1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
74 #include <linux/tcp.h>
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
80 #include <asm/div64.h>
85 #include "s2io-regs.h"
87 #define DRV_VERSION "2.0.26.17"
89 /* S2io Driver name & version. */
90 static char s2io_driver_name
[] = "Neterion";
91 static char s2io_driver_version
[] = DRV_VERSION
;
93 static int rxd_size
[2] = {32,48};
94 static int rxd_count
[2] = {127,85};
96 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
100 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
101 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
121 static inline int rx_buffer_level(struct s2io_nic
* sp
, int rxb_size
, int ring
)
123 struct mac_info
*mac_control
;
125 mac_control
= &sp
->mac_control
;
126 if (rxb_size
<= rxd_count
[sp
->rxd_mode
])
128 else if ((mac_control
->rings
[ring
].pkt_cnt
- rxb_size
) > 16)
133 static inline int is_s2io_card_up(const struct s2io_nic
* sp
)
135 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
140 "Register test\t(offline)",
141 "Eeprom test\t(offline)",
142 "Link test\t(online)",
143 "RLDRAM test\t(offline)",
144 "BIST Test\t(offline)"
147 static char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
149 {"tmac_data_octets"},
153 {"tmac_pause_ctrl_frms"},
157 {"tmac_any_err_frms"},
158 {"tmac_ttl_less_fb_octets"},
159 {"tmac_vld_ip_octets"},
167 {"rmac_data_octets"},
168 {"rmac_fcs_err_frms"},
170 {"rmac_vld_mcst_frms"},
171 {"rmac_vld_bcst_frms"},
172 {"rmac_in_rng_len_err_frms"},
173 {"rmac_out_rng_len_err_frms"},
175 {"rmac_pause_ctrl_frms"},
176 {"rmac_unsup_ctrl_frms"},
178 {"rmac_accepted_ucst_frms"},
179 {"rmac_accepted_nucst_frms"},
180 {"rmac_discarded_frms"},
181 {"rmac_drop_events"},
182 {"rmac_ttl_less_fb_octets"},
184 {"rmac_usized_frms"},
185 {"rmac_osized_frms"},
187 {"rmac_jabber_frms"},
188 {"rmac_ttl_64_frms"},
189 {"rmac_ttl_65_127_frms"},
190 {"rmac_ttl_128_255_frms"},
191 {"rmac_ttl_256_511_frms"},
192 {"rmac_ttl_512_1023_frms"},
193 {"rmac_ttl_1024_1518_frms"},
201 {"rmac_err_drp_udp"},
202 {"rmac_xgmii_err_sym"},
220 {"rmac_xgmii_data_err_cnt"},
221 {"rmac_xgmii_ctrl_err_cnt"},
222 {"rmac_accepted_ip"},
226 {"new_rd_req_rtry_cnt"},
228 {"wr_rtry_rd_ack_cnt"},
231 {"new_wr_req_rtry_cnt"},
234 {"rd_rtry_wr_ack_cnt"},
244 static char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
245 {"rmac_ttl_1519_4095_frms"},
246 {"rmac_ttl_4096_8191_frms"},
247 {"rmac_ttl_8192_max_frms"},
248 {"rmac_ttl_gt_max_frms"},
249 {"rmac_osized_alt_frms"},
250 {"rmac_jabber_alt_frms"},
251 {"rmac_gt_max_alt_frms"},
253 {"rmac_len_discard"},
254 {"rmac_fcs_discard"},
257 {"rmac_red_discard"},
258 {"rmac_rts_discard"},
259 {"rmac_ingm_full_discard"},
263 static char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
264 {"\n DRIVER STATISTICS"},
265 {"single_bit_ecc_errs"},
266 {"double_bit_ecc_errs"},
279 {"alarm_transceiver_temp_high"},
280 {"alarm_transceiver_temp_low"},
281 {"alarm_laser_bias_current_high"},
282 {"alarm_laser_bias_current_low"},
283 {"alarm_laser_output_power_high"},
284 {"alarm_laser_output_power_low"},
285 {"warn_transceiver_temp_high"},
286 {"warn_transceiver_temp_low"},
287 {"warn_laser_bias_current_high"},
288 {"warn_laser_bias_current_low"},
289 {"warn_laser_output_power_high"},
290 {"warn_laser_output_power_low"},
291 {"lro_aggregated_pkts"},
292 {"lro_flush_both_count"},
293 {"lro_out_of_sequence_pkts"},
294 {"lro_flush_due_to_max_pkts"},
295 {"lro_avg_aggr_pkts"},
296 {"mem_alloc_fail_cnt"},
297 {"pci_map_fail_cnt"},
298 {"watchdog_timer_cnt"},
305 {"tx_tcode_buf_abort_cnt"},
306 {"tx_tcode_desc_abort_cnt"},
307 {"tx_tcode_parity_err_cnt"},
308 {"tx_tcode_link_loss_cnt"},
309 {"tx_tcode_list_proc_err_cnt"},
310 {"rx_tcode_parity_err_cnt"},
311 {"rx_tcode_abort_cnt"},
312 {"rx_tcode_parity_abort_cnt"},
313 {"rx_tcode_rda_fail_cnt"},
314 {"rx_tcode_unkn_prot_cnt"},
315 {"rx_tcode_fcs_err_cnt"},
316 {"rx_tcode_buf_size_err_cnt"},
317 {"rx_tcode_rxd_corrupt_cnt"},
318 {"rx_tcode_unkn_err_cnt"},
326 {"mac_tmac_err_cnt"},
327 {"mac_rmac_err_cnt"},
328 {"xgxs_txgxs_err_cnt"},
329 {"xgxs_rxgxs_err_cnt"},
331 {"prc_pcix_err_cnt"},
338 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
339 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
341 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
343 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
344 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
346 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
347 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
349 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
350 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
352 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
353 init_timer(&timer); \
354 timer.function = handle; \
355 timer.data = (unsigned long) arg; \
356 mod_timer(&timer, (jiffies + exp)) \
358 /* copy mac addr to def_mac_addr array */
359 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
361 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
362 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
363 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
364 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
365 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
366 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
369 static void s2io_vlan_rx_register(struct net_device
*dev
,
370 struct vlan_group
*grp
)
372 struct s2io_nic
*nic
= dev
->priv
;
375 spin_lock_irqsave(&nic
->tx_lock
, flags
);
377 spin_unlock_irqrestore(&nic
->tx_lock
, flags
);
380 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
381 static int vlan_strip_flag
;
384 * Constants to be programmed into the Xena's registers, to configure
389 static const u64 herc_act_dtx_cfg
[] = {
391 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
393 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
395 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
397 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
399 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
401 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
403 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
405 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
410 static const u64 xena_dtx_cfg
[] = {
412 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
414 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
416 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
418 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
420 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
422 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
427 * Constants for Fixing the MacAddress problem seen mostly on
430 static const u64 fix_mac
[] = {
431 0x0060000000000000ULL
, 0x0060600000000000ULL
,
432 0x0040600000000000ULL
, 0x0000600000000000ULL
,
433 0x0020600000000000ULL
, 0x0060600000000000ULL
,
434 0x0020600000000000ULL
, 0x0060600000000000ULL
,
435 0x0020600000000000ULL
, 0x0060600000000000ULL
,
436 0x0020600000000000ULL
, 0x0060600000000000ULL
,
437 0x0020600000000000ULL
, 0x0060600000000000ULL
,
438 0x0020600000000000ULL
, 0x0060600000000000ULL
,
439 0x0020600000000000ULL
, 0x0060600000000000ULL
,
440 0x0020600000000000ULL
, 0x0060600000000000ULL
,
441 0x0020600000000000ULL
, 0x0060600000000000ULL
,
442 0x0020600000000000ULL
, 0x0060600000000000ULL
,
443 0x0020600000000000ULL
, 0x0000600000000000ULL
,
444 0x0040600000000000ULL
, 0x0060600000000000ULL
,
448 MODULE_LICENSE("GPL");
449 MODULE_VERSION(DRV_VERSION
);
452 /* Module Loadable parameters. */
453 S2IO_PARM_INT(tx_fifo_num
, 1);
454 S2IO_PARM_INT(rx_ring_num
, 1);
457 S2IO_PARM_INT(rx_ring_mode
, 1);
458 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
459 S2IO_PARM_INT(rmac_pause_time
, 0x100);
460 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
461 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
462 S2IO_PARM_INT(shared_splits
, 0);
463 S2IO_PARM_INT(tmac_util_period
, 5);
464 S2IO_PARM_INT(rmac_util_period
, 5);
465 S2IO_PARM_INT(l3l4hdr_size
, 128);
466 /* Frequency of Rx desc syncs expressed as power of 2 */
467 S2IO_PARM_INT(rxsync_frequency
, 3);
468 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
469 S2IO_PARM_INT(intr_type
, 2);
470 /* Large receive offload feature */
471 static unsigned int lro_enable
;
472 module_param_named(lro
, lro_enable
, uint
, 0);
474 /* Max pkts to be aggregated by LRO at one time. If not specified,
475 * aggregation happens until we hit max IP pkt size(64K)
477 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
478 S2IO_PARM_INT(indicate_max_pkts
, 0);
480 S2IO_PARM_INT(napi
, 1);
481 S2IO_PARM_INT(ufo
, 0);
482 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
484 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
485 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
486 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
487 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
488 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
489 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
491 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
492 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
493 module_param_array(rts_frm_len
, uint
, NULL
, 0);
497 * This table lists all the devices that this driver supports.
499 static struct pci_device_id s2io_tbl
[] __devinitdata
= {
500 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
501 PCI_ANY_ID
, PCI_ANY_ID
},
502 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
503 PCI_ANY_ID
, PCI_ANY_ID
},
504 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
505 PCI_ANY_ID
, PCI_ANY_ID
},
506 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
507 PCI_ANY_ID
, PCI_ANY_ID
},
511 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
513 static struct pci_error_handlers s2io_err_handler
= {
514 .error_detected
= s2io_io_error_detected
,
515 .slot_reset
= s2io_io_slot_reset
,
516 .resume
= s2io_io_resume
,
519 static struct pci_driver s2io_driver
= {
521 .id_table
= s2io_tbl
,
522 .probe
= s2io_init_nic
,
523 .remove
= __devexit_p(s2io_rem_nic
),
524 .err_handler
= &s2io_err_handler
,
527 /* A simplifier macro used both by init and free shared_mem Fns(). */
528 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
531 * init_shared_mem - Allocation and Initialization of Memory
532 * @nic: Device private variable.
533 * Description: The function allocates all the memory areas shared
534 * between the NIC and the driver. This includes Tx descriptors,
535 * Rx descriptors and the statistics block.
538 static int init_shared_mem(struct s2io_nic
*nic
)
541 void *tmp_v_addr
, *tmp_v_addr_next
;
542 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
543 struct RxD_block
*pre_rxd_blk
= NULL
;
545 int lst_size
, lst_per_page
;
546 struct net_device
*dev
= nic
->dev
;
550 struct mac_info
*mac_control
;
551 struct config_param
*config
;
552 unsigned long long mem_allocated
= 0;
554 mac_control
= &nic
->mac_control
;
555 config
= &nic
->config
;
558 /* Allocation and initialization of TXDLs in FIOFs */
560 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
561 size
+= config
->tx_cfg
[i
].fifo_len
;
563 if (size
> MAX_AVAILABLE_TXDS
) {
564 DBG_PRINT(ERR_DBG
, "s2io: Requested TxDs too high, ");
565 DBG_PRINT(ERR_DBG
, "Requested: %d, max supported: 8192\n", size
);
569 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
570 lst_per_page
= PAGE_SIZE
/ lst_size
;
572 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
573 int fifo_len
= config
->tx_cfg
[i
].fifo_len
;
574 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
575 mac_control
->fifos
[i
].list_info
= kzalloc(list_holder_size
,
577 if (!mac_control
->fifos
[i
].list_info
) {
579 "Malloc failed for list_info\n");
582 mem_allocated
+= list_holder_size
;
584 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
585 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
587 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
588 mac_control
->fifos
[i
].tx_curr_put_info
.fifo_len
=
589 config
->tx_cfg
[i
].fifo_len
- 1;
590 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
591 mac_control
->fifos
[i
].tx_curr_get_info
.fifo_len
=
592 config
->tx_cfg
[i
].fifo_len
- 1;
593 mac_control
->fifos
[i
].fifo_no
= i
;
594 mac_control
->fifos
[i
].nic
= nic
;
595 mac_control
->fifos
[i
].max_txds
= MAX_SKB_FRAGS
+ 2;
597 for (j
= 0; j
< page_num
; j
++) {
601 tmp_v
= pci_alloc_consistent(nic
->pdev
,
605 "pci_alloc_consistent ");
606 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
609 /* If we got a zero DMA address(can happen on
610 * certain platforms like PPC), reallocate.
611 * Store virtual address of page we don't want,
615 mac_control
->zerodma_virt_addr
= tmp_v
;
617 "%s: Zero DMA address for TxDL. ", dev
->name
);
619 "Virtual address %p\n", tmp_v
);
620 tmp_v
= pci_alloc_consistent(nic
->pdev
,
624 "pci_alloc_consistent ");
625 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
628 mem_allocated
+= PAGE_SIZE
;
630 while (k
< lst_per_page
) {
631 int l
= (j
* lst_per_page
) + k
;
632 if (l
== config
->tx_cfg
[i
].fifo_len
)
634 mac_control
->fifos
[i
].list_info
[l
].list_virt_addr
=
635 tmp_v
+ (k
* lst_size
);
636 mac_control
->fifos
[i
].list_info
[l
].list_phy_addr
=
637 tmp_p
+ (k
* lst_size
);
643 nic
->ufo_in_band_v
= kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
644 if (!nic
->ufo_in_band_v
)
646 mem_allocated
+= (size
* sizeof(u64
));
648 /* Allocation and initialization of RXDs in Rings */
650 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
651 if (config
->rx_cfg
[i
].num_rxd
%
652 (rxd_count
[nic
->rxd_mode
] + 1)) {
653 DBG_PRINT(ERR_DBG
, "%s: RxD count of ", dev
->name
);
654 DBG_PRINT(ERR_DBG
, "Ring%d is not a multiple of ",
656 DBG_PRINT(ERR_DBG
, "RxDs per Block");
659 size
+= config
->rx_cfg
[i
].num_rxd
;
660 mac_control
->rings
[i
].block_count
=
661 config
->rx_cfg
[i
].num_rxd
/
662 (rxd_count
[nic
->rxd_mode
] + 1 );
663 mac_control
->rings
[i
].pkt_cnt
= config
->rx_cfg
[i
].num_rxd
-
664 mac_control
->rings
[i
].block_count
;
666 if (nic
->rxd_mode
== RXD_MODE_1
)
667 size
= (size
* (sizeof(struct RxD1
)));
669 size
= (size
* (sizeof(struct RxD3
)));
671 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
672 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
673 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
674 mac_control
->rings
[i
].rx_curr_get_info
.ring_len
=
675 config
->rx_cfg
[i
].num_rxd
- 1;
676 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
677 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
678 mac_control
->rings
[i
].rx_curr_put_info
.ring_len
=
679 config
->rx_cfg
[i
].num_rxd
- 1;
680 mac_control
->rings
[i
].nic
= nic
;
681 mac_control
->rings
[i
].ring_no
= i
;
683 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
684 (rxd_count
[nic
->rxd_mode
] + 1);
685 /* Allocating all the Rx blocks */
686 for (j
= 0; j
< blk_cnt
; j
++) {
687 struct rx_block_info
*rx_blocks
;
690 rx_blocks
= &mac_control
->rings
[i
].rx_blocks
[j
];
691 size
= SIZE_OF_BLOCK
; //size is always page size
692 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
694 if (tmp_v_addr
== NULL
) {
696 * In case of failure, free_shared_mem()
697 * is called, which should free any
698 * memory that was alloced till the
701 rx_blocks
->block_virt_addr
= tmp_v_addr
;
704 mem_allocated
+= size
;
705 memset(tmp_v_addr
, 0, size
);
706 rx_blocks
->block_virt_addr
= tmp_v_addr
;
707 rx_blocks
->block_dma_addr
= tmp_p_addr
;
708 rx_blocks
->rxds
= kmalloc(sizeof(struct rxd_info
)*
709 rxd_count
[nic
->rxd_mode
],
711 if (!rx_blocks
->rxds
)
714 (sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
715 for (l
=0; l
<rxd_count
[nic
->rxd_mode
];l
++) {
716 rx_blocks
->rxds
[l
].virt_addr
=
717 rx_blocks
->block_virt_addr
+
718 (rxd_size
[nic
->rxd_mode
] * l
);
719 rx_blocks
->rxds
[l
].dma_addr
=
720 rx_blocks
->block_dma_addr
+
721 (rxd_size
[nic
->rxd_mode
] * l
);
724 /* Interlinking all Rx Blocks */
725 for (j
= 0; j
< blk_cnt
; j
++) {
727 mac_control
->rings
[i
].rx_blocks
[j
].block_virt_addr
;
729 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
730 blk_cnt
].block_virt_addr
;
732 mac_control
->rings
[i
].rx_blocks
[j
].block_dma_addr
;
734 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
735 blk_cnt
].block_dma_addr
;
737 pre_rxd_blk
= (struct RxD_block
*) tmp_v_addr
;
738 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
739 (unsigned long) tmp_v_addr_next
;
740 pre_rxd_blk
->pNext_RxD_Blk_physical
=
741 (u64
) tmp_p_addr_next
;
744 if (nic
->rxd_mode
== RXD_MODE_3B
) {
746 * Allocation of Storages for buffer addresses in 2BUFF mode
747 * and the buffers as well.
749 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
750 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
751 (rxd_count
[nic
->rxd_mode
]+ 1);
752 mac_control
->rings
[i
].ba
=
753 kmalloc((sizeof(struct buffAdd
*) * blk_cnt
),
755 if (!mac_control
->rings
[i
].ba
)
757 mem_allocated
+=(sizeof(struct buffAdd
*) * blk_cnt
);
758 for (j
= 0; j
< blk_cnt
; j
++) {
760 mac_control
->rings
[i
].ba
[j
] =
761 kmalloc((sizeof(struct buffAdd
) *
762 (rxd_count
[nic
->rxd_mode
] + 1)),
764 if (!mac_control
->rings
[i
].ba
[j
])
766 mem_allocated
+= (sizeof(struct buffAdd
) * \
767 (rxd_count
[nic
->rxd_mode
] + 1));
768 while (k
!= rxd_count
[nic
->rxd_mode
]) {
769 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
771 ba
->ba_0_org
= (void *) kmalloc
772 (BUF0_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
776 (BUF0_LEN
+ ALIGN_SIZE
);
777 tmp
= (unsigned long)ba
->ba_0_org
;
779 tmp
&= ~((unsigned long) ALIGN_SIZE
);
780 ba
->ba_0
= (void *) tmp
;
782 ba
->ba_1_org
= (void *) kmalloc
783 (BUF1_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
787 += (BUF1_LEN
+ ALIGN_SIZE
);
788 tmp
= (unsigned long) ba
->ba_1_org
;
790 tmp
&= ~((unsigned long) ALIGN_SIZE
);
791 ba
->ba_1
= (void *) tmp
;
798 /* Allocation and initialization of Statistics block */
799 size
= sizeof(struct stat_block
);
800 mac_control
->stats_mem
= pci_alloc_consistent
801 (nic
->pdev
, size
, &mac_control
->stats_mem_phy
);
803 if (!mac_control
->stats_mem
) {
805 * In case of failure, free_shared_mem() is called, which
806 * should free any memory that was alloced till the
811 mem_allocated
+= size
;
812 mac_control
->stats_mem_sz
= size
;
814 tmp_v_addr
= mac_control
->stats_mem
;
815 mac_control
->stats_info
= (struct stat_block
*) tmp_v_addr
;
816 memset(tmp_v_addr
, 0, size
);
817 DBG_PRINT(INIT_DBG
, "%s:Ring Mem PHY: 0x%llx\n", dev
->name
,
818 (unsigned long long) tmp_p_addr
);
819 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
824 * free_shared_mem - Free the allocated Memory
825 * @nic: Device private variable.
826 * Description: This function is to free all memory locations allocated by
827 * the init_shared_mem() function and return it to the kernel.
830 static void free_shared_mem(struct s2io_nic
*nic
)
832 int i
, j
, blk_cnt
, size
;
835 dma_addr_t tmp_p_addr
;
836 struct mac_info
*mac_control
;
837 struct config_param
*config
;
838 int lst_size
, lst_per_page
;
839 struct net_device
*dev
;
847 mac_control
= &nic
->mac_control
;
848 config
= &nic
->config
;
850 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
851 lst_per_page
= PAGE_SIZE
/ lst_size
;
853 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
854 ufo_size
+= config
->tx_cfg
[i
].fifo_len
;
855 page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
857 for (j
= 0; j
< page_num
; j
++) {
858 int mem_blks
= (j
* lst_per_page
);
859 if (!mac_control
->fifos
[i
].list_info
)
861 if (!mac_control
->fifos
[i
].list_info
[mem_blks
].
864 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
865 mac_control
->fifos
[i
].
868 mac_control
->fifos
[i
].
871 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
874 /* If we got a zero DMA address during allocation,
877 if (mac_control
->zerodma_virt_addr
) {
878 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
879 mac_control
->zerodma_virt_addr
,
882 "%s: Freeing TxDL with zero DMA addr. ",
884 DBG_PRINT(INIT_DBG
, "Virtual address %p\n",
885 mac_control
->zerodma_virt_addr
);
886 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
889 kfree(mac_control
->fifos
[i
].list_info
);
890 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
891 (nic
->config
.tx_cfg
[i
].fifo_len
*sizeof(struct list_info_hold
));
894 size
= SIZE_OF_BLOCK
;
895 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
896 blk_cnt
= mac_control
->rings
[i
].block_count
;
897 for (j
= 0; j
< blk_cnt
; j
++) {
898 tmp_v_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
900 tmp_p_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
902 if (tmp_v_addr
== NULL
)
904 pci_free_consistent(nic
->pdev
, size
,
905 tmp_v_addr
, tmp_p_addr
);
906 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= size
;
907 kfree(mac_control
->rings
[i
].rx_blocks
[j
].rxds
);
908 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
909 ( sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
913 if (nic
->rxd_mode
== RXD_MODE_3B
) {
914 /* Freeing buffer storage addresses in 2BUFF mode. */
915 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
916 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
917 (rxd_count
[nic
->rxd_mode
] + 1);
918 for (j
= 0; j
< blk_cnt
; j
++) {
920 if (!mac_control
->rings
[i
].ba
[j
])
922 while (k
!= rxd_count
[nic
->rxd_mode
]) {
924 &mac_control
->rings
[i
].ba
[j
][k
];
926 nic
->mac_control
.stats_info
->sw_stat
.\
927 mem_freed
+= (BUF0_LEN
+ ALIGN_SIZE
);
929 nic
->mac_control
.stats_info
->sw_stat
.\
930 mem_freed
+= (BUF1_LEN
+ ALIGN_SIZE
);
933 kfree(mac_control
->rings
[i
].ba
[j
]);
934 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
935 (sizeof(struct buffAdd
) *
936 (rxd_count
[nic
->rxd_mode
] + 1));
938 kfree(mac_control
->rings
[i
].ba
);
939 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
940 (sizeof(struct buffAdd
*) * blk_cnt
);
944 if (mac_control
->stats_mem
) {
945 pci_free_consistent(nic
->pdev
,
946 mac_control
->stats_mem_sz
,
947 mac_control
->stats_mem
,
948 mac_control
->stats_mem_phy
);
949 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
950 mac_control
->stats_mem_sz
;
952 if (nic
->ufo_in_band_v
) {
953 kfree(nic
->ufo_in_band_v
);
954 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
955 += (ufo_size
* sizeof(u64
));
960 * s2io_verify_pci_mode -
963 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
965 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
966 register u64 val64
= 0;
969 val64
= readq(&bar0
->pci_mode
);
970 mode
= (u8
)GET_PCI_MODE(val64
);
972 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
973 return -1; /* Unknown PCI mode */
977 #define NEC_VENID 0x1033
978 #define NEC_DEVID 0x0125
979 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
981 struct pci_dev
*tdev
= NULL
;
982 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
983 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
984 if (tdev
->bus
== s2io_pdev
->bus
->parent
)
992 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
994 * s2io_print_pci_mode -
996 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
998 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
999 register u64 val64
= 0;
1001 struct config_param
*config
= &nic
->config
;
1003 val64
= readq(&bar0
->pci_mode
);
1004 mode
= (u8
)GET_PCI_MODE(val64
);
1006 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
1007 return -1; /* Unknown PCI mode */
1009 config
->bus_speed
= bus_speed
[mode
];
1011 if (s2io_on_nec_bridge(nic
->pdev
)) {
1012 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1017 if (val64
& PCI_MODE_32_BITS
) {
1018 DBG_PRINT(ERR_DBG
, "%s: Device is on 32 bit ", nic
->dev
->name
);
1020 DBG_PRINT(ERR_DBG
, "%s: Device is on 64 bit ", nic
->dev
->name
);
1024 case PCI_MODE_PCI_33
:
1025 DBG_PRINT(ERR_DBG
, "33MHz PCI bus\n");
1027 case PCI_MODE_PCI_66
:
1028 DBG_PRINT(ERR_DBG
, "66MHz PCI bus\n");
1030 case PCI_MODE_PCIX_M1_66
:
1031 DBG_PRINT(ERR_DBG
, "66MHz PCIX(M1) bus\n");
1033 case PCI_MODE_PCIX_M1_100
:
1034 DBG_PRINT(ERR_DBG
, "100MHz PCIX(M1) bus\n");
1036 case PCI_MODE_PCIX_M1_133
:
1037 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M1) bus\n");
1039 case PCI_MODE_PCIX_M2_66
:
1040 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M2) bus\n");
1042 case PCI_MODE_PCIX_M2_100
:
1043 DBG_PRINT(ERR_DBG
, "200MHz PCIX(M2) bus\n");
1045 case PCI_MODE_PCIX_M2_133
:
1046 DBG_PRINT(ERR_DBG
, "266MHz PCIX(M2) bus\n");
1049 return -1; /* Unsupported bus speed */
1056 * init_nic - Initialization of hardware
1057 * @nic: device peivate variable
1058 * Description: The function sequentially configures every block
1059 * of the H/W from their reset values.
1060 * Return Value: SUCCESS on success and
1061 * '-1' on failure (endian settings incorrect).
1064 static int init_nic(struct s2io_nic
*nic
)
1066 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1067 struct net_device
*dev
= nic
->dev
;
1068 register u64 val64
= 0;
1072 struct mac_info
*mac_control
;
1073 struct config_param
*config
;
1075 unsigned long long mem_share
;
1078 mac_control
= &nic
->mac_control
;
1079 config
= &nic
->config
;
1081 /* to set the swapper controle on the card */
1082 if(s2io_set_swapper(nic
)) {
1083 DBG_PRINT(ERR_DBG
,"ERROR: Setting Swapper failed\n");
1088 * Herc requires EOI to be removed from reset before XGXS, so..
1090 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1091 val64
= 0xA500000000ULL
;
1092 writeq(val64
, &bar0
->sw_reset
);
1094 val64
= readq(&bar0
->sw_reset
);
1097 /* Remove XGXS from reset state */
1099 writeq(val64
, &bar0
->sw_reset
);
1101 val64
= readq(&bar0
->sw_reset
);
1103 /* Ensure that it's safe to access registers by checking
1104 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1106 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1107 for (i
= 0; i
< 50; i
++) {
1108 val64
= readq(&bar0
->adapter_status
);
1109 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1117 /* Enable Receiving broadcasts */
1118 add
= &bar0
->mac_cfg
;
1119 val64
= readq(&bar0
->mac_cfg
);
1120 val64
|= MAC_RMAC_BCAST_ENABLE
;
1121 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1122 writel((u32
) val64
, add
);
1123 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1124 writel((u32
) (val64
>> 32), (add
+ 4));
1126 /* Read registers in all blocks */
1127 val64
= readq(&bar0
->mac_int_mask
);
1128 val64
= readq(&bar0
->mc_int_mask
);
1129 val64
= readq(&bar0
->xgxs_int_mask
);
1133 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1135 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1136 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1137 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1138 &bar0
->dtx_control
, UF
);
1140 msleep(1); /* Necessary!! */
1144 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1145 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1146 &bar0
->dtx_control
, UF
);
1147 val64
= readq(&bar0
->dtx_control
);
1152 /* Tx DMA Initialization */
1154 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1155 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1156 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1157 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1160 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1162 vBIT(config
->tx_cfg
[i
].fifo_len
- 1, ((i
* 32) + 19),
1163 13) | vBIT(config
->tx_cfg
[i
].fifo_priority
,
1166 if (i
== (config
->tx_fifo_num
- 1)) {
1173 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1177 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1181 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1185 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1191 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1192 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1194 if ((nic
->device_type
== XFRAME_I_DEVICE
) &&
1195 (nic
->pdev
->revision
< 4))
1196 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1198 val64
= readq(&bar0
->tx_fifo_partition_0
);
1199 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1200 &bar0
->tx_fifo_partition_0
, (unsigned long long) val64
);
1203 * Initialization of Tx_PA_CONFIG register to ignore packet
1204 * integrity checking.
1206 val64
= readq(&bar0
->tx_pa_cfg
);
1207 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
| TX_PA_CFG_IGNORE_SNAP_OUI
|
1208 TX_PA_CFG_IGNORE_LLC_CTRL
| TX_PA_CFG_IGNORE_L2_ERR
;
1209 writeq(val64
, &bar0
->tx_pa_cfg
);
1211 /* Rx DMA intialization. */
1213 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1215 vBIT(config
->rx_cfg
[i
].ring_priority
, (5 + (i
* 8)),
1218 writeq(val64
, &bar0
->rx_queue_priority
);
1221 * Allocating equal share of memory to all the
1225 if (nic
->device_type
& XFRAME_II_DEVICE
)
1230 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1233 mem_share
= (mem_size
/ config
->rx_ring_num
+
1234 mem_size
% config
->rx_ring_num
);
1235 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1238 mem_share
= (mem_size
/ config
->rx_ring_num
);
1239 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1242 mem_share
= (mem_size
/ config
->rx_ring_num
);
1243 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1246 mem_share
= (mem_size
/ config
->rx_ring_num
);
1247 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1250 mem_share
= (mem_size
/ config
->rx_ring_num
);
1251 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1254 mem_share
= (mem_size
/ config
->rx_ring_num
);
1255 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1258 mem_share
= (mem_size
/ config
->rx_ring_num
);
1259 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1262 mem_share
= (mem_size
/ config
->rx_ring_num
);
1263 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1267 writeq(val64
, &bar0
->rx_queue_cfg
);
1270 * Filling Tx round robin registers
1271 * as per the number of FIFOs
1273 switch (config
->tx_fifo_num
) {
1275 val64
= 0x0000000000000000ULL
;
1276 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1277 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1278 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1279 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1280 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1283 val64
= 0x0000010000010000ULL
;
1284 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1285 val64
= 0x0100000100000100ULL
;
1286 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1287 val64
= 0x0001000001000001ULL
;
1288 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1289 val64
= 0x0000010000010000ULL
;
1290 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1291 val64
= 0x0100000000000000ULL
;
1292 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1295 val64
= 0x0001000102000001ULL
;
1296 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1297 val64
= 0x0001020000010001ULL
;
1298 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1299 val64
= 0x0200000100010200ULL
;
1300 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1301 val64
= 0x0001000102000001ULL
;
1302 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1303 val64
= 0x0001020000000000ULL
;
1304 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1307 val64
= 0x0001020300010200ULL
;
1308 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1309 val64
= 0x0100000102030001ULL
;
1310 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1311 val64
= 0x0200010000010203ULL
;
1312 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1313 val64
= 0x0001020001000001ULL
;
1314 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1315 val64
= 0x0203000100000000ULL
;
1316 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1319 val64
= 0x0001000203000102ULL
;
1320 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1321 val64
= 0x0001020001030004ULL
;
1322 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1323 val64
= 0x0001000203000102ULL
;
1324 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1325 val64
= 0x0001020001030004ULL
;
1326 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1327 val64
= 0x0001000000000000ULL
;
1328 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1331 val64
= 0x0001020304000102ULL
;
1332 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1333 val64
= 0x0304050001020001ULL
;
1334 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1335 val64
= 0x0203000100000102ULL
;
1336 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1337 val64
= 0x0304000102030405ULL
;
1338 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1339 val64
= 0x0001000200000000ULL
;
1340 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1343 val64
= 0x0001020001020300ULL
;
1344 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1345 val64
= 0x0102030400010203ULL
;
1346 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1347 val64
= 0x0405060001020001ULL
;
1348 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1349 val64
= 0x0304050000010200ULL
;
1350 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1351 val64
= 0x0102030000000000ULL
;
1352 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1355 val64
= 0x0001020300040105ULL
;
1356 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1357 val64
= 0x0200030106000204ULL
;
1358 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1359 val64
= 0x0103000502010007ULL
;
1360 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1361 val64
= 0x0304010002060500ULL
;
1362 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1363 val64
= 0x0103020400000000ULL
;
1364 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1368 /* Enable all configured Tx FIFO partitions */
1369 val64
= readq(&bar0
->tx_fifo_partition_0
);
1370 val64
|= (TX_FIFO_PARTITION_EN
);
1371 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1373 /* Filling the Rx round robin registers as per the
1374 * number of Rings and steering based on QoS.
1376 switch (config
->rx_ring_num
) {
1378 val64
= 0x8080808080808080ULL
;
1379 writeq(val64
, &bar0
->rts_qos_steering
);
1382 val64
= 0x0000010000010000ULL
;
1383 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1384 val64
= 0x0100000100000100ULL
;
1385 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1386 val64
= 0x0001000001000001ULL
;
1387 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1388 val64
= 0x0000010000010000ULL
;
1389 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1390 val64
= 0x0100000000000000ULL
;
1391 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1393 val64
= 0x8080808040404040ULL
;
1394 writeq(val64
, &bar0
->rts_qos_steering
);
1397 val64
= 0x0001000102000001ULL
;
1398 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1399 val64
= 0x0001020000010001ULL
;
1400 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1401 val64
= 0x0200000100010200ULL
;
1402 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1403 val64
= 0x0001000102000001ULL
;
1404 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1405 val64
= 0x0001020000000000ULL
;
1406 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1408 val64
= 0x8080804040402020ULL
;
1409 writeq(val64
, &bar0
->rts_qos_steering
);
1412 val64
= 0x0001020300010200ULL
;
1413 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1414 val64
= 0x0100000102030001ULL
;
1415 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1416 val64
= 0x0200010000010203ULL
;
1417 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1418 val64
= 0x0001020001000001ULL
;
1419 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1420 val64
= 0x0203000100000000ULL
;
1421 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1423 val64
= 0x8080404020201010ULL
;
1424 writeq(val64
, &bar0
->rts_qos_steering
);
1427 val64
= 0x0001000203000102ULL
;
1428 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1429 val64
= 0x0001020001030004ULL
;
1430 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1431 val64
= 0x0001000203000102ULL
;
1432 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1433 val64
= 0x0001020001030004ULL
;
1434 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1435 val64
= 0x0001000000000000ULL
;
1436 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1438 val64
= 0x8080404020201008ULL
;
1439 writeq(val64
, &bar0
->rts_qos_steering
);
1442 val64
= 0x0001020304000102ULL
;
1443 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1444 val64
= 0x0304050001020001ULL
;
1445 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1446 val64
= 0x0203000100000102ULL
;
1447 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1448 val64
= 0x0304000102030405ULL
;
1449 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1450 val64
= 0x0001000200000000ULL
;
1451 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1453 val64
= 0x8080404020100804ULL
;
1454 writeq(val64
, &bar0
->rts_qos_steering
);
1457 val64
= 0x0001020001020300ULL
;
1458 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1459 val64
= 0x0102030400010203ULL
;
1460 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1461 val64
= 0x0405060001020001ULL
;
1462 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1463 val64
= 0x0304050000010200ULL
;
1464 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1465 val64
= 0x0102030000000000ULL
;
1466 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1468 val64
= 0x8080402010080402ULL
;
1469 writeq(val64
, &bar0
->rts_qos_steering
);
1472 val64
= 0x0001020300040105ULL
;
1473 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1474 val64
= 0x0200030106000204ULL
;
1475 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1476 val64
= 0x0103000502010007ULL
;
1477 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1478 val64
= 0x0304010002060500ULL
;
1479 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1480 val64
= 0x0103020400000000ULL
;
1481 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1483 val64
= 0x8040201008040201ULL
;
1484 writeq(val64
, &bar0
->rts_qos_steering
);
1490 for (i
= 0; i
< 8; i
++)
1491 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1493 /* Set the default rts frame length for the rings configured */
1494 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1495 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1496 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1498 /* Set the frame length for the configured rings
1499 * desired by the user
1501 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1502 /* If rts_frm_len[i] == 0 then it is assumed that user not
1503 * specified frame length steering.
1504 * If the user provides the frame length then program
1505 * the rts_frm_len register for those values or else
1506 * leave it as it is.
1508 if (rts_frm_len
[i
] != 0) {
1509 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1510 &bar0
->rts_frm_len_n
[i
]);
1514 /* Disable differentiated services steering logic */
1515 for (i
= 0; i
< 64; i
++) {
1516 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1517 DBG_PRINT(ERR_DBG
, "%s: failed rts ds steering",
1519 DBG_PRINT(ERR_DBG
, "set on codepoint %d\n", i
);
1524 /* Program statistics memory */
1525 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1527 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1528 val64
= STAT_BC(0x320);
1529 writeq(val64
, &bar0
->stat_byte_cnt
);
1533 * Initializing the sampling rate for the device to calculate the
1534 * bandwidth utilization.
1536 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1537 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1538 writeq(val64
, &bar0
->mac_link_util
);
1542 * Initializing the Transmit and Receive Traffic Interrupt
1546 * TTI Initialization. Default Tx timer gets us about
1547 * 250 interrupts per sec. Continuous interrupts are enabled
1550 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1551 int count
= (nic
->config
.bus_speed
* 125)/2;
1552 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1555 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1557 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1558 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1559 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1560 if (use_continuous_tx_intrs
)
1561 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1562 writeq(val64
, &bar0
->tti_data1_mem
);
1564 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1565 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1566 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1567 writeq(val64
, &bar0
->tti_data2_mem
);
1569 val64
= TTI_CMD_MEM_WE
| TTI_CMD_MEM_STROBE_NEW_CMD
;
1570 writeq(val64
, &bar0
->tti_command_mem
);
1573 * Once the operation completes, the Strobe bit of the command
1574 * register will be reset. We poll for this particular condition
1575 * We wait for a maximum of 500ms for the operation to complete,
1576 * if it's not complete by then we return error.
1580 val64
= readq(&bar0
->tti_command_mem
);
1581 if (!(val64
& TTI_CMD_MEM_STROBE_NEW_CMD
)) {
1585 DBG_PRINT(ERR_DBG
, "%s: TTI init Failed\n",
1593 /* RTI Initialization */
1594 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1596 * Programmed to generate Apprx 500 Intrs per
1599 int count
= (nic
->config
.bus_speed
* 125)/4;
1600 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1602 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1603 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1604 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1605 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1607 writeq(val64
, &bar0
->rti_data1_mem
);
1609 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1610 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1611 if (nic
->config
.intr_type
== MSI_X
)
1612 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1613 RTI_DATA2_MEM_RX_UFC_D(0x40));
1615 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1616 RTI_DATA2_MEM_RX_UFC_D(0x80));
1617 writeq(val64
, &bar0
->rti_data2_mem
);
1619 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1620 val64
= RTI_CMD_MEM_WE
| RTI_CMD_MEM_STROBE_NEW_CMD
1621 | RTI_CMD_MEM_OFFSET(i
);
1622 writeq(val64
, &bar0
->rti_command_mem
);
1625 * Once the operation completes, the Strobe bit of the
1626 * command register will be reset. We poll for this
1627 * particular condition. We wait for a maximum of 500ms
1628 * for the operation to complete, if it's not complete
1629 * by then we return error.
1633 val64
= readq(&bar0
->rti_command_mem
);
1634 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1638 DBG_PRINT(ERR_DBG
, "%s: RTI init Failed\n",
1648 * Initializing proper values as Pause threshold into all
1649 * the 8 Queues on Rx side.
1651 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1652 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1654 /* Disable RMAC PAD STRIPPING */
1655 add
= &bar0
->mac_cfg
;
1656 val64
= readq(&bar0
->mac_cfg
);
1657 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1658 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1659 writel((u32
) (val64
), add
);
1660 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1661 writel((u32
) (val64
>> 32), (add
+ 4));
1662 val64
= readq(&bar0
->mac_cfg
);
1664 /* Enable FCS stripping by adapter */
1665 add
= &bar0
->mac_cfg
;
1666 val64
= readq(&bar0
->mac_cfg
);
1667 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1668 if (nic
->device_type
== XFRAME_II_DEVICE
)
1669 writeq(val64
, &bar0
->mac_cfg
);
1671 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1672 writel((u32
) (val64
), add
);
1673 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1674 writel((u32
) (val64
>> 32), (add
+ 4));
1678 * Set the time value to be inserted in the pause frame
1679 * generated by xena.
1681 val64
= readq(&bar0
->rmac_pause_cfg
);
1682 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1683 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1684 writeq(val64
, &bar0
->rmac_pause_cfg
);
1687 * Set the Threshold Limit for Generating the pause frame
1688 * If the amount of data in any Queue exceeds ratio of
1689 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1690 * pause frame is generated
1693 for (i
= 0; i
< 4; i
++) {
1695 (((u64
) 0xFF00 | nic
->mac_control
.
1696 mc_pause_threshold_q0q3
)
1699 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1702 for (i
= 0; i
< 4; i
++) {
1704 (((u64
) 0xFF00 | nic
->mac_control
.
1705 mc_pause_threshold_q4q7
)
1708 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1711 * TxDMA will stop Read request if the number of read split has
1712 * exceeded the limit pointed by shared_splits
1714 val64
= readq(&bar0
->pic_control
);
1715 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1716 writeq(val64
, &bar0
->pic_control
);
1718 if (nic
->config
.bus_speed
== 266) {
1719 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1720 writeq(0x0, &bar0
->read_retry_delay
);
1721 writeq(0x0, &bar0
->write_retry_delay
);
1725 * Programming the Herc to split every write transaction
1726 * that does not start on an ADB to reduce disconnects.
1728 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1729 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1730 MISC_LINK_STABILITY_PRD(3);
1731 writeq(val64
, &bar0
->misc_control
);
1732 val64
= readq(&bar0
->pic_control2
);
1733 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1734 writeq(val64
, &bar0
->pic_control2
);
1736 if (strstr(nic
->product_name
, "CX4")) {
1737 val64
= TMAC_AVG_IPG(0x17);
1738 writeq(val64
, &bar0
->tmac_avg_ipg
);
1743 #define LINK_UP_DOWN_INTERRUPT 1
1744 #define MAC_RMAC_ERR_TIMER 2
1746 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1748 if (nic
->config
.intr_type
!= INTA
)
1749 return MAC_RMAC_ERR_TIMER
;
1750 if (nic
->device_type
== XFRAME_II_DEVICE
)
1751 return LINK_UP_DOWN_INTERRUPT
;
1753 return MAC_RMAC_ERR_TIMER
;
1757 * do_s2io_write_bits - update alarm bits in alarm register
1758 * @value: alarm bits
1759 * @flag: interrupt status
1760 * @addr: address value
1761 * Description: update alarm bits in alarm register
1765 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1769 temp64
= readq(addr
);
1771 if(flag
== ENABLE_INTRS
)
1772 temp64
&= ~((u64
) value
);
1774 temp64
|= ((u64
) value
);
1775 writeq(temp64
, addr
);
1778 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1780 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1781 register u64 gen_int_mask
= 0;
1783 if (mask
& TX_DMA_INTR
) {
1785 gen_int_mask
|= TXDMA_INT_M
;
1787 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1788 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1789 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1790 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1792 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1793 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1794 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1795 &bar0
->pfc_err_mask
);
1797 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1798 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1799 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1801 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1802 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1803 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1804 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1805 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1806 PCC_TXB_ECC_SG_ERR
, flag
, &bar0
->pcc_err_mask
);
1808 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1809 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1811 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1812 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1813 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1814 flag
, &bar0
->lso_err_mask
);
1816 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1817 flag
, &bar0
->tpa_err_mask
);
1819 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1823 if (mask
& TX_MAC_INTR
) {
1824 gen_int_mask
|= TXMAC_INT_M
;
1825 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1826 &bar0
->mac_int_mask
);
1827 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1828 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1829 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1830 flag
, &bar0
->mac_tmac_err_mask
);
1833 if (mask
& TX_XGXS_INTR
) {
1834 gen_int_mask
|= TXXGXS_INT_M
;
1835 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1836 &bar0
->xgxs_int_mask
);
1837 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1838 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1839 flag
, &bar0
->xgxs_txgxs_err_mask
);
1842 if (mask
& RX_DMA_INTR
) {
1843 gen_int_mask
|= RXDMA_INT_M
;
1844 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1845 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1846 flag
, &bar0
->rxdma_int_mask
);
1847 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1848 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1849 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1850 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1851 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1852 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1853 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1854 &bar0
->prc_pcix_err_mask
);
1855 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
1856 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
1857 &bar0
->rpa_err_mask
);
1858 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
1859 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
1860 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
1861 RDA_FRM_ECC_SG_ERR
| RDA_MISC_ERR
|RDA_PCIX_ERR
,
1862 flag
, &bar0
->rda_err_mask
);
1863 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
1864 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
1865 flag
, &bar0
->rti_err_mask
);
1868 if (mask
& RX_MAC_INTR
) {
1869 gen_int_mask
|= RXMAC_INT_M
;
1870 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
1871 &bar0
->mac_int_mask
);
1872 do_s2io_write_bits(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
1873 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
1874 RMAC_DOUBLE_ECC_ERR
|
1875 RMAC_LINK_STATE_CHANGE_INT
,
1876 flag
, &bar0
->mac_rmac_err_mask
);
1879 if (mask
& RX_XGXS_INTR
)
1881 gen_int_mask
|= RXXGXS_INT_M
;
1882 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
1883 &bar0
->xgxs_int_mask
);
1884 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
1885 &bar0
->xgxs_rxgxs_err_mask
);
1888 if (mask
& MC_INTR
) {
1889 gen_int_mask
|= MC_INT_M
;
1890 do_s2io_write_bits(MC_INT_MASK_MC_INT
, flag
, &bar0
->mc_int_mask
);
1891 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
1892 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
1893 &bar0
->mc_err_mask
);
1895 nic
->general_int_mask
= gen_int_mask
;
1897 /* Remove this line when alarm interrupts are enabled */
1898 nic
->general_int_mask
= 0;
1901 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1902 * @nic: device private variable,
1903 * @mask: A mask indicating which Intr block must be modified and,
1904 * @flag: A flag indicating whether to enable or disable the Intrs.
1905 * Description: This function will either disable or enable the interrupts
1906 * depending on the flag argument. The mask argument can be used to
1907 * enable/disable any Intr block.
1908 * Return Value: NONE.
1911 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
1913 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1914 register u64 temp64
= 0, intr_mask
= 0;
1916 intr_mask
= nic
->general_int_mask
;
1918 /* Top level interrupt classification */
1919 /* PIC Interrupts */
1920 if (mask
& TX_PIC_INTR
) {
1921 /* Enable PIC Intrs in the general intr mask register */
1922 intr_mask
|= TXPIC_INT_M
;
1923 if (flag
== ENABLE_INTRS
) {
1925 * If Hercules adapter enable GPIO otherwise
1926 * disable all PCIX, Flash, MDIO, IIC and GPIO
1927 * interrupts for now.
1930 if (s2io_link_fault_indication(nic
) ==
1931 LINK_UP_DOWN_INTERRUPT
) {
1932 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
1933 &bar0
->pic_int_mask
);
1934 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
1935 &bar0
->gpio_int_mask
);
1937 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
1938 } else if (flag
== DISABLE_INTRS
) {
1940 * Disable PIC Intrs in the general
1941 * intr mask register
1943 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
1947 /* Tx traffic interrupts */
1948 if (mask
& TX_TRAFFIC_INTR
) {
1949 intr_mask
|= TXTRAFFIC_INT_M
;
1950 if (flag
== ENABLE_INTRS
) {
1952 * Enable all the Tx side interrupts
1953 * writing 0 Enables all 64 TX interrupt levels
1955 writeq(0x0, &bar0
->tx_traffic_mask
);
1956 } else if (flag
== DISABLE_INTRS
) {
1958 * Disable Tx Traffic Intrs in the general intr mask
1961 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
1965 /* Rx traffic interrupts */
1966 if (mask
& RX_TRAFFIC_INTR
) {
1967 intr_mask
|= RXTRAFFIC_INT_M
;
1968 if (flag
== ENABLE_INTRS
) {
1969 /* writing 0 Enables all 8 RX interrupt levels */
1970 writeq(0x0, &bar0
->rx_traffic_mask
);
1971 } else if (flag
== DISABLE_INTRS
) {
1973 * Disable Rx Traffic Intrs in the general intr mask
1976 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
1980 temp64
= readq(&bar0
->general_int_mask
);
1981 if (flag
== ENABLE_INTRS
)
1982 temp64
&= ~((u64
) intr_mask
);
1984 temp64
= DISABLE_ALL_INTRS
;
1985 writeq(temp64
, &bar0
->general_int_mask
);
1987 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
1991 * verify_pcc_quiescent- Checks for PCC quiescent state
1992 * Return: 1 If PCC is quiescence
1993 * 0 If PCC is not quiescence
1995 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
1998 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
1999 u64 val64
= readq(&bar0
->adapter_status
);
2001 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2003 if (flag
== FALSE
) {
2004 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2005 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2008 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2012 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2013 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2014 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2017 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2018 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2026 * verify_xena_quiescence - Checks whether the H/W is ready
2027 * Description: Returns whether the H/W is ready to go or not. Depending
2028 * on whether adapter enable bit was written or not the comparison
2029 * differs and the calling function passes the input argument flag to
2031 * Return: 1 If xena is quiescence
2032 * 0 If Xena is not quiescence
2035 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2038 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2039 u64 val64
= readq(&bar0
->adapter_status
);
2040 mode
= s2io_verify_pci_mode(sp
);
2042 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2043 DBG_PRINT(ERR_DBG
, "%s", "TDMA is not ready!");
2046 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2047 DBG_PRINT(ERR_DBG
, "%s", "RDMA is not ready!");
2050 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2051 DBG_PRINT(ERR_DBG
, "%s", "PFC is not ready!");
2054 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2055 DBG_PRINT(ERR_DBG
, "%s", "TMAC BUF is not empty!");
2058 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2059 DBG_PRINT(ERR_DBG
, "%s", "PIC is not QUIESCENT!");
2062 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2063 DBG_PRINT(ERR_DBG
, "%s", "MC_DRAM is not ready!");
2066 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2067 DBG_PRINT(ERR_DBG
, "%s", "MC_QUEUES is not ready!");
2070 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2071 DBG_PRINT(ERR_DBG
, "%s", "M_PLL is not locked!");
2076 * In PCI 33 mode, the P_PLL is not used, and therefore,
2077 * the the P_PLL_LOCK bit in the adapter_status register will
2080 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2081 sp
->device_type
== XFRAME_II_DEVICE
&& mode
!=
2083 DBG_PRINT(ERR_DBG
, "%s", "P_PLL is not locked!");
2086 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2087 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2088 DBG_PRINT(ERR_DBG
, "%s", "RC_PRC is not QUIESCENT!");
2095 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2096 * @sp: Pointer to device specifc structure
2098 * New procedure to clear mac address reading problems on Alpha platforms
2102 static void fix_mac_address(struct s2io_nic
* sp
)
2104 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2108 while (fix_mac
[i
] != END_SIGN
) {
2109 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2111 val64
= readq(&bar0
->gpio_control
);
2116 * start_nic - Turns the device on
2117 * @nic : device private variable.
2119 * This function actually turns the device on. Before this function is
2120 * called,all Registers are configured from their reset states
2121 * and shared memory is allocated but the NIC is still quiescent. On
2122 * calling this function, the device interrupts are cleared and the NIC is
2123 * literally switched on by writing into the adapter control register.
2125 * SUCCESS on success and -1 on failure.
2128 static int start_nic(struct s2io_nic
*nic
)
2130 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2131 struct net_device
*dev
= nic
->dev
;
2132 register u64 val64
= 0;
2134 struct mac_info
*mac_control
;
2135 struct config_param
*config
;
2137 mac_control
= &nic
->mac_control
;
2138 config
= &nic
->config
;
2140 /* PRC Initialization and configuration */
2141 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2142 writeq((u64
) mac_control
->rings
[i
].rx_blocks
[0].block_dma_addr
,
2143 &bar0
->prc_rxd0_n
[i
]);
2145 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2146 if (nic
->rxd_mode
== RXD_MODE_1
)
2147 val64
|= PRC_CTRL_RC_ENABLED
;
2149 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2150 if (nic
->device_type
== XFRAME_II_DEVICE
)
2151 val64
|= PRC_CTRL_GROUP_READS
;
2152 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2153 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2154 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2157 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2158 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2159 val64
= readq(&bar0
->rx_pa_cfg
);
2160 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2161 writeq(val64
, &bar0
->rx_pa_cfg
);
2164 if (vlan_tag_strip
== 0) {
2165 val64
= readq(&bar0
->rx_pa_cfg
);
2166 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2167 writeq(val64
, &bar0
->rx_pa_cfg
);
2168 vlan_strip_flag
= 0;
2172 * Enabling MC-RLDRAM. After enabling the device, we timeout
2173 * for around 100ms, which is approximately the time required
2174 * for the device to be ready for operation.
2176 val64
= readq(&bar0
->mc_rldram_mrs
);
2177 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2178 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2179 val64
= readq(&bar0
->mc_rldram_mrs
);
2181 msleep(100); /* Delay by around 100 ms. */
2183 /* Enabling ECC Protection. */
2184 val64
= readq(&bar0
->adapter_control
);
2185 val64
&= ~ADAPTER_ECC_EN
;
2186 writeq(val64
, &bar0
->adapter_control
);
2189 * Verify if the device is ready to be enabled, if so enable
2192 val64
= readq(&bar0
->adapter_status
);
2193 if (!verify_xena_quiescence(nic
)) {
2194 DBG_PRINT(ERR_DBG
, "%s: device is not ready, ", dev
->name
);
2195 DBG_PRINT(ERR_DBG
, "Adapter status reads: 0x%llx\n",
2196 (unsigned long long) val64
);
2201 * With some switches, link might be already up at this point.
2202 * Because of this weird behavior, when we enable laser,
2203 * we may not get link. We need to handle this. We cannot
2204 * figure out which switch is misbehaving. So we are forced to
2205 * make a global change.
2208 /* Enabling Laser. */
2209 val64
= readq(&bar0
->adapter_control
);
2210 val64
|= ADAPTER_EOI_TX_ON
;
2211 writeq(val64
, &bar0
->adapter_control
);
2213 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2215 * Dont see link state interrupts initally on some switches,
2216 * so directly scheduling the link state task here.
2218 schedule_work(&nic
->set_link_task
);
2220 /* SXE-002: Initialize link and activity LED */
2221 subid
= nic
->pdev
->subsystem_device
;
2222 if (((subid
& 0xFF) >= 0x07) &&
2223 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2224 val64
= readq(&bar0
->gpio_control
);
2225 val64
|= 0x0000800000000000ULL
;
2226 writeq(val64
, &bar0
->gpio_control
);
2227 val64
= 0x0411040400000000ULL
;
2228 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2234 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2236 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
, struct \
2237 TxD
*txdlp
, int get_off
)
2239 struct s2io_nic
*nic
= fifo_data
->nic
;
2240 struct sk_buff
*skb
;
2245 if (txds
->Host_Control
== (u64
)(long)nic
->ufo_in_band_v
) {
2246 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2247 txds
->Buffer_Pointer
, sizeof(u64
),
2252 skb
= (struct sk_buff
*) ((unsigned long)
2253 txds
->Host_Control
);
2255 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2258 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2259 txds
->Buffer_Pointer
,
2260 skb
->len
- skb
->data_len
,
2262 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2265 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2266 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2267 if (!txds
->Buffer_Pointer
)
2269 pci_unmap_page(nic
->pdev
, (dma_addr_t
)
2270 txds
->Buffer_Pointer
,
2271 frag
->size
, PCI_DMA_TODEVICE
);
2274 memset(txdlp
,0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2279 * free_tx_buffers - Free all queued Tx buffers
2280 * @nic : device private variable.
2282 * Free all queued Tx buffers.
2283 * Return Value: void
2286 static void free_tx_buffers(struct s2io_nic
*nic
)
2288 struct net_device
*dev
= nic
->dev
;
2289 struct sk_buff
*skb
;
2292 struct mac_info
*mac_control
;
2293 struct config_param
*config
;
2296 mac_control
= &nic
->mac_control
;
2297 config
= &nic
->config
;
2299 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2300 for (j
= 0; j
< config
->tx_cfg
[i
].fifo_len
- 1; j
++) {
2301 txdp
= (struct TxD
*) \
2302 mac_control
->fifos
[i
].list_info
[j
].list_virt_addr
;
2303 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2305 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
2312 "%s:forcibly freeing %d skbs on FIFO%d\n",
2314 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
2315 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
2320 * stop_nic - To stop the nic
2321 * @nic ; device private variable.
2323 * This function does exactly the opposite of what the start_nic()
2324 * function does. This function is called to stop the device.
2329 static void stop_nic(struct s2io_nic
*nic
)
2331 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2332 register u64 val64
= 0;
2334 struct mac_info
*mac_control
;
2335 struct config_param
*config
;
2337 mac_control
= &nic
->mac_control
;
2338 config
= &nic
->config
;
2340 /* Disable all interrupts */
2341 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2342 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2343 interruptible
|= TX_PIC_INTR
;
2344 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2346 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2347 val64
= readq(&bar0
->adapter_control
);
2348 val64
&= ~(ADAPTER_CNTL_EN
);
2349 writeq(val64
, &bar0
->adapter_control
);
2353 * fill_rx_buffers - Allocates the Rx side skbs
2354 * @nic: device private variable
2355 * @ring_no: ring number
2357 * The function allocates Rx side skbs and puts the physical
2358 * address of these buffers into the RxD buffer pointers, so that the NIC
2359 * can DMA the received frame into these locations.
2360 * The NIC supports 3 receive modes, viz
2362 * 2. three buffer and
2363 * 3. Five buffer modes.
2364 * Each mode defines how many fragments the received frame will be split
2365 * up into by the NIC. The frame is split into L3 header, L4 Header,
2366 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2367 * is split into 3 fragments. As of now only single buffer mode is
2370 * SUCCESS on success or an appropriate -ve value on failure.
2373 static int fill_rx_buffers(struct s2io_nic
*nic
, int ring_no
)
2375 struct net_device
*dev
= nic
->dev
;
2376 struct sk_buff
*skb
;
2378 int off
, off1
, size
, block_no
, block_no1
;
2381 struct mac_info
*mac_control
;
2382 struct config_param
*config
;
2385 unsigned long flags
;
2386 struct RxD_t
*first_rxdp
= NULL
;
2387 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2390 struct swStat
*stats
= &nic
->mac_control
.stats_info
->sw_stat
;
2392 mac_control
= &nic
->mac_control
;
2393 config
= &nic
->config
;
2394 alloc_cnt
= mac_control
->rings
[ring_no
].pkt_cnt
-
2395 atomic_read(&nic
->rx_bufs_left
[ring_no
]);
2397 block_no1
= mac_control
->rings
[ring_no
].rx_curr_get_info
.block_index
;
2398 off1
= mac_control
->rings
[ring_no
].rx_curr_get_info
.offset
;
2399 while (alloc_tab
< alloc_cnt
) {
2400 block_no
= mac_control
->rings
[ring_no
].rx_curr_put_info
.
2402 off
= mac_control
->rings
[ring_no
].rx_curr_put_info
.offset
;
2404 rxdp
= mac_control
->rings
[ring_no
].
2405 rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2407 if ((block_no
== block_no1
) && (off
== off1
) &&
2408 (rxdp
->Host_Control
)) {
2409 DBG_PRINT(INTR_DBG
, "%s: Get and Put",
2411 DBG_PRINT(INTR_DBG
, " info equated\n");
2414 if (off
&& (off
== rxd_count
[nic
->rxd_mode
])) {
2415 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2417 if (mac_control
->rings
[ring_no
].rx_curr_put_info
.
2418 block_index
== mac_control
->rings
[ring_no
].
2420 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2422 block_no
= mac_control
->rings
[ring_no
].
2423 rx_curr_put_info
.block_index
;
2424 if (off
== rxd_count
[nic
->rxd_mode
])
2426 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2428 rxdp
= mac_control
->rings
[ring_no
].
2429 rx_blocks
[block_no
].block_virt_addr
;
2430 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2434 spin_lock_irqsave(&nic
->put_lock
, flags
);
2435 mac_control
->rings
[ring_no
].put_pos
=
2436 (block_no
* (rxd_count
[nic
->rxd_mode
] + 1)) + off
;
2437 spin_unlock_irqrestore(&nic
->put_lock
, flags
);
2439 mac_control
->rings
[ring_no
].put_pos
=
2440 (block_no
* (rxd_count
[nic
->rxd_mode
] + 1)) + off
;
2442 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2443 ((nic
->rxd_mode
== RXD_MODE_3B
) &&
2444 (rxdp
->Control_2
& s2BIT(0)))) {
2445 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2449 /* calculate size of skb based on ring mode */
2450 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
2451 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2452 if (nic
->rxd_mode
== RXD_MODE_1
)
2453 size
+= NET_IP_ALIGN
;
2455 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2458 skb
= dev_alloc_skb(size
);
2460 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
2461 DBG_PRINT(INFO_DBG
, "memory to allocate SKBs\n");
2464 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2466 nic
->mac_control
.stats_info
->sw_stat
. \
2467 mem_alloc_fail_cnt
++;
2470 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
2472 if (nic
->rxd_mode
== RXD_MODE_1
) {
2473 /* 1 buffer mode - normal operation mode */
2474 rxdp1
= (struct RxD1
*)rxdp
;
2475 memset(rxdp
, 0, sizeof(struct RxD1
));
2476 skb_reserve(skb
, NET_IP_ALIGN
);
2477 rxdp1
->Buffer0_ptr
= pci_map_single
2478 (nic
->pdev
, skb
->data
, size
- NET_IP_ALIGN
,
2479 PCI_DMA_FROMDEVICE
);
2480 if( (rxdp1
->Buffer0_ptr
== 0) ||
2481 (rxdp1
->Buffer0_ptr
==
2483 goto pci_map_failed
;
2486 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2488 } else if (nic
->rxd_mode
== RXD_MODE_3B
) {
2491 * 2 buffer mode provides 128
2492 * byte aligned receive buffers.
2495 rxdp3
= (struct RxD3
*)rxdp
;
2496 /* save buffer pointers to avoid frequent dma mapping */
2497 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2498 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2499 memset(rxdp
, 0, sizeof(struct RxD3
));
2500 /* restore the buffer pointers for dma sync*/
2501 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2502 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2504 ba
= &mac_control
->rings
[ring_no
].ba
[block_no
][off
];
2505 skb_reserve(skb
, BUF0_LEN
);
2506 tmp
= (u64
)(unsigned long) skb
->data
;
2509 skb
->data
= (void *) (unsigned long)tmp
;
2510 skb_reset_tail_pointer(skb
);
2512 if (!(rxdp3
->Buffer0_ptr
))
2513 rxdp3
->Buffer0_ptr
=
2514 pci_map_single(nic
->pdev
, ba
->ba_0
, BUF0_LEN
,
2515 PCI_DMA_FROMDEVICE
);
2517 pci_dma_sync_single_for_device(nic
->pdev
,
2518 (dma_addr_t
) rxdp3
->Buffer0_ptr
,
2519 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2520 if( (rxdp3
->Buffer0_ptr
== 0) ||
2521 (rxdp3
->Buffer0_ptr
== DMA_ERROR_CODE
))
2522 goto pci_map_failed
;
2524 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2525 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2526 /* Two buffer mode */
2529 * Buffer2 will have L3/L4 header plus
2532 rxdp3
->Buffer2_ptr
= pci_map_single
2533 (nic
->pdev
, skb
->data
, dev
->mtu
+ 4,
2534 PCI_DMA_FROMDEVICE
);
2536 if( (rxdp3
->Buffer2_ptr
== 0) ||
2537 (rxdp3
->Buffer2_ptr
== DMA_ERROR_CODE
))
2538 goto pci_map_failed
;
2540 rxdp3
->Buffer1_ptr
=
2541 pci_map_single(nic
->pdev
,
2543 PCI_DMA_FROMDEVICE
);
2544 if( (rxdp3
->Buffer1_ptr
== 0) ||
2545 (rxdp3
->Buffer1_ptr
== DMA_ERROR_CODE
)) {
2548 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2550 PCI_DMA_FROMDEVICE
);
2551 goto pci_map_failed
;
2553 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2554 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2557 rxdp
->Control_2
|= s2BIT(0);
2559 rxdp
->Host_Control
= (unsigned long) (skb
);
2560 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2561 rxdp
->Control_1
|= RXD_OWN_XENA
;
2563 if (off
== (rxd_count
[nic
->rxd_mode
] + 1))
2565 mac_control
->rings
[ring_no
].rx_curr_put_info
.offset
= off
;
2567 rxdp
->Control_2
|= SET_RXD_MARKER
;
2568 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2571 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2575 atomic_inc(&nic
->rx_bufs_left
[ring_no
]);
2580 /* Transfer ownership of first descriptor to adapter just before
2581 * exiting. Before that, use memory barrier so that ownership
2582 * and other fields are seen by adapter correctly.
2586 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2591 stats
->pci_map_fail_cnt
++;
2592 stats
->mem_freed
+= skb
->truesize
;
2593 dev_kfree_skb_irq(skb
);
2597 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2599 struct net_device
*dev
= sp
->dev
;
2601 struct sk_buff
*skb
;
2603 struct mac_info
*mac_control
;
2608 mac_control
= &sp
->mac_control
;
2609 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2610 rxdp
= mac_control
->rings
[ring_no
].
2611 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2612 skb
= (struct sk_buff
*)
2613 ((unsigned long) rxdp
->Host_Control
);
2617 if (sp
->rxd_mode
== RXD_MODE_1
) {
2618 rxdp1
= (struct RxD1
*)rxdp
;
2619 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2622 HEADER_ETHERNET_II_802_3_SIZE
2623 + HEADER_802_2_SIZE
+
2625 PCI_DMA_FROMDEVICE
);
2626 memset(rxdp
, 0, sizeof(struct RxD1
));
2627 } else if(sp
->rxd_mode
== RXD_MODE_3B
) {
2628 rxdp3
= (struct RxD3
*)rxdp
;
2629 ba
= &mac_control
->rings
[ring_no
].
2631 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2634 PCI_DMA_FROMDEVICE
);
2635 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2638 PCI_DMA_FROMDEVICE
);
2639 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2642 PCI_DMA_FROMDEVICE
);
2643 memset(rxdp
, 0, sizeof(struct RxD3
));
2645 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
2647 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
2652 * free_rx_buffers - Frees all Rx buffers
2653 * @sp: device private variable.
2655 * This function will free all Rx buffers allocated by host.
2660 static void free_rx_buffers(struct s2io_nic
*sp
)
2662 struct net_device
*dev
= sp
->dev
;
2663 int i
, blk
= 0, buf_cnt
= 0;
2664 struct mac_info
*mac_control
;
2665 struct config_param
*config
;
2667 mac_control
= &sp
->mac_control
;
2668 config
= &sp
->config
;
2670 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2671 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2672 free_rxd_blk(sp
,i
,blk
);
2674 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
2675 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
2676 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
2677 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
2678 atomic_set(&sp
->rx_bufs_left
[i
], 0);
2679 DBG_PRINT(INIT_DBG
, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2680 dev
->name
, buf_cnt
, i
);
2685 * s2io_poll - Rx interrupt handler for NAPI support
2686 * @napi : pointer to the napi structure.
2687 * @budget : The number of packets that were budgeted to be processed
2688 * during one pass through the 'Poll" function.
2690 * Comes into picture only if NAPI support has been incorporated. It does
2691 * the same thing that rx_intr_handler does, but not in a interrupt context
2692 * also It will process only a given number of packets.
2694 * 0 on success and 1 if there are No Rx packets to be processed.
2697 static int s2io_poll(struct napi_struct
*napi
, int budget
)
2699 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2700 struct net_device
*dev
= nic
->dev
;
2701 int pkt_cnt
= 0, org_pkts_to_process
;
2702 struct mac_info
*mac_control
;
2703 struct config_param
*config
;
2704 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2707 mac_control
= &nic
->mac_control
;
2708 config
= &nic
->config
;
2710 nic
->pkts_to_process
= budget
;
2711 org_pkts_to_process
= nic
->pkts_to_process
;
2713 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
2714 readl(&bar0
->rx_traffic_int
);
2716 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2717 rx_intr_handler(&mac_control
->rings
[i
]);
2718 pkt_cnt
= org_pkts_to_process
- nic
->pkts_to_process
;
2719 if (!nic
->pkts_to_process
) {
2720 /* Quota for the current iteration has been met */
2725 netif_rx_complete(dev
, napi
);
2727 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2728 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2729 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2730 DBG_PRINT(INFO_DBG
, " in Rx Poll!!\n");
2734 /* Re enable the Rx interrupts. */
2735 writeq(0x0, &bar0
->rx_traffic_mask
);
2736 readl(&bar0
->rx_traffic_mask
);
2740 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2741 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2742 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2743 DBG_PRINT(INFO_DBG
, " in Rx Poll!!\n");
2750 #ifdef CONFIG_NET_POLL_CONTROLLER
2752 * s2io_netpoll - netpoll event handler entry point
2753 * @dev : pointer to the device structure.
2755 * This function will be called by upper layer to check for events on the
2756 * interface in situations where interrupts are disabled. It is used for
2757 * specific in-kernel networking tasks, such as remote consoles and kernel
2758 * debugging over the network (example netdump in RedHat).
2760 static void s2io_netpoll(struct net_device
*dev
)
2762 struct s2io_nic
*nic
= dev
->priv
;
2763 struct mac_info
*mac_control
;
2764 struct config_param
*config
;
2765 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2766 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2769 if (pci_channel_offline(nic
->pdev
))
2772 disable_irq(dev
->irq
);
2774 mac_control
= &nic
->mac_control
;
2775 config
= &nic
->config
;
2777 writeq(val64
, &bar0
->rx_traffic_int
);
2778 writeq(val64
, &bar0
->tx_traffic_int
);
2780 /* we need to free up the transmitted skbufs or else netpoll will
2781 * run out of skbs and will fail and eventually netpoll application such
2782 * as netdump will fail.
2784 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2785 tx_intr_handler(&mac_control
->fifos
[i
]);
2787 /* check for received packet and indicate up to network */
2788 for (i
= 0; i
< config
->rx_ring_num
; i
++)
2789 rx_intr_handler(&mac_control
->rings
[i
]);
2791 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2792 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2793 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2794 DBG_PRINT(INFO_DBG
, " in Rx Netpoll!!\n");
2798 enable_irq(dev
->irq
);
2804 * rx_intr_handler - Rx interrupt handler
2805 * @nic: device private variable.
2807 * If the interrupt is because of a received frame or if the
2808 * receive ring contains fresh as yet un-processed frames,this function is
2809 * called. It picks out the RxD at which place the last Rx processing had
2810 * stopped and sends the skb to the OSM's Rx handler and then increments
2815 static void rx_intr_handler(struct ring_info
*ring_data
)
2817 struct s2io_nic
*nic
= ring_data
->nic
;
2818 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
2819 int get_block
, put_block
, put_offset
;
2820 struct rx_curr_get_info get_info
, put_info
;
2822 struct sk_buff
*skb
;
2828 spin_lock(&nic
->rx_lock
);
2830 get_info
= ring_data
->rx_curr_get_info
;
2831 get_block
= get_info
.block_index
;
2832 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2833 put_block
= put_info
.block_index
;
2834 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2836 spin_lock(&nic
->put_lock
);
2837 put_offset
= ring_data
->put_pos
;
2838 spin_unlock(&nic
->put_lock
);
2840 put_offset
= ring_data
->put_pos
;
2842 while (RXD_IS_UP2DT(rxdp
)) {
2844 * If your are next to put index then it's
2845 * FIFO full condition
2847 if ((get_block
== put_block
) &&
2848 (get_info
.offset
+ 1) == put_info
.offset
) {
2849 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",dev
->name
);
2852 skb
= (struct sk_buff
*) ((unsigned long)rxdp
->Host_Control
);
2854 DBG_PRINT(ERR_DBG
, "%s: The skb is ",
2856 DBG_PRINT(ERR_DBG
, "Null in Rx Intr\n");
2857 spin_unlock(&nic
->rx_lock
);
2860 if (nic
->rxd_mode
== RXD_MODE_1
) {
2861 rxdp1
= (struct RxD1
*)rxdp
;
2862 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2865 HEADER_ETHERNET_II_802_3_SIZE
+
2868 PCI_DMA_FROMDEVICE
);
2869 } else if (nic
->rxd_mode
== RXD_MODE_3B
) {
2870 rxdp3
= (struct RxD3
*)rxdp
;
2871 pci_dma_sync_single_for_cpu(nic
->pdev
, (dma_addr_t
)
2873 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2874 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2877 PCI_DMA_FROMDEVICE
);
2879 prefetch(skb
->data
);
2880 rx_osm_handler(ring_data
, rxdp
);
2882 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2883 rxdp
= ring_data
->rx_blocks
[get_block
].
2884 rxds
[get_info
.offset
].virt_addr
;
2885 if (get_info
.offset
== rxd_count
[nic
->rxd_mode
]) {
2886 get_info
.offset
= 0;
2887 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2889 if (get_block
== ring_data
->block_count
)
2891 ring_data
->rx_curr_get_info
.block_index
= get_block
;
2892 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
2895 nic
->pkts_to_process
-= 1;
2896 if ((napi
) && (!nic
->pkts_to_process
))
2899 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
2903 /* Clear all LRO sessions before exiting */
2904 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
2905 struct lro
*lro
= &nic
->lro0_n
[i
];
2907 update_L3L4_header(nic
, lro
);
2908 queue_rx_frame(lro
->parent
);
2909 clear_lro_session(lro
);
2914 spin_unlock(&nic
->rx_lock
);
2918 * tx_intr_handler - Transmit interrupt handler
2919 * @nic : device private variable
2921 * If an interrupt was raised to indicate DMA complete of the
2922 * Tx packet, this function is called. It identifies the last TxD
2923 * whose buffer was freed and frees all skbs whose data have already
2924 * DMA'ed into the NICs internal memory.
2929 static void tx_intr_handler(struct fifo_info
*fifo_data
)
2931 struct s2io_nic
*nic
= fifo_data
->nic
;
2932 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
2933 struct tx_curr_get_info get_info
, put_info
;
2934 struct sk_buff
*skb
;
2938 get_info
= fifo_data
->tx_curr_get_info
;
2939 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
2940 txdlp
= (struct TxD
*) fifo_data
->list_info
[get_info
.offset
].
2942 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
2943 (get_info
.offset
!= put_info
.offset
) &&
2944 (txdlp
->Host_Control
)) {
2945 /* Check for TxD errors */
2946 if (txdlp
->Control_1
& TXD_T_CODE
) {
2947 unsigned long long err
;
2948 err
= txdlp
->Control_1
& TXD_T_CODE
;
2950 nic
->mac_control
.stats_info
->sw_stat
.
2954 /* update t_code statistics */
2955 err_mask
= err
>> 48;
2958 nic
->mac_control
.stats_info
->sw_stat
.
2963 nic
->mac_control
.stats_info
->sw_stat
.
2964 tx_desc_abort_cnt
++;
2968 nic
->mac_control
.stats_info
->sw_stat
.
2969 tx_parity_err_cnt
++;
2973 nic
->mac_control
.stats_info
->sw_stat
.
2978 nic
->mac_control
.stats_info
->sw_stat
.
2979 tx_list_proc_err_cnt
++;
2984 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
2986 DBG_PRINT(ERR_DBG
, "%s: Null skb ",
2988 DBG_PRINT(ERR_DBG
, "in Tx Free Intr\n");
2992 /* Updating the statistics block */
2993 nic
->stats
.tx_bytes
+= skb
->len
;
2994 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
2995 dev_kfree_skb_irq(skb
);
2998 if (get_info
.offset
== get_info
.fifo_len
+ 1)
2999 get_info
.offset
= 0;
3000 txdlp
= (struct TxD
*) fifo_data
->list_info
3001 [get_info
.offset
].list_virt_addr
;
3002 fifo_data
->tx_curr_get_info
.offset
=
3006 spin_lock(&nic
->tx_lock
);
3007 if (netif_queue_stopped(dev
))
3008 netif_wake_queue(dev
);
3009 spin_unlock(&nic
->tx_lock
);
3013 * s2io_mdio_write - Function to write in to MDIO registers
3014 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3015 * @addr : address value
3016 * @value : data value
3017 * @dev : pointer to net_device structure
3019 * This function is used to write values to the MDIO registers
3022 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
, struct net_device
*dev
)
3025 struct s2io_nic
*sp
= dev
->priv
;
3026 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3028 //address transaction
3029 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3030 | MDIO_MMD_DEV_ADDR(mmd_type
)
3031 | MDIO_MMS_PRT_ADDR(0x0);
3032 writeq(val64
, &bar0
->mdio_control
);
3033 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3034 writeq(val64
, &bar0
->mdio_control
);
3039 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3040 | MDIO_MMD_DEV_ADDR(mmd_type
)
3041 | MDIO_MMS_PRT_ADDR(0x0)
3042 | MDIO_MDIO_DATA(value
)
3043 | MDIO_OP(MDIO_OP_WRITE_TRANS
);
3044 writeq(val64
, &bar0
->mdio_control
);
3045 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3046 writeq(val64
, &bar0
->mdio_control
);
3050 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3051 | MDIO_MMD_DEV_ADDR(mmd_type
)
3052 | MDIO_MMS_PRT_ADDR(0x0)
3053 | MDIO_OP(MDIO_OP_READ_TRANS
);
3054 writeq(val64
, &bar0
->mdio_control
);
3055 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3056 writeq(val64
, &bar0
->mdio_control
);
3062 * s2io_mdio_read - Function to write in to MDIO registers
3063 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3064 * @addr : address value
3065 * @dev : pointer to net_device structure
3067 * This function is used to read values to the MDIO registers
3070 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3074 struct s2io_nic
*sp
= dev
->priv
;
3075 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3077 /* address transaction */
3078 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3079 | MDIO_MMD_DEV_ADDR(mmd_type
)
3080 | MDIO_MMS_PRT_ADDR(0x0);
3081 writeq(val64
, &bar0
->mdio_control
);
3082 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3083 writeq(val64
, &bar0
->mdio_control
);
3086 /* Data transaction */
3088 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3089 | MDIO_MMD_DEV_ADDR(mmd_type
)
3090 | MDIO_MMS_PRT_ADDR(0x0)
3091 | MDIO_OP(MDIO_OP_READ_TRANS
);
3092 writeq(val64
, &bar0
->mdio_control
);
3093 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3094 writeq(val64
, &bar0
->mdio_control
);
3097 /* Read the value from regs */
3098 rval64
= readq(&bar0
->mdio_control
);
3099 rval64
= rval64
& 0xFFFF0000;
3100 rval64
= rval64
>> 16;
3104 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3105 * @counter : couter value to be updated
3106 * @flag : flag to indicate the status
3107 * @type : counter type
3109 * This function is to check the status of the xpak counters value
3113 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
, u16 flag
, u16 type
)
3118 for(i
= 0; i
<index
; i
++)
3123 *counter
= *counter
+ 1;
3124 val64
= *regs_stat
& mask
;
3125 val64
= val64
>> (index
* 0x2);
3132 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3133 "service. Excessive temperatures may "
3134 "result in premature transceiver "
3138 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3139 "service Excessive bias currents may "
3140 "indicate imminent laser diode "
3144 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3145 "service Excessive laser output "
3146 "power may saturate far-end "
3150 DBG_PRINT(ERR_DBG
, "Incorrect XPAK Alarm "
3155 val64
= val64
<< (index
* 0x2);
3156 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3159 *regs_stat
= *regs_stat
& (~mask
);
3164 * s2io_updt_xpak_counter - Function to update the xpak counters
3165 * @dev : pointer to net_device struct
3167 * This function is to upate the status of the xpak counters value
3170 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3178 struct s2io_nic
*sp
= dev
->priv
;
3179 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
3181 /* Check the communication with the MDIO slave */
3184 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3185 if((val64
== 0xFFFF) || (val64
== 0x0000))
3187 DBG_PRINT(ERR_DBG
, "ERR: MDIO slave access failed - "
3188 "Returned %llx\n", (unsigned long long)val64
);
3192 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3195 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - ");
3196 DBG_PRINT(ERR_DBG
, "Returned: %llx- Expected: 0x2040\n",
3197 (unsigned long long)val64
);
3201 /* Loading the DOM register to MDIO register */
3203 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR
, addr
, val16
, dev
);
3204 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3206 /* Reading the Alarm flags */
3209 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3211 flag
= CHECKBIT(val64
, 0x7);
3213 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_transceiver_temp_high
,
3214 &stat_info
->xpak_stat
.xpak_regs_stat
,
3217 if(CHECKBIT(val64
, 0x6))
3218 stat_info
->xpak_stat
.alarm_transceiver_temp_low
++;
3220 flag
= CHECKBIT(val64
, 0x3);
3222 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_bias_current_high
,
3223 &stat_info
->xpak_stat
.xpak_regs_stat
,
3226 if(CHECKBIT(val64
, 0x2))
3227 stat_info
->xpak_stat
.alarm_laser_bias_current_low
++;
3229 flag
= CHECKBIT(val64
, 0x1);
3231 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_output_power_high
,
3232 &stat_info
->xpak_stat
.xpak_regs_stat
,
3235 if(CHECKBIT(val64
, 0x0))
3236 stat_info
->xpak_stat
.alarm_laser_output_power_low
++;
3238 /* Reading the Warning flags */
3241 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3243 if(CHECKBIT(val64
, 0x7))
3244 stat_info
->xpak_stat
.warn_transceiver_temp_high
++;
3246 if(CHECKBIT(val64
, 0x6))
3247 stat_info
->xpak_stat
.warn_transceiver_temp_low
++;
3249 if(CHECKBIT(val64
, 0x3))
3250 stat_info
->xpak_stat
.warn_laser_bias_current_high
++;
3252 if(CHECKBIT(val64
, 0x2))
3253 stat_info
->xpak_stat
.warn_laser_bias_current_low
++;
3255 if(CHECKBIT(val64
, 0x1))
3256 stat_info
->xpak_stat
.warn_laser_output_power_high
++;
3258 if(CHECKBIT(val64
, 0x0))
3259 stat_info
->xpak_stat
.warn_laser_output_power_low
++;
3263 * wait_for_cmd_complete - waits for a command to complete.
3264 * @sp : private member of the device structure, which is a pointer to the
3265 * s2io_nic structure.
3266 * Description: Function that waits for a command to Write into RMAC
3267 * ADDR DATA registers to be completed and returns either success or
3268 * error depending on whether the command was complete or not.
3270 * SUCCESS on success and FAILURE on failure.
3273 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3276 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3279 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3283 val64
= readq(addr
);
3284 if (bit_state
== S2IO_BIT_RESET
) {
3285 if (!(val64
& busy_bit
)) {
3290 if (!(val64
& busy_bit
)) {
3307 * check_pci_device_id - Checks if the device id is supported
3309 * Description: Function to check if the pci device id is supported by driver.
3310 * Return value: Actual device id if supported else PCI_ANY_ID
3312 static u16
check_pci_device_id(u16 id
)
3315 case PCI_DEVICE_ID_HERC_WIN
:
3316 case PCI_DEVICE_ID_HERC_UNI
:
3317 return XFRAME_II_DEVICE
;
3318 case PCI_DEVICE_ID_S2IO_UNI
:
3319 case PCI_DEVICE_ID_S2IO_WIN
:
3320 return XFRAME_I_DEVICE
;
3327 * s2io_reset - Resets the card.
3328 * @sp : private member of the device structure.
3329 * Description: Function to Reset the card. This function then also
3330 * restores the previously saved PCI configuration space registers as
3331 * the card reset also resets the configuration space.
3336 static void s2io_reset(struct s2io_nic
* sp
)
3338 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3343 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3344 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3346 DBG_PRINT(INIT_DBG
,"%s - Resetting XFrame card %s\n",
3347 __FUNCTION__
, sp
->dev
->name
);
3349 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3350 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3352 val64
= SW_RESET_ALL
;
3353 writeq(val64
, &bar0
->sw_reset
);
3354 if (strstr(sp
->product_name
, "CX4")) {
3358 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3360 /* Restore the PCI state saved during initialization. */
3361 pci_restore_state(sp
->pdev
);
3362 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3363 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3368 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
) {
3369 DBG_PRINT(ERR_DBG
,"%s SW_Reset failed!\n", __FUNCTION__
);
3372 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3376 /* Set swapper to enable I/O register access */
3377 s2io_set_swapper(sp
);
3379 /* Restore the MSIX table entries from local variables */
3380 restore_xmsi_data(sp
);
3382 /* Clear certain PCI/PCI-X fields after reset */
3383 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3384 /* Clear "detected parity error" bit */
3385 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3387 /* Clearing PCIX Ecc status register */
3388 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3390 /* Clearing PCI_STATUS error reflected here */
3391 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3394 /* Reset device statistics maintained by OS */
3395 memset(&sp
->stats
, 0, sizeof (struct net_device_stats
));
3397 up_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
;
3398 down_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
;
3399 up_time
= sp
->mac_control
.stats_info
->sw_stat
.link_up_time
;
3400 down_time
= sp
->mac_control
.stats_info
->sw_stat
.link_down_time
;
3401 reset_cnt
= sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
;
3402 mem_alloc_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
;
3403 mem_free_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_freed
;
3404 watchdog_cnt
= sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
;
3405 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3406 memset(sp
->mac_control
.stats_info
, 0, sizeof(struct stat_block
));
3407 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3408 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
= up_cnt
;
3409 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
= down_cnt
;
3410 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
= up_time
;
3411 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
= down_time
;
3412 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
= reset_cnt
;
3413 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
= mem_alloc_cnt
;
3414 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
= mem_free_cnt
;
3415 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
= watchdog_cnt
;
3417 /* SXE-002: Configure link and activity LED to turn it off */
3418 subid
= sp
->pdev
->subsystem_device
;
3419 if (((subid
& 0xFF) >= 0x07) &&
3420 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3421 val64
= readq(&bar0
->gpio_control
);
3422 val64
|= 0x0000800000000000ULL
;
3423 writeq(val64
, &bar0
->gpio_control
);
3424 val64
= 0x0411040400000000ULL
;
3425 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3429 * Clear spurious ECC interrupts that would have occured on
3430 * XFRAME II cards after reset.
3432 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3433 val64
= readq(&bar0
->pcc_err_reg
);
3434 writeq(val64
, &bar0
->pcc_err_reg
);
3437 /* restore the previously assigned mac address */
3438 do_s2io_prog_unicast(sp
->dev
, (u8
*)&sp
->def_mac_addr
[0].mac_addr
);
3440 sp
->device_enabled_once
= FALSE
;
3444 * s2io_set_swapper - to set the swapper controle on the card
3445 * @sp : private member of the device structure,
3446 * pointer to the s2io_nic structure.
3447 * Description: Function to set the swapper control on the card
3448 * correctly depending on the 'endianness' of the system.
3450 * SUCCESS on success and FAILURE on failure.
3453 static int s2io_set_swapper(struct s2io_nic
* sp
)
3455 struct net_device
*dev
= sp
->dev
;
3456 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3457 u64 val64
, valt
, valr
;
3460 * Set proper endian settings and verify the same by reading
3461 * the PIF Feed-back register.
3464 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3465 if (val64
!= 0x0123456789ABCDEFULL
) {
3467 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3468 0x8100008181000081ULL
, /* FE=1, SE=0 */
3469 0x4200004242000042ULL
, /* FE=0, SE=1 */
3470 0}; /* FE=0, SE=0 */
3473 writeq(value
[i
], &bar0
->swapper_ctrl
);
3474 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3475 if (val64
== 0x0123456789ABCDEFULL
)
3480 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3482 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3483 (unsigned long long) val64
);
3488 valr
= readq(&bar0
->swapper_ctrl
);
3491 valt
= 0x0123456789ABCDEFULL
;
3492 writeq(valt
, &bar0
->xmsi_address
);
3493 val64
= readq(&bar0
->xmsi_address
);
3497 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3498 0x0081810000818100ULL
, /* FE=1, SE=0 */
3499 0x0042420000424200ULL
, /* FE=0, SE=1 */
3500 0}; /* FE=0, SE=0 */
3503 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3504 writeq(valt
, &bar0
->xmsi_address
);
3505 val64
= readq(&bar0
->xmsi_address
);
3511 unsigned long long x
= val64
;
3512 DBG_PRINT(ERR_DBG
, "Write failed, Xmsi_addr ");
3513 DBG_PRINT(ERR_DBG
, "reads:0x%llx\n", x
);
3517 val64
= readq(&bar0
->swapper_ctrl
);
3518 val64
&= 0xFFFF000000000000ULL
;
3522 * The device by default set to a big endian format, so a
3523 * big endian driver need not set anything.
3525 val64
|= (SWAPPER_CTRL_TXP_FE
|
3526 SWAPPER_CTRL_TXP_SE
|
3527 SWAPPER_CTRL_TXD_R_FE
|
3528 SWAPPER_CTRL_TXD_W_FE
|
3529 SWAPPER_CTRL_TXF_R_FE
|
3530 SWAPPER_CTRL_RXD_R_FE
|
3531 SWAPPER_CTRL_RXD_W_FE
|
3532 SWAPPER_CTRL_RXF_W_FE
|
3533 SWAPPER_CTRL_XMSI_FE
|
3534 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3535 if (sp
->config
.intr_type
== INTA
)
3536 val64
|= SWAPPER_CTRL_XMSI_SE
;
3537 writeq(val64
, &bar0
->swapper_ctrl
);
3540 * Initially we enable all bits to make it accessible by the
3541 * driver, then we selectively enable only those bits that
3544 val64
|= (SWAPPER_CTRL_TXP_FE
|
3545 SWAPPER_CTRL_TXP_SE
|
3546 SWAPPER_CTRL_TXD_R_FE
|
3547 SWAPPER_CTRL_TXD_R_SE
|
3548 SWAPPER_CTRL_TXD_W_FE
|
3549 SWAPPER_CTRL_TXD_W_SE
|
3550 SWAPPER_CTRL_TXF_R_FE
|
3551 SWAPPER_CTRL_RXD_R_FE
|
3552 SWAPPER_CTRL_RXD_R_SE
|
3553 SWAPPER_CTRL_RXD_W_FE
|
3554 SWAPPER_CTRL_RXD_W_SE
|
3555 SWAPPER_CTRL_RXF_W_FE
|
3556 SWAPPER_CTRL_XMSI_FE
|
3557 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3558 if (sp
->config
.intr_type
== INTA
)
3559 val64
|= SWAPPER_CTRL_XMSI_SE
;
3560 writeq(val64
, &bar0
->swapper_ctrl
);
3562 val64
= readq(&bar0
->swapper_ctrl
);
3565 * Verifying if endian settings are accurate by reading a
3566 * feedback register.
3568 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3569 if (val64
!= 0x0123456789ABCDEFULL
) {
3570 /* Endian settings are incorrect, calls for another dekko. */
3571 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3573 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3574 (unsigned long long) val64
);
3581 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3583 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3585 int ret
= 0, cnt
= 0;
3588 val64
= readq(&bar0
->xmsi_access
);
3589 if (!(val64
& s2BIT(15)))
3595 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3602 static void restore_xmsi_data(struct s2io_nic
*nic
)
3604 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3608 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3609 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3610 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3611 val64
= (s2BIT(7) | s2BIT(15) | vBIT(i
, 26, 6));
3612 writeq(val64
, &bar0
->xmsi_access
);
3613 if (wait_for_msix_trans(nic
, i
)) {
3614 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3620 static void store_xmsi_data(struct s2io_nic
*nic
)
3622 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3623 u64 val64
, addr
, data
;
3626 /* Store and display */
3627 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3628 val64
= (s2BIT(15) | vBIT(i
, 26, 6));
3629 writeq(val64
, &bar0
->xmsi_access
);
3630 if (wait_for_msix_trans(nic
, i
)) {
3631 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3634 addr
= readq(&bar0
->xmsi_address
);
3635 data
= readq(&bar0
->xmsi_data
);
3637 nic
->msix_info
[i
].addr
= addr
;
3638 nic
->msix_info
[i
].data
= data
;
3643 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3645 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3647 u16 msi_control
; /* Temp variable */
3648 int ret
, i
, j
, msix_indx
= 1;
3650 nic
->entries
= kcalloc(MAX_REQUESTED_MSI_X
, sizeof(struct msix_entry
),
3652 if (!nic
->entries
) {
3653 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n", \
3655 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3658 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3659 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3662 kcalloc(MAX_REQUESTED_MSI_X
, sizeof(struct s2io_msix_entry
),
3664 if (!nic
->s2io_entries
) {
3665 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3667 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3668 kfree(nic
->entries
);
3669 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3670 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3673 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3674 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3676 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3677 nic
->entries
[i
].entry
= i
;
3678 nic
->s2io_entries
[i
].entry
= i
;
3679 nic
->s2io_entries
[i
].arg
= NULL
;
3680 nic
->s2io_entries
[i
].in_use
= 0;
3683 tx_mat
= readq(&bar0
->tx_mat0_n
[0]);
3684 for (i
=0; i
<nic
->config
.tx_fifo_num
; i
++, msix_indx
++) {
3685 tx_mat
|= TX_MAT_SET(i
, msix_indx
);
3686 nic
->s2io_entries
[msix_indx
].arg
= &nic
->mac_control
.fifos
[i
];
3687 nic
->s2io_entries
[msix_indx
].type
= MSIX_FIFO_TYPE
;
3688 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3690 writeq(tx_mat
, &bar0
->tx_mat0_n
[0]);
3692 rx_mat
= readq(&bar0
->rx_mat
);
3693 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++, msix_indx
++) {
3694 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3695 nic
->s2io_entries
[msix_indx
].arg
3696 = &nic
->mac_control
.rings
[j
];
3697 nic
->s2io_entries
[msix_indx
].type
= MSIX_RING_TYPE
;
3698 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3700 writeq(rx_mat
, &bar0
->rx_mat
);
3702 nic
->avail_msix_vectors
= 0;
3703 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, MAX_REQUESTED_MSI_X
);
3704 /* We fail init if error or we get less vectors than min required */
3705 if (ret
>= (nic
->config
.tx_fifo_num
+ nic
->config
.rx_ring_num
+ 1)) {
3706 nic
->avail_msix_vectors
= ret
;
3707 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, ret
);
3710 DBG_PRINT(ERR_DBG
, "%s: Enabling MSIX failed\n", nic
->dev
->name
);
3711 kfree(nic
->entries
);
3712 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3713 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3714 kfree(nic
->s2io_entries
);
3715 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3716 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3717 nic
->entries
= NULL
;
3718 nic
->s2io_entries
= NULL
;
3719 nic
->avail_msix_vectors
= 0;
3722 if (!nic
->avail_msix_vectors
)
3723 nic
->avail_msix_vectors
= MAX_REQUESTED_MSI_X
;
3726 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3727 * in the herc NIC. (Temp change, needs to be removed later)
3729 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3730 msi_control
|= 0x1; /* Enable MSI */
3731 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3736 /* Handle software interrupt used during MSI(X) test */
3737 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3739 struct s2io_nic
*sp
= dev_id
;
3741 sp
->msi_detected
= 1;
3742 wake_up(&sp
->msi_wait
);
3747 /* Test interrupt path by forcing a a software IRQ */
3748 static int s2io_test_msi(struct s2io_nic
*sp
)
3750 struct pci_dev
*pdev
= sp
->pdev
;
3751 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3755 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3758 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3759 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3763 init_waitqueue_head (&sp
->msi_wait
);
3764 sp
->msi_detected
= 0;
3766 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3767 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3768 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3769 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3770 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3772 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3774 if (!sp
->msi_detected
) {
3775 /* MSI(X) test failed, go back to INTx mode */
3776 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated"
3777 "using MSI(X) during test\n", sp
->dev
->name
,
3783 free_irq(sp
->entries
[1].vector
, sp
);
3785 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3790 static void remove_msix_isr(struct s2io_nic
*sp
)
3795 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3796 if (sp
->s2io_entries
[i
].in_use
==
3797 MSIX_REGISTERED_SUCCESS
) {
3798 int vector
= sp
->entries
[i
].vector
;
3799 void *arg
= sp
->s2io_entries
[i
].arg
;
3800 free_irq(vector
, arg
);
3805 kfree(sp
->s2io_entries
);
3807 sp
->s2io_entries
= NULL
;
3809 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3810 msi_control
&= 0xFFFE; /* Disable MSI */
3811 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3813 pci_disable_msix(sp
->pdev
);
3816 static void remove_inta_isr(struct s2io_nic
*sp
)
3818 struct net_device
*dev
= sp
->dev
;
3820 free_irq(sp
->pdev
->irq
, dev
);
3823 /* ********************************************************* *
3824 * Functions defined below concern the OS part of the driver *
3825 * ********************************************************* */
3828 * s2io_open - open entry point of the driver
3829 * @dev : pointer to the device structure.
3831 * This function is the open entry point of the driver. It mainly calls a
3832 * function to allocate Rx buffers and inserts them into the buffer
3833 * descriptors and then enables the Rx part of the NIC.
3835 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3839 static int s2io_open(struct net_device
*dev
)
3841 struct s2io_nic
*sp
= dev
->priv
;
3845 * Make sure you have link off by default every time
3846 * Nic is initialized
3848 netif_carrier_off(dev
);
3849 sp
->last_link_state
= 0;
3851 if (sp
->config
.intr_type
== MSI_X
) {
3852 int ret
= s2io_enable_msi_x(sp
);
3855 ret
= s2io_test_msi(sp
);
3856 /* rollback MSI-X, will re-enable during add_isr() */
3857 remove_msix_isr(sp
);
3862 "%s: MSI-X requested but failed to enable\n",
3864 sp
->config
.intr_type
= INTA
;
3868 /* NAPI doesn't work well with MSI(X) */
3869 if (sp
->config
.intr_type
!= INTA
) {
3871 sp
->config
.napi
= 0;
3874 /* Initialize H/W and enable interrupts */
3875 err
= s2io_card_up(sp
);
3877 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3879 goto hw_init_failed
;
3882 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
3883 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
3886 goto hw_init_failed
;
3889 netif_start_queue(dev
);
3893 if (sp
->config
.intr_type
== MSI_X
) {
3896 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
3897 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3899 if (sp
->s2io_entries
) {
3900 kfree(sp
->s2io_entries
);
3901 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
3902 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3909 * s2io_close -close entry point of the driver
3910 * @dev : device pointer.
3912 * This is the stop entry point of the driver. It needs to undo exactly
3913 * whatever was done by the open entry point,thus it's usually referred to
3914 * as the close function.Among other things this function mainly stops the
3915 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3917 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3921 static int s2io_close(struct net_device
*dev
)
3923 struct s2io_nic
*sp
= dev
->priv
;
3925 /* Return if the device is already closed *
3926 * Can happen when s2io_card_up failed in change_mtu *
3928 if (!is_s2io_card_up(sp
))
3931 netif_stop_queue(dev
);
3932 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3939 * s2io_xmit - Tx entry point of te driver
3940 * @skb : the socket buffer containing the Tx data.
3941 * @dev : device pointer.
3943 * This function is the Tx entry point of the driver. S2IO NIC supports
3944 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3945 * NOTE: when device cant queue the pkt,just the trans_start variable will
3948 * 0 on success & 1 on failure.
3951 static int s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
3953 struct s2io_nic
*sp
= dev
->priv
;
3954 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
3957 struct TxFIFO_element __iomem
*tx_fifo
;
3958 unsigned long flags
;
3960 int vlan_priority
= 0;
3961 struct mac_info
*mac_control
;
3962 struct config_param
*config
;
3964 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
3966 mac_control
= &sp
->mac_control
;
3967 config
= &sp
->config
;
3969 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
3971 if (unlikely(skb
->len
<= 0)) {
3972 DBG_PRINT(TX_DBG
, "%s:Buffer has no data..\n", dev
->name
);
3973 dev_kfree_skb_any(skb
);
3977 spin_lock_irqsave(&sp
->tx_lock
, flags
);
3978 if (!is_s2io_card_up(sp
)) {
3979 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
3981 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
3987 /* Get Fifo number to Transmit based on vlan priority */
3988 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
3989 vlan_tag
= vlan_tx_tag_get(skb
);
3990 vlan_priority
= vlan_tag
>> 13;
3991 queue
= config
->fifo_mapping
[vlan_priority
];
3994 put_off
= (u16
) mac_control
->fifos
[queue
].tx_curr_put_info
.offset
;
3995 get_off
= (u16
) mac_control
->fifos
[queue
].tx_curr_get_info
.offset
;
3996 txdp
= (struct TxD
*) mac_control
->fifos
[queue
].list_info
[put_off
].
3999 queue_len
= mac_control
->fifos
[queue
].tx_curr_put_info
.fifo_len
+ 1;
4000 /* Avoid "put" pointer going beyond "get" pointer */
4001 if (txdp
->Host_Control
||
4002 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4003 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4004 netif_stop_queue(dev
);
4006 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
4010 offload_type
= s2io_offload_type(skb
);
4011 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4012 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4013 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4015 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4017 (TXD_TX_CKO_IPV4_EN
| TXD_TX_CKO_TCP_EN
|
4020 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4021 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4022 txdp
->Control_2
|= config
->tx_intr_type
;
4024 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
4025 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4026 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4029 frg_len
= skb
->len
- skb
->data_len
;
4030 if (offload_type
== SKB_GSO_UDP
) {
4033 ufo_size
= s2io_udp_mss(skb
);
4035 txdp
->Control_1
|= TXD_UFO_EN
;
4036 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4037 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4039 sp
->ufo_in_band_v
[put_off
] =
4040 (u64
)skb_shinfo(skb
)->ip6_frag_id
;
4042 sp
->ufo_in_band_v
[put_off
] =
4043 (u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4045 txdp
->Host_Control
= (unsigned long)sp
->ufo_in_band_v
;
4046 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4048 sizeof(u64
), PCI_DMA_TODEVICE
);
4049 if((txdp
->Buffer_Pointer
== 0) ||
4050 (txdp
->Buffer_Pointer
== DMA_ERROR_CODE
))
4051 goto pci_map_failed
;
4055 txdp
->Buffer_Pointer
= pci_map_single
4056 (sp
->pdev
, skb
->data
, frg_len
, PCI_DMA_TODEVICE
);
4057 if((txdp
->Buffer_Pointer
== 0) ||
4058 (txdp
->Buffer_Pointer
== DMA_ERROR_CODE
))
4059 goto pci_map_failed
;
4061 txdp
->Host_Control
= (unsigned long) skb
;
4062 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4063 if (offload_type
== SKB_GSO_UDP
)
4064 txdp
->Control_1
|= TXD_UFO_EN
;
4066 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4067 /* For fragmented SKB. */
4068 for (i
= 0; i
< frg_cnt
; i
++) {
4069 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4070 /* A '0' length fragment will be ignored */
4074 txdp
->Buffer_Pointer
= (u64
) pci_map_page
4075 (sp
->pdev
, frag
->page
, frag
->page_offset
,
4076 frag
->size
, PCI_DMA_TODEVICE
);
4077 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4078 if (offload_type
== SKB_GSO_UDP
)
4079 txdp
->Control_1
|= TXD_UFO_EN
;
4081 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4083 if (offload_type
== SKB_GSO_UDP
)
4084 frg_cnt
++; /* as Txd0 was used for inband header */
4086 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4087 val64
= mac_control
->fifos
[queue
].list_info
[put_off
].list_phy_addr
;
4088 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4090 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4093 val64
|= TX_FIFO_SPECIAL_FUNC
;
4095 writeq(val64
, &tx_fifo
->List_Control
);
4100 if (put_off
== mac_control
->fifos
[queue
].tx_curr_put_info
.fifo_len
+ 1)
4102 mac_control
->fifos
[queue
].tx_curr_put_info
.offset
= put_off
;
4104 /* Avoid "put" pointer going beyond "get" pointer */
4105 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4106 sp
->mac_control
.stats_info
->sw_stat
.fifo_full_cnt
++;
4108 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4110 netif_stop_queue(dev
);
4112 mac_control
->stats_info
->sw_stat
.mem_allocated
+= skb
->truesize
;
4113 dev
->trans_start
= jiffies
;
4114 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
4118 stats
->pci_map_fail_cnt
++;
4119 netif_stop_queue(dev
);
4120 stats
->mem_freed
+= skb
->truesize
;
4122 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
4127 s2io_alarm_handle(unsigned long data
)
4129 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4130 struct net_device
*dev
= sp
->dev
;
4132 s2io_handle_errors(dev
);
4133 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4136 static int s2io_chk_rx_buffers(struct s2io_nic
*sp
, int rng_n
)
4138 int rxb_size
, level
;
4141 rxb_size
= atomic_read(&sp
->rx_bufs_left
[rng_n
]);
4142 level
= rx_buffer_level(sp
, rxb_size
, rng_n
);
4144 if ((level
== PANIC
) && (!TASKLET_IN_USE
)) {
4146 DBG_PRINT(INTR_DBG
, "%s: Rx BD hit ", __FUNCTION__
);
4147 DBG_PRINT(INTR_DBG
, "PANIC levels\n");
4148 if ((ret
= fill_rx_buffers(sp
, rng_n
)) == -ENOMEM
) {
4149 DBG_PRINT(INFO_DBG
, "Out of memory in %s",
4151 clear_bit(0, (&sp
->tasklet_status
));
4154 clear_bit(0, (&sp
->tasklet_status
));
4155 } else if (level
== LOW
)
4156 tasklet_schedule(&sp
->task
);
4158 } else if (fill_rx_buffers(sp
, rng_n
) == -ENOMEM
) {
4159 DBG_PRINT(INFO_DBG
, "%s:Out of memory", sp
->dev
->name
);
4160 DBG_PRINT(INFO_DBG
, " in Rx Intr!!\n");
4165 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4167 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4168 struct s2io_nic
*sp
= ring
->nic
;
4170 if (!is_s2io_card_up(sp
))
4173 rx_intr_handler(ring
);
4174 s2io_chk_rx_buffers(sp
, ring
->ring_no
);
4179 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4181 struct fifo_info
*fifo
= (struct fifo_info
*)dev_id
;
4182 struct s2io_nic
*sp
= fifo
->nic
;
4184 if (!is_s2io_card_up(sp
))
4187 tx_intr_handler(fifo
);
4190 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4192 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4195 val64
= readq(&bar0
->pic_int_status
);
4196 if (val64
& PIC_INT_GPIO
) {
4197 val64
= readq(&bar0
->gpio_int_reg
);
4198 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4199 (val64
& GPIO_INT_REG_LINK_UP
)) {
4201 * This is unstable state so clear both up/down
4202 * interrupt and adapter to re-evaluate the link state.
4204 val64
|= GPIO_INT_REG_LINK_DOWN
;
4205 val64
|= GPIO_INT_REG_LINK_UP
;
4206 writeq(val64
, &bar0
->gpio_int_reg
);
4207 val64
= readq(&bar0
->gpio_int_mask
);
4208 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4209 GPIO_INT_MASK_LINK_DOWN
);
4210 writeq(val64
, &bar0
->gpio_int_mask
);
4212 else if (val64
& GPIO_INT_REG_LINK_UP
) {
4213 val64
= readq(&bar0
->adapter_status
);
4214 /* Enable Adapter */
4215 val64
= readq(&bar0
->adapter_control
);
4216 val64
|= ADAPTER_CNTL_EN
;
4217 writeq(val64
, &bar0
->adapter_control
);
4218 val64
|= ADAPTER_LED_ON
;
4219 writeq(val64
, &bar0
->adapter_control
);
4220 if (!sp
->device_enabled_once
)
4221 sp
->device_enabled_once
= 1;
4223 s2io_link(sp
, LINK_UP
);
4225 * unmask link down interrupt and mask link-up
4228 val64
= readq(&bar0
->gpio_int_mask
);
4229 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4230 val64
|= GPIO_INT_MASK_LINK_UP
;
4231 writeq(val64
, &bar0
->gpio_int_mask
);
4233 }else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4234 val64
= readq(&bar0
->adapter_status
);
4235 s2io_link(sp
, LINK_DOWN
);
4236 /* Link is down so unmaks link up interrupt */
4237 val64
= readq(&bar0
->gpio_int_mask
);
4238 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4239 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4240 writeq(val64
, &bar0
->gpio_int_mask
);
4243 val64
= readq(&bar0
->adapter_control
);
4244 val64
= val64
&(~ADAPTER_LED_ON
);
4245 writeq(val64
, &bar0
->adapter_control
);
4248 val64
= readq(&bar0
->gpio_int_mask
);
4252 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4253 * @value: alarm bits
4254 * @addr: address value
4255 * @cnt: counter variable
4256 * Description: Check for alarm and increment the counter
4258 * 1 - if alarm bit set
4259 * 0 - if alarm bit is not set
4261 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
* addr
,
4262 unsigned long long *cnt
)
4265 val64
= readq(addr
);
4266 if ( val64
& value
) {
4267 writeq(val64
, addr
);
4276 * s2io_handle_errors - Xframe error indication handler
4277 * @nic: device private variable
4278 * Description: Handle alarms such as loss of link, single or
4279 * double ECC errors, critical and serious errors.
4283 static void s2io_handle_errors(void * dev_id
)
4285 struct net_device
*dev
= (struct net_device
*) dev_id
;
4286 struct s2io_nic
*sp
= dev
->priv
;
4287 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4288 u64 temp64
= 0,val64
=0;
4291 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4292 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4294 if (!is_s2io_card_up(sp
))
4297 if (pci_channel_offline(sp
->pdev
))
4300 memset(&sw_stat
->ring_full_cnt
, 0,
4301 sizeof(sw_stat
->ring_full_cnt
));
4303 /* Handling the XPAK counters update */
4304 if(stats
->xpak_timer_count
< 72000) {
4305 /* waiting for an hour */
4306 stats
->xpak_timer_count
++;
4308 s2io_updt_xpak_counter(dev
);
4309 /* reset the count to zero */
4310 stats
->xpak_timer_count
= 0;
4313 /* Handling link status change error Intr */
4314 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4315 val64
= readq(&bar0
->mac_rmac_err_reg
);
4316 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4317 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4318 schedule_work(&sp
->set_link_task
);
4321 /* In case of a serious error, the device will be Reset. */
4322 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4323 &sw_stat
->serious_err_cnt
))
4326 /* Check for data parity error */
4327 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4328 &sw_stat
->parity_err_cnt
))
4331 /* Check for ring full counter */
4332 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4333 val64
= readq(&bar0
->ring_bump_counter1
);
4334 for (i
=0; i
<4; i
++) {
4335 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4336 temp64
>>= 64 - ((i
+1)*16);
4337 sw_stat
->ring_full_cnt
[i
] += temp64
;
4340 val64
= readq(&bar0
->ring_bump_counter2
);
4341 for (i
=0; i
<4; i
++) {
4342 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4343 temp64
>>= 64 - ((i
+1)*16);
4344 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4348 val64
= readq(&bar0
->txdma_int_status
);
4349 /*check for pfc_err*/
4350 if (val64
& TXDMA_PFC_INT
) {
4351 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4352 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4353 PFC_PCIX_ERR
, &bar0
->pfc_err_reg
,
4354 &sw_stat
->pfc_err_cnt
))
4356 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
, &bar0
->pfc_err_reg
,
4357 &sw_stat
->pfc_err_cnt
);
4360 /*check for tda_err*/
4361 if (val64
& TXDMA_TDA_INT
) {
4362 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
4363 TDA_SM1_ERR_ALARM
, &bar0
->tda_err_reg
,
4364 &sw_stat
->tda_err_cnt
))
4366 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4367 &bar0
->tda_err_reg
, &sw_stat
->tda_err_cnt
);
4369 /*check for pcc_err*/
4370 if (val64
& TXDMA_PCC_INT
) {
4371 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
4372 | PCC_N_SERR
| PCC_6_COF_OV_ERR
4373 | PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
4374 | PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
4375 | PCC_TXB_ECC_DB_ERR
, &bar0
->pcc_err_reg
,
4376 &sw_stat
->pcc_err_cnt
))
4378 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4379 &bar0
->pcc_err_reg
, &sw_stat
->pcc_err_cnt
);
4382 /*check for tti_err*/
4383 if (val64
& TXDMA_TTI_INT
) {
4384 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
, &bar0
->tti_err_reg
,
4385 &sw_stat
->tti_err_cnt
))
4387 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4388 &bar0
->tti_err_reg
, &sw_stat
->tti_err_cnt
);
4391 /*check for lso_err*/
4392 if (val64
& TXDMA_LSO_INT
) {
4393 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
4394 | LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4395 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
))
4397 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4398 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
);
4401 /*check for tpa_err*/
4402 if (val64
& TXDMA_TPA_INT
) {
4403 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
, &bar0
->tpa_err_reg
,
4404 &sw_stat
->tpa_err_cnt
))
4406 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
, &bar0
->tpa_err_reg
,
4407 &sw_stat
->tpa_err_cnt
);
4410 /*check for sm_err*/
4411 if (val64
& TXDMA_SM_INT
) {
4412 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
, &bar0
->sm_err_reg
,
4413 &sw_stat
->sm_err_cnt
))
4417 val64
= readq(&bar0
->mac_int_status
);
4418 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4419 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4420 &bar0
->mac_tmac_err_reg
,
4421 &sw_stat
->mac_tmac_err_cnt
))
4423 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
4424 | TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
4425 &bar0
->mac_tmac_err_reg
,
4426 &sw_stat
->mac_tmac_err_cnt
);
4429 val64
= readq(&bar0
->xgxs_int_status
);
4430 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4431 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4432 &bar0
->xgxs_txgxs_err_reg
,
4433 &sw_stat
->xgxs_txgxs_err_cnt
))
4435 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4436 &bar0
->xgxs_txgxs_err_reg
,
4437 &sw_stat
->xgxs_txgxs_err_cnt
);
4440 val64
= readq(&bar0
->rxdma_int_status
);
4441 if (val64
& RXDMA_INT_RC_INT_M
) {
4442 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
4443 | RC_PRCn_SM_ERR_ALARM
|RC_FTC_SM_ERR_ALARM
,
4444 &bar0
->rc_err_reg
, &sw_stat
->rc_err_cnt
))
4446 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
4447 | RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4448 &sw_stat
->rc_err_cnt
);
4449 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
4450 | PRC_PCI_AB_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4451 &sw_stat
->prc_pcix_err_cnt
))
4453 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
| PRC_PCI_DP_WR_Rn
4454 | PRC_PCI_DP_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4455 &sw_stat
->prc_pcix_err_cnt
);
4458 if (val64
& RXDMA_INT_RPA_INT_M
) {
4459 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4460 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
))
4462 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4463 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
);
4466 if (val64
& RXDMA_INT_RDA_INT_M
) {
4467 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4468 | RDA_FRM_ECC_DB_N_AERR
| RDA_SM1_ERR_ALARM
4469 | RDA_SM0_ERR_ALARM
| RDA_RXD_ECC_DB_SERR
,
4470 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
))
4472 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
| RDA_FRM_ECC_SG_ERR
4473 | RDA_MISC_ERR
| RDA_PCIX_ERR
,
4474 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
);
4477 if (val64
& RXDMA_INT_RTI_INT_M
) {
4478 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
, &bar0
->rti_err_reg
,
4479 &sw_stat
->rti_err_cnt
))
4481 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4482 &bar0
->rti_err_reg
, &sw_stat
->rti_err_cnt
);
4485 val64
= readq(&bar0
->mac_int_status
);
4486 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4487 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4488 &bar0
->mac_rmac_err_reg
,
4489 &sw_stat
->mac_rmac_err_cnt
))
4491 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|RMAC_SINGLE_ECC_ERR
|
4492 RMAC_DOUBLE_ECC_ERR
, &bar0
->mac_rmac_err_reg
,
4493 &sw_stat
->mac_rmac_err_cnt
);
4496 val64
= readq(&bar0
->xgxs_int_status
);
4497 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4498 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4499 &bar0
->xgxs_rxgxs_err_reg
,
4500 &sw_stat
->xgxs_rxgxs_err_cnt
))
4504 val64
= readq(&bar0
->mc_int_status
);
4505 if(val64
& MC_INT_STATUS_MC_INT
) {
4506 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
, &bar0
->mc_err_reg
,
4507 &sw_stat
->mc_err_cnt
))
4510 /* Handling Ecc errors */
4511 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4512 writeq(val64
, &bar0
->mc_err_reg
);
4513 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4514 sw_stat
->double_ecc_errs
++;
4515 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4517 * Reset XframeI only if critical error
4520 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4521 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4525 sw_stat
->single_ecc_errs
++;
4531 netif_stop_queue(dev
);
4532 schedule_work(&sp
->rst_timer_task
);
4533 sw_stat
->soft_reset_cnt
++;
4538 * s2io_isr - ISR handler of the device .
4539 * @irq: the irq of the device.
4540 * @dev_id: a void pointer to the dev structure of the NIC.
4541 * Description: This function is the ISR handler of the device. It
4542 * identifies the reason for the interrupt and calls the relevant
4543 * service routines. As a contongency measure, this ISR allocates the
4544 * recv buffers, if their numbers are below the panic value which is
4545 * presently set to 25% of the original number of rcv buffers allocated.
4547 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4548 * IRQ_NONE: will be returned if interrupt is not from our device
4550 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4552 struct net_device
*dev
= (struct net_device
*) dev_id
;
4553 struct s2io_nic
*sp
= dev
->priv
;
4554 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4557 struct mac_info
*mac_control
;
4558 struct config_param
*config
;
4560 /* Pretend we handled any irq's from a disconnected card */
4561 if (pci_channel_offline(sp
->pdev
))
4564 if (!is_s2io_card_up(sp
))
4567 mac_control
= &sp
->mac_control
;
4568 config
= &sp
->config
;
4571 * Identify the cause for interrupt and call the appropriate
4572 * interrupt handler. Causes for the interrupt could be;
4577 reason
= readq(&bar0
->general_int_status
);
4579 if (unlikely(reason
== S2IO_MINUS_ONE
) ) {
4580 /* Nothing much can be done. Get out */
4584 if (reason
& (GEN_INTR_RXTRAFFIC
|
4585 GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
))
4587 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4590 if (reason
& GEN_INTR_RXTRAFFIC
) {
4591 if (likely(netif_rx_schedule_prep(dev
,
4593 __netif_rx_schedule(dev
, &sp
->napi
);
4594 writeq(S2IO_MINUS_ONE
,
4595 &bar0
->rx_traffic_mask
);
4597 writeq(S2IO_MINUS_ONE
,
4598 &bar0
->rx_traffic_int
);
4602 * rx_traffic_int reg is an R1 register, writing all 1's
4603 * will ensure that the actual interrupt causing bit
4604 * get's cleared and hence a read can be avoided.
4606 if (reason
& GEN_INTR_RXTRAFFIC
)
4607 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4609 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4610 rx_intr_handler(&mac_control
->rings
[i
]);
4614 * tx_traffic_int reg is an R1 register, writing all 1's
4615 * will ensure that the actual interrupt causing bit get's
4616 * cleared and hence a read can be avoided.
4618 if (reason
& GEN_INTR_TXTRAFFIC
)
4619 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4621 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4622 tx_intr_handler(&mac_control
->fifos
[i
]);
4624 if (reason
& GEN_INTR_TXPIC
)
4625 s2io_txpic_intr_handle(sp
);
4628 * Reallocate the buffers from the interrupt handler itself.
4630 if (!config
->napi
) {
4631 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4632 s2io_chk_rx_buffers(sp
, i
);
4634 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4635 readl(&bar0
->general_int_status
);
4641 /* The interrupt was not raised by us */
4651 static void s2io_updt_stats(struct s2io_nic
*sp
)
4653 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4657 if (is_s2io_card_up(sp
)) {
4658 /* Apprx 30us on a 133 MHz bus */
4659 val64
= SET_UPDT_CLICKS(10) |
4660 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4661 writeq(val64
, &bar0
->stat_cfg
);
4664 val64
= readq(&bar0
->stat_cfg
);
4665 if (!(val64
& s2BIT(0)))
4669 break; /* Updt failed */
4675 * s2io_get_stats - Updates the device statistics structure.
4676 * @dev : pointer to the device structure.
4678 * This function updates the device statistics structure in the s2io_nic
4679 * structure and returns a pointer to the same.
4681 * pointer to the updated net_device_stats structure.
4684 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4686 struct s2io_nic
*sp
= dev
->priv
;
4687 struct mac_info
*mac_control
;
4688 struct config_param
*config
;
4691 mac_control
= &sp
->mac_control
;
4692 config
= &sp
->config
;
4694 /* Configure Stats for immediate updt */
4695 s2io_updt_stats(sp
);
4697 sp
->stats
.tx_packets
=
4698 le32_to_cpu(mac_control
->stats_info
->tmac_frms
);
4699 sp
->stats
.tx_errors
=
4700 le32_to_cpu(mac_control
->stats_info
->tmac_any_err_frms
);
4701 sp
->stats
.rx_errors
=
4702 le64_to_cpu(mac_control
->stats_info
->rmac_drop_frms
);
4703 sp
->stats
.multicast
=
4704 le32_to_cpu(mac_control
->stats_info
->rmac_vld_mcst_frms
);
4705 sp
->stats
.rx_length_errors
=
4706 le64_to_cpu(mac_control
->stats_info
->rmac_long_frms
);
4708 return (&sp
->stats
);
4712 * s2io_set_multicast - entry point for multicast address enable/disable.
4713 * @dev : pointer to the device structure
4715 * This function is a driver entry point which gets called by the kernel
4716 * whenever multicast addresses must be enabled/disabled. This also gets
4717 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4718 * determine, if multicast address must be enabled or if promiscuous mode
4719 * is to be disabled etc.
4724 static void s2io_set_multicast(struct net_device
*dev
)
4727 struct dev_mc_list
*mclist
;
4728 struct s2io_nic
*sp
= dev
->priv
;
4729 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4730 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4732 u64 dis_addr
= 0xffffffffffffULL
, mac_addr
= 0;
4735 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4736 /* Enable all Multicast addresses */
4737 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4738 &bar0
->rmac_addr_data0_mem
);
4739 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4740 &bar0
->rmac_addr_data1_mem
);
4741 val64
= RMAC_ADDR_CMD_MEM_WE
|
4742 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4743 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET
);
4744 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4745 /* Wait till command completes */
4746 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4747 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4751 sp
->all_multi_pos
= MAC_MC_ALL_MC_ADDR_OFFSET
;
4752 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4753 /* Disable all Multicast addresses */
4754 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4755 &bar0
->rmac_addr_data0_mem
);
4756 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4757 &bar0
->rmac_addr_data1_mem
);
4758 val64
= RMAC_ADDR_CMD_MEM_WE
|
4759 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4760 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4761 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4762 /* Wait till command completes */
4763 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4764 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4768 sp
->all_multi_pos
= 0;
4771 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
4772 /* Put the NIC into promiscuous mode */
4773 add
= &bar0
->mac_cfg
;
4774 val64
= readq(&bar0
->mac_cfg
);
4775 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
4777 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4778 writel((u32
) val64
, add
);
4779 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4780 writel((u32
) (val64
>> 32), (add
+ 4));
4782 if (vlan_tag_strip
!= 1) {
4783 val64
= readq(&bar0
->rx_pa_cfg
);
4784 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
4785 writeq(val64
, &bar0
->rx_pa_cfg
);
4786 vlan_strip_flag
= 0;
4789 val64
= readq(&bar0
->mac_cfg
);
4790 sp
->promisc_flg
= 1;
4791 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
4793 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
4794 /* Remove the NIC from promiscuous mode */
4795 add
= &bar0
->mac_cfg
;
4796 val64
= readq(&bar0
->mac_cfg
);
4797 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
4799 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4800 writel((u32
) val64
, add
);
4801 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4802 writel((u32
) (val64
>> 32), (add
+ 4));
4804 if (vlan_tag_strip
!= 0) {
4805 val64
= readq(&bar0
->rx_pa_cfg
);
4806 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
4807 writeq(val64
, &bar0
->rx_pa_cfg
);
4808 vlan_strip_flag
= 1;
4811 val64
= readq(&bar0
->mac_cfg
);
4812 sp
->promisc_flg
= 0;
4813 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n",
4817 /* Update individual M_CAST address list */
4818 if ((!sp
->m_cast_flg
) && dev
->mc_count
) {
4820 (MAX_ADDRS_SUPPORTED
- MAC_MC_ADDR_START_OFFSET
- 1)) {
4821 DBG_PRINT(ERR_DBG
, "%s: No more Rx filters ",
4823 DBG_PRINT(ERR_DBG
, "can be added, please enable ");
4824 DBG_PRINT(ERR_DBG
, "ALL_MULTI instead\n");
4828 prev_cnt
= sp
->mc_addr_count
;
4829 sp
->mc_addr_count
= dev
->mc_count
;
4831 /* Clear out the previous list of Mc in the H/W. */
4832 for (i
= 0; i
< prev_cnt
; i
++) {
4833 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4834 &bar0
->rmac_addr_data0_mem
);
4835 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4836 &bar0
->rmac_addr_data1_mem
);
4837 val64
= RMAC_ADDR_CMD_MEM_WE
|
4838 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4839 RMAC_ADDR_CMD_MEM_OFFSET
4840 (MAC_MC_ADDR_START_OFFSET
+ i
);
4841 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4843 /* Wait for command completes */
4844 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4845 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4847 DBG_PRINT(ERR_DBG
, "%s: Adding ",
4849 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
4854 /* Create the new Rx filter list and update the same in H/W. */
4855 for (i
= 0, mclist
= dev
->mc_list
; i
< dev
->mc_count
;
4856 i
++, mclist
= mclist
->next
) {
4857 memcpy(sp
->usr_addrs
[i
].addr
, mclist
->dmi_addr
,
4860 for (j
= 0; j
< ETH_ALEN
; j
++) {
4861 mac_addr
|= mclist
->dmi_addr
[j
];
4865 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
4866 &bar0
->rmac_addr_data0_mem
);
4867 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4868 &bar0
->rmac_addr_data1_mem
);
4869 val64
= RMAC_ADDR_CMD_MEM_WE
|
4870 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4871 RMAC_ADDR_CMD_MEM_OFFSET
4872 (i
+ MAC_MC_ADDR_START_OFFSET
);
4873 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4875 /* Wait for command completes */
4876 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4877 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4879 DBG_PRINT(ERR_DBG
, "%s: Adding ",
4881 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
4888 /* add unicast MAC address to CAM */
4889 static int do_s2io_add_unicast(struct s2io_nic
*sp
, u64 addr
, int off
)
4892 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4894 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
4895 &bar0
->rmac_addr_data0_mem
);
4898 RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4899 RMAC_ADDR_CMD_MEM_OFFSET(off
);
4900 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4902 /* Wait till command completes */
4903 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4904 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4906 DBG_PRINT(INFO_DBG
, "add_mac_addr failed\n");
4913 * s2io_set_mac_addr driver entry point
4915 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
4917 struct sockaddr
*addr
= p
;
4919 if (!is_valid_ether_addr(addr
->sa_data
))
4922 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
4924 /* store the MAC address in CAM */
4925 return (do_s2io_prog_unicast(dev
, dev
->dev_addr
));
4929 * do_s2io_prog_unicast - Programs the Xframe mac address
4930 * @dev : pointer to the device structure.
4931 * @addr: a uchar pointer to the new mac address which is to be set.
4932 * Description : This procedure will program the Xframe to receive
4933 * frames with new Mac Address
4934 * Return value: SUCCESS on success and an appropriate (-)ve integer
4935 * as defined in errno.h file on failure.
4937 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
4939 struct s2io_nic
*sp
= dev
->priv
;
4940 register u64 mac_addr
= 0, perm_addr
= 0;
4944 * Set the new MAC address as the new unicast filter and reflect this
4945 * change on the device address registered with the OS. It will be
4948 for (i
= 0; i
< ETH_ALEN
; i
++) {
4950 mac_addr
|= addr
[i
];
4952 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
4955 /* check if the dev_addr is different than perm_addr */
4956 if (mac_addr
== perm_addr
)
4959 /* Update the internal structure with this new mac address */
4960 do_s2io_copy_mac_addr(sp
, 0, mac_addr
);
4961 return (do_s2io_add_unicast(sp
, mac_addr
, 0));
4965 * s2io_ethtool_sset - Sets different link parameters.
4966 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4967 * @info: pointer to the structure with parameters given by ethtool to set
4970 * The function sets different link parameters provided by the user onto
4976 static int s2io_ethtool_sset(struct net_device
*dev
,
4977 struct ethtool_cmd
*info
)
4979 struct s2io_nic
*sp
= dev
->priv
;
4980 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
4981 (info
->speed
!= SPEED_10000
) || (info
->duplex
!= DUPLEX_FULL
))
4984 s2io_close(sp
->dev
);
4992 * s2io_ethtol_gset - Return link specific information.
4993 * @sp : private member of the device structure, pointer to the
4994 * s2io_nic structure.
4995 * @info : pointer to the structure with parameters given by ethtool
4996 * to return link information.
4998 * Returns link specific information like speed, duplex etc.. to ethtool.
5000 * return 0 on success.
5003 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5005 struct s2io_nic
*sp
= dev
->priv
;
5006 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5007 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5008 info
->port
= PORT_FIBRE
;
5010 /* info->transceiver */
5011 info
->transceiver
= XCVR_EXTERNAL
;
5013 if (netif_carrier_ok(sp
->dev
)) {
5014 info
->speed
= 10000;
5015 info
->duplex
= DUPLEX_FULL
;
5021 info
->autoneg
= AUTONEG_DISABLE
;
5026 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5027 * @sp : private member of the device structure, which is a pointer to the
5028 * s2io_nic structure.
5029 * @info : pointer to the structure with parameters given by ethtool to
5030 * return driver information.
5032 * Returns driver specefic information like name, version etc.. to ethtool.
5037 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5038 struct ethtool_drvinfo
*info
)
5040 struct s2io_nic
*sp
= dev
->priv
;
5042 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5043 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5044 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
5045 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5046 info
->regdump_len
= XENA_REG_SPACE
;
5047 info
->eedump_len
= XENA_EEPROM_SPACE
;
5051 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5052 * @sp: private member of the device structure, which is a pointer to the
5053 * s2io_nic structure.
5054 * @regs : pointer to the structure with parameters given by ethtool for
5055 * dumping the registers.
5056 * @reg_space: The input argumnet into which all the registers are dumped.
5058 * Dumps the entire register space of xFrame NIC into the user given
5064 static void s2io_ethtool_gregs(struct net_device
*dev
,
5065 struct ethtool_regs
*regs
, void *space
)
5069 u8
*reg_space
= (u8
*) space
;
5070 struct s2io_nic
*sp
= dev
->priv
;
5072 regs
->len
= XENA_REG_SPACE
;
5073 regs
->version
= sp
->pdev
->subsystem_device
;
5075 for (i
= 0; i
< regs
->len
; i
+= 8) {
5076 reg
= readq(sp
->bar0
+ i
);
5077 memcpy((reg_space
+ i
), ®
, 8);
5082 * s2io_phy_id - timer function that alternates adapter LED.
5083 * @data : address of the private member of the device structure, which
5084 * is a pointer to the s2io_nic structure, provided as an u32.
5085 * Description: This is actually the timer function that alternates the
5086 * adapter LED bit of the adapter control bit to set/reset every time on
5087 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5088 * once every second.
5090 static void s2io_phy_id(unsigned long data
)
5092 struct s2io_nic
*sp
= (struct s2io_nic
*) data
;
5093 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5097 subid
= sp
->pdev
->subsystem_device
;
5098 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5099 ((subid
& 0xFF) >= 0x07)) {
5100 val64
= readq(&bar0
->gpio_control
);
5101 val64
^= GPIO_CTRL_GPIO_0
;
5102 writeq(val64
, &bar0
->gpio_control
);
5104 val64
= readq(&bar0
->adapter_control
);
5105 val64
^= ADAPTER_LED_ON
;
5106 writeq(val64
, &bar0
->adapter_control
);
5109 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
5113 * s2io_ethtool_idnic - To physically identify the nic on the system.
5114 * @sp : private member of the device structure, which is a pointer to the
5115 * s2io_nic structure.
5116 * @id : pointer to the structure with identification parameters given by
5118 * Description: Used to physically identify the NIC on the system.
5119 * The Link LED will blink for a time specified by the user for
5121 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5122 * identification is possible only if it's link is up.
5124 * int , returns 0 on success
5127 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
5129 u64 val64
= 0, last_gpio_ctrl_val
;
5130 struct s2io_nic
*sp
= dev
->priv
;
5131 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5134 subid
= sp
->pdev
->subsystem_device
;
5135 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5136 if ((sp
->device_type
== XFRAME_I_DEVICE
) &&
5137 ((subid
& 0xFF) < 0x07)) {
5138 val64
= readq(&bar0
->adapter_control
);
5139 if (!(val64
& ADAPTER_CNTL_EN
)) {
5141 "Adapter Link down, cannot blink LED\n");
5145 if (sp
->id_timer
.function
== NULL
) {
5146 init_timer(&sp
->id_timer
);
5147 sp
->id_timer
.function
= s2io_phy_id
;
5148 sp
->id_timer
.data
= (unsigned long) sp
;
5150 mod_timer(&sp
->id_timer
, jiffies
);
5152 msleep_interruptible(data
* HZ
);
5154 msleep_interruptible(MAX_FLICKER_TIME
);
5155 del_timer_sync(&sp
->id_timer
);
5157 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
5158 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
5159 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5165 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5166 struct ethtool_ringparam
*ering
)
5168 struct s2io_nic
*sp
= dev
->priv
;
5169 int i
,tx_desc_count
=0,rx_desc_count
=0;
5171 if (sp
->rxd_mode
== RXD_MODE_1
)
5172 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5173 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5174 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5176 ering
->tx_max_pending
= MAX_TX_DESC
;
5177 for (i
= 0 ; i
< sp
->config
.tx_fifo_num
; i
++)
5178 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5180 DBG_PRINT(INFO_DBG
,"\nmax txds : %d\n",sp
->config
.max_txds
);
5181 ering
->tx_pending
= tx_desc_count
;
5183 for (i
= 0 ; i
< sp
->config
.rx_ring_num
; i
++)
5184 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5186 ering
->rx_pending
= rx_desc_count
;
5188 ering
->rx_mini_max_pending
= 0;
5189 ering
->rx_mini_pending
= 0;
5190 if(sp
->rxd_mode
== RXD_MODE_1
)
5191 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5192 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5193 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5194 ering
->rx_jumbo_pending
= rx_desc_count
;
5198 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5199 * @sp : private member of the device structure, which is a pointer to the
5200 * s2io_nic structure.
5201 * @ep : pointer to the structure with pause parameters given by ethtool.
5203 * Returns the Pause frame generation and reception capability of the NIC.
5207 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5208 struct ethtool_pauseparam
*ep
)
5211 struct s2io_nic
*sp
= dev
->priv
;
5212 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5214 val64
= readq(&bar0
->rmac_pause_cfg
);
5215 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5216 ep
->tx_pause
= TRUE
;
5217 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5218 ep
->rx_pause
= TRUE
;
5219 ep
->autoneg
= FALSE
;
5223 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5224 * @sp : private member of the device structure, which is a pointer to the
5225 * s2io_nic structure.
5226 * @ep : pointer to the structure with pause parameters given by ethtool.
5228 * It can be used to set or reset Pause frame generation or reception
5229 * support of the NIC.
5231 * int, returns 0 on Success
5234 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5235 struct ethtool_pauseparam
*ep
)
5238 struct s2io_nic
*sp
= dev
->priv
;
5239 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5241 val64
= readq(&bar0
->rmac_pause_cfg
);
5243 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5245 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5247 val64
|= RMAC_PAUSE_RX_ENABLE
;
5249 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5250 writeq(val64
, &bar0
->rmac_pause_cfg
);
5255 * read_eeprom - reads 4 bytes of data from user given offset.
5256 * @sp : private member of the device structure, which is a pointer to the
5257 * s2io_nic structure.
5258 * @off : offset at which the data must be written
5259 * @data : Its an output parameter where the data read at the given
5262 * Will read 4 bytes of data from the user given offset and return the
5264 * NOTE: Will allow to read only part of the EEPROM visible through the
5267 * -1 on failure and 0 on success.
5270 #define S2IO_DEV_ID 5
5271 static int read_eeprom(struct s2io_nic
* sp
, int off
, u64
* data
)
5276 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5278 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5279 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5280 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ
|
5281 I2C_CONTROL_CNTL_START
;
5282 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5284 while (exit_cnt
< 5) {
5285 val64
= readq(&bar0
->i2c_control
);
5286 if (I2C_CONTROL_CNTL_END(val64
)) {
5287 *data
= I2C_CONTROL_GET_DATA(val64
);
5296 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5297 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5298 SPI_CONTROL_BYTECNT(0x3) |
5299 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5300 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5301 val64
|= SPI_CONTROL_REQ
;
5302 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5303 while (exit_cnt
< 5) {
5304 val64
= readq(&bar0
->spi_control
);
5305 if (val64
& SPI_CONTROL_NACK
) {
5308 } else if (val64
& SPI_CONTROL_DONE
) {
5309 *data
= readq(&bar0
->spi_data
);
5322 * write_eeprom - actually writes the relevant part of the data value.
5323 * @sp : private member of the device structure, which is a pointer to the
5324 * s2io_nic structure.
5325 * @off : offset at which the data must be written
5326 * @data : The data that is to be written
5327 * @cnt : Number of bytes of the data that are actually to be written into
5328 * the Eeprom. (max of 3)
5330 * Actually writes the relevant part of the data value into the Eeprom
5331 * through the I2C bus.
5333 * 0 on success, -1 on failure.
5336 static int write_eeprom(struct s2io_nic
* sp
, int off
, u64 data
, int cnt
)
5338 int exit_cnt
= 0, ret
= -1;
5340 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5342 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5343 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5344 I2C_CONTROL_BYTE_CNT(cnt
) | I2C_CONTROL_SET_DATA((u32
)data
) |
5345 I2C_CONTROL_CNTL_START
;
5346 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5348 while (exit_cnt
< 5) {
5349 val64
= readq(&bar0
->i2c_control
);
5350 if (I2C_CONTROL_CNTL_END(val64
)) {
5351 if (!(val64
& I2C_CONTROL_NACK
))
5360 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5361 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5362 writeq(SPI_DATA_WRITE(data
,(cnt
<<3)), &bar0
->spi_data
);
5364 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5365 SPI_CONTROL_BYTECNT(write_cnt
) |
5366 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5367 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5368 val64
|= SPI_CONTROL_REQ
;
5369 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5370 while (exit_cnt
< 5) {
5371 val64
= readq(&bar0
->spi_control
);
5372 if (val64
& SPI_CONTROL_NACK
) {
5375 } else if (val64
& SPI_CONTROL_DONE
) {
5385 static void s2io_vpd_read(struct s2io_nic
*nic
)
5389 int i
=0, cnt
, fail
= 0;
5390 int vpd_addr
= 0x80;
5392 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5393 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5397 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5400 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5402 vpd_data
= kmalloc(256, GFP_KERNEL
);
5404 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
5407 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
+= 256;
5409 for (i
= 0; i
< 256; i
+=4 ) {
5410 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5411 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5412 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5413 for (cnt
= 0; cnt
<5; cnt
++) {
5415 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5420 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5424 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5425 (u32
*)&vpd_data
[i
]);
5429 /* read serial number of adapter */
5430 for (cnt
= 0; cnt
< 256; cnt
++) {
5431 if ((vpd_data
[cnt
] == 'S') &&
5432 (vpd_data
[cnt
+1] == 'N') &&
5433 (vpd_data
[cnt
+2] < VPD_STRING_LEN
)) {
5434 memset(nic
->serial_num
, 0, VPD_STRING_LEN
);
5435 memcpy(nic
->serial_num
, &vpd_data
[cnt
+ 3],
5442 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5443 memset(nic
->product_name
, 0, vpd_data
[1]);
5444 memcpy(nic
->product_name
, &vpd_data
[3], vpd_data
[1]);
5447 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= 256;
5451 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5452 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5453 * @eeprom : pointer to the user level structure provided by ethtool,
5454 * containing all relevant information.
5455 * @data_buf : user defined value to be written into Eeprom.
5456 * Description: Reads the values stored in the Eeprom at given offset
5457 * for a given length. Stores these values int the input argument data
5458 * buffer 'data_buf' and returns these to the caller (ethtool.)
5463 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5464 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5468 struct s2io_nic
*sp
= dev
->priv
;
5470 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5472 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5473 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5475 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5476 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5477 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5481 memcpy((data_buf
+ i
), &valid
, 4);
5487 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5488 * @sp : private member of the device structure, which is a pointer to the
5489 * s2io_nic structure.
5490 * @eeprom : pointer to the user level structure provided by ethtool,
5491 * containing all relevant information.
5492 * @data_buf ; user defined value to be written into Eeprom.
5494 * Tries to write the user provided value in the Eeprom, at the offset
5495 * given by the user.
5497 * 0 on success, -EFAULT on failure.
5500 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5501 struct ethtool_eeprom
*eeprom
,
5504 int len
= eeprom
->len
, cnt
= 0;
5505 u64 valid
= 0, data
;
5506 struct s2io_nic
*sp
= dev
->priv
;
5508 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5510 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5511 DBG_PRINT(ERR_DBG
, "is wrong, Its not 0x%x\n",
5517 data
= (u32
) data_buf
[cnt
] & 0x000000FF;
5519 valid
= (u32
) (data
<< 24);
5523 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5525 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5527 "write into the specified offset\n");
5538 * s2io_register_test - reads and writes into all clock domains.
5539 * @sp : private member of the device structure, which is a pointer to the
5540 * s2io_nic structure.
5541 * @data : variable that returns the result of each of the test conducted b
5544 * Read and write into all clock domains. The NIC has 3 clock domains,
5545 * see that registers in all the three regions are accessible.
5550 static int s2io_register_test(struct s2io_nic
* sp
, uint64_t * data
)
5552 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5553 u64 val64
= 0, exp_val
;
5556 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5557 if (val64
!= 0x123456789abcdefULL
) {
5559 DBG_PRINT(INFO_DBG
, "Read Test level 1 fails\n");
5562 val64
= readq(&bar0
->rmac_pause_cfg
);
5563 if (val64
!= 0xc000ffff00000000ULL
) {
5565 DBG_PRINT(INFO_DBG
, "Read Test level 2 fails\n");
5568 val64
= readq(&bar0
->rx_queue_cfg
);
5569 if (sp
->device_type
== XFRAME_II_DEVICE
)
5570 exp_val
= 0x0404040404040404ULL
;
5572 exp_val
= 0x0808080808080808ULL
;
5573 if (val64
!= exp_val
) {
5575 DBG_PRINT(INFO_DBG
, "Read Test level 3 fails\n");
5578 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5579 if (val64
!= 0x000000001923141EULL
) {
5581 DBG_PRINT(INFO_DBG
, "Read Test level 4 fails\n");
5584 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5585 writeq(val64
, &bar0
->xmsi_data
);
5586 val64
= readq(&bar0
->xmsi_data
);
5587 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5589 DBG_PRINT(ERR_DBG
, "Write Test level 1 fails\n");
5592 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5593 writeq(val64
, &bar0
->xmsi_data
);
5594 val64
= readq(&bar0
->xmsi_data
);
5595 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5597 DBG_PRINT(ERR_DBG
, "Write Test level 2 fails\n");
5605 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5606 * @sp : private member of the device structure, which is a pointer to the
5607 * s2io_nic structure.
5608 * @data:variable that returns the result of each of the test conducted by
5611 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5617 static int s2io_eeprom_test(struct s2io_nic
* sp
, uint64_t * data
)
5620 u64 ret_data
, org_4F0
, org_7F0
;
5621 u8 saved_4F0
= 0, saved_7F0
= 0;
5622 struct net_device
*dev
= sp
->dev
;
5624 /* Test Write Error at offset 0 */
5625 /* Note that SPI interface allows write access to all areas
5626 * of EEPROM. Hence doing all negative testing only for Xframe I.
5628 if (sp
->device_type
== XFRAME_I_DEVICE
)
5629 if (!write_eeprom(sp
, 0, 0, 3))
5632 /* Save current values at offsets 0x4F0 and 0x7F0 */
5633 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
5635 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
5638 /* Test Write at offset 4f0 */
5639 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
5641 if (read_eeprom(sp
, 0x4F0, &ret_data
))
5644 if (ret_data
!= 0x012345) {
5645 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
5646 "Data written %llx Data read %llx\n",
5647 dev
->name
, (unsigned long long)0x12345,
5648 (unsigned long long)ret_data
);
5652 /* Reset the EEPROM data go FFFF */
5653 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
5655 /* Test Write Request Error at offset 0x7c */
5656 if (sp
->device_type
== XFRAME_I_DEVICE
)
5657 if (!write_eeprom(sp
, 0x07C, 0, 3))
5660 /* Test Write Request at offset 0x7f0 */
5661 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
5663 if (read_eeprom(sp
, 0x7F0, &ret_data
))
5666 if (ret_data
!= 0x012345) {
5667 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
5668 "Data written %llx Data read %llx\n",
5669 dev
->name
, (unsigned long long)0x12345,
5670 (unsigned long long)ret_data
);
5674 /* Reset the EEPROM data go FFFF */
5675 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
5677 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5678 /* Test Write Error at offset 0x80 */
5679 if (!write_eeprom(sp
, 0x080, 0, 3))
5682 /* Test Write Error at offset 0xfc */
5683 if (!write_eeprom(sp
, 0x0FC, 0, 3))
5686 /* Test Write Error at offset 0x100 */
5687 if (!write_eeprom(sp
, 0x100, 0, 3))
5690 /* Test Write Error at offset 4ec */
5691 if (!write_eeprom(sp
, 0x4EC, 0, 3))
5695 /* Restore values at offsets 0x4F0 and 0x7F0 */
5697 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
5699 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
5706 * s2io_bist_test - invokes the MemBist test of the card .
5707 * @sp : private member of the device structure, which is a pointer to the
5708 * s2io_nic structure.
5709 * @data:variable that returns the result of each of the test conducted by
5712 * This invokes the MemBist test of the card. We give around
5713 * 2 secs time for the Test to complete. If it's still not complete
5714 * within this peiod, we consider that the test failed.
5716 * 0 on success and -1 on failure.
5719 static int s2io_bist_test(struct s2io_nic
* sp
, uint64_t * data
)
5722 int cnt
= 0, ret
= -1;
5724 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
5725 bist
|= PCI_BIST_START
;
5726 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
5729 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
5730 if (!(bist
& PCI_BIST_START
)) {
5731 *data
= (bist
& PCI_BIST_CODE_MASK
);
5743 * s2io-link_test - verifies the link state of the nic
5744 * @sp ; private member of the device structure, which is a pointer to the
5745 * s2io_nic structure.
5746 * @data: variable that returns the result of each of the test conducted by
5749 * The function verifies the link state of the NIC and updates the input
5750 * argument 'data' appropriately.
5755 static int s2io_link_test(struct s2io_nic
* sp
, uint64_t * data
)
5757 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5760 val64
= readq(&bar0
->adapter_status
);
5761 if(!(LINK_IS_UP(val64
)))
5770 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5771 * @sp - private member of the device structure, which is a pointer to the
5772 * s2io_nic structure.
5773 * @data - variable that returns the result of each of the test
5774 * conducted by the driver.
5776 * This is one of the offline test that tests the read and write
5777 * access to the RldRam chip on the NIC.
5782 static int s2io_rldram_test(struct s2io_nic
* sp
, uint64_t * data
)
5784 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5786 int cnt
, iteration
= 0, test_fail
= 0;
5788 val64
= readq(&bar0
->adapter_control
);
5789 val64
&= ~ADAPTER_ECC_EN
;
5790 writeq(val64
, &bar0
->adapter_control
);
5792 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5793 val64
|= MC_RLDRAM_TEST_MODE
;
5794 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5796 val64
= readq(&bar0
->mc_rldram_mrs
);
5797 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
5798 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
5800 val64
|= MC_RLDRAM_MRS_ENABLE
;
5801 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
5803 while (iteration
< 2) {
5804 val64
= 0x55555555aaaa0000ULL
;
5805 if (iteration
== 1) {
5806 val64
^= 0xFFFFFFFFFFFF0000ULL
;
5808 writeq(val64
, &bar0
->mc_rldram_test_d0
);
5810 val64
= 0xaaaa5a5555550000ULL
;
5811 if (iteration
== 1) {
5812 val64
^= 0xFFFFFFFFFFFF0000ULL
;
5814 writeq(val64
, &bar0
->mc_rldram_test_d1
);
5816 val64
= 0x55aaaaaaaa5a0000ULL
;
5817 if (iteration
== 1) {
5818 val64
^= 0xFFFFFFFFFFFF0000ULL
;
5820 writeq(val64
, &bar0
->mc_rldram_test_d2
);
5822 val64
= (u64
) (0x0000003ffffe0100ULL
);
5823 writeq(val64
, &bar0
->mc_rldram_test_add
);
5825 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_WRITE
|
5827 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5829 for (cnt
= 0; cnt
< 5; cnt
++) {
5830 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5831 if (val64
& MC_RLDRAM_TEST_DONE
)
5839 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
5840 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5842 for (cnt
= 0; cnt
< 5; cnt
++) {
5843 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5844 if (val64
& MC_RLDRAM_TEST_DONE
)
5852 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5853 if (!(val64
& MC_RLDRAM_TEST_PASS
))
5861 /* Bring the adapter out of test mode */
5862 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
5868 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5869 * @sp : private member of the device structure, which is a pointer to the
5870 * s2io_nic structure.
5871 * @ethtest : pointer to a ethtool command specific structure that will be
5872 * returned to the user.
5873 * @data : variable that returns the result of each of the test
5874 * conducted by the driver.
5876 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5877 * the health of the card.
5882 static void s2io_ethtool_test(struct net_device
*dev
,
5883 struct ethtool_test
*ethtest
,
5886 struct s2io_nic
*sp
= dev
->priv
;
5887 int orig_state
= netif_running(sp
->dev
);
5889 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
5890 /* Offline Tests. */
5892 s2io_close(sp
->dev
);
5894 if (s2io_register_test(sp
, &data
[0]))
5895 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5899 if (s2io_rldram_test(sp
, &data
[3]))
5900 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5904 if (s2io_eeprom_test(sp
, &data
[1]))
5905 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5907 if (s2io_bist_test(sp
, &data
[4]))
5908 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5918 "%s: is not up, cannot run test\n",
5927 if (s2io_link_test(sp
, &data
[2]))
5928 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5937 static void s2io_get_ethtool_stats(struct net_device
*dev
,
5938 struct ethtool_stats
*estats
,
5942 struct s2io_nic
*sp
= dev
->priv
;
5943 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
5945 s2io_updt_stats(sp
);
5947 (u64
)le32_to_cpu(stat_info
->tmac_frms_oflow
) << 32 |
5948 le32_to_cpu(stat_info
->tmac_frms
);
5950 (u64
)le32_to_cpu(stat_info
->tmac_data_octets_oflow
) << 32 |
5951 le32_to_cpu(stat_info
->tmac_data_octets
);
5952 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_drop_frms
);
5954 (u64
)le32_to_cpu(stat_info
->tmac_mcst_frms_oflow
) << 32 |
5955 le32_to_cpu(stat_info
->tmac_mcst_frms
);
5957 (u64
)le32_to_cpu(stat_info
->tmac_bcst_frms_oflow
) << 32 |
5958 le32_to_cpu(stat_info
->tmac_bcst_frms
);
5959 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_pause_ctrl_frms
);
5961 (u64
)le32_to_cpu(stat_info
->tmac_ttl_octets_oflow
) << 32 |
5962 le32_to_cpu(stat_info
->tmac_ttl_octets
);
5964 (u64
)le32_to_cpu(stat_info
->tmac_ucst_frms_oflow
) << 32 |
5965 le32_to_cpu(stat_info
->tmac_ucst_frms
);
5967 (u64
)le32_to_cpu(stat_info
->tmac_nucst_frms_oflow
) << 32 |
5968 le32_to_cpu(stat_info
->tmac_nucst_frms
);
5970 (u64
)le32_to_cpu(stat_info
->tmac_any_err_frms_oflow
) << 32 |
5971 le32_to_cpu(stat_info
->tmac_any_err_frms
);
5972 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_ttl_less_fb_octets
);
5973 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_vld_ip_octets
);
5975 (u64
)le32_to_cpu(stat_info
->tmac_vld_ip_oflow
) << 32 |
5976 le32_to_cpu(stat_info
->tmac_vld_ip
);
5978 (u64
)le32_to_cpu(stat_info
->tmac_drop_ip_oflow
) << 32 |
5979 le32_to_cpu(stat_info
->tmac_drop_ip
);
5981 (u64
)le32_to_cpu(stat_info
->tmac_icmp_oflow
) << 32 |
5982 le32_to_cpu(stat_info
->tmac_icmp
);
5984 (u64
)le32_to_cpu(stat_info
->tmac_rst_tcp_oflow
) << 32 |
5985 le32_to_cpu(stat_info
->tmac_rst_tcp
);
5986 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_tcp
);
5987 tmp_stats
[i
++] = (u64
)le32_to_cpu(stat_info
->tmac_udp_oflow
) << 32 |
5988 le32_to_cpu(stat_info
->tmac_udp
);
5990 (u64
)le32_to_cpu(stat_info
->rmac_vld_frms_oflow
) << 32 |
5991 le32_to_cpu(stat_info
->rmac_vld_frms
);
5993 (u64
)le32_to_cpu(stat_info
->rmac_data_octets_oflow
) << 32 |
5994 le32_to_cpu(stat_info
->rmac_data_octets
);
5995 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_fcs_err_frms
);
5996 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_drop_frms
);
5998 (u64
)le32_to_cpu(stat_info
->rmac_vld_mcst_frms_oflow
) << 32 |
5999 le32_to_cpu(stat_info
->rmac_vld_mcst_frms
);
6001 (u64
)le32_to_cpu(stat_info
->rmac_vld_bcst_frms_oflow
) << 32 |
6002 le32_to_cpu(stat_info
->rmac_vld_bcst_frms
);
6003 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_in_rng_len_err_frms
);
6004 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_out_rng_len_err_frms
);
6005 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_long_frms
);
6006 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_pause_ctrl_frms
);
6007 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_unsup_ctrl_frms
);
6009 (u64
)le32_to_cpu(stat_info
->rmac_ttl_octets_oflow
) << 32 |
6010 le32_to_cpu(stat_info
->rmac_ttl_octets
);
6012 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ucst_frms_oflow
)
6013 << 32 | le32_to_cpu(stat_info
->rmac_accepted_ucst_frms
);
6015 (u64
)le32_to_cpu(stat_info
->rmac_accepted_nucst_frms_oflow
)
6016 << 32 | le32_to_cpu(stat_info
->rmac_accepted_nucst_frms
);
6018 (u64
)le32_to_cpu(stat_info
->rmac_discarded_frms_oflow
) << 32 |
6019 le32_to_cpu(stat_info
->rmac_discarded_frms
);
6021 (u64
)le32_to_cpu(stat_info
->rmac_drop_events_oflow
)
6022 << 32 | le32_to_cpu(stat_info
->rmac_drop_events
);
6023 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_less_fb_octets
);
6024 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_frms
);
6026 (u64
)le32_to_cpu(stat_info
->rmac_usized_frms_oflow
) << 32 |
6027 le32_to_cpu(stat_info
->rmac_usized_frms
);
6029 (u64
)le32_to_cpu(stat_info
->rmac_osized_frms_oflow
) << 32 |
6030 le32_to_cpu(stat_info
->rmac_osized_frms
);
6032 (u64
)le32_to_cpu(stat_info
->rmac_frag_frms_oflow
) << 32 |
6033 le32_to_cpu(stat_info
->rmac_frag_frms
);
6035 (u64
)le32_to_cpu(stat_info
->rmac_jabber_frms_oflow
) << 32 |
6036 le32_to_cpu(stat_info
->rmac_jabber_frms
);
6037 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_64_frms
);
6038 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_65_127_frms
);
6039 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_128_255_frms
);
6040 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_256_511_frms
);
6041 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_512_1023_frms
);
6042 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_1024_1518_frms
);
6044 (u64
)le32_to_cpu(stat_info
->rmac_ip_oflow
) << 32 |
6045 le32_to_cpu(stat_info
->rmac_ip
);
6046 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ip_octets
);
6047 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_hdr_err_ip
);
6049 (u64
)le32_to_cpu(stat_info
->rmac_drop_ip_oflow
) << 32 |
6050 le32_to_cpu(stat_info
->rmac_drop_ip
);
6052 (u64
)le32_to_cpu(stat_info
->rmac_icmp_oflow
) << 32 |
6053 le32_to_cpu(stat_info
->rmac_icmp
);
6054 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_tcp
);
6056 (u64
)le32_to_cpu(stat_info
->rmac_udp_oflow
) << 32 |
6057 le32_to_cpu(stat_info
->rmac_udp
);
6059 (u64
)le32_to_cpu(stat_info
->rmac_err_drp_udp_oflow
) << 32 |
6060 le32_to_cpu(stat_info
->rmac_err_drp_udp
);
6061 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_err_sym
);
6062 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q0
);
6063 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q1
);
6064 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q2
);
6065 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q3
);
6066 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q4
);
6067 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q5
);
6068 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q6
);
6069 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q7
);
6070 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q0
);
6071 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q1
);
6072 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q2
);
6073 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q3
);
6074 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q4
);
6075 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q5
);
6076 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q6
);
6077 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q7
);
6079 (u64
)le32_to_cpu(stat_info
->rmac_pause_cnt_oflow
) << 32 |
6080 le32_to_cpu(stat_info
->rmac_pause_cnt
);
6081 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_data_err_cnt
);
6082 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_ctrl_err_cnt
);
6084 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ip_oflow
) << 32 |
6085 le32_to_cpu(stat_info
->rmac_accepted_ip
);
6086 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_err_tcp
);
6087 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_req_cnt
);
6088 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_cnt
);
6089 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_rtry_cnt
);
6090 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_cnt
);
6091 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_rd_ack_cnt
);
6092 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_req_cnt
);
6093 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_cnt
);
6094 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_rtry_cnt
);
6095 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_cnt
);
6096 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_disc_cnt
);
6097 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_wr_ack_cnt
);
6098 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txp_wr_cnt
);
6099 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_rd_cnt
);
6100 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_wr_cnt
);
6101 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_rd_cnt
);
6102 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_wr_cnt
);
6103 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txf_rd_cnt
);
6104 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxf_wr_cnt
);
6106 /* Enhanced statistics exist only for Hercules */
6107 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6109 le64_to_cpu(stat_info
->rmac_ttl_1519_4095_frms
);
6111 le64_to_cpu(stat_info
->rmac_ttl_4096_8191_frms
);
6113 le64_to_cpu(stat_info
->rmac_ttl_8192_max_frms
);
6114 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_gt_max_frms
);
6115 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_osized_alt_frms
);
6116 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_jabber_alt_frms
);
6117 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_gt_max_alt_frms
);
6118 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_vlan_frms
);
6119 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_len_discard
);
6120 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_fcs_discard
);
6121 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_pf_discard
);
6122 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_da_discard
);
6123 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_red_discard
);
6124 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_rts_discard
);
6125 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_ingm_full_discard
);
6126 tmp_stats
[i
++] = le32_to_cpu(stat_info
->link_fault_cnt
);
6130 tmp_stats
[i
++] = stat_info
->sw_stat
.single_ecc_errs
;
6131 tmp_stats
[i
++] = stat_info
->sw_stat
.double_ecc_errs
;
6132 tmp_stats
[i
++] = stat_info
->sw_stat
.parity_err_cnt
;
6133 tmp_stats
[i
++] = stat_info
->sw_stat
.serious_err_cnt
;
6134 tmp_stats
[i
++] = stat_info
->sw_stat
.soft_reset_cnt
;
6135 tmp_stats
[i
++] = stat_info
->sw_stat
.fifo_full_cnt
;
6136 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6137 tmp_stats
[i
++] = stat_info
->sw_stat
.ring_full_cnt
[k
];
6138 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_high
;
6139 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_low
;
6140 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_high
;
6141 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_low
;
6142 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_high
;
6143 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_low
;
6144 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_high
;
6145 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_low
;
6146 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_high
;
6147 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_low
;
6148 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_high
;
6149 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_low
;
6150 tmp_stats
[i
++] = stat_info
->sw_stat
.clubbed_frms_cnt
;
6151 tmp_stats
[i
++] = stat_info
->sw_stat
.sending_both
;
6152 tmp_stats
[i
++] = stat_info
->sw_stat
.outof_sequence_pkts
;
6153 tmp_stats
[i
++] = stat_info
->sw_stat
.flush_max_pkts
;
6154 if (stat_info
->sw_stat
.num_aggregations
) {
6155 u64 tmp
= stat_info
->sw_stat
.sum_avg_pkts_aggregated
;
6158 * Since 64-bit divide does not work on all platforms,
6159 * do repeated subtraction.
6161 while (tmp
>= stat_info
->sw_stat
.num_aggregations
) {
6162 tmp
-= stat_info
->sw_stat
.num_aggregations
;
6165 tmp_stats
[i
++] = count
;
6169 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_alloc_fail_cnt
;
6170 tmp_stats
[i
++] = stat_info
->sw_stat
.pci_map_fail_cnt
;
6171 tmp_stats
[i
++] = stat_info
->sw_stat
.watchdog_timer_cnt
;
6172 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_allocated
;
6173 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_freed
;
6174 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_cnt
;
6175 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_cnt
;
6176 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_time
;
6177 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_time
;
6179 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_buf_abort_cnt
;
6180 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_desc_abort_cnt
;
6181 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_parity_err_cnt
;
6182 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_link_loss_cnt
;
6183 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_list_proc_err_cnt
;
6185 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_err_cnt
;
6186 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_abort_cnt
;
6187 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_abort_cnt
;
6188 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rda_fail_cnt
;
6189 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_prot_cnt
;
6190 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_fcs_err_cnt
;
6191 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_buf_size_err_cnt
;
6192 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rxd_corrupt_cnt
;
6193 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_err_cnt
;
6194 tmp_stats
[i
++] = stat_info
->sw_stat
.tda_err_cnt
;
6195 tmp_stats
[i
++] = stat_info
->sw_stat
.pfc_err_cnt
;
6196 tmp_stats
[i
++] = stat_info
->sw_stat
.pcc_err_cnt
;
6197 tmp_stats
[i
++] = stat_info
->sw_stat
.tti_err_cnt
;
6198 tmp_stats
[i
++] = stat_info
->sw_stat
.tpa_err_cnt
;
6199 tmp_stats
[i
++] = stat_info
->sw_stat
.sm_err_cnt
;
6200 tmp_stats
[i
++] = stat_info
->sw_stat
.lso_err_cnt
;
6201 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_tmac_err_cnt
;
6202 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_rmac_err_cnt
;
6203 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_txgxs_err_cnt
;
6204 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_rxgxs_err_cnt
;
6205 tmp_stats
[i
++] = stat_info
->sw_stat
.rc_err_cnt
;
6206 tmp_stats
[i
++] = stat_info
->sw_stat
.prc_pcix_err_cnt
;
6207 tmp_stats
[i
++] = stat_info
->sw_stat
.rpa_err_cnt
;
6208 tmp_stats
[i
++] = stat_info
->sw_stat
.rda_err_cnt
;
6209 tmp_stats
[i
++] = stat_info
->sw_stat
.rti_err_cnt
;
6210 tmp_stats
[i
++] = stat_info
->sw_stat
.mc_err_cnt
;
6213 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6215 return (XENA_REG_SPACE
);
6219 static u32
s2io_ethtool_get_rx_csum(struct net_device
* dev
)
6221 struct s2io_nic
*sp
= dev
->priv
;
6223 return (sp
->rx_csum
);
6226 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
6228 struct s2io_nic
*sp
= dev
->priv
;
6238 static int s2io_get_eeprom_len(struct net_device
*dev
)
6240 return (XENA_EEPROM_SPACE
);
6243 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6245 struct s2io_nic
*sp
= dev
->priv
;
6249 return S2IO_TEST_LEN
;
6251 switch(sp
->device_type
) {
6252 case XFRAME_I_DEVICE
:
6253 return XFRAME_I_STAT_LEN
;
6254 case XFRAME_II_DEVICE
:
6255 return XFRAME_II_STAT_LEN
;
6264 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6265 u32 stringset
, u8
* data
)
6268 struct s2io_nic
*sp
= dev
->priv
;
6270 switch (stringset
) {
6272 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6275 stat_size
= sizeof(ethtool_xena_stats_keys
);
6276 memcpy(data
, ðtool_xena_stats_keys
,stat_size
);
6277 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6278 memcpy(data
+ stat_size
,
6279 ðtool_enhanced_stats_keys
,
6280 sizeof(ethtool_enhanced_stats_keys
));
6281 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6284 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6285 sizeof(ethtool_driver_stats_keys
));
6289 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
6292 dev
->features
|= NETIF_F_IP_CSUM
;
6294 dev
->features
&= ~NETIF_F_IP_CSUM
;
6299 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
6301 return (dev
->features
& NETIF_F_TSO
) != 0;
6303 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
6306 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
6308 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
6313 static const struct ethtool_ops netdev_ethtool_ops
= {
6314 .get_settings
= s2io_ethtool_gset
,
6315 .set_settings
= s2io_ethtool_sset
,
6316 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6317 .get_regs_len
= s2io_ethtool_get_regs_len
,
6318 .get_regs
= s2io_ethtool_gregs
,
6319 .get_link
= ethtool_op_get_link
,
6320 .get_eeprom_len
= s2io_get_eeprom_len
,
6321 .get_eeprom
= s2io_ethtool_geeprom
,
6322 .set_eeprom
= s2io_ethtool_seeprom
,
6323 .get_ringparam
= s2io_ethtool_gringparam
,
6324 .get_pauseparam
= s2io_ethtool_getpause_data
,
6325 .set_pauseparam
= s2io_ethtool_setpause_data
,
6326 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
6327 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
6328 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
6329 .set_sg
= ethtool_op_set_sg
,
6330 .get_tso
= s2io_ethtool_op_get_tso
,
6331 .set_tso
= s2io_ethtool_op_set_tso
,
6332 .set_ufo
= ethtool_op_set_ufo
,
6333 .self_test
= s2io_ethtool_test
,
6334 .get_strings
= s2io_ethtool_get_strings
,
6335 .phys_id
= s2io_ethtool_idnic
,
6336 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6337 .get_sset_count
= s2io_get_sset_count
,
6341 * s2io_ioctl - Entry point for the Ioctl
6342 * @dev : Device pointer.
6343 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6344 * a proprietary structure used to pass information to the driver.
6345 * @cmd : This is used to distinguish between the different commands that
6346 * can be passed to the IOCTL functions.
6348 * Currently there are no special functionality supported in IOCTL, hence
6349 * function always return EOPNOTSUPPORTED
6352 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6358 * s2io_change_mtu - entry point to change MTU size for the device.
6359 * @dev : device pointer.
6360 * @new_mtu : the new MTU size for the device.
6361 * Description: A driver entry point to change MTU size for the device.
6362 * Before changing the MTU the device must be stopped.
6364 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6368 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6370 struct s2io_nic
*sp
= dev
->priv
;
6373 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6374 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n",
6380 if (netif_running(dev
)) {
6382 netif_stop_queue(dev
);
6383 ret
= s2io_card_up(sp
);
6385 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6389 if (netif_queue_stopped(dev
))
6390 netif_wake_queue(dev
);
6391 } else { /* Device is down */
6392 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6393 u64 val64
= new_mtu
;
6395 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6402 * s2io_tasklet - Bottom half of the ISR.
6403 * @dev_adr : address of the device structure in dma_addr_t format.
6405 * This is the tasklet or the bottom half of the ISR. This is
6406 * an extension of the ISR which is scheduled by the scheduler to be run
6407 * when the load on the CPU is low. All low priority tasks of the ISR can
6408 * be pushed into the tasklet. For now the tasklet is used only to
6409 * replenish the Rx buffers in the Rx buffer descriptors.
6414 static void s2io_tasklet(unsigned long dev_addr
)
6416 struct net_device
*dev
= (struct net_device
*) dev_addr
;
6417 struct s2io_nic
*sp
= dev
->priv
;
6419 struct mac_info
*mac_control
;
6420 struct config_param
*config
;
6422 mac_control
= &sp
->mac_control
;
6423 config
= &sp
->config
;
6425 if (!TASKLET_IN_USE
) {
6426 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6427 ret
= fill_rx_buffers(sp
, i
);
6428 if (ret
== -ENOMEM
) {
6429 DBG_PRINT(INFO_DBG
, "%s: Out of ",
6431 DBG_PRINT(INFO_DBG
, "memory in tasklet\n");
6433 } else if (ret
== -EFILL
) {
6435 "%s: Rx Ring %d is full\n",
6440 clear_bit(0, (&sp
->tasklet_status
));
6445 * s2io_set_link - Set the LInk status
6446 * @data: long pointer to device private structue
6447 * Description: Sets the link status for the adapter
6450 static void s2io_set_link(struct work_struct
*work
)
6452 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
, set_link_task
);
6453 struct net_device
*dev
= nic
->dev
;
6454 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6460 if (!netif_running(dev
))
6463 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6464 /* The card is being reset, no point doing anything */
6468 subid
= nic
->pdev
->subsystem_device
;
6469 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6471 * Allow a small delay for the NICs self initiated
6472 * cleanup to complete.
6477 val64
= readq(&bar0
->adapter_status
);
6478 if (LINK_IS_UP(val64
)) {
6479 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6480 if (verify_xena_quiescence(nic
)) {
6481 val64
= readq(&bar0
->adapter_control
);
6482 val64
|= ADAPTER_CNTL_EN
;
6483 writeq(val64
, &bar0
->adapter_control
);
6484 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6485 nic
->device_type
, subid
)) {
6486 val64
= readq(&bar0
->gpio_control
);
6487 val64
|= GPIO_CTRL_GPIO_0
;
6488 writeq(val64
, &bar0
->gpio_control
);
6489 val64
= readq(&bar0
->gpio_control
);
6491 val64
|= ADAPTER_LED_ON
;
6492 writeq(val64
, &bar0
->adapter_control
);
6494 nic
->device_enabled_once
= TRUE
;
6496 DBG_PRINT(ERR_DBG
, "%s: Error: ", dev
->name
);
6497 DBG_PRINT(ERR_DBG
, "device is not Quiescent\n");
6498 netif_stop_queue(dev
);
6501 val64
= readq(&bar0
->adapter_control
);
6502 val64
|= ADAPTER_LED_ON
;
6503 writeq(val64
, &bar0
->adapter_control
);
6504 s2io_link(nic
, LINK_UP
);
6506 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6508 val64
= readq(&bar0
->gpio_control
);
6509 val64
&= ~GPIO_CTRL_GPIO_0
;
6510 writeq(val64
, &bar0
->gpio_control
);
6511 val64
= readq(&bar0
->gpio_control
);
6514 val64
= readq(&bar0
->adapter_control
);
6515 val64
= val64
&(~ADAPTER_LED_ON
);
6516 writeq(val64
, &bar0
->adapter_control
);
6517 s2io_link(nic
, LINK_DOWN
);
6519 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6525 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6527 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6528 u64
*temp2
, int size
)
6530 struct net_device
*dev
= sp
->dev
;
6531 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6533 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6534 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6537 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6539 * As Rx frame are not going to be processed,
6540 * using same mapped address for the Rxd
6543 rxdp1
->Buffer0_ptr
= *temp0
;
6545 *skb
= dev_alloc_skb(size
);
6547 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6548 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6549 DBG_PRINT(INFO_DBG
, "1 buf mode SKBs\n");
6550 sp
->mac_control
.stats_info
->sw_stat
. \
6551 mem_alloc_fail_cnt
++;
6554 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6555 += (*skb
)->truesize
;
6556 /* storing the mapped addr in a temp variable
6557 * such it will be used for next rxd whose
6558 * Host Control is NULL
6560 rxdp1
->Buffer0_ptr
= *temp0
=
6561 pci_map_single( sp
->pdev
, (*skb
)->data
,
6562 size
- NET_IP_ALIGN
,
6563 PCI_DMA_FROMDEVICE
);
6564 if( (rxdp1
->Buffer0_ptr
== 0) ||
6565 (rxdp1
->Buffer0_ptr
== DMA_ERROR_CODE
)) {
6566 goto memalloc_failed
;
6568 rxdp
->Host_Control
= (unsigned long) (*skb
);
6570 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6571 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6572 /* Two buffer Mode */
6574 rxdp3
->Buffer2_ptr
= *temp2
;
6575 rxdp3
->Buffer0_ptr
= *temp0
;
6576 rxdp3
->Buffer1_ptr
= *temp1
;
6578 *skb
= dev_alloc_skb(size
);
6580 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6581 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6582 DBG_PRINT(INFO_DBG
, "2 buf mode SKBs\n");
6583 sp
->mac_control
.stats_info
->sw_stat
. \
6584 mem_alloc_fail_cnt
++;
6587 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6588 += (*skb
)->truesize
;
6589 rxdp3
->Buffer2_ptr
= *temp2
=
6590 pci_map_single(sp
->pdev
, (*skb
)->data
,
6592 PCI_DMA_FROMDEVICE
);
6593 if( (rxdp3
->Buffer2_ptr
== 0) ||
6594 (rxdp3
->Buffer2_ptr
== DMA_ERROR_CODE
)) {
6595 goto memalloc_failed
;
6597 rxdp3
->Buffer0_ptr
= *temp0
=
6598 pci_map_single( sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6599 PCI_DMA_FROMDEVICE
);
6600 if( (rxdp3
->Buffer0_ptr
== 0) ||
6601 (rxdp3
->Buffer0_ptr
== DMA_ERROR_CODE
)) {
6602 pci_unmap_single (sp
->pdev
,
6603 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6604 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6605 goto memalloc_failed
;
6607 rxdp
->Host_Control
= (unsigned long) (*skb
);
6609 /* Buffer-1 will be dummy buffer not used */
6610 rxdp3
->Buffer1_ptr
= *temp1
=
6611 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6612 PCI_DMA_FROMDEVICE
);
6613 if( (rxdp3
->Buffer1_ptr
== 0) ||
6614 (rxdp3
->Buffer1_ptr
== DMA_ERROR_CODE
)) {
6615 pci_unmap_single (sp
->pdev
,
6616 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6617 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
6618 pci_unmap_single (sp
->pdev
,
6619 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6620 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6621 goto memalloc_failed
;
6627 stats
->pci_map_fail_cnt
++;
6628 stats
->mem_freed
+= (*skb
)->truesize
;
6629 dev_kfree_skb(*skb
);
6633 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6636 struct net_device
*dev
= sp
->dev
;
6637 if (sp
->rxd_mode
== RXD_MODE_1
) {
6638 rxdp
->Control_2
= SET_BUFFER0_SIZE_1( size
- NET_IP_ALIGN
);
6639 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6640 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6641 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6642 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3( dev
->mtu
+ 4);
6646 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6648 int i
, j
, k
, blk_cnt
= 0, size
;
6649 struct mac_info
* mac_control
= &sp
->mac_control
;
6650 struct config_param
*config
= &sp
->config
;
6651 struct net_device
*dev
= sp
->dev
;
6652 struct RxD_t
*rxdp
= NULL
;
6653 struct sk_buff
*skb
= NULL
;
6654 struct buffAdd
*ba
= NULL
;
6655 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6657 /* Calculate the size based on ring mode */
6658 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6659 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6660 if (sp
->rxd_mode
== RXD_MODE_1
)
6661 size
+= NET_IP_ALIGN
;
6662 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6663 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6665 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6666 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
6667 (rxd_count
[sp
->rxd_mode
] +1);
6669 for (j
= 0; j
< blk_cnt
; j
++) {
6670 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
6671 rxdp
= mac_control
->rings
[i
].
6672 rx_blocks
[j
].rxds
[k
].virt_addr
;
6673 if(sp
->rxd_mode
== RXD_MODE_3B
)
6674 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
6675 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
,
6676 &skb
,(u64
*)&temp0_64
,
6683 set_rxd_buffer_size(sp
, rxdp
, size
);
6685 /* flip the Ownership bit to Hardware */
6686 rxdp
->Control_1
|= RXD_OWN_XENA
;
6694 static int s2io_add_isr(struct s2io_nic
* sp
)
6697 struct net_device
*dev
= sp
->dev
;
6700 if (sp
->config
.intr_type
== MSI_X
)
6701 ret
= s2io_enable_msi_x(sp
);
6703 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
6704 sp
->config
.intr_type
= INTA
;
6707 /* Store the values of the MSIX table in the struct s2io_nic structure */
6708 store_xmsi_data(sp
);
6710 /* After proper initialization of H/W, register ISR */
6711 if (sp
->config
.intr_type
== MSI_X
) {
6712 int i
, msix_tx_cnt
=0,msix_rx_cnt
=0;
6714 for (i
=1; (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
); i
++) {
6715 if (sp
->s2io_entries
[i
].type
== MSIX_FIFO_TYPE
) {
6716 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
6718 err
= request_irq(sp
->entries
[i
].vector
,
6719 s2io_msix_fifo_handle
, 0, sp
->desc
[i
],
6720 sp
->s2io_entries
[i
].arg
);
6721 /* If either data or addr is zero print it */
6722 if(!(sp
->msix_info
[i
].addr
&&
6723 sp
->msix_info
[i
].data
)) {
6724 DBG_PRINT(ERR_DBG
, "%s @ Addr:0x%llx"
6725 "Data:0x%lx\n",sp
->desc
[i
],
6726 (unsigned long long)
6727 sp
->msix_info
[i
].addr
,
6729 ntohl(sp
->msix_info
[i
].data
));
6734 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
6736 err
= request_irq(sp
->entries
[i
].vector
,
6737 s2io_msix_ring_handle
, 0, sp
->desc
[i
],
6738 sp
->s2io_entries
[i
].arg
);
6739 /* If either data or addr is zero print it */
6740 if(!(sp
->msix_info
[i
].addr
&&
6741 sp
->msix_info
[i
].data
)) {
6742 DBG_PRINT(ERR_DBG
, "%s @ Addr:0x%llx"
6743 "Data:0x%lx\n",sp
->desc
[i
],
6744 (unsigned long long)
6745 sp
->msix_info
[i
].addr
,
6747 ntohl(sp
->msix_info
[i
].data
));
6753 remove_msix_isr(sp
);
6754 DBG_PRINT(ERR_DBG
,"%s:MSI-X-%d registration "
6755 "failed\n", dev
->name
, i
);
6756 DBG_PRINT(ERR_DBG
, "%s: defaulting to INTA\n",
6758 sp
->config
.intr_type
= INTA
;
6761 sp
->s2io_entries
[i
].in_use
= MSIX_REGISTERED_SUCCESS
;
6764 printk(KERN_INFO
"MSI-X-TX %d entries enabled\n",
6766 printk(KERN_INFO
"MSI-X-RX %d entries enabled\n",
6770 if (sp
->config
.intr_type
== INTA
) {
6771 err
= request_irq((int) sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
6774 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
6781 static void s2io_rem_isr(struct s2io_nic
* sp
)
6783 if (sp
->config
.intr_type
== MSI_X
)
6784 remove_msix_isr(sp
);
6786 remove_inta_isr(sp
);
6789 static void do_s2io_card_down(struct s2io_nic
* sp
, int do_io
)
6792 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6793 unsigned long flags
;
6794 register u64 val64
= 0;
6795 struct config_param
*config
;
6796 config
= &sp
->config
;
6798 if (!is_s2io_card_up(sp
))
6801 del_timer_sync(&sp
->alarm_timer
);
6802 /* If s2io_set_link task is executing, wait till it completes. */
6803 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
))) {
6806 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
6810 napi_disable(&sp
->napi
);
6812 /* disable Tx and Rx traffic on the NIC */
6819 tasklet_kill(&sp
->task
);
6821 /* Check if the device is Quiescent and then Reset the NIC */
6823 /* As per the HW requirement we need to replenish the
6824 * receive buffer to avoid the ring bump. Since there is
6825 * no intention of processing the Rx frame at this pointwe are
6826 * just settting the ownership bit of rxd in Each Rx
6827 * ring to HW and set the appropriate buffer size
6828 * based on the ring mode
6830 rxd_owner_bit_reset(sp
);
6832 val64
= readq(&bar0
->adapter_status
);
6833 if (verify_xena_quiescence(sp
)) {
6834 if(verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
6842 "s2io_close:Device not Quiescent ");
6843 DBG_PRINT(ERR_DBG
, "adaper status reads 0x%llx\n",
6844 (unsigned long long) val64
);
6851 spin_lock_irqsave(&sp
->tx_lock
, flags
);
6852 /* Free all Tx buffers */
6853 free_tx_buffers(sp
);
6854 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
6856 /* Free all Rx buffers */
6857 spin_lock_irqsave(&sp
->rx_lock
, flags
);
6858 free_rx_buffers(sp
);
6859 spin_unlock_irqrestore(&sp
->rx_lock
, flags
);
6861 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
6864 static void s2io_card_down(struct s2io_nic
* sp
)
6866 do_s2io_card_down(sp
, 1);
6869 static int s2io_card_up(struct s2io_nic
* sp
)
6872 struct mac_info
*mac_control
;
6873 struct config_param
*config
;
6874 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
6877 /* Initialize the H/W I/O registers */
6880 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
6888 * Initializing the Rx buffers. For now we are considering only 1
6889 * Rx ring and initializing buffers into 30 Rx blocks
6891 mac_control
= &sp
->mac_control
;
6892 config
= &sp
->config
;
6894 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6895 if ((ret
= fill_rx_buffers(sp
, i
))) {
6896 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
6899 free_rx_buffers(sp
);
6902 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
6903 atomic_read(&sp
->rx_bufs_left
[i
]));
6906 /* Initialise napi */
6908 napi_enable(&sp
->napi
);
6910 /* Maintain the state prior to the open */
6911 if (sp
->promisc_flg
)
6912 sp
->promisc_flg
= 0;
6913 if (sp
->m_cast_flg
) {
6915 sp
->all_multi_pos
= 0;
6918 /* Setting its receive mode */
6919 s2io_set_multicast(dev
);
6922 /* Initialize max aggregatable pkts per session based on MTU */
6923 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
6924 /* Check if we can use(if specified) user provided value */
6925 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
6926 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
6929 /* Enable Rx Traffic and interrupts on the NIC */
6930 if (start_nic(sp
)) {
6931 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
6933 free_rx_buffers(sp
);
6937 /* Add interrupt service routine */
6938 if (s2io_add_isr(sp
) != 0) {
6939 if (sp
->config
.intr_type
== MSI_X
)
6942 free_rx_buffers(sp
);
6946 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
6948 /* Enable tasklet for the device */
6949 tasklet_init(&sp
->task
, s2io_tasklet
, (unsigned long) dev
);
6951 /* Enable select interrupts */
6952 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
6953 if (sp
->config
.intr_type
!= INTA
)
6954 en_dis_able_nic_intrs(sp
, ENA_ALL_INTRS
, DISABLE_INTRS
);
6956 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
6957 interruptible
|= TX_PIC_INTR
;
6958 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
6961 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
6966 * s2io_restart_nic - Resets the NIC.
6967 * @data : long pointer to the device private structure
6969 * This function is scheduled to be run by the s2io_tx_watchdog
6970 * function after 0.5 secs to reset the NIC. The idea is to reduce
6971 * the run time of the watch dog routine which is run holding a
6975 static void s2io_restart_nic(struct work_struct
*work
)
6977 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
6978 struct net_device
*dev
= sp
->dev
;
6982 if (!netif_running(dev
))
6986 if (s2io_card_up(sp
)) {
6987 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6990 netif_wake_queue(dev
);
6991 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n",
6998 * s2io_tx_watchdog - Watchdog for transmit side.
6999 * @dev : Pointer to net device structure
7001 * This function is triggered if the Tx Queue is stopped
7002 * for a pre-defined amount of time when the Interface is still up.
7003 * If the Interface is jammed in such a situation, the hardware is
7004 * reset (by s2io_close) and restarted again (by s2io_open) to
7005 * overcome any problem that might have been caused in the hardware.
7010 static void s2io_tx_watchdog(struct net_device
*dev
)
7012 struct s2io_nic
*sp
= dev
->priv
;
7014 if (netif_carrier_ok(dev
)) {
7015 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
++;
7016 schedule_work(&sp
->rst_timer_task
);
7017 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
7022 * rx_osm_handler - To perform some OS related operations on SKB.
7023 * @sp: private member of the device structure,pointer to s2io_nic structure.
7024 * @skb : the socket buffer pointer.
7025 * @len : length of the packet
7026 * @cksum : FCS checksum of the frame.
7027 * @ring_no : the ring from which this RxD was extracted.
7029 * This function is called by the Rx interrupt serivce routine to perform
7030 * some OS related operations on the SKB before passing it to the upper
7031 * layers. It mainly checks if the checksum is OK, if so adds it to the
7032 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7033 * to the upper layer. If the checksum is wrong, it increments the Rx
7034 * packet error count, frees the SKB and returns error.
7036 * SUCCESS on success and -1 on failure.
7038 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7040 struct s2io_nic
*sp
= ring_data
->nic
;
7041 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7042 struct sk_buff
*skb
= (struct sk_buff
*)
7043 ((unsigned long) rxdp
->Host_Control
);
7044 int ring_no
= ring_data
->ring_no
;
7045 u16 l3_csum
, l4_csum
;
7046 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7053 /* Check for parity error */
7055 sp
->mac_control
.stats_info
->sw_stat
.parity_err_cnt
++;
7057 err_mask
= err
>> 48;
7060 sp
->mac_control
.stats_info
->sw_stat
.
7061 rx_parity_err_cnt
++;
7065 sp
->mac_control
.stats_info
->sw_stat
.
7070 sp
->mac_control
.stats_info
->sw_stat
.
7071 rx_parity_abort_cnt
++;
7075 sp
->mac_control
.stats_info
->sw_stat
.
7080 sp
->mac_control
.stats_info
->sw_stat
.
7085 sp
->mac_control
.stats_info
->sw_stat
.
7090 sp
->mac_control
.stats_info
->sw_stat
.
7091 rx_buf_size_err_cnt
++;
7095 sp
->mac_control
.stats_info
->sw_stat
.
7096 rx_rxd_corrupt_cnt
++;
7100 sp
->mac_control
.stats_info
->sw_stat
.
7105 * Drop the packet if bad transfer code. Exception being
7106 * 0x5, which could be due to unsupported IPv6 extension header.
7107 * In this case, we let stack handle the packet.
7108 * Note that in this case, since checksum will be incorrect,
7109 * stack will validate the same.
7111 if (err_mask
!= 0x5) {
7112 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7113 dev
->name
, err_mask
);
7114 sp
->stats
.rx_crc_errors
++;
7115 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
7118 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
7119 rxdp
->Host_Control
= 0;
7124 /* Updating statistics */
7125 sp
->stats
.rx_packets
++;
7126 rxdp
->Host_Control
= 0;
7127 if (sp
->rxd_mode
== RXD_MODE_1
) {
7128 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7130 sp
->stats
.rx_bytes
+= len
;
7133 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7134 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7135 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7136 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7137 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7138 unsigned char *buff
= skb_push(skb
, buf0_len
);
7140 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7141 sp
->stats
.rx_bytes
+= buf0_len
+ buf2_len
;
7142 memcpy(buff
, ba
->ba_0
, buf0_len
);
7143 skb_put(skb
, buf2_len
);
7146 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) && ((!sp
->lro
) ||
7147 (sp
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7149 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7150 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7151 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7153 * NIC verifies if the Checksum of the received
7154 * frame is Ok or not and accordingly returns
7155 * a flag in the RxD.
7157 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7163 ret
= s2io_club_tcp_session(skb
->data
, &tcp
,
7167 case 3: /* Begin anew */
7170 case 1: /* Aggregate */
7172 lro_append_pkt(sp
, lro
,
7176 case 4: /* Flush session */
7178 lro_append_pkt(sp
, lro
,
7180 queue_rx_frame(lro
->parent
);
7181 clear_lro_session(lro
);
7182 sp
->mac_control
.stats_info
->
7183 sw_stat
.flush_max_pkts
++;
7186 case 2: /* Flush both */
7187 lro
->parent
->data_len
=
7189 sp
->mac_control
.stats_info
->
7190 sw_stat
.sending_both
++;
7191 queue_rx_frame(lro
->parent
);
7192 clear_lro_session(lro
);
7194 case 0: /* sessions exceeded */
7195 case -1: /* non-TCP or not
7199 * First pkt in session not
7200 * L3/L4 aggregatable
7205 "%s: Samadhana!!\n",
7212 * Packet with erroneous checksum, let the
7213 * upper layers deal with it.
7215 skb
->ip_summed
= CHECKSUM_NONE
;
7218 skb
->ip_summed
= CHECKSUM_NONE
;
7220 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
7222 skb
->protocol
= eth_type_trans(skb
, dev
);
7223 if ((sp
->vlgrp
&& RXD_GET_VLAN_TAG(rxdp
->Control_2
) &&
7225 /* Queueing the vlan frame to the upper layer */
7227 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
,
7228 RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7230 vlan_hwaccel_rx(skb
, sp
->vlgrp
,
7231 RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7234 netif_receive_skb(skb
);
7240 queue_rx_frame(skb
);
7242 dev
->last_rx
= jiffies
;
7244 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
7249 * s2io_link - stops/starts the Tx queue.
7250 * @sp : private member of the device structure, which is a pointer to the
7251 * s2io_nic structure.
7252 * @link : inidicates whether link is UP/DOWN.
7254 * This function stops/starts the Tx queue depending on whether the link
7255 * status of the NIC is is down or up. This is called by the Alarm
7256 * interrupt handler whenever a link change interrupt comes up.
7261 static void s2io_link(struct s2io_nic
* sp
, int link
)
7263 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7265 if (link
!= sp
->last_link_state
) {
7266 if (link
== LINK_DOWN
) {
7267 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7268 netif_carrier_off(dev
);
7269 if(sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
)
7270 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
=
7271 jiffies
- sp
->start_time
;
7272 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
++;
7274 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7275 if (sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
)
7276 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
=
7277 jiffies
- sp
->start_time
;
7278 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
++;
7279 netif_carrier_on(dev
);
7282 sp
->last_link_state
= link
;
7283 sp
->start_time
= jiffies
;
7287 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7288 * @sp : private member of the device structure, which is a pointer to the
7289 * s2io_nic structure.
7291 * This function initializes a few of the PCI and PCI-X configuration registers
7292 * with recommended values.
7297 static void s2io_init_pci(struct s2io_nic
* sp
)
7299 u16 pci_cmd
= 0, pcix_cmd
= 0;
7301 /* Enable Data Parity Error Recovery in PCI-X command register. */
7302 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7304 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7306 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7309 /* Set the PErr Response bit in PCI command register. */
7310 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7311 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7312 (pci_cmd
| PCI_COMMAND_PARITY
));
7313 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7316 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
)
7318 if ( tx_fifo_num
> 8) {
7319 DBG_PRINT(ERR_DBG
, "s2io: Requested number of Tx fifos not "
7321 DBG_PRINT(ERR_DBG
, "s2io: Default to 8 Tx fifos\n");
7324 if ( rx_ring_num
> 8) {
7325 DBG_PRINT(ERR_DBG
, "s2io: Requested number of Rx rings not "
7327 DBG_PRINT(ERR_DBG
, "s2io: Default to 8 Rx rings\n");
7330 if (*dev_intr_type
!= INTA
)
7333 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7334 DBG_PRINT(ERR_DBG
, "s2io: Wrong intr_type requested. "
7335 "Defaulting to INTA\n");
7336 *dev_intr_type
= INTA
;
7339 if ((*dev_intr_type
== MSI_X
) &&
7340 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7341 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7342 DBG_PRINT(ERR_DBG
, "s2io: Xframe I does not support MSI_X. "
7343 "Defaulting to INTA\n");
7344 *dev_intr_type
= INTA
;
7347 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7348 DBG_PRINT(ERR_DBG
, "s2io: Requested ring mode not supported\n");
7349 DBG_PRINT(ERR_DBG
, "s2io: Defaulting to 1-buffer mode\n");
7356 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7357 * or Traffic class respectively.
7358 * @nic: device peivate variable
7359 * Description: The function configures the receive steering to
7360 * desired receive ring.
7361 * Return Value: SUCCESS on success and
7362 * '-1' on failure (endian settings incorrect).
7364 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7366 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7367 register u64 val64
= 0;
7369 if (ds_codepoint
> 63)
7372 val64
= RTS_DS_MEM_DATA(ring
);
7373 writeq(val64
, &bar0
->rts_ds_mem_data
);
7375 val64
= RTS_DS_MEM_CTRL_WE
|
7376 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7377 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7379 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7381 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7382 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7387 * s2io_init_nic - Initialization of the adapter .
7388 * @pdev : structure containing the PCI related information of the device.
7389 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7391 * The function initializes an adapter identified by the pci_dec structure.
7392 * All OS related initialization including memory and device structure and
7393 * initlaization of the device private variable is done. Also the swapper
7394 * control register is initialized to enable read and write into the I/O
7395 * registers of the device.
7397 * returns 0 on success and negative on failure.
7400 static int __devinit
7401 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7403 struct s2io_nic
*sp
;
7404 struct net_device
*dev
;
7406 int dma_flag
= FALSE
;
7407 u32 mac_up
, mac_down
;
7408 u64 val64
= 0, tmp64
= 0;
7409 struct XENA_dev_config __iomem
*bar0
= NULL
;
7411 struct mac_info
*mac_control
;
7412 struct config_param
*config
;
7414 u8 dev_intr_type
= intr_type
;
7415 DECLARE_MAC_BUF(mac
);
7417 if ((ret
= s2io_verify_parm(pdev
, &dev_intr_type
)))
7420 if ((ret
= pci_enable_device(pdev
))) {
7422 "s2io_init_nic: pci_enable_device failed\n");
7426 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
7427 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 64bit DMA\n");
7429 if (pci_set_consistent_dma_mask
7430 (pdev
, DMA_64BIT_MASK
)) {
7432 "Unable to obtain 64bit DMA for \
7433 consistent allocations\n");
7434 pci_disable_device(pdev
);
7437 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
7438 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 32bit DMA\n");
7440 pci_disable_device(pdev
);
7443 if ((ret
= pci_request_regions(pdev
, s2io_driver_name
))) {
7444 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x \n", __FUNCTION__
, ret
);
7445 pci_disable_device(pdev
);
7449 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7451 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7452 pci_disable_device(pdev
);
7453 pci_release_regions(pdev
);
7457 pci_set_master(pdev
);
7458 pci_set_drvdata(pdev
, dev
);
7459 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7461 /* Private member variable initialized to s2io NIC structure */
7463 memset(sp
, 0, sizeof(struct s2io_nic
));
7466 sp
->high_dma_flag
= dma_flag
;
7467 sp
->device_enabled_once
= FALSE
;
7468 if (rx_ring_mode
== 1)
7469 sp
->rxd_mode
= RXD_MODE_1
;
7470 if (rx_ring_mode
== 2)
7471 sp
->rxd_mode
= RXD_MODE_3B
;
7473 sp
->config
.intr_type
= dev_intr_type
;
7475 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7476 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7477 sp
->device_type
= XFRAME_II_DEVICE
;
7479 sp
->device_type
= XFRAME_I_DEVICE
;
7481 sp
->lro
= lro_enable
;
7483 /* Initialize some PCI/PCI-X fields of the NIC. */
7487 * Setting the device configuration parameters.
7488 * Most of these parameters can be specified by the user during
7489 * module insertion as they are module loadable parameters. If
7490 * these parameters are not not specified during load time, they
7491 * are initialized with default values.
7493 mac_control
= &sp
->mac_control
;
7494 config
= &sp
->config
;
7496 config
->napi
= napi
;
7498 /* Tx side parameters. */
7499 config
->tx_fifo_num
= tx_fifo_num
;
7500 for (i
= 0; i
< MAX_TX_FIFOS
; i
++) {
7501 config
->tx_cfg
[i
].fifo_len
= tx_fifo_len
[i
];
7502 config
->tx_cfg
[i
].fifo_priority
= i
;
7505 /* mapping the QoS priority to the configured fifos */
7506 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7507 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
][i
];
7509 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7510 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7511 config
->tx_cfg
[i
].f_no_snoop
=
7512 (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7513 if (config
->tx_cfg
[i
].fifo_len
< 65) {
7514 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7518 /* + 2 because one Txd for skb->data and one Txd for UFO */
7519 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7521 /* Rx side parameters. */
7522 config
->rx_ring_num
= rx_ring_num
;
7523 for (i
= 0; i
< MAX_RX_RINGS
; i
++) {
7524 config
->rx_cfg
[i
].num_rxd
= rx_ring_sz
[i
] *
7525 (rxd_count
[sp
->rxd_mode
] + 1);
7526 config
->rx_cfg
[i
].ring_priority
= i
;
7529 for (i
= 0; i
< rx_ring_num
; i
++) {
7530 config
->rx_cfg
[i
].ring_org
= RING_ORG_BUFF1
;
7531 config
->rx_cfg
[i
].f_no_snoop
=
7532 (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7535 /* Setting Mac Control parameters */
7536 mac_control
->rmac_pause_time
= rmac_pause_time
;
7537 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7538 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7541 /* Initialize Ring buffer parameters. */
7542 for (i
= 0; i
< config
->rx_ring_num
; i
++)
7543 atomic_set(&sp
->rx_bufs_left
[i
], 0);
7545 /* initialize the shared memory used by the NIC and the host */
7546 if (init_shared_mem(sp
)) {
7547 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n",
7550 goto mem_alloc_failed
;
7553 sp
->bar0
= ioremap(pci_resource_start(pdev
, 0),
7554 pci_resource_len(pdev
, 0));
7556 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7559 goto bar0_remap_failed
;
7562 sp
->bar1
= ioremap(pci_resource_start(pdev
, 2),
7563 pci_resource_len(pdev
, 2));
7565 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7568 goto bar1_remap_failed
;
7571 dev
->irq
= pdev
->irq
;
7572 dev
->base_addr
= (unsigned long) sp
->bar0
;
7574 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7575 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7576 mac_control
->tx_FIFO_start
[j
] = (struct TxFIFO_element __iomem
*)
7577 (sp
->bar1
+ (j
* 0x00020000));
7580 /* Driver entry points */
7581 dev
->open
= &s2io_open
;
7582 dev
->stop
= &s2io_close
;
7583 dev
->hard_start_xmit
= &s2io_xmit
;
7584 dev
->get_stats
= &s2io_get_stats
;
7585 dev
->set_multicast_list
= &s2io_set_multicast
;
7586 dev
->do_ioctl
= &s2io_ioctl
;
7587 dev
->set_mac_address
= &s2io_set_mac_addr
;
7588 dev
->change_mtu
= &s2io_change_mtu
;
7589 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
7590 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7591 dev
->vlan_rx_register
= s2io_vlan_rx_register
;
7594 * will use eth_mac_addr() for dev->set_mac_address
7595 * mac address will be set every time dev->open() is called
7597 netif_napi_add(dev
, &sp
->napi
, s2io_poll
, 32);
7599 #ifdef CONFIG_NET_POLL_CONTROLLER
7600 dev
->poll_controller
= s2io_netpoll
;
7603 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
7604 if (sp
->high_dma_flag
== TRUE
)
7605 dev
->features
|= NETIF_F_HIGHDMA
;
7606 dev
->features
|= NETIF_F_TSO
;
7607 dev
->features
|= NETIF_F_TSO6
;
7608 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
7609 dev
->features
|= NETIF_F_UFO
;
7610 dev
->features
|= NETIF_F_HW_CSUM
;
7613 dev
->tx_timeout
= &s2io_tx_watchdog
;
7614 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7615 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7616 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7618 pci_save_state(sp
->pdev
);
7620 /* Setting swapper control on the NIC, for proper reset operation */
7621 if (s2io_set_swapper(sp
)) {
7622 DBG_PRINT(ERR_DBG
, "%s:swapper settings are wrong\n",
7625 goto set_swap_failed
;
7628 /* Verify if the Herc works on the slot its placed into */
7629 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7630 mode
= s2io_verify_pci_mode(sp
);
7632 DBG_PRINT(ERR_DBG
, "%s: ", __FUNCTION__
);
7633 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
7635 goto set_swap_failed
;
7639 /* Not needed for Herc */
7640 if (sp
->device_type
& XFRAME_I_DEVICE
) {
7642 * Fix for all "FFs" MAC address problems observed on
7645 fix_mac_address(sp
);
7650 * MAC address initialization.
7651 * For now only one mac address will be read and used.
7654 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
7655 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET
);
7656 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
7657 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
7658 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
, S2IO_BIT_RESET
);
7659 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
7660 mac_down
= (u32
) tmp64
;
7661 mac_up
= (u32
) (tmp64
>> 32);
7663 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
7664 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
7665 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
7666 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
7667 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
7668 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
7670 /* Set the factory defined MAC address initially */
7671 dev
->addr_len
= ETH_ALEN
;
7672 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
7673 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
7675 /* Store the values of the MSIX table in the s2io_nic structure */
7676 store_xmsi_data(sp
);
7677 /* reset Nic and bring it to known state */
7681 * Initialize the tasklet status and link state flags
7682 * and the card state parameter
7684 sp
->tasklet_status
= 0;
7687 /* Initialize spinlocks */
7688 spin_lock_init(&sp
->tx_lock
);
7691 spin_lock_init(&sp
->put_lock
);
7692 spin_lock_init(&sp
->rx_lock
);
7695 * SXE-002: Configure link and activity LED to init state
7698 subid
= sp
->pdev
->subsystem_device
;
7699 if ((subid
& 0xFF) >= 0x07) {
7700 val64
= readq(&bar0
->gpio_control
);
7701 val64
|= 0x0000800000000000ULL
;
7702 writeq(val64
, &bar0
->gpio_control
);
7703 val64
= 0x0411040400000000ULL
;
7704 writeq(val64
, (void __iomem
*) bar0
+ 0x2700);
7705 val64
= readq(&bar0
->gpio_control
);
7708 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
7710 if (register_netdev(dev
)) {
7711 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
7713 goto register_failed
;
7716 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2007 Neterion Inc.\n");
7717 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n",dev
->name
,
7718 sp
->product_name
, pdev
->revision
);
7719 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
7720 s2io_driver_version
);
7721 DBG_PRINT(ERR_DBG
, "%s: MAC ADDR: %s\n",
7722 dev
->name
, print_mac(mac
, dev
->dev_addr
));
7723 DBG_PRINT(ERR_DBG
, "SERIAL NUMBER: %s\n", sp
->serial_num
);
7724 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7725 mode
= s2io_print_pci_mode(sp
);
7727 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
7729 unregister_netdev(dev
);
7730 goto set_swap_failed
;
7733 switch(sp
->rxd_mode
) {
7735 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
7739 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
7745 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
7746 switch(sp
->config
.intr_type
) {
7748 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
7751 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
7755 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
7758 DBG_PRINT(ERR_DBG
, "%s: UDP Fragmentation Offload(UFO)"
7759 " enabled\n", dev
->name
);
7760 /* Initialize device name */
7761 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
7764 * Make Link state as off at this point, when the Link change
7765 * interrupt comes the state will be automatically changed to
7768 netif_carrier_off(dev
);
7779 free_shared_mem(sp
);
7780 pci_disable_device(pdev
);
7781 pci_release_regions(pdev
);
7782 pci_set_drvdata(pdev
, NULL
);
7789 * s2io_rem_nic - Free the PCI device
7790 * @pdev: structure containing the PCI related information of the device.
7791 * Description: This function is called by the Pci subsystem to release a
7792 * PCI device and free up all resource held up by the device. This could
7793 * be in response to a Hot plug event or when the driver is to be removed
7797 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
7799 struct net_device
*dev
=
7800 (struct net_device
*) pci_get_drvdata(pdev
);
7801 struct s2io_nic
*sp
;
7804 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
7808 flush_scheduled_work();
7811 unregister_netdev(dev
);
7813 free_shared_mem(sp
);
7816 pci_release_regions(pdev
);
7817 pci_set_drvdata(pdev
, NULL
);
7819 pci_disable_device(pdev
);
7823 * s2io_starter - Entry point for the driver
7824 * Description: This function is the entry point for the driver. It verifies
7825 * the module loadable parameters and initializes PCI configuration space.
7828 static int __init
s2io_starter(void)
7830 return pci_register_driver(&s2io_driver
);
7834 * s2io_closer - Cleanup routine for the driver
7835 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7838 static __exit
void s2io_closer(void)
7840 pci_unregister_driver(&s2io_driver
);
7841 DBG_PRINT(INIT_DBG
, "cleanup done\n");
7844 module_init(s2io_starter
);
7845 module_exit(s2io_closer
);
7847 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
7848 struct tcphdr
**tcp
, struct RxD_t
*rxdp
)
7851 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
7853 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
7854 DBG_PRINT(INIT_DBG
,"%s: Non-TCP frames not supported for LRO\n",
7860 * By default the VLAN field in the MAC is stripped by the card, if this
7861 * feature is turned off in rx_pa_cfg register, then the ip_off field
7862 * has to be shifted by a further 2 bytes
7865 case 0: /* DIX type */
7866 case 4: /* DIX type with VLAN */
7867 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
7869 /* LLC, SNAP etc are considered non-mergeable */
7874 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
7875 ip_len
= (u8
)((*ip
)->ihl
);
7877 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
7882 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
7885 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7886 if ((lro
->iph
->saddr
!= ip
->saddr
) || (lro
->iph
->daddr
!= ip
->daddr
) ||
7887 (lro
->tcph
->source
!= tcp
->source
) || (lro
->tcph
->dest
!= tcp
->dest
))
7892 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
7894 return(ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2));
7897 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
7898 struct iphdr
*ip
, struct tcphdr
*tcp
, u32 tcp_pyld_len
)
7900 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7904 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
7905 lro
->tcp_ack
= ntohl(tcp
->ack_seq
);
7907 lro
->total_len
= ntohs(ip
->tot_len
);
7910 * check if we saw TCP timestamp. Other consistency checks have
7911 * already been done.
7913 if (tcp
->doff
== 8) {
7915 ptr
= (u32
*)(tcp
+1);
7917 lro
->cur_tsval
= *(ptr
+1);
7918 lro
->cur_tsecr
= *(ptr
+2);
7923 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
7925 struct iphdr
*ip
= lro
->iph
;
7926 struct tcphdr
*tcp
= lro
->tcph
;
7928 struct stat_block
*statinfo
= sp
->mac_control
.stats_info
;
7929 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7931 /* Update L3 header */
7932 ip
->tot_len
= htons(lro
->total_len
);
7934 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
7937 /* Update L4 header */
7938 tcp
->ack_seq
= lro
->tcp_ack
;
7939 tcp
->window
= lro
->window
;
7941 /* Update tsecr field if this session has timestamps enabled */
7943 u32
*ptr
= (u32
*)(tcp
+ 1);
7944 *(ptr
+2) = lro
->cur_tsecr
;
7947 /* Update counters required for calculation of
7948 * average no. of packets aggregated.
7950 statinfo
->sw_stat
.sum_avg_pkts_aggregated
+= lro
->sg_num
;
7951 statinfo
->sw_stat
.num_aggregations
++;
7954 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
7955 struct tcphdr
*tcp
, u32 l4_pyld
)
7957 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7958 lro
->total_len
+= l4_pyld
;
7959 lro
->frags_len
+= l4_pyld
;
7960 lro
->tcp_next_seq
+= l4_pyld
;
7963 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7964 lro
->tcp_ack
= tcp
->ack_seq
;
7965 lro
->window
= tcp
->window
;
7969 /* Update tsecr and tsval from this packet */
7970 ptr
= (u32
*) (tcp
+ 1);
7971 lro
->cur_tsval
= *(ptr
+ 1);
7972 lro
->cur_tsecr
= *(ptr
+ 2);
7976 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
7977 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
7981 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7983 if (!tcp_pyld_len
) {
7984 /* Runt frame or a pure ack */
7988 if (ip
->ihl
!= 5) /* IP has options */
7991 /* If we see CE codepoint in IP header, packet is not mergeable */
7992 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
7995 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7996 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
|| tcp
->syn
|| tcp
->fin
||
7997 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
7999 * Currently recognize only the ack control word and
8000 * any other control field being set would result in
8001 * flushing the LRO session
8007 * Allow only one TCP timestamp option. Don't aggregate if
8008 * any other options are detected.
8010 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8013 if (tcp
->doff
== 8) {
8014 ptr
= (u8
*)(tcp
+ 1);
8015 while (*ptr
== TCPOPT_NOP
)
8017 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8020 /* Ensure timestamp value increases monotonically */
8022 if (l_lro
->cur_tsval
> *((u32
*)(ptr
+2)))
8025 /* timestamp echo reply should be non-zero */
8026 if (*((u32
*)(ptr
+6)) == 0)
8034 s2io_club_tcp_session(u8
*buffer
, u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
8035 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
8038 struct tcphdr
*tcph
;
8041 if (!(ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8043 DBG_PRINT(INFO_DBG
,"IP Saddr: %x Daddr: %x\n",
8044 ip
->saddr
, ip
->daddr
);
8049 tcph
= (struct tcphdr
*)*tcp
;
8050 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8051 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8052 struct lro
*l_lro
= &sp
->lro0_n
[i
];
8053 if (l_lro
->in_use
) {
8054 if (check_for_socket_match(l_lro
, ip
, tcph
))
8056 /* Sock pair matched */
8059 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8060 DBG_PRINT(INFO_DBG
, "%s:Out of order. expected "
8061 "0x%x, actual 0x%x\n", __FUNCTION__
,
8062 (*lro
)->tcp_next_seq
,
8065 sp
->mac_control
.stats_info
->
8066 sw_stat
.outof_sequence_pkts
++;
8071 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,*tcp_len
))
8072 ret
= 1; /* Aggregate */
8074 ret
= 2; /* Flush both */
8080 /* Before searching for available LRO objects,
8081 * check if the pkt is L3/L4 aggregatable. If not
8082 * don't create new LRO session. Just send this
8085 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
)) {
8089 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8090 struct lro
*l_lro
= &sp
->lro0_n
[i
];
8091 if (!(l_lro
->in_use
)) {
8093 ret
= 3; /* Begin anew */
8099 if (ret
== 0) { /* sessions exceeded */
8100 DBG_PRINT(INFO_DBG
,"%s:All LRO sessions already in use\n",
8108 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
);
8111 update_L3L4_header(sp
, *lro
);
8114 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8115 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8116 update_L3L4_header(sp
, *lro
);
8117 ret
= 4; /* Flush the LRO */
8121 DBG_PRINT(ERR_DBG
,"%s:Dont know, can't say!!\n",
8129 static void clear_lro_session(struct lro
*lro
)
8131 static u16 lro_struct_size
= sizeof(struct lro
);
8133 memset(lro
, 0, lro_struct_size
);
8136 static void queue_rx_frame(struct sk_buff
*skb
)
8138 struct net_device
*dev
= skb
->dev
;
8140 skb
->protocol
= eth_type_trans(skb
, dev
);
8142 netif_receive_skb(skb
);
8147 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8148 struct sk_buff
*skb
,
8151 struct sk_buff
*first
= lro
->parent
;
8153 first
->len
+= tcp_len
;
8154 first
->data_len
= lro
->frags_len
;
8155 skb_pull(skb
, (skb
->len
- tcp_len
));
8156 if (skb_shinfo(first
)->frag_list
)
8157 lro
->last_frag
->next
= skb
;
8159 skb_shinfo(first
)->frag_list
= skb
;
8160 first
->truesize
+= skb
->truesize
;
8161 lro
->last_frag
= skb
;
8162 sp
->mac_control
.stats_info
->sw_stat
.clubbed_frms_cnt
++;
8167 * s2io_io_error_detected - called when PCI error is detected
8168 * @pdev: Pointer to PCI device
8169 * @state: The current pci connection state
8171 * This function is called after a PCI bus error affecting
8172 * this device has been detected.
8174 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8175 pci_channel_state_t state
)
8177 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8178 struct s2io_nic
*sp
= netdev
->priv
;
8180 netif_device_detach(netdev
);
8182 if (netif_running(netdev
)) {
8183 /* Bring down the card, while avoiding PCI I/O */
8184 do_s2io_card_down(sp
, 0);
8186 pci_disable_device(pdev
);
8188 return PCI_ERS_RESULT_NEED_RESET
;
8192 * s2io_io_slot_reset - called after the pci bus has been reset.
8193 * @pdev: Pointer to PCI device
8195 * Restart the card from scratch, as if from a cold-boot.
8196 * At this point, the card has exprienced a hard reset,
8197 * followed by fixups by BIOS, and has its config space
8198 * set up identically to what it was at cold boot.
8200 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8202 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8203 struct s2io_nic
*sp
= netdev
->priv
;
8205 if (pci_enable_device(pdev
)) {
8206 printk(KERN_ERR
"s2io: "
8207 "Cannot re-enable PCI device after reset.\n");
8208 return PCI_ERS_RESULT_DISCONNECT
;
8211 pci_set_master(pdev
);
8214 return PCI_ERS_RESULT_RECOVERED
;
8218 * s2io_io_resume - called when traffic can start flowing again.
8219 * @pdev: Pointer to PCI device
8221 * This callback is called when the error recovery driver tells
8222 * us that its OK to resume normal operation.
8224 static void s2io_io_resume(struct pci_dev
*pdev
)
8226 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8227 struct s2io_nic
*sp
= netdev
->priv
;
8229 if (netif_running(netdev
)) {
8230 if (s2io_card_up(sp
)) {
8231 printk(KERN_ERR
"s2io: "
8232 "Can't bring device back up after reset.\n");
8236 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8238 printk(KERN_ERR
"s2io: "
8239 "Can't resetore mac addr after reset.\n");
8244 netif_device_attach(netdev
);
8245 netif_wake_queue(netdev
);