1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/delay.h>
33 static s32
e1000_get_phy_cfg_done(struct e1000_hw
*hw
);
34 static s32
e1000_phy_force_speed_duplex(struct e1000_hw
*hw
);
35 static s32
e1000_set_d0_lplu_state(struct e1000_hw
*hw
, bool active
);
36 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
);
38 /* Cable length tables */
39 static const u16 e1000_m88_cable_length_table
[] =
40 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
};
42 static const u16 e1000_igp_2_cable_length_table
[] =
43 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
44 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
45 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
46 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
47 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
48 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
49 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
51 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
52 (sizeof(e1000_igp_2_cable_length_table) / \
53 sizeof(e1000_igp_2_cable_length_table[0]))
56 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
57 * @hw: pointer to the HW structure
59 * Read the PHY management control register and check whether a PHY reset
60 * is blocked. If a reset is not blocked return 0, otherwise
61 * return E1000_BLK_PHY_RESET (12).
63 s32
e1000e_check_reset_block_generic(struct e1000_hw
*hw
)
69 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ?
70 E1000_BLK_PHY_RESET
: 0;
74 * e1000e_get_phy_id - Retrieve the PHY ID and revision
75 * @hw: pointer to the HW structure
77 * Reads the PHY registers and stores the PHY ID and possibly the PHY
78 * revision in the hardware structure.
80 s32
e1000e_get_phy_id(struct e1000_hw
*hw
)
82 struct e1000_phy_info
*phy
= &hw
->phy
;
86 ret_val
= e1e_rphy(hw
, PHY_ID1
, &phy_id
);
90 phy
->id
= (u32
)(phy_id
<< 16);
92 ret_val
= e1e_rphy(hw
, PHY_ID2
, &phy_id
);
96 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
97 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
103 * e1000e_phy_reset_dsp - Reset PHY DSP
104 * @hw: pointer to the HW structure
106 * Reset the digital signal processor.
108 s32
e1000e_phy_reset_dsp(struct e1000_hw
*hw
)
112 ret_val
= e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0xC1);
116 return e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0);
120 * e1000_read_phy_reg_mdic - Read MDI control register
121 * @hw: pointer to the HW structure
122 * @offset: register offset to be read
123 * @data: pointer to the read data
125 * Reads the MDI control regsiter in the PHY at offset and stores the
126 * information read to data.
128 static s32
e1000_read_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
130 struct e1000_phy_info
*phy
= &hw
->phy
;
133 if (offset
> MAX_PHY_REG_ADDRESS
) {
134 hw_dbg(hw
, "PHY Address %d is out of range\n", offset
);
135 return -E1000_ERR_PARAM
;
138 /* Set up Op-code, Phy Address, and register offset in the MDI
139 * Control register. The MAC will take care of interfacing with the
140 * PHY to retrieve the desired data.
142 mdic
= ((offset
<< E1000_MDIC_REG_SHIFT
) |
143 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
144 (E1000_MDIC_OP_READ
));
148 /* Poll the ready bit to see if the MDI read completed */
149 for (i
= 0; i
< 64; i
++) {
152 if (mdic
& E1000_MDIC_READY
)
155 if (!(mdic
& E1000_MDIC_READY
)) {
156 hw_dbg(hw
, "MDI Read did not complete\n");
157 return -E1000_ERR_PHY
;
159 if (mdic
& E1000_MDIC_ERROR
) {
160 hw_dbg(hw
, "MDI Error\n");
161 return -E1000_ERR_PHY
;
169 * e1000_write_phy_reg_mdic - Write MDI control register
170 * @hw: pointer to the HW structure
171 * @offset: register offset to write to
172 * @data: data to write to register at offset
174 * Writes data to MDI control register in the PHY at offset.
176 static s32
e1000_write_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
178 struct e1000_phy_info
*phy
= &hw
->phy
;
181 if (offset
> MAX_PHY_REG_ADDRESS
) {
182 hw_dbg(hw
, "PHY Address %d is out of range\n", offset
);
183 return -E1000_ERR_PARAM
;
186 /* Set up Op-code, Phy Address, and register offset in the MDI
187 * Control register. The MAC will take care of interfacing with the
188 * PHY to retrieve the desired data.
190 mdic
= (((u32
)data
) |
191 (offset
<< E1000_MDIC_REG_SHIFT
) |
192 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
193 (E1000_MDIC_OP_WRITE
));
197 /* Poll the ready bit to see if the MDI read completed */
198 for (i
= 0; i
< E1000_GEN_POLL_TIMEOUT
; i
++) {
201 if (mdic
& E1000_MDIC_READY
)
204 if (!(mdic
& E1000_MDIC_READY
)) {
205 hw_dbg(hw
, "MDI Write did not complete\n");
206 return -E1000_ERR_PHY
;
213 * e1000e_read_phy_reg_m88 - Read m88 PHY register
214 * @hw: pointer to the HW structure
215 * @offset: register offset to be read
216 * @data: pointer to the read data
218 * Acquires semaphore, if necessary, then reads the PHY register at offset
219 * and storing the retrieved information in data. Release any acquired
220 * semaphores before exiting.
222 s32
e1000e_read_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
226 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
230 ret_val
= e1000_read_phy_reg_mdic(hw
,
231 MAX_PHY_REG_ADDRESS
& offset
,
234 hw
->phy
.ops
.release_phy(hw
);
240 * e1000e_write_phy_reg_m88 - Write m88 PHY register
241 * @hw: pointer to the HW structure
242 * @offset: register offset to write to
243 * @data: data to write at register offset
245 * Acquires semaphore, if necessary, then writes the data to PHY register
246 * at the offset. Release any acquired semaphores before exiting.
248 s32
e1000e_write_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16 data
)
252 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
256 ret_val
= e1000_write_phy_reg_mdic(hw
,
257 MAX_PHY_REG_ADDRESS
& offset
,
260 hw
->phy
.ops
.release_phy(hw
);
266 * e1000e_read_phy_reg_igp - Read igp PHY register
267 * @hw: pointer to the HW structure
268 * @offset: register offset to be read
269 * @data: pointer to the read data
271 * Acquires semaphore, if necessary, then reads the PHY register at offset
272 * and storing the retrieved information in data. Release any acquired
273 * semaphores before exiting.
275 s32
e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
279 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
283 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
284 ret_val
= e1000_write_phy_reg_mdic(hw
,
285 IGP01E1000_PHY_PAGE_SELECT
,
288 hw
->phy
.ops
.release_phy(hw
);
293 ret_val
= e1000_read_phy_reg_mdic(hw
,
294 MAX_PHY_REG_ADDRESS
& offset
,
297 hw
->phy
.ops
.release_phy(hw
);
303 * e1000e_write_phy_reg_igp - Write igp PHY register
304 * @hw: pointer to the HW structure
305 * @offset: register offset to write to
306 * @data: data to write at register offset
308 * Acquires semaphore, if necessary, then writes the data to PHY register
309 * at the offset. Release any acquired semaphores before exiting.
311 s32
e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
)
315 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
319 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
320 ret_val
= e1000_write_phy_reg_mdic(hw
,
321 IGP01E1000_PHY_PAGE_SELECT
,
324 hw
->phy
.ops
.release_phy(hw
);
329 ret_val
= e1000_write_phy_reg_mdic(hw
,
330 MAX_PHY_REG_ADDRESS
& offset
,
333 hw
->phy
.ops
.release_phy(hw
);
339 * e1000e_read_kmrn_reg - Read kumeran register
340 * @hw: pointer to the HW structure
341 * @offset: register offset to be read
342 * @data: pointer to the read data
344 * Acquires semaphore, if necessary. Then reads the PHY register at offset
345 * using the kumeran interface. The information retrieved is stored in data.
346 * Release any acquired semaphores before exiting.
348 s32
e1000e_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
353 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
357 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
358 E1000_KMRNCTRLSTA_OFFSET
) | E1000_KMRNCTRLSTA_REN
;
359 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
363 kmrnctrlsta
= er32(KMRNCTRLSTA
);
364 *data
= (u16
)kmrnctrlsta
;
366 hw
->phy
.ops
.release_phy(hw
);
372 * e1000e_write_kmrn_reg - Write kumeran register
373 * @hw: pointer to the HW structure
374 * @offset: register offset to write to
375 * @data: data to write at register offset
377 * Acquires semaphore, if necessary. Then write the data to PHY register
378 * at the offset using the kumeran interface. Release any acquired semaphores
381 s32
e1000e_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
)
386 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
390 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
391 E1000_KMRNCTRLSTA_OFFSET
) | data
;
392 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
395 hw
->phy
.ops
.release_phy(hw
);
401 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
402 * @hw: pointer to the HW structure
404 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
405 * and downshift values are set also.
407 s32
e1000e_copper_link_setup_m88(struct e1000_hw
*hw
)
409 struct e1000_phy_info
*phy
= &hw
->phy
;
413 /* Enable CRS on TX. This must be set for half-duplex operation. */
414 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
418 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
421 * MDI/MDI-X = 0 (default)
422 * 0 - Auto for all speeds
425 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
427 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
431 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
434 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
437 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
441 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
446 * disable_polarity_correction = 0 (default)
447 * Automatic Correction for Reversed Cable Polarity
451 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
452 if (phy
->disable_polarity_correction
== 1)
453 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
455 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
459 if (phy
->revision
< 4) {
460 /* Force TX_CLK in the Extended PHY Specific Control Register
463 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
467 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
469 if ((phy
->revision
== 2) &&
470 (phy
->id
== M88E1111_I_PHY_ID
)) {
471 /* 82573L PHY - set the downshift counter to 5x. */
472 phy_data
&= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
;
473 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
475 /* Configure Master and Slave downshift values */
476 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
477 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
478 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
479 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
481 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
486 /* Commit the changes. */
487 ret_val
= e1000e_commit_phy(hw
);
489 hw_dbg(hw
, "Error committing the PHY changes\n");
495 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
496 * @hw: pointer to the HW structure
498 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
501 s32
e1000e_copper_link_setup_igp(struct e1000_hw
*hw
)
503 struct e1000_phy_info
*phy
= &hw
->phy
;
507 ret_val
= e1000_phy_hw_reset(hw
);
509 hw_dbg(hw
, "Error resetting the PHY.\n");
513 /* Wait 15ms for MAC to configure PHY from NVM settings. */
516 /* disable lplu d0 during driver init */
517 ret_val
= e1000_set_d0_lplu_state(hw
, 0);
519 hw_dbg(hw
, "Error Disabling LPLU D0\n");
522 /* Configure mdi-mdix settings */
523 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &data
);
527 data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
531 data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
534 data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
538 data
|= IGP01E1000_PSCR_AUTO_MDIX
;
541 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, data
);
545 /* set auto-master slave resolution settings */
546 if (hw
->mac
.autoneg
) {
547 /* when autonegotiation advertisement is only 1000Mbps then we
548 * should disable SmartSpeed and enable Auto MasterSlave
549 * resolution as hardware default. */
550 if (phy
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
551 /* Disable SmartSpeed */
552 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
557 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
558 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
563 /* Set auto Master/Slave resolution process */
564 ret_val
= e1e_rphy(hw
, PHY_1000T_CTRL
, &data
);
568 data
&= ~CR_1000T_MS_ENABLE
;
569 ret_val
= e1e_wphy(hw
, PHY_1000T_CTRL
, data
);
574 ret_val
= e1e_rphy(hw
, PHY_1000T_CTRL
, &data
);
578 /* load defaults for future use */
579 phy
->original_ms_type
= (data
& CR_1000T_MS_ENABLE
) ?
580 ((data
& CR_1000T_MS_VALUE
) ?
581 e1000_ms_force_master
:
582 e1000_ms_force_slave
) :
585 switch (phy
->ms_type
) {
586 case e1000_ms_force_master
:
587 data
|= (CR_1000T_MS_ENABLE
| CR_1000T_MS_VALUE
);
589 case e1000_ms_force_slave
:
590 data
|= CR_1000T_MS_ENABLE
;
591 data
&= ~(CR_1000T_MS_VALUE
);
594 data
&= ~CR_1000T_MS_ENABLE
;
598 ret_val
= e1e_wphy(hw
, PHY_1000T_CTRL
, data
);
605 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
606 * @hw: pointer to the HW structure
608 * Reads the MII auto-neg advertisement register and/or the 1000T control
609 * register and if the PHY is already setup for auto-negotiation, then
610 * return successful. Otherwise, setup advertisement and flow control to
611 * the appropriate values for the wanted auto-negotiation.
613 static s32
e1000_phy_setup_autoneg(struct e1000_hw
*hw
)
615 struct e1000_phy_info
*phy
= &hw
->phy
;
617 u16 mii_autoneg_adv_reg
;
618 u16 mii_1000t_ctrl_reg
= 0;
620 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
622 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
623 ret_val
= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &mii_autoneg_adv_reg
);
627 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
628 /* Read the MII 1000Base-T Control Register (Address 9). */
629 ret_val
= e1e_rphy(hw
, PHY_1000T_CTRL
, &mii_1000t_ctrl_reg
);
634 /* Need to parse both autoneg_advertised and fc and set up
635 * the appropriate PHY registers. First we will parse for
636 * autoneg_advertised software override. Since we can advertise
637 * a plethora of combinations, we need to check each bit
641 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
642 * Advertisement Register (Address 4) and the 1000 mb speed bits in
643 * the 1000Base-T Control Register (Address 9).
645 mii_autoneg_adv_reg
&= ~(NWAY_AR_100TX_FD_CAPS
|
646 NWAY_AR_100TX_HD_CAPS
|
647 NWAY_AR_10T_FD_CAPS
|
648 NWAY_AR_10T_HD_CAPS
);
649 mii_1000t_ctrl_reg
&= ~(CR_1000T_HD_CAPS
| CR_1000T_FD_CAPS
);
651 hw_dbg(hw
, "autoneg_advertised %x\n", phy
->autoneg_advertised
);
653 /* Do we want to advertise 10 Mb Half Duplex? */
654 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
655 hw_dbg(hw
, "Advertise 10mb Half duplex\n");
656 mii_autoneg_adv_reg
|= NWAY_AR_10T_HD_CAPS
;
659 /* Do we want to advertise 10 Mb Full Duplex? */
660 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
661 hw_dbg(hw
, "Advertise 10mb Full duplex\n");
662 mii_autoneg_adv_reg
|= NWAY_AR_10T_FD_CAPS
;
665 /* Do we want to advertise 100 Mb Half Duplex? */
666 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
667 hw_dbg(hw
, "Advertise 100mb Half duplex\n");
668 mii_autoneg_adv_reg
|= NWAY_AR_100TX_HD_CAPS
;
671 /* Do we want to advertise 100 Mb Full Duplex? */
672 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
673 hw_dbg(hw
, "Advertise 100mb Full duplex\n");
674 mii_autoneg_adv_reg
|= NWAY_AR_100TX_FD_CAPS
;
677 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
678 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
)
679 hw_dbg(hw
, "Advertise 1000mb Half duplex request denied!\n");
681 /* Do we want to advertise 1000 Mb Full Duplex? */
682 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
683 hw_dbg(hw
, "Advertise 1000mb Full duplex\n");
684 mii_1000t_ctrl_reg
|= CR_1000T_FD_CAPS
;
687 /* Check for a software override of the flow control settings, and
688 * setup the PHY advertisement registers accordingly. If
689 * auto-negotiation is enabled, then software will have to set the
690 * "PAUSE" bits to the correct value in the Auto-Negotiation
691 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
694 * The possible values of the "fc" parameter are:
695 * 0: Flow control is completely disabled
696 * 1: Rx flow control is enabled (we can receive pause frames
697 * but not send pause frames).
698 * 2: Tx flow control is enabled (we can send pause frames
699 * but we do not support receiving pause frames).
700 * 3: Both Rx and TX flow control (symmetric) are enabled.
701 * other: No software override. The flow control configuration
702 * in the EEPROM is used.
704 switch (hw
->mac
.fc
) {
706 /* Flow control (RX & TX) is completely disabled by a
707 * software over-ride.
709 mii_autoneg_adv_reg
&= ~(NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
711 case e1000_fc_rx_pause
:
712 /* RX Flow control is enabled, and TX Flow control is
713 * disabled, by a software over-ride.
715 /* Since there really isn't a way to advertise that we are
716 * capable of RX Pause ONLY, we will advertise that we
717 * support both symmetric and asymmetric RX PAUSE. Later
718 * (in e1000e_config_fc_after_link_up) we will disable the
719 * hw's ability to send PAUSE frames.
721 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
723 case e1000_fc_tx_pause
:
724 /* TX Flow control is enabled, and RX Flow control is
725 * disabled, by a software over-ride.
727 mii_autoneg_adv_reg
|= NWAY_AR_ASM_DIR
;
728 mii_autoneg_adv_reg
&= ~NWAY_AR_PAUSE
;
731 /* Flow control (both RX and TX) is enabled by a software
734 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
737 hw_dbg(hw
, "Flow control param set incorrectly\n");
738 ret_val
= -E1000_ERR_CONFIG
;
742 ret_val
= e1e_wphy(hw
, PHY_AUTONEG_ADV
, mii_autoneg_adv_reg
);
746 hw_dbg(hw
, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
748 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
749 ret_val
= e1e_wphy(hw
, PHY_1000T_CTRL
, mii_1000t_ctrl_reg
);
756 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
757 * @hw: pointer to the HW structure
759 * Performs initial bounds checking on autoneg advertisement parameter, then
760 * configure to advertise the full capability. Setup the PHY to autoneg
761 * and restart the negotiation process between the link partner. If
762 * wait_for_link, then wait for autoneg to complete before exiting.
764 static s32
e1000_copper_link_autoneg(struct e1000_hw
*hw
)
766 struct e1000_phy_info
*phy
= &hw
->phy
;
770 /* Perform some bounds checking on the autoneg advertisement
773 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
775 /* If autoneg_advertised is zero, we assume it was not defaulted
776 * by the calling code so we set to advertise full capability.
778 if (phy
->autoneg_advertised
== 0)
779 phy
->autoneg_advertised
= phy
->autoneg_mask
;
781 hw_dbg(hw
, "Reconfiguring auto-neg advertisement params\n");
782 ret_val
= e1000_phy_setup_autoneg(hw
);
784 hw_dbg(hw
, "Error Setting up Auto-Negotiation\n");
787 hw_dbg(hw
, "Restarting Auto-Neg\n");
789 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
790 * the Auto Neg Restart bit in the PHY control register.
792 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_ctrl
);
796 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
| MII_CR_RESTART_AUTO_NEG
);
797 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_ctrl
);
801 /* Does the user want to wait for Auto-Neg to complete here, or
802 * check at a later time (for example, callback routine).
804 if (phy
->wait_for_link
) {
805 ret_val
= e1000_wait_autoneg(hw
);
807 hw_dbg(hw
, "Error while waiting for "
808 "autoneg to complete\n");
813 hw
->mac
.get_link_status
= 1;
819 * e1000e_setup_copper_link - Configure copper link settings
820 * @hw: pointer to the HW structure
822 * Calls the appropriate function to configure the link for auto-neg or forced
823 * speed and duplex. Then we check for link, once link is established calls
824 * to configure collision distance and flow control are called. If link is
825 * not established, we return -E1000_ERR_PHY (-2).
827 s32
e1000e_setup_copper_link(struct e1000_hw
*hw
)
832 if (hw
->mac
.autoneg
) {
833 /* Setup autoneg and flow control advertisement and perform
834 * autonegotiation. */
835 ret_val
= e1000_copper_link_autoneg(hw
);
839 /* PHY will be set to 10H, 10F, 100H or 100F
840 * depending on user settings. */
841 hw_dbg(hw
, "Forcing Speed and Duplex\n");
842 ret_val
= e1000_phy_force_speed_duplex(hw
);
844 hw_dbg(hw
, "Error Forcing Speed and Duplex\n");
849 /* Check link status. Wait up to 100 microseconds for link to become
852 ret_val
= e1000e_phy_has_link_generic(hw
,
853 COPPER_LINK_UP_LIMIT
,
860 hw_dbg(hw
, "Valid link established!!!\n");
861 e1000e_config_collision_dist(hw
);
862 ret_val
= e1000e_config_fc_after_link_up(hw
);
864 hw_dbg(hw
, "Unable to establish link!!!\n");
871 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
872 * @hw: pointer to the HW structure
874 * Calls the PHY setup function to force speed and duplex. Clears the
875 * auto-crossover to force MDI manually. Waits for link and returns
876 * successful if link up is successful, else -E1000_ERR_PHY (-2).
878 s32
e1000e_phy_force_speed_duplex_igp(struct e1000_hw
*hw
)
880 struct e1000_phy_info
*phy
= &hw
->phy
;
885 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_data
);
889 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
891 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_data
);
895 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
896 * forced whenever speed and duplex are forced.
898 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
902 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
903 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
905 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
909 hw_dbg(hw
, "IGP PSCR: %X\n", phy_data
);
913 if (phy
->wait_for_link
) {
914 hw_dbg(hw
, "Waiting for forced speed/duplex link on IGP phy.\n");
916 ret_val
= e1000e_phy_has_link_generic(hw
,
924 hw_dbg(hw
, "Link taking longer than expected.\n");
927 ret_val
= e1000e_phy_has_link_generic(hw
,
939 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
940 * @hw: pointer to the HW structure
942 * Calls the PHY setup function to force speed and duplex. Clears the
943 * auto-crossover to force MDI manually. Resets the PHY to commit the
944 * changes. If time expires while waiting for link up, we reset the DSP.
945 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
946 * successful completion, else return corresponding error code.
948 s32
e1000e_phy_force_speed_duplex_m88(struct e1000_hw
*hw
)
950 struct e1000_phy_info
*phy
= &hw
->phy
;
955 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
956 * forced whenever speed and duplex are forced.
958 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
962 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
963 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
967 hw_dbg(hw
, "M88E1000 PSCR: %X\n", phy_data
);
969 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_data
);
973 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
975 /* Reset the phy to commit changes. */
976 phy_data
|= MII_CR_RESET
;
978 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_data
);
984 if (phy
->wait_for_link
) {
985 hw_dbg(hw
, "Waiting for forced speed/duplex link on M88 phy.\n");
987 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
993 /* We didn't get link.
994 * Reset the DSP and cross our fingers.
996 ret_val
= e1e_wphy(hw
, M88E1000_PHY_PAGE_SELECT
, 0x001d);
999 ret_val
= e1000e_phy_reset_dsp(hw
);
1005 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1011 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1015 /* Resetting the phy means we need to re-force TX_CLK in the
1016 * Extended PHY Specific Control Register to 25MHz clock from
1017 * the reset value of 2.5MHz.
1019 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1020 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1024 /* In addition, we must re-enable CRS on Tx for both half and full
1027 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1031 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1032 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1038 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1039 * @hw: pointer to the HW structure
1040 * @phy_ctrl: pointer to current value of PHY_CONTROL
1042 * Forces speed and duplex on the PHY by doing the following: disable flow
1043 * control, force speed/duplex on the MAC, disable auto speed detection,
1044 * disable auto-negotiation, configure duplex, configure speed, configure
1045 * the collision distance, write configuration to CTRL register. The
1046 * caller must write to the PHY_CONTROL register for these settings to
1049 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw
*hw
, u16
*phy_ctrl
)
1051 struct e1000_mac_info
*mac
= &hw
->mac
;
1054 /* Turn off flow control when forcing speed/duplex */
1055 mac
->fc
= e1000_fc_none
;
1057 /* Force speed/duplex on the mac */
1059 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1060 ctrl
&= ~E1000_CTRL_SPD_SEL
;
1062 /* Disable Auto Speed Detection */
1063 ctrl
&= ~E1000_CTRL_ASDE
;
1065 /* Disable autoneg on the phy */
1066 *phy_ctrl
&= ~MII_CR_AUTO_NEG_EN
;
1068 /* Forcing Full or Half Duplex? */
1069 if (mac
->forced_speed_duplex
& E1000_ALL_HALF_DUPLEX
) {
1070 ctrl
&= ~E1000_CTRL_FD
;
1071 *phy_ctrl
&= ~MII_CR_FULL_DUPLEX
;
1072 hw_dbg(hw
, "Half Duplex\n");
1074 ctrl
|= E1000_CTRL_FD
;
1075 *phy_ctrl
|= MII_CR_FULL_DUPLEX
;
1076 hw_dbg(hw
, "Full Duplex\n");
1079 /* Forcing 10mb or 100mb? */
1080 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
) {
1081 ctrl
|= E1000_CTRL_SPD_100
;
1082 *phy_ctrl
|= MII_CR_SPEED_100
;
1083 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_10
);
1084 hw_dbg(hw
, "Forcing 100mb\n");
1086 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1087 *phy_ctrl
|= MII_CR_SPEED_10
;
1088 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_100
);
1089 hw_dbg(hw
, "Forcing 10mb\n");
1092 e1000e_config_collision_dist(hw
);
1098 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1099 * @hw: pointer to the HW structure
1100 * @active: boolean used to enable/disable lplu
1102 * Success returns 0, Failure returns 1
1104 * The low power link up (lplu) state is set to the power management level D3
1105 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1106 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1107 * is used during Dx states where the power conservation is most important.
1108 * During driver activity, SmartSpeed should be enabled so performance is
1111 s32
e1000e_set_d3_lplu_state(struct e1000_hw
*hw
, bool active
)
1113 struct e1000_phy_info
*phy
= &hw
->phy
;
1117 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
1122 data
&= ~IGP02E1000_PM_D3_LPLU
;
1123 ret_val
= e1e_wphy(hw
,
1124 IGP02E1000_PHY_POWER_MGMT
,
1128 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1129 * during Dx states where the power conservation is most
1130 * important. During driver activity we should enable
1131 * SmartSpeed, so performance is maintained. */
1132 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1133 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1138 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1139 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1143 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1144 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1149 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1150 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1155 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1156 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1157 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1158 data
|= IGP02E1000_PM_D3_LPLU
;
1159 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1163 /* When LPLU is enabled, we should disable SmartSpeed */
1164 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1168 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1169 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1176 * e1000e_check_downshift - Checks whether a downshift in speed occured
1177 * @hw: pointer to the HW structure
1179 * Success returns 0, Failure returns 1
1181 * A downshift is detected by querying the PHY link health.
1183 s32
e1000e_check_downshift(struct e1000_hw
*hw
)
1185 struct e1000_phy_info
*phy
= &hw
->phy
;
1187 u16 phy_data
, offset
, mask
;
1189 switch (phy
->type
) {
1191 case e1000_phy_gg82563
:
1192 offset
= M88E1000_PHY_SPEC_STATUS
;
1193 mask
= M88E1000_PSSR_DOWNSHIFT
;
1195 case e1000_phy_igp_2
:
1196 case e1000_phy_igp_3
:
1197 offset
= IGP01E1000_PHY_LINK_HEALTH
;
1198 mask
= IGP01E1000_PLHR_SS_DOWNGRADE
;
1201 /* speed downshift not supported */
1202 phy
->speed_downgraded
= 0;
1206 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1209 phy
->speed_downgraded
= (phy_data
& mask
);
1215 * e1000_check_polarity_m88 - Checks the polarity.
1216 * @hw: pointer to the HW structure
1218 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1220 * Polarity is determined based on the PHY specific status register.
1222 static s32
e1000_check_polarity_m88(struct e1000_hw
*hw
)
1224 struct e1000_phy_info
*phy
= &hw
->phy
;
1228 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &data
);
1231 phy
->cable_polarity
= (data
& M88E1000_PSSR_REV_POLARITY
)
1232 ? e1000_rev_polarity_reversed
1233 : e1000_rev_polarity_normal
;
1239 * e1000_check_polarity_igp - Checks the polarity.
1240 * @hw: pointer to the HW structure
1242 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1244 * Polarity is determined based on the PHY port status register, and the
1245 * current speed (since there is no polarity at 100Mbps).
1247 static s32
e1000_check_polarity_igp(struct e1000_hw
*hw
)
1249 struct e1000_phy_info
*phy
= &hw
->phy
;
1251 u16 data
, offset
, mask
;
1253 /* Polarity is determined based on the speed of
1254 * our connection. */
1255 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1259 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1260 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1261 offset
= IGP01E1000_PHY_PCS_INIT_REG
;
1262 mask
= IGP01E1000_PHY_POLARITY_MASK
;
1264 /* This really only applies to 10Mbps since
1265 * there is no polarity for 100Mbps (always 0).
1267 offset
= IGP01E1000_PHY_PORT_STATUS
;
1268 mask
= IGP01E1000_PSSR_POLARITY_REVERSED
;
1271 ret_val
= e1e_rphy(hw
, offset
, &data
);
1274 phy
->cable_polarity
= (data
& mask
)
1275 ? e1000_rev_polarity_reversed
1276 : e1000_rev_polarity_normal
;
1282 * e1000_wait_autoneg - Wait for auto-neg compeletion
1283 * @hw: pointer to the HW structure
1285 * Waits for auto-negotiation to complete or for the auto-negotiation time
1286 * limit to expire, which ever happens first.
1288 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
)
1293 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1294 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
1295 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1298 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1301 if (phy_status
& MII_SR_AUTONEG_COMPLETE
)
1306 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1313 * e1000e_phy_has_link_generic - Polls PHY for link
1314 * @hw: pointer to the HW structure
1315 * @iterations: number of times to poll for link
1316 * @usec_interval: delay between polling attempts
1317 * @success: pointer to whether polling was successful or not
1319 * Polls the PHY status register for link, 'iterations' number of times.
1321 s32
e1000e_phy_has_link_generic(struct e1000_hw
*hw
, u32 iterations
,
1322 u32 usec_interval
, bool *success
)
1327 for (i
= 0; i
< iterations
; i
++) {
1328 /* Some PHYs require the PHY_STATUS register to be read
1329 * twice due to the link bit being sticky. No harm doing
1330 * it across the board.
1332 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1335 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1338 if (phy_status
& MII_SR_LINK_STATUS
)
1340 if (usec_interval
>= 1000)
1341 mdelay(usec_interval
/1000);
1343 udelay(usec_interval
);
1346 *success
= (i
< iterations
);
1352 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1353 * @hw: pointer to the HW structure
1355 * Reads the PHY specific status register to retrieve the cable length
1356 * information. The cable length is determined by averaging the minimum and
1357 * maximum values to get the "average" cable length. The m88 PHY has four
1358 * possible cable length values, which are:
1359 * Register Value Cable Length
1363 * 3 110 - 140 meters
1366 s32
e1000e_get_cable_length_m88(struct e1000_hw
*hw
)
1368 struct e1000_phy_info
*phy
= &hw
->phy
;
1370 u16 phy_data
, index
;
1372 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1376 index
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1377 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
1378 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1379 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+1];
1381 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1387 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1388 * @hw: pointer to the HW structure
1390 * The automatic gain control (agc) normalizes the amplitude of the
1391 * received signal, adjusting for the attenuation produced by the
1392 * cable. By reading the AGC registers, which reperesent the
1393 * cobination of course and fine gain value, the value can be put
1394 * into a lookup table to obtain the approximate cable length
1397 s32
e1000e_get_cable_length_igp_2(struct e1000_hw
*hw
)
1399 struct e1000_phy_info
*phy
= &hw
->phy
;
1401 u16 phy_data
, i
, agc_value
= 0;
1402 u16 cur_agc_index
, max_agc_index
= 0;
1403 u16 min_agc_index
= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
- 1;
1404 u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] =
1405 {IGP02E1000_PHY_AGC_A
,
1406 IGP02E1000_PHY_AGC_B
,
1407 IGP02E1000_PHY_AGC_C
,
1408 IGP02E1000_PHY_AGC_D
};
1410 /* Read the AGC registers for all channels */
1411 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
1412 ret_val
= e1e_rphy(hw
, agc_reg_array
[i
], &phy_data
);
1416 /* Getting bits 15:9, which represent the combination of
1417 * course and fine gain values. The result is a number
1418 * that can be put into the lookup table to obtain the
1419 * approximate cable length. */
1420 cur_agc_index
= (phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
1421 IGP02E1000_AGC_LENGTH_MASK
;
1423 /* Array index bound check. */
1424 if ((cur_agc_index
>= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
) ||
1425 (cur_agc_index
== 0))
1426 return -E1000_ERR_PHY
;
1428 /* Remove min & max AGC values from calculation. */
1429 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
1430 e1000_igp_2_cable_length_table
[cur_agc_index
])
1431 min_agc_index
= cur_agc_index
;
1432 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
1433 e1000_igp_2_cable_length_table
[cur_agc_index
])
1434 max_agc_index
= cur_agc_index
;
1436 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
1439 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
1440 e1000_igp_2_cable_length_table
[max_agc_index
]);
1441 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
1443 /* Calculate cable length with the error range of +/- 10 meters. */
1444 phy
->min_cable_length
= ((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
1445 (agc_value
- IGP02E1000_AGC_RANGE
) : 0;
1446 phy
->max_cable_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
1448 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1454 * e1000e_get_phy_info_m88 - Retrieve PHY information
1455 * @hw: pointer to the HW structure
1457 * Valid for only copper links. Read the PHY status register (sticky read)
1458 * to verify that link is up. Read the PHY special control register to
1459 * determine the polarity and 10base-T extended distance. Read the PHY
1460 * special status register to determine MDI/MDIx and current speed. If
1461 * speed is 1000, then determine cable length, local and remote receiver.
1463 s32
e1000e_get_phy_info_m88(struct e1000_hw
*hw
)
1465 struct e1000_phy_info
*phy
= &hw
->phy
;
1470 if (hw
->media_type
!= e1000_media_type_copper
) {
1471 hw_dbg(hw
, "Phy info is only valid for copper media\n");
1472 return -E1000_ERR_CONFIG
;
1475 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1480 hw_dbg(hw
, "Phy info is only valid if link is up\n");
1481 return -E1000_ERR_CONFIG
;
1484 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1488 phy
->polarity_correction
= (phy_data
&
1489 M88E1000_PSCR_POLARITY_REVERSAL
);
1491 ret_val
= e1000_check_polarity_m88(hw
);
1495 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1499 phy
->is_mdix
= (phy_data
& M88E1000_PSSR_MDIX
);
1501 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
1502 ret_val
= e1000_get_cable_length(hw
);
1506 ret_val
= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_data
);
1510 phy
->local_rx
= (phy_data
& SR_1000T_LOCAL_RX_STATUS
)
1511 ? e1000_1000t_rx_status_ok
1512 : e1000_1000t_rx_status_not_ok
;
1514 phy
->remote_rx
= (phy_data
& SR_1000T_REMOTE_RX_STATUS
)
1515 ? e1000_1000t_rx_status_ok
1516 : e1000_1000t_rx_status_not_ok
;
1518 /* Set values to "undefined" */
1519 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1520 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1521 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1528 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1529 * @hw: pointer to the HW structure
1531 * Read PHY status to determine if link is up. If link is up, then
1532 * set/determine 10base-T extended distance and polarity correction. Read
1533 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1534 * determine on the cable length, local and remote receiver.
1536 s32
e1000e_get_phy_info_igp(struct e1000_hw
*hw
)
1538 struct e1000_phy_info
*phy
= &hw
->phy
;
1543 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1548 hw_dbg(hw
, "Phy info is only valid if link is up\n");
1549 return -E1000_ERR_CONFIG
;
1552 phy
->polarity_correction
= 1;
1554 ret_val
= e1000_check_polarity_igp(hw
);
1558 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1562 phy
->is_mdix
= (data
& IGP01E1000_PSSR_MDIX
);
1564 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1565 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1566 ret_val
= e1000_get_cable_length(hw
);
1570 ret_val
= e1e_rphy(hw
, PHY_1000T_STATUS
, &data
);
1574 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
1575 ? e1000_1000t_rx_status_ok
1576 : e1000_1000t_rx_status_not_ok
;
1578 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
1579 ? e1000_1000t_rx_status_ok
1580 : e1000_1000t_rx_status_not_ok
;
1582 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1583 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1584 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1591 * e1000e_phy_sw_reset - PHY software reset
1592 * @hw: pointer to the HW structure
1594 * Does a software reset of the PHY by reading the PHY control register and
1595 * setting/write the control register reset bit to the PHY.
1597 s32
e1000e_phy_sw_reset(struct e1000_hw
*hw
)
1602 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_ctrl
);
1606 phy_ctrl
|= MII_CR_RESET
;
1607 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_ctrl
);
1617 * e1000e_phy_hw_reset_generic - PHY hardware reset
1618 * @hw: pointer to the HW structure
1620 * Verify the reset block is not blocking us from resetting. Acquire
1621 * semaphore (if necessary) and read/set/write the device control reset
1622 * bit in the PHY. Wait the appropriate delay time for the device to
1623 * reset and relase the semaphore (if necessary).
1625 s32
e1000e_phy_hw_reset_generic(struct e1000_hw
*hw
)
1627 struct e1000_phy_info
*phy
= &hw
->phy
;
1631 ret_val
= e1000_check_reset_block(hw
);
1635 ret_val
= phy
->ops
.acquire_phy(hw
);
1640 ew32(CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
1643 udelay(phy
->reset_delay_us
);
1650 phy
->ops
.release_phy(hw
);
1652 return e1000_get_phy_cfg_done(hw
);
1656 * e1000e_get_cfg_done - Generic configuration done
1657 * @hw: pointer to the HW structure
1659 * Generic function to wait 10 milli-seconds for configuration to complete
1660 * and return success.
1662 s32
e1000e_get_cfg_done(struct e1000_hw
*hw
)
1668 /* Internal function pointers */
1671 * e1000_get_phy_cfg_done - Generic PHY configuration done
1672 * @hw: pointer to the HW structure
1674 * Return success if silicon family did not implement a family specific
1675 * get_cfg_done function.
1677 static s32
e1000_get_phy_cfg_done(struct e1000_hw
*hw
)
1679 if (hw
->phy
.ops
.get_cfg_done
)
1680 return hw
->phy
.ops
.get_cfg_done(hw
);
1686 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
1687 * @hw: pointer to the HW structure
1689 * When the silicon family has not implemented a forced speed/duplex
1690 * function for the PHY, simply return 0.
1692 static s32
e1000_phy_force_speed_duplex(struct e1000_hw
*hw
)
1694 if (hw
->phy
.ops
.force_speed_duplex
)
1695 return hw
->phy
.ops
.force_speed_duplex(hw
);
1701 * e1000e_get_phy_type_from_id - Get PHY type from id
1702 * @phy_id: phy_id read from the phy
1704 * Returns the phy type from the id.
1706 enum e1000_phy_type
e1000e_get_phy_type_from_id(u32 phy_id
)
1708 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
1711 case M88E1000_I_PHY_ID
:
1712 case M88E1000_E_PHY_ID
:
1713 case M88E1111_I_PHY_ID
:
1714 case M88E1011_I_PHY_ID
:
1715 phy_type
= e1000_phy_m88
;
1717 case IGP01E1000_I_PHY_ID
: /* IGP 1 & 2 share this */
1718 phy_type
= e1000_phy_igp_2
;
1720 case GG82563_E_PHY_ID
:
1721 phy_type
= e1000_phy_gg82563
;
1723 case IGP03E1000_E_PHY_ID
:
1724 phy_type
= e1000_phy_igp_3
;
1727 case IFE_PLUS_E_PHY_ID
:
1728 case IFE_C_E_PHY_ID
:
1729 phy_type
= e1000_phy_ife
;
1732 phy_type
= e1000_phy_unknown
;
1739 * e1000e_commit_phy - Soft PHY reset
1740 * @hw: pointer to the HW structure
1742 * Performs a soft PHY reset on those that apply. This is a function pointer
1743 * entry point called by drivers.
1745 s32
e1000e_commit_phy(struct e1000_hw
*hw
)
1747 if (hw
->phy
.ops
.commit_phy
)
1748 return hw
->phy
.ops
.commit_phy(hw
);
1754 * e1000_set_d0_lplu_state - Sets low power link up state for D0
1755 * @hw: pointer to the HW structure
1756 * @active: boolean used to enable/disable lplu
1758 * Success returns 0, Failure returns 1
1760 * The low power link up (lplu) state is set to the power management level D0
1761 * and SmartSpeed is disabled when active is true, else clear lplu for D0
1762 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1763 * is used during Dx states where the power conservation is most important.
1764 * During driver activity, SmartSpeed should be enabled so performance is
1765 * maintained. This is a function pointer entry point called by drivers.
1767 static s32
e1000_set_d0_lplu_state(struct e1000_hw
*hw
, bool active
)
1769 if (hw
->phy
.ops
.set_d0_lplu_state
)
1770 return hw
->phy
.ops
.set_d0_lplu_state(hw
, active
);