_LEN
;
5533 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
5535 u32
*p
= _p
, i
, offset
;
5537 struct bnx2
*bp
= netdev_priv(dev
);
5538 u32 reg_boundaries
[] = { 0x0000, 0x0098, 0x0400, 0x045c,
5539 0x0800, 0x0880, 0x0c00, 0x0c10,
5540 0x0c30, 0x0d08, 0x1000, 0x101c,
5541 0x1040, 0x1048, 0x1080, 0x10a4,
5542 0x1400, 0x1490, 0x1498, 0x14f0,
5543 0x1500, 0x155c, 0x1580, 0x15dc,
5544 0x1600, 0x1658, 0x1680, 0x16d8,
5545 0x1800, 0x1820, 0x1840, 0x1854,
5546 0x1880, 0x1894, 0x1900, 0x1984,
5547 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
5548 0x1c80, 0x1c94, 0x1d00, 0x1d84,
5549 0x2000, 0x2030, 0x23c0, 0x2400,
5550 0x2800, 0x2820, 0x2830, 0x2850,
5551 0x2b40, 0x2c10, 0x2fc0, 0x3058,
5552 0x3c00, 0x3c94, 0x4000, 0x4010,
5553 0x4080, 0x4090, 0x43c0, 0x4458,
5554 0x4c00, 0x4c18, 0x4c40, 0x4c54,
5555 0x4fc0, 0x5010, 0x53c0, 0x5444,
5556 0x5c00, 0x5c18, 0x5c80, 0x5c90,
5557 0x5fc0, 0x6000, 0x6400, 0x6428,
5558 0x6800, 0x6848, 0x684c, 0x6860,
5559 0x6888, 0x6910, 0x8000 };
5563 memset(p
, 0, BNX2_REGDUMP_LEN
);
5565 if (!netif_running(bp
->dev
))
5569 offset
= reg_boundaries
[0];
5571 while (offset
< BNX2_REGDUMP_LEN
) {
5572 *p
++ = REG_RD(bp
, offset
);
5574 if (offset
== reg_boundaries
[i
+ 1]) {
5575 offset
= reg_boundaries
[i
+ 2];
5576 p
= (u32
*) (orig_p
+ offset
);
5583 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
5585 struct bnx2
*bp
= netdev_priv(dev
);
5587 if (bp
->flags
& NO_WOL_FLAG
) {
5592 wol
->supported
= WAKE_MAGIC
;
5594 wol
->wolopts
= WAKE_MAGIC
;
5598 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
5602 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
5604 struct bnx2
*bp
= netdev_priv(dev
);
5606 if (wol
->wolopts
& ~WAKE_MAGIC
)
5609 if (wol
->wolopts
& WAKE_MAGIC
) {
5610 if (bp
->flags
& NO_WOL_FLAG
)
5622 bnx2_nway_reset(struct net_device
*dev
)
5624 struct bnx2
*bp
= netdev_priv(dev
);
5627 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
5631 spin_lock_bh(&bp
->phy_lock
);
5633 if (bp
->phy_flags
& REMOTE_PHY_CAP_FLAG
) {
5636 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
5637 spin_unlock_bh(&bp
->phy_lock
);
5641 /* Force a link down visible on the other side */
5642 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
5643 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
5644 spin_unlock_bh(&bp
->phy_lock
);
5648 spin_lock_bh(&bp
->phy_lock
);
5650 bp
->current_interval
= SERDES_AN_TIMEOUT
;
5651 bp
->serdes_an_pending
= 1;
5652 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
5655 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5656 bmcr
&= ~BMCR_LOOPBACK
;
5657 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
5659 spin_unlock_bh(&bp
->phy_lock
);
5665 bnx2_get_eeprom_len(struct net_device
*dev
)
5667 struct bnx2
*bp
= netdev_priv(dev
);
5669 if (bp
->flash_info
== NULL
)
5672 return (int) bp
->flash_size
;
5676 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
5679 struct bnx2
*bp
= netdev_priv(dev
);
5682 /* parameters already validated in ethtool_get_eeprom */
5684 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
5690 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
5693 struct bnx2
*bp
= netdev_priv(dev
);
5696 /* parameters already validated in ethtool_set_eeprom */
5698 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
5704 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
5706 struct bnx2
*bp
= netdev_priv(dev
);
5708 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
5710 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
5711 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
5712 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
5713 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
5715 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
5716 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
5717 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
5718 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
5720 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
5726 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
5728 struct bnx2
*bp
= netdev_priv(dev
);
5730 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
5731 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
5733 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
5734 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
5736 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
5737 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
5739 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
5740 if (bp
->rx_quick_cons_trip_int
> 0xff)
5741 bp
->rx_quick_cons_trip_int
= 0xff;
5743 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
5744 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
5746 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
5747 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
5749 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
5750 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
5752 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
5753 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
5756 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
5757 if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
5758 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
5759 bp
->stats_ticks
= USEC_PER_SEC
;
5761 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
5762 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
5763 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
5765 if (netif_running(bp
->dev
)) {
5766 bnx2_netif_stop(bp
);
5768 bnx2_netif_start(bp
);
5775 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
5777 struct bnx2
*bp
= netdev_priv(dev
);
5779 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
5780 ering
->rx_mini_max_pending
= 0;
5781 ering
->rx_jumbo_max_pending
= 0;
5783 ering
->rx_pending
= bp
->rx_ring_size
;
5784 ering
->rx_mini_pending
= 0;
5785 ering
->rx_jumbo_pending
= 0;
5787 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
5788 ering
->tx_pending
= bp
->tx_ring_size
;
5792 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
5794 struct bnx2
*bp
= netdev_priv(dev
);
5796 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
5797 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
5798 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
5802 if (netif_running(bp
->dev
)) {
5803 bnx2_netif_stop(bp
);
5804 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
5809 bnx2_set_rx_ring_size(bp
, ering
->rx_pending
);
5810 bp
->tx_ring_size
= ering
->tx_pending
;
5812 if (netif_running(bp
->dev
)) {
5815 rc
= bnx2_alloc_mem(bp
);
5819 bnx2_netif_start(bp
);
5826 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
5828 struct bnx2
*bp
= netdev_priv(dev
);
5830 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
5831 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
5832 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
5836 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
5838 struct bnx2
*bp
= netdev_priv(dev
);
5840 bp
->req_flow_ctrl
= 0;
5841 if (epause
->rx_pause
)
5842 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
5843 if (epause
->tx_pause
)
5844 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
5846 if (epause
->autoneg
) {
5847 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
5850 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
5853 spin_lock_bh(&bp
->phy_lock
);
5855 bnx2_setup_phy(bp
, bp
->phy_port
);
5857 spin_unlock_bh(&bp
->phy_lock
);
5863 bnx2_get_rx_csum(struct net_device
*dev
)
5865 struct bnx2
*bp
= netdev_priv(dev
);
5871 bnx2_set_rx_csum(struct net_device
*dev
, u32 data
)
5873 struct bnx2
*bp
= netdev_priv(dev
);
5880 bnx2_set_tso(struct net_device
*dev
, u32 data
)
5882 struct bnx2
*bp
= netdev_priv(dev
);
5885 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
5886 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5887 dev
->features
|= NETIF_F_TSO6
;
5889 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
|
5894 #define BNX2_NUM_STATS 46
5897 char string
[ETH_GSTRING_LEN
];
5898 } bnx2_stats_str_arr
[BNX2_NUM_STATS
] = {
5900 { "rx_error_bytes" },
5902 { "tx_error_bytes" },
5903 { "rx_ucast_packets" },
5904 { "rx_mcast_packets" },
5905 { "rx_bcast_packets" },
5906 { "tx_ucast_packets" },
5907 { "tx_mcast_packets" },
5908 { "tx_bcast_packets" },
5909 { "tx_mac_errors" },
5910 { "tx_carrier_errors" },
5911 { "rx_crc_errors" },
5912 { "rx_align_errors" },
5913 { "tx_single_collisions" },
5914 { "tx_multi_collisions" },
5916 { "tx_excess_collisions" },
5917 { "tx_late_collisions" },
5918 { "tx_total_collisions" },
5921 { "rx_undersize_packets" },
5922 { "rx_oversize_packets" },
5923 { "rx_64_byte_packets" },
5924 { "rx_65_to_127_byte_packets" },
5925 { "rx_128_to_255_byte_packets" },
5926 { "rx_256_to_511_byte_packets" },
5927 { "rx_512_to_1023_byte_packets" },
5928 { "rx_1024_to_1522_byte_packets" },
5929 { "rx_1523_to_9022_byte_packets" },
5930 { "tx_64_byte_packets" },
5931 { "tx_65_to_127_byte_packets" },
5932 { "tx_128_to_255_byte_packets" },
5933 { "tx_256_to_511_byte_packets" },
5934 { "tx_512_to_1023_byte_packets" },
5935 { "tx_1024_to_1522_byte_packets" },
5936 { "tx_1523_to_9022_byte_packets" },
5937 { "rx_xon_frames" },
5938 { "rx_xoff_frames" },
5939 { "tx_xon_frames" },
5940 { "tx_xoff_frames" },
5941 { "rx_mac_ctrl_frames" },
5942 { "rx_filtered_packets" },
5944 { "rx_fw_discards" },
5947 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
5949 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
5950 STATS_OFFSET32(stat_IfHCInOctets_hi
),
5951 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
5952 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
5953 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
5954 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
5955 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
5956 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
5957 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
5958 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
5959 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
5960 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
5961 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
5962 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
5963 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
5964 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
5965 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
5966 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
5967 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
5968 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
5969 STATS_OFFSET32(stat_EtherStatsCollisions
),
5970 STATS_OFFSET32(stat_EtherStatsFragments
),
5971 STATS_OFFSET32(stat_EtherStatsJabbers
),
5972 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
5973 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
5974 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
5975 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
5976 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
5977 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
5978 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
5979 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
5980 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
5981 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
5982 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
5983 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
5984 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
5985 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
5986 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
5987 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
5988 STATS_OFFSET32(stat_XonPauseFramesReceived
),
5989 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
5990 STATS_OFFSET32(stat_OutXonSent
),
5991 STATS_OFFSET32(stat_OutXoffSent
),
5992 STATS_OFFSET32(stat_MacControlFramesReceived
),
5993 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
5994 STATS_OFFSET32(stat_IfInMBUFDiscards
),
5995 STATS_OFFSET32(stat_FwRxDrop
),
5998 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
5999 * skipped because of errata.
6001 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
6002 8,0,8,8,8,8,8,8,8,8,
6003 4,0,4,4,4,4,4,4,4,4,
6004 4,4,4,4,4,4,4,4,4,4,
6005 4,4,4,4,4,4,4,4,4,4,
6009 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
6010 8,0,8,8,8,8,8,8,8,8,
6011 4,4,4,4,4,4,4,4,4,4,
6012 4,4,4,4,4,4,4,4,4,4,
6013 4,4,4,4,4,4,4,4,4,4,
6017 #define BNX2_NUM_TESTS 6
6020 char string
[ETH_GSTRING_LEN
];
6021 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
6022 { "register_test (offline)" },
6023 { "memory_test (offline)" },
6024 { "loopback_test (offline)" },
6025 { "nvram_test (online)" },
6026 { "interrupt_test (online)" },
6027 { "link_test (online)" },
6031 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
6035 return BNX2_NUM_TESTS
;
6037 return BNX2_NUM_STATS
;
6044 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
6046 struct bnx2
*bp
= netdev_priv(dev
);
6048 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
6049 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
6052 bnx2_netif_stop(bp
);
6053 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
6056 if (bnx2_test_registers(bp
) != 0) {
6058 etest
->flags
|= ETH_TEST_FL_FAILED
;
6060 if (bnx2_test_memory(bp
) != 0) {
6062 etest
->flags
|= ETH_TEST_FL_FAILED
;
6064 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
6065 etest
->flags
|= ETH_TEST_FL_FAILED
;
6067 if (!netif_running(bp
->dev
)) {
6068 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
6072 bnx2_netif_start(bp
);
6075 /* wait for link up */
6076 for (i
= 0; i
< 7; i
++) {
6079 msleep_interruptible(1000);
6083 if (bnx2_test_nvram(bp
) != 0) {
6085 etest
->flags
|= ETH_TEST_FL_FAILED
;
6087 if (bnx2_test_intr(bp
) != 0) {
6089 etest
->flags
|= ETH_TEST_FL_FAILED
;
6092 if (bnx2_test_link(bp
) != 0) {
6094 etest
->flags
|= ETH_TEST_FL_FAILED
;
6100 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
6102 switch (stringset
) {
6104 memcpy(buf
, bnx2_stats_str_arr
,
6105 sizeof(bnx2_stats_str_arr
));
6108 memcpy(buf
, bnx2_tests_str_arr
,
6109 sizeof(bnx2_tests_str_arr
));
6115 bnx2_get_ethtool_stats(struct net_device
*dev
,
6116 struct ethtool_stats
*stats
, u64
*buf
)
6118 struct bnx2
*bp
= netdev_priv(dev
);
6120 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
6121 u8
*stats_len_arr
= NULL
;
6123 if (hw_stats
== NULL
) {
6124 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
6128 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
6129 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
6130 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
6131 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6132 stats_len_arr
= bnx2_5706_stats_len_arr
;
6134 stats_len_arr
= bnx2_5708_stats_len_arr
;
6136 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
6137 if (stats_len_arr
[i
] == 0) {
6138 /* skip this counter */
6142 if (stats_len_arr
[i
] == 4) {
6143 /* 4-byte counter */
6145 *(hw_stats
+ bnx2_stats_offset_arr
[i
]);
6148 /* 8-byte counter */
6149 buf
[i
] = (((u64
) *(hw_stats
+
6150 bnx2_stats_offset_arr
[i
])) << 32) +
6151 *(hw_stats
+ bnx2_stats_offset_arr
[i
] + 1);
6156 bnx2_phys_id(struct net_device
*dev
, u32 data
)
6158 struct bnx2
*bp
= netdev_priv(dev
);
6165 save
= REG_RD(bp
, BNX2_MISC_CFG
);
6166 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
6168 for (i
= 0; i
< (data
* 2); i
++) {
6170 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
6173 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
6174 BNX2_EMAC_LED_1000MB_OVERRIDE
|
6175 BNX2_EMAC_LED_100MB_OVERRIDE
|
6176 BNX2_EMAC_LED_10MB_OVERRIDE
|
6177 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
6178 BNX2_EMAC_LED_TRAFFIC
);
6180 msleep_interruptible(500);
6181 if (signal_pending(current
))
6184 REG_WR(bp
, BNX2_EMAC_LED
, 0);
6185 REG_WR(bp
, BNX2_MISC_CFG
, save
);
6190 bnx2_set_tx_csum(struct net_device
*dev
, u32 data
)
6192 struct bnx2
*bp
= netdev_priv(dev
);
6194 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
6195 return (ethtool_op_set_tx_ipv6_csum(dev
, data
));
6197 return (ethtool_op_set_tx_csum(dev
, data
));
6200 static const struct ethtool_ops bnx2_ethtool_ops
= {
6201 .get_settings
= bnx2_get_settings
,
6202 .set_settings
= bnx2_set_settings
,
6203 .get_drvinfo
= bnx2_get_drvinfo
,
6204 .get_regs_len
= bnx2_get_regs_len
,
6205 .get_regs
= bnx2_get_regs
,
6206 .get_wol
= bnx2_get_wol
,
6207 .set_wol
= bnx2_set_wol
,
6208 .nway_reset
= bnx2_nway_reset
,
6209 .get_link
= ethtool_op_get_link
,
6210 .get_eeprom_len
= bnx2_get_eeprom_len
,
6211 .get_eeprom
= bnx2_get_eeprom
,
6212 .set_eeprom
= bnx2_set_eeprom
,
6213 .get_coalesce
= bnx2_get_coalesce
,
6214 .set_coalesce
= bnx2_set_coalesce
,
6215 .get_ringparam
= bnx2_get_ringparam
,
6216 .set_ringparam
= bnx2_set_ringparam
,
6217 .get_pauseparam
= bnx2_get_pauseparam
,
6218 .set_pauseparam
= bnx2_set_pauseparam
,
6219 .get_rx_csum
= bnx2_get_rx_csum
,
6220 .set_rx_csum
= bnx2_set_rx_csum
,
6221 .set_tx_csum
= bnx2_set_tx_csum
,
6222 .set_sg
= ethtool_op_set_sg
,
6223 .set_tso
= bnx2_set_tso
,
6224 .self_test
= bnx2_self_test
,
6225 .get_strings
= bnx2_get_strings
,
6226 .phys_id
= bnx2_phys_id
,
6227 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
6228 .get_sset_count
= bnx2_get_sset_count
,
6231 /* Called with rtnl_lock */
6233 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
6235 struct mii_ioctl_data
*data
= if_mii(ifr
);
6236 struct bnx2
*bp
= netdev_priv(dev
);
6241 data
->phy_id
= bp
->phy_addr
;
6247 if (bp
->phy_flags
& REMOTE_PHY_CAP_FLAG
)
6250 if (!netif_running(dev
))
6253 spin_lock_bh(&bp
->phy_lock
);
6254 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
6255 spin_unlock_bh(&bp
->phy_lock
);
6257 data
->val_out
= mii_regval
;
6263 if (!capable(CAP_NET_ADMIN
))
6266 if (bp
->phy_flags
& REMOTE_PHY_CAP_FLAG
)
6269 if (!netif_running(dev
))
6272 spin_lock_bh(&bp
->phy_lock
);
6273 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
6274 spin_unlock_bh(&bp
->phy_lock
);
6285 /* Called with rtnl_lock */
6287 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
6289 struct sockaddr
*addr
= p
;
6290 struct bnx2
*bp
= netdev_priv(dev
);
6292 if (!is_valid_ether_addr(addr
->sa_data
))
6295 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
6296 if (netif_running(dev
))
6297 bnx2_set_mac_addr(bp
);
6302 /* Called with rtnl_lock */
6304 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
6306 struct bnx2
*bp
= netdev_priv(dev
);
6308 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
6309 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
6313 if (netif_running(dev
)) {
6314 bnx2_netif_stop(bp
);
6318 bnx2_netif_start(bp
);
6323 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
6325 poll_bnx2(struct net_device
*dev
)
6327 struct bnx2
*bp
= netdev_priv(dev
);
6329 disable_irq(bp
->pdev
->irq
);
6330 bnx2_interrupt(bp
->pdev
->irq
, dev
);
6331 enable_irq(bp
->pdev
->irq
);
6335 static void __devinit
6336 bnx2_get_5709_media(struct bnx2
*bp
)
6338 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
6339 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
6342 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
6344 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
6345 bp
->phy_flags
|= PHY_SERDES_FLAG
;
6349 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
6350 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
6352 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
6354 if (PCI_FUNC(bp
->pdev
->devfn
) == 0) {
6359 bp
->phy_flags
|= PHY_SERDES_FLAG
;
6367 bp
->phy_flags
|= PHY_SERDES_FLAG
;
6373 static void __devinit
6374 bnx2_get_pci_speed(struct bnx2
*bp
)
6378 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
6379 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
6382 bp
->flags
|= PCIX_FLAG
;
6384 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
6386 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
6388 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
6389 bp
->bus_speed_mhz
= 133;
6392 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
6393 bp
->bus_speed_mhz
= 100;
6396 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
6397 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
6398 bp
->bus_speed_mhz
= 66;
6401 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
6402 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
6403 bp
->bus_speed_mhz
= 50;
6406 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
6407 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
6408 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
6409 bp
->bus_speed_mhz
= 33;
6414 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
6415 bp
->bus_speed_mhz
= 66;
6417 bp
->bus_speed_mhz
= 33;
6420 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
6421 bp
->flags
|= PCI_32BIT_FLAG
;
6425 static int __devinit
6426 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
6429 unsigned long mem_len
;
6432 u64 dma_mask
, persist_dma_mask
;
6434 SET_NETDEV_DEV(dev
, &pdev
->dev
);
6435 bp
= netdev_priv(dev
);
6440 /* enable device (incl. PCI PM wakeup), and bus-mastering */
6441 rc
= pci_enable_device(pdev
);
6443 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting.\n");
6447 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
6449 "Cannot find PCI device base address, aborting.\n");
6451 goto err_out_disable
;
6454 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
6456 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting.\n");
6457 goto err_out_disable
;
6460 pci_set_master(pdev
);
6462 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
6463 if (bp
->pm_cap
== 0) {
6465 "Cannot find power management capability, aborting.\n");
6467 goto err_out_release
;
6473 spin_lock_init(&bp
->phy_lock
);
6474 spin_lock_init(&bp
->indirect_lock
);
6475 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
6477 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
6478 mem_len
= MB_GET_CID_ADDR(TX_TSS_CID
+ 1);
6479 dev
->mem_end
= dev
->mem_start
+ mem_len
;
6480 dev
->irq
= pdev
->irq
;
6482 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
6485 dev_err(&pdev
->dev
, "Cannot map register space, aborting.\n");
6487 goto err_out_release
;
6490 /* Configure byte swap and enable write to the reg_window registers.
6491 * Rely on CPU to do target byte swapping on big endian systems
6492 * The chip's target access swapping will not swap all accesses
6494 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
,
6495 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
6496 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
6498 bnx2_set_power_state(bp
, PCI_D0
);
6500 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
6502 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
6503 if (pci_find_capability(pdev
, PCI_CAP_ID_EXP
) == 0) {
6505 "Cannot find PCIE capability, aborting.\n");
6509 bp
->flags
|= PCIE_FLAG
;
6511 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
6512 if (bp
->pcix_cap
== 0) {
6514 "Cannot find PCIX capability, aborting.\n");
6520 if (CHIP_ID(bp
) != CHIP_ID_5706_A0
&& CHIP_ID(bp
) != CHIP_ID_5706_A1
) {
6521 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
))
6522 bp
->flags
|= MSI_CAP_FLAG
;
6525 /* 5708 cannot support DMA addresses > 40-bit. */
6526 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
6527 persist_dma_mask
= dma_mask
= DMA_40BIT_MASK
;
6529 persist_dma_mask
= dma_mask
= DMA_64BIT_MASK
;
6531 /* Configure DMA attributes. */
6532 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
6533 dev
->features
|= NETIF_F_HIGHDMA
;
6534 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
6537 "pci_set_consistent_dma_mask failed, aborting.\n");
6540 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) != 0) {
6541 dev_err(&pdev
->dev
, "System does not support DMA, aborting.\n");
6545 if (!(bp
->flags
& PCIE_FLAG
))
6546 bnx2_get_pci_speed(bp
);
6548 /* 5706A0 may falsely detect SERR and PERR. */
6549 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
6550 reg
= REG_RD(bp
, PCI_COMMAND
);
6551 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
6552 REG_WR(bp
, PCI_COMMAND
, reg
);
6554 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
6555 !(bp
->flags
& PCIX_FLAG
)) {
6558 "5706 A1 can only be used in a PCIX bus, aborting.\n");
6562 bnx2_init_nvram(bp
);
6564 reg
= REG_RD_IND(bp
, BNX2_SHM_HDR_SIGNATURE
);
6566 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
6567 BNX2_SHM_HDR_SIGNATURE_SIG
) {
6568 u32 off
= PCI_FUNC(pdev
->devfn
) << 2;
6570 bp
->shmem_base
= REG_RD_IND(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
6572 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
6574 /* Get the permanent MAC address. First we need to make sure the
6575 * firmware is actually running.
6577 reg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_DEV_INFO_SIGNATURE
);
6579 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
6580 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
6581 dev_err(&pdev
->dev
, "Firmware not running, aborting.\n");
6586 reg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_DEV_INFO_BC_REV
);
6587 for (i
= 0, j
= 0; i
< 3; i
++) {
6590 num
= (u8
) (reg
>> (24 - (i
* 8)));
6591 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
6592 if (num
>= k
|| !skip0
|| k
== 1) {
6593 bp
->fw_version
[j
++] = (num
/ k
) + '0';
6598 bp
->fw_version
[j
++] = '.';
6600 reg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_PORT_FEATURE
);
6601 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
6604 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
6605 bp
->flags
|= ASF_ENABLE_FLAG
;
6607 for (i
= 0; i
< 30; i
++) {
6608 reg
= REG_RD_IND(bp
, bp
->shmem_base
+
6609 BNX2_BC_STATE_CONDITION
);
6610 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
6615 reg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_BC_STATE_CONDITION
);
6616 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
6617 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
6618 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
6620 u32 addr
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_MFW_VER_PTR
);
6622 bp
->fw_version
[j
++] = ' ';
6623 for (i
= 0; i
< 3; i
++) {
6624 reg
= REG_RD_IND(bp
, addr
+ i
* 4);
6626 memcpy(&bp
->fw_version
[j
], ®
, 4);
6631 reg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_PORT_HW_CFG_MAC_UPPER
);
6632 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
6633 bp
->mac_addr
[1] = (u8
) reg
;
6635 reg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_PORT_HW_CFG_MAC_LOWER
);
6636 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
6637 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
6638 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
6639 bp
->mac_addr
[5] = (u8
) reg
;
6641 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
6642 bnx2_set_rx_ring_size(bp
, 255);
6646 bp
->rx_offset
= sizeof(struct l2_fhdr
) + 2;
6648 bp
->tx_quick_cons_trip_int
= 20;
6649 bp
->tx_quick_cons_trip
= 20;
6650 bp
->tx_ticks_int
= 80;
6653 bp
->rx_quick_cons_trip_int
= 6;
6654 bp
->rx_quick_cons_trip
= 6;
6655 bp
->rx_ticks_int
= 18;
6658 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
6660 bp
->timer_interval
= HZ
;
6661 bp
->current_interval
= HZ
;
6665 /* Disable WOL support if we are running on a SERDES chip. */
6666 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
6667 bnx2_get_5709_media(bp
);
6668 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
6669 bp
->phy_flags
|= PHY_SERDES_FLAG
;
6671 bp
->phy_port
= PORT_TP
;
6672 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
6673 bp
->phy_port
= PORT_FIBRE
;
6674 reg
= REG_RD_IND(bp
, bp
->shmem_base
+
6675 BNX2_SHARED_HW_CFG_CONFIG
);
6676 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
6677 bp
->flags
|= NO_WOL_FLAG
;
6680 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
6682 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
6683 bp
->phy_flags
|= PHY_2_5G_CAPABLE_FLAG
;
6685 bnx2_init_remote_phy(bp
);
6687 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
6688 CHIP_NUM(bp
) == CHIP_NUM_5708
)
6689 bp
->phy_flags
|= PHY_CRC_FIX_FLAG
;
6690 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
&&
6691 (CHIP_REV(bp
) == CHIP_REV_Ax
||
6692 CHIP_REV(bp
) == CHIP_REV_Bx
))
6693 bp
->phy_flags
|= PHY_DIS_EARLY_DAC_FLAG
;
6695 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
6696 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
6697 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
6698 bp
->flags
|= NO_WOL_FLAG
;
6702 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
6703 bp
->tx_quick_cons_trip_int
=
6704 bp
->tx_quick_cons_trip
;
6705 bp
->tx_ticks_int
= bp
->tx_ticks
;
6706 bp
->rx_quick_cons_trip_int
=
6707 bp
->rx_quick_cons_trip
;
6708 bp
->rx_ticks_int
= bp
->rx_ticks
;
6709 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
6710 bp
->com_ticks_int
= bp
->com_ticks
;
6711 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
6714 /* Disable MSI on 5706 if AMD 8132 bridge is found.
6716 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
6717 * with byte enables disabled on the unused 32-bit word. This is legal
6718 * but causes problems on the AMD 8132 which will eventually stop
6719 * responding after a while.
6721 * AMD believes this incompatibility is unique to the 5706, and
6722 * prefers to locally disable MSI rather than globally disabling it.
6724 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
6725 struct pci_dev
*amd_8132
= NULL
;
6727 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
6728 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
6731 if (amd_8132
->revision
>= 0x10 &&
6732 amd_8132
->revision
<= 0x13) {
6734 pci_dev_put(amd_8132
);
6740 bnx2_set_default_link(bp
);
6741 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
6743 init_timer(&bp
->timer
);
6744 bp
->timer
.expires
= RUN_AT(bp
->timer_interval
);
6745 bp
->timer
.data
= (unsigned long) bp
;
6746 bp
->timer
.function
= bnx2_timer
;
6752 iounmap(bp
->regview
);
6757 pci_release_regions(pdev
);
6760 pci_disable_device(pdev
);
6761 pci_set_drvdata(pdev
, NULL
);
6767 static char * __devinit
6768 bnx2_bus_string(struct bnx2
*bp
, char *str
)
6772 if (bp
->flags
& PCIE_FLAG
) {
6773 s
+= sprintf(s
, "PCI Express");
6775 s
+= sprintf(s
, "PCI");
6776 if (bp
->flags
& PCIX_FLAG
)
6777 s
+= sprintf(s
, "-X");
6778 if (bp
->flags
& PCI_32BIT_FLAG
)
6779 s
+= sprintf(s
, " 32-bit");
6781 s
+= sprintf(s
, " 64-bit");
6782 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
6787 static int __devinit
6788 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
6790 static int version_printed
= 0;
6791 struct net_device
*dev
= NULL
;
6795 DECLARE_MAC_BUF(mac
);
6797 if (version_printed
++ == 0)
6798 printk(KERN_INFO
"%s", version
);
6800 /* dev zeroed in init_etherdev */
6801 dev
= alloc_etherdev(sizeof(*bp
));
6806 rc
= bnx2_init_board(pdev
, dev
);
6812 dev
->open
= bnx2_open
;
6813 dev
->hard_start_xmit
= bnx2_start_xmit
;
6814 dev
->stop
= bnx2_close
;
6815 dev
->get_stats
= bnx2_get_stats
;
6816 dev
->set_multicast_list
= bnx2_set_rx_mode
;
6817 dev
->do_ioctl
= bnx2_ioctl
;
6818 dev
->set_mac_address
= bnx2_change_mac_addr
;
6819 dev
->change_mtu
= bnx2_change_mtu
;
6820 dev
->tx_timeout
= bnx2_tx_timeout
;
6821 dev
->watchdog_timeo
= TX_TIMEOUT
;
6823 dev
->vlan_rx_register
= bnx2_vlan_rx_register
;
6825 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
6827 bp
= netdev_priv(dev
);
6828 netif_napi_add(dev
, &bp
->napi
, bnx2_poll
, 64);
6830 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
6831 dev
->poll_controller
= poll_bnx2
;
6834 pci_set_drvdata(pdev
, dev
);
6836 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
6837 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
6838 bp
->name
= board_info
[ent
->driver_data
].name
;
6840 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
6841 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
6842 dev
->features
|= NETIF_F_IPV6_CSUM
;
6845 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
6847 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
6848 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
6849 dev
->features
|= NETIF_F_TSO6
;
6851 if ((rc
= register_netdev(dev
))) {
6852 dev_err(&pdev
->dev
, "Cannot register net device\n");
6854 iounmap(bp
->regview
);
6855 pci_release_regions(pdev
);
6856 pci_disable_device(pdev
);
6857 pci_set_drvdata(pdev
, NULL
);
6862 printk(KERN_INFO
"%s: %s (%c%d) %s found at mem %lx, "
6863 "IRQ %d, node addr %s\n",
6866 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
6867 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
6868 bnx2_bus_string(bp
, str
),
6870 bp
->pdev
->irq
, print_mac(mac
, dev
->dev_addr
));
6875 static void __devexit
6876 bnx2_remove_one(struct pci_dev
*pdev
)
6878 struct net_device
*dev
= pci_get_drvdata(pdev
);
6879 struct bnx2
*bp
= netdev_priv(dev
);
6881 flush_scheduled_work();
6883 unregister_netdev(dev
);
6886 iounmap(bp
->regview
);
6889 pci_release_regions(pdev
);
6890 pci_disable_device(pdev
);
6891 pci_set_drvdata(pdev
, NULL
);
6895 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
6897 struct net_device
*dev
= pci_get_drvdata(pdev
);
6898 struct bnx2
*bp
= netdev_priv(dev
);
6901 /* PCI register 4 needs to be saved whether netif_running() or not.
6902 * MSI address and data need to be saved if using MSI and
6905 pci_save_state(pdev
);
6906 if (!netif_running(dev
))
6909 flush_scheduled_work();
6910 bnx2_netif_stop(bp
);
6911 netif_device_detach(dev
);
6912 del_timer_sync(&bp
->timer
);
6913 if (bp
->flags
& NO_WOL_FLAG
)
6914 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
6916 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
6918 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
6919 bnx2_reset_chip(bp
, reset_code
);
6921 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
6926 bnx2_resume(struct pci_dev
*pdev
)
6928 struct net_device
*dev
= pci_get_drvdata(pdev
);
6929 struct bnx2
*bp
= netdev_priv(dev
);
6931 pci_restore_state(pdev
);
6932 if (!netif_running(dev
))
6935 bnx2_set_power_state(bp
, PCI_D0
);
6936 netif_device_attach(dev
);
6938 bnx2_netif_start(bp
);
6942 static struct pci_driver bnx2_pci_driver
= {
6943 .name
= DRV_MODULE_NAME
,
6944 .id_table
= bnx2_pci_tbl
,
6945 .probe
= bnx2_init_one
,
6946 .remove
= __devexit_p(bnx2_remove_one
),
6947 .suspend
= bnx2_suspend
,
6948 .resume
= bnx2_resume
,
6951 static int __init
bnx2_init(void)
6953 return pci_register_driver(&bnx2_pci_driver
);
6956 static void __exit
bnx2_cleanup(void)
6958 pci_unregister_driver(&bnx2_pci_driver
);
6961 module_init(bnx2_init
);
6962 module_exit(bnx2_cleanup
);