1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
14 * - Now that the driver was significantly simplified, I need to rework
15 * the locking. I'm sure we don't need _2_ spinlocks, and we probably
16 * can avoid taking most of them for so long period of time (and schedule
17 * instead). The main issues at this point are caused by the netdev layer
20 * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
21 * help by net/core/dev.c, thus they can't schedule. That means they can't
22 * call napi_disable() neither, thus force gem_poll() to keep a spinlock
23 * where it could have been dropped. change_mtu especially would love also to
24 * be able to msleep instead of horrid locked delays when resetting the HW,
25 * but that read_lock() makes it impossible, unless I defer it's action to
26 * the reset task, which means it'll be asynchronous (won't take effect until
27 * the system schedules a bit).
29 * Also, it would probably be possible to also remove most of the long-life
30 * locking in open/resume code path (gem_reinit_chip) by beeing more careful
31 * about when we can start taking interrupts or get xmit() called...
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/fcntl.h>
38 #include <linux/interrupt.h>
39 #include <linux/ioport.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/delay.h>
44 #include <linux/init.h>
45 #include <linux/errno.h>
46 #include <linux/pci.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/mii.h>
52 #include <linux/ethtool.h>
53 #include <linux/crc32.h>
54 #include <linux/random.h>
55 #include <linux/workqueue.h>
56 #include <linux/if_vlan.h>
57 #include <linux/bitops.h>
58 #include <linux/mutex.h>
61 #include <asm/system.h>
63 #include <asm/byteorder.h>
64 #include <asm/uaccess.h>
68 #include <asm/idprom.h>
72 #ifdef CONFIG_PPC_PMAC
73 #include <asm/pci-bridge.h>
75 #include <asm/machdep.h>
76 #include <asm/pmac_feature.h>
79 #include "sungem_phy.h"
82 /* Stripping FCS is causing problems, disabled for now */
85 #define DEFAULT_MSG (NETIF_MSG_DRV | \
89 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
90 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
91 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
92 SUPPORTED_Pause | SUPPORTED_Autoneg)
94 #define DRV_NAME "sungem"
95 #define DRV_VERSION "0.98"
96 #define DRV_RELDATE "8/24/03"
97 #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
99 static char version
[] __devinitdata
=
100 DRV_NAME
".c:v" DRV_VERSION
" " DRV_RELDATE
" " DRV_AUTHOR
"\n";
102 MODULE_AUTHOR(DRV_AUTHOR
);
103 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
104 MODULE_LICENSE("GPL");
106 #define GEM_MODULE_NAME "gem"
107 #define PFX GEM_MODULE_NAME ": "
109 static struct pci_device_id gem_pci_tbl
[] = {
110 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_GEM
,
111 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
113 /* These models only differ from the original GEM in
114 * that their tx/rx fifos are of a different size and
115 * they only support 10/100 speeds. -DaveM
117 * Apple's GMAC does support gigabit on machines with
118 * the BCM54xx PHYs. -BenH
120 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_RIO_GEM
,
121 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
122 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC
,
123 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
124 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMACP
,
125 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
126 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2
,
127 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
128 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_K2_GMAC
,
129 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
130 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_SH_SUNGEM
,
131 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
132 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_IPID2_GMAC
,
133 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
137 MODULE_DEVICE_TABLE(pci
, gem_pci_tbl
);
139 static u16
__phy_read(struct gem
*gp
, int phy_addr
, int reg
)
146 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
147 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
148 cmd
|= (MIF_FRAME_TAMSB
);
149 writel(cmd
, gp
->regs
+ MIF_FRAME
);
152 cmd
= readl(gp
->regs
+ MIF_FRAME
);
153 if (cmd
& MIF_FRAME_TALSB
)
162 return cmd
& MIF_FRAME_DATA
;
165 static inline int _phy_read(struct net_device
*dev
, int mii_id
, int reg
)
167 struct gem
*gp
= dev
->priv
;
168 return __phy_read(gp
, mii_id
, reg
);
171 static inline u16
phy_read(struct gem
*gp
, int reg
)
173 return __phy_read(gp
, gp
->mii_phy_addr
, reg
);
176 static void __phy_write(struct gem
*gp
, int phy_addr
, int reg
, u16 val
)
183 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
184 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
185 cmd
|= (MIF_FRAME_TAMSB
);
186 cmd
|= (val
& MIF_FRAME_DATA
);
187 writel(cmd
, gp
->regs
+ MIF_FRAME
);
190 cmd
= readl(gp
->regs
+ MIF_FRAME
);
191 if (cmd
& MIF_FRAME_TALSB
)
198 static inline void _phy_write(struct net_device
*dev
, int mii_id
, int reg
, int val
)
200 struct gem
*gp
= dev
->priv
;
201 __phy_write(gp
, mii_id
, reg
, val
& 0xffff);
204 static inline void phy_write(struct gem
*gp
, int reg
, u16 val
)
206 __phy_write(gp
, gp
->mii_phy_addr
, reg
, val
);
209 static inline void gem_enable_ints(struct gem
*gp
)
211 /* Enable all interrupts but TXDONE */
212 writel(GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
215 static inline void gem_disable_ints(struct gem
*gp
)
217 /* Disable all interrupts, including TXDONE */
218 writel(GREG_STAT_NAPI
| GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
221 static void gem_get_cell(struct gem
*gp
)
223 BUG_ON(gp
->cell_enabled
< 0);
225 #ifdef CONFIG_PPC_PMAC
226 if (gp
->cell_enabled
== 1) {
228 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 1);
231 #endif /* CONFIG_PPC_PMAC */
234 /* Turn off the chip's clock */
235 static void gem_put_cell(struct gem
*gp
)
237 BUG_ON(gp
->cell_enabled
<= 0);
239 #ifdef CONFIG_PPC_PMAC
240 if (gp
->cell_enabled
== 0) {
242 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 0);
245 #endif /* CONFIG_PPC_PMAC */
248 static void gem_handle_mif_event(struct gem
*gp
, u32 reg_val
, u32 changed_bits
)
250 if (netif_msg_intr(gp
))
251 printk(KERN_DEBUG
"%s: mif interrupt\n", gp
->dev
->name
);
254 static int gem_pcs_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
256 u32 pcs_istat
= readl(gp
->regs
+ PCS_ISTAT
);
259 if (netif_msg_intr(gp
))
260 printk(KERN_DEBUG
"%s: pcs interrupt, pcs_istat: 0x%x\n",
261 gp
->dev
->name
, pcs_istat
);
263 if (!(pcs_istat
& PCS_ISTAT_LSC
)) {
264 printk(KERN_ERR
"%s: PCS irq but no link status change???\n",
269 /* The link status bit latches on zero, so you must
270 * read it twice in such a case to see a transition
271 * to the link being up.
273 pcs_miistat
= readl(gp
->regs
+ PCS_MIISTAT
);
274 if (!(pcs_miistat
& PCS_MIISTAT_LS
))
276 (readl(gp
->regs
+ PCS_MIISTAT
) &
279 if (pcs_miistat
& PCS_MIISTAT_ANC
) {
280 /* The remote-fault indication is only valid
281 * when autoneg has completed.
283 if (pcs_miistat
& PCS_MIISTAT_RF
)
284 printk(KERN_INFO
"%s: PCS AutoNEG complete, "
285 "RemoteFault\n", dev
->name
);
287 printk(KERN_INFO
"%s: PCS AutoNEG complete.\n",
291 if (pcs_miistat
& PCS_MIISTAT_LS
) {
292 printk(KERN_INFO
"%s: PCS link is now up.\n",
294 netif_carrier_on(gp
->dev
);
296 printk(KERN_INFO
"%s: PCS link is now down.\n",
298 netif_carrier_off(gp
->dev
);
299 /* If this happens and the link timer is not running,
300 * reset so we re-negotiate.
302 if (!timer_pending(&gp
->link_timer
))
309 static int gem_txmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
311 u32 txmac_stat
= readl(gp
->regs
+ MAC_TXSTAT
);
313 if (netif_msg_intr(gp
))
314 printk(KERN_DEBUG
"%s: txmac interrupt, txmac_stat: 0x%x\n",
315 gp
->dev
->name
, txmac_stat
);
317 /* Defer timer expiration is quite normal,
318 * don't even log the event.
320 if ((txmac_stat
& MAC_TXSTAT_DTE
) &&
321 !(txmac_stat
& ~MAC_TXSTAT_DTE
))
324 if (txmac_stat
& MAC_TXSTAT_URUN
) {
325 printk(KERN_ERR
"%s: TX MAC xmit underrun.\n",
327 gp
->net_stats
.tx_fifo_errors
++;
330 if (txmac_stat
& MAC_TXSTAT_MPE
) {
331 printk(KERN_ERR
"%s: TX MAC max packet size error.\n",
333 gp
->net_stats
.tx_errors
++;
336 /* The rest are all cases of one of the 16-bit TX
339 if (txmac_stat
& MAC_TXSTAT_NCE
)
340 gp
->net_stats
.collisions
+= 0x10000;
342 if (txmac_stat
& MAC_TXSTAT_ECE
) {
343 gp
->net_stats
.tx_aborted_errors
+= 0x10000;
344 gp
->net_stats
.collisions
+= 0x10000;
347 if (txmac_stat
& MAC_TXSTAT_LCE
) {
348 gp
->net_stats
.tx_aborted_errors
+= 0x10000;
349 gp
->net_stats
.collisions
+= 0x10000;
352 /* We do not keep track of MAC_TXSTAT_FCE and
353 * MAC_TXSTAT_PCE events.
358 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
359 * so we do the following.
361 * If any part of the reset goes wrong, we return 1 and that causes the
362 * whole chip to be reset.
364 static int gem_rxmac_reset(struct gem
*gp
)
366 struct net_device
*dev
= gp
->dev
;
371 /* First, reset & disable MAC RX. */
372 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
373 for (limit
= 0; limit
< 5000; limit
++) {
374 if (!(readl(gp
->regs
+ MAC_RXRST
) & MAC_RXRST_CMD
))
379 printk(KERN_ERR
"%s: RX MAC will not reset, resetting whole "
380 "chip.\n", dev
->name
);
384 writel(gp
->mac_rx_cfg
& ~MAC_RXCFG_ENAB
,
385 gp
->regs
+ MAC_RXCFG
);
386 for (limit
= 0; limit
< 5000; limit
++) {
387 if (!(readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
))
392 printk(KERN_ERR
"%s: RX MAC will not disable, resetting whole "
393 "chip.\n", dev
->name
);
397 /* Second, disable RX DMA. */
398 writel(0, gp
->regs
+ RXDMA_CFG
);
399 for (limit
= 0; limit
< 5000; limit
++) {
400 if (!(readl(gp
->regs
+ RXDMA_CFG
) & RXDMA_CFG_ENABLE
))
405 printk(KERN_ERR
"%s: RX DMA will not disable, resetting whole "
406 "chip.\n", dev
->name
);
412 /* Execute RX reset command. */
413 writel(gp
->swrst_base
| GREG_SWRST_RXRST
,
414 gp
->regs
+ GREG_SWRST
);
415 for (limit
= 0; limit
< 5000; limit
++) {
416 if (!(readl(gp
->regs
+ GREG_SWRST
) & GREG_SWRST_RXRST
))
421 printk(KERN_ERR
"%s: RX reset command will not execute, resetting "
422 "whole chip.\n", dev
->name
);
426 /* Refresh the RX ring. */
427 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
428 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[i
];
430 if (gp
->rx_skbs
[i
] == NULL
) {
431 printk(KERN_ERR
"%s: Parts of RX ring empty, resetting "
432 "whole chip.\n", dev
->name
);
436 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
438 gp
->rx_new
= gp
->rx_old
= 0;
440 /* Now we must reprogram the rest of RX unit. */
441 desc_dma
= (u64
) gp
->gblock_dvma
;
442 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
443 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
444 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
445 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
446 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
447 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
448 writel(val
, gp
->regs
+ RXDMA_CFG
);
449 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
450 writel(((5 & RXDMA_BLANK_IPKTS
) |
451 ((8 << 12) & RXDMA_BLANK_ITIME
)),
452 gp
->regs
+ RXDMA_BLANK
);
454 writel(((5 & RXDMA_BLANK_IPKTS
) |
455 ((4 << 12) & RXDMA_BLANK_ITIME
)),
456 gp
->regs
+ RXDMA_BLANK
);
457 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
458 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
459 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
460 val
= readl(gp
->regs
+ RXDMA_CFG
);
461 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
462 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
463 val
= readl(gp
->regs
+ MAC_RXCFG
);
464 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
469 static int gem_rxmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
471 u32 rxmac_stat
= readl(gp
->regs
+ MAC_RXSTAT
);
474 if (netif_msg_intr(gp
))
475 printk(KERN_DEBUG
"%s: rxmac interrupt, rxmac_stat: 0x%x\n",
476 gp
->dev
->name
, rxmac_stat
);
478 if (rxmac_stat
& MAC_RXSTAT_OFLW
) {
479 u32 smac
= readl(gp
->regs
+ MAC_SMACHINE
);
481 printk(KERN_ERR
"%s: RX MAC fifo overflow smac[%08x].\n",
483 gp
->net_stats
.rx_over_errors
++;
484 gp
->net_stats
.rx_fifo_errors
++;
486 ret
= gem_rxmac_reset(gp
);
489 if (rxmac_stat
& MAC_RXSTAT_ACE
)
490 gp
->net_stats
.rx_frame_errors
+= 0x10000;
492 if (rxmac_stat
& MAC_RXSTAT_CCE
)
493 gp
->net_stats
.rx_crc_errors
+= 0x10000;
495 if (rxmac_stat
& MAC_RXSTAT_LCE
)
496 gp
->net_stats
.rx_length_errors
+= 0x10000;
498 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
504 static int gem_mac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
506 u32 mac_cstat
= readl(gp
->regs
+ MAC_CSTAT
);
508 if (netif_msg_intr(gp
))
509 printk(KERN_DEBUG
"%s: mac interrupt, mac_cstat: 0x%x\n",
510 gp
->dev
->name
, mac_cstat
);
512 /* This interrupt is just for pause frame and pause
513 * tracking. It is useful for diagnostics and debug
514 * but probably by default we will mask these events.
516 if (mac_cstat
& MAC_CSTAT_PS
)
519 if (mac_cstat
& MAC_CSTAT_PRCV
)
520 gp
->pause_last_time_recvd
= (mac_cstat
>> 16);
525 static int gem_mif_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
527 u32 mif_status
= readl(gp
->regs
+ MIF_STATUS
);
528 u32 reg_val
, changed_bits
;
530 reg_val
= (mif_status
& MIF_STATUS_DATA
) >> 16;
531 changed_bits
= (mif_status
& MIF_STATUS_STAT
);
533 gem_handle_mif_event(gp
, reg_val
, changed_bits
);
538 static int gem_pci_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
540 u32 pci_estat
= readl(gp
->regs
+ GREG_PCIESTAT
);
542 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
543 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
544 printk(KERN_ERR
"%s: PCI error [%04x] ",
545 dev
->name
, pci_estat
);
547 if (pci_estat
& GREG_PCIESTAT_BADACK
)
548 printk("<No ACK64# during ABS64 cycle> ");
549 if (pci_estat
& GREG_PCIESTAT_DTRTO
)
550 printk("<Delayed transaction timeout> ");
551 if (pci_estat
& GREG_PCIESTAT_OTHER
)
555 pci_estat
|= GREG_PCIESTAT_OTHER
;
556 printk(KERN_ERR
"%s: PCI error\n", dev
->name
);
559 if (pci_estat
& GREG_PCIESTAT_OTHER
) {
562 /* Interrogate PCI config space for the
565 pci_read_config_word(gp
->pdev
, PCI_STATUS
,
567 printk(KERN_ERR
"%s: Read PCI cfg space status [%04x]\n",
568 dev
->name
, pci_cfg_stat
);
569 if (pci_cfg_stat
& PCI_STATUS_PARITY
)
570 printk(KERN_ERR
"%s: PCI parity error detected.\n",
572 if (pci_cfg_stat
& PCI_STATUS_SIG_TARGET_ABORT
)
573 printk(KERN_ERR
"%s: PCI target abort.\n",
575 if (pci_cfg_stat
& PCI_STATUS_REC_TARGET_ABORT
)
576 printk(KERN_ERR
"%s: PCI master acks target abort.\n",
578 if (pci_cfg_stat
& PCI_STATUS_REC_MASTER_ABORT
)
579 printk(KERN_ERR
"%s: PCI master abort.\n",
581 if (pci_cfg_stat
& PCI_STATUS_SIG_SYSTEM_ERROR
)
582 printk(KERN_ERR
"%s: PCI system error SERR#.\n",
584 if (pci_cfg_stat
& PCI_STATUS_DETECTED_PARITY
)
585 printk(KERN_ERR
"%s: PCI parity error.\n",
588 /* Write the error bits back to clear them. */
589 pci_cfg_stat
&= (PCI_STATUS_PARITY
|
590 PCI_STATUS_SIG_TARGET_ABORT
|
591 PCI_STATUS_REC_TARGET_ABORT
|
592 PCI_STATUS_REC_MASTER_ABORT
|
593 PCI_STATUS_SIG_SYSTEM_ERROR
|
594 PCI_STATUS_DETECTED_PARITY
);
595 pci_write_config_word(gp
->pdev
,
596 PCI_STATUS
, pci_cfg_stat
);
599 /* For all PCI errors, we should reset the chip. */
603 /* All non-normal interrupt conditions get serviced here.
604 * Returns non-zero if we should just exit the interrupt
605 * handler right now (ie. if we reset the card which invalidates
606 * all of the other original irq status bits).
608 static int gem_abnormal_irq(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
610 if (gem_status
& GREG_STAT_RXNOBUF
) {
611 /* Frame arrived, no free RX buffers available. */
612 if (netif_msg_rx_err(gp
))
613 printk(KERN_DEBUG
"%s: no buffer for rx frame\n",
615 gp
->net_stats
.rx_dropped
++;
618 if (gem_status
& GREG_STAT_RXTAGERR
) {
619 /* corrupt RX tag framing */
620 if (netif_msg_rx_err(gp
))
621 printk(KERN_DEBUG
"%s: corrupt rx tag framing\n",
623 gp
->net_stats
.rx_errors
++;
628 if (gem_status
& GREG_STAT_PCS
) {
629 if (gem_pcs_interrupt(dev
, gp
, gem_status
))
633 if (gem_status
& GREG_STAT_TXMAC
) {
634 if (gem_txmac_interrupt(dev
, gp
, gem_status
))
638 if (gem_status
& GREG_STAT_RXMAC
) {
639 if (gem_rxmac_interrupt(dev
, gp
, gem_status
))
643 if (gem_status
& GREG_STAT_MAC
) {
644 if (gem_mac_interrupt(dev
, gp
, gem_status
))
648 if (gem_status
& GREG_STAT_MIF
) {
649 if (gem_mif_interrupt(dev
, gp
, gem_status
))
653 if (gem_status
& GREG_STAT_PCIERR
) {
654 if (gem_pci_interrupt(dev
, gp
, gem_status
))
661 gp
->reset_task_pending
= 1;
662 schedule_work(&gp
->reset_task
);
667 static __inline__
void gem_tx(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
671 if (netif_msg_intr(gp
))
672 printk(KERN_DEBUG
"%s: tx interrupt, gem_status: 0x%x\n",
673 gp
->dev
->name
, gem_status
);
676 limit
= ((gem_status
& GREG_STAT_TXNR
) >> GREG_STAT_TXNR_SHIFT
);
677 while (entry
!= limit
) {
684 if (netif_msg_tx_done(gp
))
685 printk(KERN_DEBUG
"%s: tx done, slot %d\n",
686 gp
->dev
->name
, entry
);
687 skb
= gp
->tx_skbs
[entry
];
688 if (skb_shinfo(skb
)->nr_frags
) {
689 int last
= entry
+ skb_shinfo(skb
)->nr_frags
;
693 last
&= (TX_RING_SIZE
- 1);
695 walk
= NEXT_TX(walk
);
704 gp
->tx_skbs
[entry
] = NULL
;
705 gp
->net_stats
.tx_bytes
+= skb
->len
;
707 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
708 txd
= &gp
->init_block
->txd
[entry
];
710 dma_addr
= le64_to_cpu(txd
->buffer
);
711 dma_len
= le64_to_cpu(txd
->control_word
) & TXDCTRL_BUFSZ
;
713 pci_unmap_page(gp
->pdev
, dma_addr
, dma_len
, PCI_DMA_TODEVICE
);
714 entry
= NEXT_TX(entry
);
717 gp
->net_stats
.tx_packets
++;
718 dev_kfree_skb_irq(skb
);
722 if (netif_queue_stopped(dev
) &&
723 TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))
724 netif_wake_queue(dev
);
727 static __inline__
void gem_post_rxds(struct gem
*gp
, int limit
)
729 int cluster_start
, curr
, count
, kick
;
731 cluster_start
= curr
= (gp
->rx_new
& ~(4 - 1));
735 while (curr
!= limit
) {
736 curr
= NEXT_RX(curr
);
738 struct gem_rxd
*rxd
=
739 &gp
->init_block
->rxd
[cluster_start
];
741 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
743 cluster_start
= NEXT_RX(cluster_start
);
744 if (cluster_start
== curr
)
753 writel(kick
, gp
->regs
+ RXDMA_KICK
);
757 static int gem_rx(struct gem
*gp
, int work_to_do
)
759 int entry
, drops
, work_done
= 0;
762 if (netif_msg_rx_status(gp
))
763 printk(KERN_DEBUG
"%s: rx interrupt, done: %d, rx_new: %d\n",
764 gp
->dev
->name
, readl(gp
->regs
+ RXDMA_DONE
), gp
->rx_new
);
768 done
= readl(gp
->regs
+ RXDMA_DONE
);
770 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[entry
];
772 u64 status
= cpu_to_le64(rxd
->status_word
);
776 if ((status
& RXDCTRL_OWN
) != 0)
779 if (work_done
>= RX_RING_SIZE
|| work_done
>= work_to_do
)
782 /* When writing back RX descriptor, GEM writes status
783 * then buffer address, possibly in seperate transactions.
784 * If we don't wait for the chip to write both, we could
785 * post a new buffer to this descriptor then have GEM spam
786 * on the buffer address. We sync on the RX completion
787 * register to prevent this from happening.
790 done
= readl(gp
->regs
+ RXDMA_DONE
);
795 /* We can now account for the work we're about to do */
798 skb
= gp
->rx_skbs
[entry
];
800 len
= (status
& RXDCTRL_BUFSZ
) >> 16;
801 if ((len
< ETH_ZLEN
) || (status
& RXDCTRL_BAD
)) {
802 gp
->net_stats
.rx_errors
++;
804 gp
->net_stats
.rx_length_errors
++;
805 if (len
& RXDCTRL_BAD
)
806 gp
->net_stats
.rx_crc_errors
++;
808 /* We'll just return it to GEM. */
810 gp
->net_stats
.rx_dropped
++;
814 dma_addr
= cpu_to_le64(rxd
->buffer
);
815 if (len
> RX_COPY_THRESHOLD
) {
816 struct sk_buff
*new_skb
;
818 new_skb
= gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
819 if (new_skb
== NULL
) {
823 pci_unmap_page(gp
->pdev
, dma_addr
,
824 RX_BUF_ALLOC_SIZE(gp
),
826 gp
->rx_skbs
[entry
] = new_skb
;
827 new_skb
->dev
= gp
->dev
;
828 skb_put(new_skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
829 rxd
->buffer
= cpu_to_le64(pci_map_page(gp
->pdev
,
830 virt_to_page(new_skb
->data
),
831 offset_in_page(new_skb
->data
),
832 RX_BUF_ALLOC_SIZE(gp
),
833 PCI_DMA_FROMDEVICE
));
834 skb_reserve(new_skb
, RX_OFFSET
);
836 /* Trim the original skb for the netif. */
839 struct sk_buff
*copy_skb
= dev_alloc_skb(len
+ 2);
841 if (copy_skb
== NULL
) {
846 skb_reserve(copy_skb
, 2);
847 skb_put(copy_skb
, len
);
848 pci_dma_sync_single_for_cpu(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
849 skb_copy_from_linear_data(skb
, copy_skb
->data
, len
);
850 pci_dma_sync_single_for_device(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
852 /* We'll reuse the original ring buffer. */
856 skb
->csum
= ntohs((status
& RXDCTRL_TCPCSUM
) ^ 0xffff);
857 skb
->ip_summed
= CHECKSUM_COMPLETE
;
858 skb
->protocol
= eth_type_trans(skb
, gp
->dev
);
860 netif_receive_skb(skb
);
862 gp
->net_stats
.rx_packets
++;
863 gp
->net_stats
.rx_bytes
+= len
;
864 gp
->dev
->last_rx
= jiffies
;
867 entry
= NEXT_RX(entry
);
870 gem_post_rxds(gp
, entry
);
875 printk(KERN_INFO
"%s: Memory squeeze, deferring packet.\n",
881 static int gem_poll(struct napi_struct
*napi
, int budget
)
883 struct gem
*gp
= container_of(napi
, struct gem
, napi
);
884 struct net_device
*dev
= gp
->dev
;
889 * NAPI locking nightmare: See comment at head of driver
891 spin_lock_irqsave(&gp
->lock
, flags
);
895 /* Handle anomalies */
896 if (gp
->status
& GREG_STAT_ABNORMAL
) {
897 if (gem_abnormal_irq(dev
, gp
, gp
->status
))
901 /* Run TX completion thread */
902 spin_lock(&gp
->tx_lock
);
903 gem_tx(dev
, gp
, gp
->status
);
904 spin_unlock(&gp
->tx_lock
);
906 spin_unlock_irqrestore(&gp
->lock
, flags
);
908 /* Run RX thread. We don't use any locking here,
909 * code willing to do bad things - like cleaning the
910 * rx ring - must call napi_disable(), which
911 * schedule_timeout()'s if polling is already disabled.
913 work_done
+= gem_rx(gp
, budget
);
915 if (work_done
>= budget
)
918 spin_lock_irqsave(&gp
->lock
, flags
);
920 gp
->status
= readl(gp
->regs
+ GREG_STAT
);
921 } while (gp
->status
& GREG_STAT_NAPI
);
923 __netif_rx_complete(dev
, napi
);
926 spin_unlock_irqrestore(&gp
->lock
, flags
);
931 static irqreturn_t
gem_interrupt(int irq
, void *dev_id
)
933 struct net_device
*dev
= dev_id
;
934 struct gem
*gp
= dev
->priv
;
937 /* Swallow interrupts when shutting the chip down, though
938 * that shouldn't happen, we should have done free_irq() at
944 spin_lock_irqsave(&gp
->lock
, flags
);
946 if (netif_rx_schedule_prep(dev
, &gp
->napi
)) {
947 u32 gem_status
= readl(gp
->regs
+ GREG_STAT
);
949 if (gem_status
== 0) {
950 napi_enable(&gp
->napi
);
951 spin_unlock_irqrestore(&gp
->lock
, flags
);
954 gp
->status
= gem_status
;
955 gem_disable_ints(gp
);
956 __netif_rx_schedule(dev
, &gp
->napi
);
959 spin_unlock_irqrestore(&gp
->lock
, flags
);
961 /* If polling was disabled at the time we received that
962 * interrupt, we may return IRQ_HANDLED here while we
963 * should return IRQ_NONE. No big deal...
968 #ifdef CONFIG_NET_POLL_CONTROLLER
969 static void gem_poll_controller(struct net_device
*dev
)
971 /* gem_interrupt is safe to reentrance so no need
972 * to disable_irq here.
974 gem_interrupt(dev
->irq
, dev
);
978 static void gem_tx_timeout(struct net_device
*dev
)
980 struct gem
*gp
= dev
->priv
;
982 printk(KERN_ERR
"%s: transmit timed out, resetting\n", dev
->name
);
984 printk("%s: hrm.. hw not running !\n", dev
->name
);
987 printk(KERN_ERR
"%s: TX_STATE[%08x:%08x:%08x]\n",
989 readl(gp
->regs
+ TXDMA_CFG
),
990 readl(gp
->regs
+ MAC_TXSTAT
),
991 readl(gp
->regs
+ MAC_TXCFG
));
992 printk(KERN_ERR
"%s: RX_STATE[%08x:%08x:%08x]\n",
994 readl(gp
->regs
+ RXDMA_CFG
),
995 readl(gp
->regs
+ MAC_RXSTAT
),
996 readl(gp
->regs
+ MAC_RXCFG
));
998 spin_lock_irq(&gp
->lock
);
999 spin_lock(&gp
->tx_lock
);
1001 gp
->reset_task_pending
= 1;
1002 schedule_work(&gp
->reset_task
);
1004 spin_unlock(&gp
->tx_lock
);
1005 spin_unlock_irq(&gp
->lock
);
1008 static __inline__
int gem_intme(int entry
)
1010 /* Algorithm: IRQ every 1/2 of descriptors. */
1011 if (!(entry
& ((TX_RING_SIZE
>>1)-1)))
1017 static int gem_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1019 struct gem
*gp
= dev
->priv
;
1022 unsigned long flags
;
1025 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1026 const u64 csum_start_off
= skb_transport_offset(skb
);
1027 const u64 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
1029 ctrl
= (TXDCTRL_CENAB
|
1030 (csum_start_off
<< 15) |
1031 (csum_stuff_off
<< 21));
1034 local_irq_save(flags
);
1035 if (!spin_trylock(&gp
->tx_lock
)) {
1036 /* Tell upper layer to requeue */
1037 local_irq_restore(flags
);
1038 return NETDEV_TX_LOCKED
;
1040 /* We raced with gem_do_stop() */
1042 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1043 return NETDEV_TX_BUSY
;
1046 /* This is a hard error, log it. */
1047 if (TX_BUFFS_AVAIL(gp
) <= (skb_shinfo(skb
)->nr_frags
+ 1)) {
1048 netif_stop_queue(dev
);
1049 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1050 printk(KERN_ERR PFX
"%s: BUG! Tx Ring full when queue awake!\n",
1052 return NETDEV_TX_BUSY
;
1056 gp
->tx_skbs
[entry
] = skb
;
1058 if (skb_shinfo(skb
)->nr_frags
== 0) {
1059 struct gem_txd
*txd
= &gp
->init_block
->txd
[entry
];
1064 mapping
= pci_map_page(gp
->pdev
,
1065 virt_to_page(skb
->data
),
1066 offset_in_page(skb
->data
),
1067 len
, PCI_DMA_TODEVICE
);
1068 ctrl
|= TXDCTRL_SOF
| TXDCTRL_EOF
| len
;
1069 if (gem_intme(entry
))
1070 ctrl
|= TXDCTRL_INTME
;
1071 txd
->buffer
= cpu_to_le64(mapping
);
1073 txd
->control_word
= cpu_to_le64(ctrl
);
1074 entry
= NEXT_TX(entry
);
1076 struct gem_txd
*txd
;
1079 dma_addr_t first_mapping
;
1080 int frag
, first_entry
= entry
;
1083 if (gem_intme(entry
))
1084 intme
|= TXDCTRL_INTME
;
1086 /* We must give this initial chunk to the device last.
1087 * Otherwise we could race with the device.
1089 first_len
= skb_headlen(skb
);
1090 first_mapping
= pci_map_page(gp
->pdev
, virt_to_page(skb
->data
),
1091 offset_in_page(skb
->data
),
1092 first_len
, PCI_DMA_TODEVICE
);
1093 entry
= NEXT_TX(entry
);
1095 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
1096 skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
1101 len
= this_frag
->size
;
1102 mapping
= pci_map_page(gp
->pdev
,
1104 this_frag
->page_offset
,
1105 len
, PCI_DMA_TODEVICE
);
1107 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
1108 this_ctrl
|= TXDCTRL_EOF
;
1110 txd
= &gp
->init_block
->txd
[entry
];
1111 txd
->buffer
= cpu_to_le64(mapping
);
1113 txd
->control_word
= cpu_to_le64(this_ctrl
| len
);
1115 if (gem_intme(entry
))
1116 intme
|= TXDCTRL_INTME
;
1118 entry
= NEXT_TX(entry
);
1120 txd
= &gp
->init_block
->txd
[first_entry
];
1121 txd
->buffer
= cpu_to_le64(first_mapping
);
1124 cpu_to_le64(ctrl
| TXDCTRL_SOF
| intme
| first_len
);
1128 if (TX_BUFFS_AVAIL(gp
) <= (MAX_SKB_FRAGS
+ 1))
1129 netif_stop_queue(dev
);
1131 if (netif_msg_tx_queued(gp
))
1132 printk(KERN_DEBUG
"%s: tx queued, slot %d, skblen %d\n",
1133 dev
->name
, entry
, skb
->len
);
1135 writel(gp
->tx_new
, gp
->regs
+ TXDMA_KICK
);
1136 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1138 dev
->trans_start
= jiffies
;
1140 return NETDEV_TX_OK
;
1143 #define STOP_TRIES 32
1145 /* Must be invoked under gp->lock and gp->tx_lock. */
1146 static void gem_reset(struct gem
*gp
)
1151 /* Make sure we won't get any more interrupts */
1152 writel(0xffffffff, gp
->regs
+ GREG_IMASK
);
1154 /* Reset the chip */
1155 writel(gp
->swrst_base
| GREG_SWRST_TXRST
| GREG_SWRST_RXRST
,
1156 gp
->regs
+ GREG_SWRST
);
1162 val
= readl(gp
->regs
+ GREG_SWRST
);
1165 } while (val
& (GREG_SWRST_TXRST
| GREG_SWRST_RXRST
));
1168 printk(KERN_ERR
"%s: SW reset is ghetto.\n", gp
->dev
->name
);
1171 /* Must be invoked under gp->lock and gp->tx_lock. */
1172 static void gem_start_dma(struct gem
*gp
)
1176 /* We are ready to rock, turn everything on. */
1177 val
= readl(gp
->regs
+ TXDMA_CFG
);
1178 writel(val
| TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1179 val
= readl(gp
->regs
+ RXDMA_CFG
);
1180 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1181 val
= readl(gp
->regs
+ MAC_TXCFG
);
1182 writel(val
| MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1183 val
= readl(gp
->regs
+ MAC_RXCFG
);
1184 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1186 (void) readl(gp
->regs
+ MAC_RXCFG
);
1189 gem_enable_ints(gp
);
1191 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1194 /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1195 * actually stopped before about 4ms tho ...
1197 static void gem_stop_dma(struct gem
*gp
)
1201 /* We are done rocking, turn everything off. */
1202 val
= readl(gp
->regs
+ TXDMA_CFG
);
1203 writel(val
& ~TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1204 val
= readl(gp
->regs
+ RXDMA_CFG
);
1205 writel(val
& ~RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1206 val
= readl(gp
->regs
+ MAC_TXCFG
);
1207 writel(val
& ~MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1208 val
= readl(gp
->regs
+ MAC_RXCFG
);
1209 writel(val
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1211 (void) readl(gp
->regs
+ MAC_RXCFG
);
1213 /* Need to wait a bit ... done by the caller */
1217 /* Must be invoked under gp->lock and gp->tx_lock. */
1218 // XXX dbl check what that function should do when called on PCS PHY
1219 static void gem_begin_auto_negotiation(struct gem
*gp
, struct ethtool_cmd
*ep
)
1221 u32 advertise
, features
;
1226 if (gp
->phy_type
!= phy_mii_mdio0
&&
1227 gp
->phy_type
!= phy_mii_mdio1
)
1230 /* Setup advertise */
1231 if (found_mii_phy(gp
))
1232 features
= gp
->phy_mii
.def
->features
;
1236 advertise
= features
& ADVERTISE_MASK
;
1237 if (gp
->phy_mii
.advertising
!= 0)
1238 advertise
&= gp
->phy_mii
.advertising
;
1240 autoneg
= gp
->want_autoneg
;
1241 speed
= gp
->phy_mii
.speed
;
1242 duplex
= gp
->phy_mii
.duplex
;
1244 /* Setup link parameters */
1247 if (ep
->autoneg
== AUTONEG_ENABLE
) {
1248 advertise
= ep
->advertising
;
1253 duplex
= ep
->duplex
;
1257 /* Sanitize settings based on PHY capabilities */
1258 if ((features
& SUPPORTED_Autoneg
) == 0)
1260 if (speed
== SPEED_1000
&&
1261 !(features
& (SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
)))
1263 if (speed
== SPEED_100
&&
1264 !(features
& (SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
)))
1266 if (duplex
== DUPLEX_FULL
&&
1267 !(features
& (SUPPORTED_1000baseT_Full
|
1268 SUPPORTED_100baseT_Full
|
1269 SUPPORTED_10baseT_Full
)))
1270 duplex
= DUPLEX_HALF
;
1274 /* If we are asleep, we don't try to actually setup the PHY, we
1275 * just store the settings
1278 gp
->phy_mii
.autoneg
= gp
->want_autoneg
= autoneg
;
1279 gp
->phy_mii
.speed
= speed
;
1280 gp
->phy_mii
.duplex
= duplex
;
1284 /* Configure PHY & start aneg */
1285 gp
->want_autoneg
= autoneg
;
1287 if (found_mii_phy(gp
))
1288 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, advertise
);
1289 gp
->lstate
= link_aneg
;
1291 if (found_mii_phy(gp
))
1292 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, speed
, duplex
);
1293 gp
->lstate
= link_force_ok
;
1297 gp
->timer_ticks
= 0;
1298 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1301 /* A link-up condition has occurred, initialize and enable the
1304 * Must be invoked under gp->lock and gp->tx_lock.
1306 static int gem_set_link_modes(struct gem
*gp
)
1309 int full_duplex
, speed
, pause
;
1315 if (found_mii_phy(gp
)) {
1316 if (gp
->phy_mii
.def
->ops
->read_link(&gp
->phy_mii
))
1318 full_duplex
= (gp
->phy_mii
.duplex
== DUPLEX_FULL
);
1319 speed
= gp
->phy_mii
.speed
;
1320 pause
= gp
->phy_mii
.pause
;
1321 } else if (gp
->phy_type
== phy_serialink
||
1322 gp
->phy_type
== phy_serdes
) {
1323 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1325 if (pcs_lpa
& PCS_MIIADV_FD
)
1330 if (netif_msg_link(gp
))
1331 printk(KERN_INFO
"%s: Link is up at %d Mbps, %s-duplex.\n",
1332 gp
->dev
->name
, speed
, (full_duplex
? "full" : "half"));
1337 val
= (MAC_TXCFG_EIPG0
| MAC_TXCFG_NGU
);
1339 val
|= (MAC_TXCFG_ICS
| MAC_TXCFG_ICOLL
);
1341 /* MAC_TXCFG_NBO must be zero. */
1343 writel(val
, gp
->regs
+ MAC_TXCFG
);
1345 val
= (MAC_XIFCFG_OE
| MAC_XIFCFG_LLED
);
1347 (gp
->phy_type
== phy_mii_mdio0
||
1348 gp
->phy_type
== phy_mii_mdio1
)) {
1349 val
|= MAC_XIFCFG_DISE
;
1350 } else if (full_duplex
) {
1351 val
|= MAC_XIFCFG_FLED
;
1354 if (speed
== SPEED_1000
)
1355 val
|= (MAC_XIFCFG_GMII
);
1357 writel(val
, gp
->regs
+ MAC_XIFCFG
);
1359 /* If gigabit and half-duplex, enable carrier extension
1360 * mode. Else, disable it.
1362 if (speed
== SPEED_1000
&& !full_duplex
) {
1363 val
= readl(gp
->regs
+ MAC_TXCFG
);
1364 writel(val
| MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1366 val
= readl(gp
->regs
+ MAC_RXCFG
);
1367 writel(val
| MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1369 val
= readl(gp
->regs
+ MAC_TXCFG
);
1370 writel(val
& ~MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1372 val
= readl(gp
->regs
+ MAC_RXCFG
);
1373 writel(val
& ~MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1376 if (gp
->phy_type
== phy_serialink
||
1377 gp
->phy_type
== phy_serdes
) {
1378 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1380 if (pcs_lpa
& (PCS_MIIADV_SP
| PCS_MIIADV_AP
))
1384 if (netif_msg_link(gp
)) {
1386 printk(KERN_INFO
"%s: Pause is enabled "
1387 "(rxfifo: %d off: %d on: %d)\n",
1393 printk(KERN_INFO
"%s: Pause is disabled\n",
1399 writel(512, gp
->regs
+ MAC_STIME
);
1401 writel(64, gp
->regs
+ MAC_STIME
);
1402 val
= readl(gp
->regs
+ MAC_MCCFG
);
1404 val
|= (MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1406 val
&= ~(MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1407 writel(val
, gp
->regs
+ MAC_MCCFG
);
1414 /* Must be invoked under gp->lock and gp->tx_lock. */
1415 static int gem_mdio_link_not_up(struct gem
*gp
)
1417 switch (gp
->lstate
) {
1418 case link_force_ret
:
1419 if (netif_msg_link(gp
))
1420 printk(KERN_INFO
"%s: Autoneg failed again, keeping"
1421 " forced mode\n", gp
->dev
->name
);
1422 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
,
1423 gp
->last_forced_speed
, DUPLEX_HALF
);
1424 gp
->timer_ticks
= 5;
1425 gp
->lstate
= link_force_ok
;
1428 /* We try forced modes after a failed aneg only on PHYs that don't
1429 * have "magic_aneg" bit set, which means they internally do the
1430 * while forced-mode thingy. On these, we just restart aneg
1432 if (gp
->phy_mii
.def
->magic_aneg
)
1434 if (netif_msg_link(gp
))
1435 printk(KERN_INFO
"%s: switching to forced 100bt\n",
1437 /* Try forced modes. */
1438 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_100
,
1440 gp
->timer_ticks
= 5;
1441 gp
->lstate
= link_force_try
;
1443 case link_force_try
:
1444 /* Downgrade from 100 to 10 Mbps if necessary.
1445 * If already at 10Mbps, warn user about the
1446 * situation every 10 ticks.
1448 if (gp
->phy_mii
.speed
== SPEED_100
) {
1449 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_10
,
1451 gp
->timer_ticks
= 5;
1452 if (netif_msg_link(gp
))
1453 printk(KERN_INFO
"%s: switching to forced 10bt\n",
1463 static void gem_link_timer(unsigned long data
)
1465 struct gem
*gp
= (struct gem
*) data
;
1466 int restart_aneg
= 0;
1471 spin_lock_irq(&gp
->lock
);
1472 spin_lock(&gp
->tx_lock
);
1475 /* If the reset task is still pending, we just
1476 * reschedule the link timer
1478 if (gp
->reset_task_pending
)
1481 if (gp
->phy_type
== phy_serialink
||
1482 gp
->phy_type
== phy_serdes
) {
1483 u32 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1485 if (!(val
& PCS_MIISTAT_LS
))
1486 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1488 if ((val
& PCS_MIISTAT_LS
) != 0) {
1489 gp
->lstate
= link_up
;
1490 netif_carrier_on(gp
->dev
);
1491 (void)gem_set_link_modes(gp
);
1495 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->poll_link(&gp
->phy_mii
)) {
1496 /* Ok, here we got a link. If we had it due to a forced
1497 * fallback, and we were configured for autoneg, we do
1498 * retry a short autoneg pass. If you know your hub is
1499 * broken, use ethtool ;)
1501 if (gp
->lstate
== link_force_try
&& gp
->want_autoneg
) {
1502 gp
->lstate
= link_force_ret
;
1503 gp
->last_forced_speed
= gp
->phy_mii
.speed
;
1504 gp
->timer_ticks
= 5;
1505 if (netif_msg_link(gp
))
1506 printk(KERN_INFO
"%s: Got link after fallback, retrying"
1507 " autoneg once...\n", gp
->dev
->name
);
1508 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, gp
->phy_mii
.advertising
);
1509 } else if (gp
->lstate
!= link_up
) {
1510 gp
->lstate
= link_up
;
1511 netif_carrier_on(gp
->dev
);
1512 if (gem_set_link_modes(gp
))
1516 /* If the link was previously up, we restart the
1519 if (gp
->lstate
== link_up
) {
1520 gp
->lstate
= link_down
;
1521 if (netif_msg_link(gp
))
1522 printk(KERN_INFO
"%s: Link down\n",
1524 netif_carrier_off(gp
->dev
);
1525 gp
->reset_task_pending
= 1;
1526 schedule_work(&gp
->reset_task
);
1528 } else if (++gp
->timer_ticks
> 10) {
1529 if (found_mii_phy(gp
))
1530 restart_aneg
= gem_mdio_link_not_up(gp
);
1536 gem_begin_auto_negotiation(gp
, NULL
);
1540 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1543 spin_unlock(&gp
->tx_lock
);
1544 spin_unlock_irq(&gp
->lock
);
1547 /* Must be invoked under gp->lock and gp->tx_lock. */
1548 static void gem_clean_rings(struct gem
*gp
)
1550 struct gem_init_block
*gb
= gp
->init_block
;
1551 struct sk_buff
*skb
;
1553 dma_addr_t dma_addr
;
1555 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1556 struct gem_rxd
*rxd
;
1559 if (gp
->rx_skbs
[i
] != NULL
) {
1560 skb
= gp
->rx_skbs
[i
];
1561 dma_addr
= le64_to_cpu(rxd
->buffer
);
1562 pci_unmap_page(gp
->pdev
, dma_addr
,
1563 RX_BUF_ALLOC_SIZE(gp
),
1564 PCI_DMA_FROMDEVICE
);
1565 dev_kfree_skb_any(skb
);
1566 gp
->rx_skbs
[i
] = NULL
;
1568 rxd
->status_word
= 0;
1573 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1574 if (gp
->tx_skbs
[i
] != NULL
) {
1575 struct gem_txd
*txd
;
1578 skb
= gp
->tx_skbs
[i
];
1579 gp
->tx_skbs
[i
] = NULL
;
1581 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1582 int ent
= i
& (TX_RING_SIZE
- 1);
1584 txd
= &gb
->txd
[ent
];
1585 dma_addr
= le64_to_cpu(txd
->buffer
);
1586 pci_unmap_page(gp
->pdev
, dma_addr
,
1587 le64_to_cpu(txd
->control_word
) &
1588 TXDCTRL_BUFSZ
, PCI_DMA_TODEVICE
);
1590 if (frag
!= skb_shinfo(skb
)->nr_frags
)
1593 dev_kfree_skb_any(skb
);
1598 /* Must be invoked under gp->lock and gp->tx_lock. */
1599 static void gem_init_rings(struct gem
*gp
)
1601 struct gem_init_block
*gb
= gp
->init_block
;
1602 struct net_device
*dev
= gp
->dev
;
1604 dma_addr_t dma_addr
;
1606 gp
->rx_new
= gp
->rx_old
= gp
->tx_new
= gp
->tx_old
= 0;
1608 gem_clean_rings(gp
);
1610 gp
->rx_buf_sz
= max(dev
->mtu
+ ETH_HLEN
+ VLAN_HLEN
,
1611 (unsigned)VLAN_ETH_FRAME_LEN
);
1613 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1614 struct sk_buff
*skb
;
1615 struct gem_rxd
*rxd
= &gb
->rxd
[i
];
1617 skb
= gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
1620 rxd
->status_word
= 0;
1624 gp
->rx_skbs
[i
] = skb
;
1626 skb_put(skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
1627 dma_addr
= pci_map_page(gp
->pdev
,
1628 virt_to_page(skb
->data
),
1629 offset_in_page(skb
->data
),
1630 RX_BUF_ALLOC_SIZE(gp
),
1631 PCI_DMA_FROMDEVICE
);
1632 rxd
->buffer
= cpu_to_le64(dma_addr
);
1634 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
1635 skb_reserve(skb
, RX_OFFSET
);
1638 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1639 struct gem_txd
*txd
= &gb
->txd
[i
];
1641 txd
->control_word
= 0;
1648 /* Init PHY interface and start link poll state machine */
1649 static void gem_init_phy(struct gem
*gp
)
1653 /* Revert MIF CFG setting done on stop_phy */
1654 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
1655 mifcfg
&= ~MIF_CFG_BBMODE
;
1656 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
1658 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1661 /* Those delay sucks, the HW seem to love them though, I'll
1662 * serisouly consider breaking some locks here to be able
1663 * to schedule instead
1665 for (i
= 0; i
< 3; i
++) {
1666 #ifdef CONFIG_PPC_PMAC
1667 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET
, gp
->of_node
, 0, 0);
1670 /* Some PHYs used by apple have problem getting back to us,
1671 * we do an additional reset here
1673 phy_write(gp
, MII_BMCR
, BMCR_RESET
);
1675 if (phy_read(gp
, MII_BMCR
) != 0xffff)
1678 printk(KERN_WARNING
"%s: GMAC PHY not responding !\n",
1683 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1684 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
1687 /* Init datapath mode register. */
1688 if (gp
->phy_type
== phy_mii_mdio0
||
1689 gp
->phy_type
== phy_mii_mdio1
) {
1690 val
= PCS_DMODE_MGM
;
1691 } else if (gp
->phy_type
== phy_serialink
) {
1692 val
= PCS_DMODE_SM
| PCS_DMODE_GMOE
;
1694 val
= PCS_DMODE_ESM
;
1697 writel(val
, gp
->regs
+ PCS_DMODE
);
1700 if (gp
->phy_type
== phy_mii_mdio0
||
1701 gp
->phy_type
== phy_mii_mdio1
) {
1702 // XXX check for errors
1703 mii_phy_probe(&gp
->phy_mii
, gp
->mii_phy_addr
);
1706 if (gp
->phy_mii
.def
&& gp
->phy_mii
.def
->ops
->init
)
1707 gp
->phy_mii
.def
->ops
->init(&gp
->phy_mii
);
1712 /* Reset PCS unit. */
1713 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1714 val
|= PCS_MIICTRL_RST
;
1715 writeb(val
, gp
->regs
+ PCS_MIICTRL
);
1718 while (readl(gp
->regs
+ PCS_MIICTRL
) & PCS_MIICTRL_RST
) {
1724 printk(KERN_WARNING
"%s: PCS reset bit would not clear.\n",
1727 /* Make sure PCS is disabled while changing advertisement
1730 val
= readl(gp
->regs
+ PCS_CFG
);
1731 val
&= ~(PCS_CFG_ENABLE
| PCS_CFG_TO
);
1732 writel(val
, gp
->regs
+ PCS_CFG
);
1734 /* Advertise all capabilities except assymetric
1737 val
= readl(gp
->regs
+ PCS_MIIADV
);
1738 val
|= (PCS_MIIADV_FD
| PCS_MIIADV_HD
|
1739 PCS_MIIADV_SP
| PCS_MIIADV_AP
);
1740 writel(val
, gp
->regs
+ PCS_MIIADV
);
1742 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1743 * and re-enable PCS.
1745 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1746 val
|= (PCS_MIICTRL_RAN
| PCS_MIICTRL_ANE
);
1747 val
&= ~PCS_MIICTRL_WB
;
1748 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1750 val
= readl(gp
->regs
+ PCS_CFG
);
1751 val
|= PCS_CFG_ENABLE
;
1752 writel(val
, gp
->regs
+ PCS_CFG
);
1754 /* Make sure serialink loopback is off. The meaning
1755 * of this bit is logically inverted based upon whether
1756 * you are in Serialink or SERDES mode.
1758 val
= readl(gp
->regs
+ PCS_SCTRL
);
1759 if (gp
->phy_type
== phy_serialink
)
1760 val
&= ~PCS_SCTRL_LOOP
;
1762 val
|= PCS_SCTRL_LOOP
;
1763 writel(val
, gp
->regs
+ PCS_SCTRL
);
1766 /* Default aneg parameters */
1767 gp
->timer_ticks
= 0;
1768 gp
->lstate
= link_down
;
1769 netif_carrier_off(gp
->dev
);
1771 /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1772 spin_lock_irq(&gp
->lock
);
1773 gem_begin_auto_negotiation(gp
, NULL
);
1774 spin_unlock_irq(&gp
->lock
);
1777 /* Must be invoked under gp->lock and gp->tx_lock. */
1778 static void gem_init_dma(struct gem
*gp
)
1780 u64 desc_dma
= (u64
) gp
->gblock_dvma
;
1783 val
= (TXDMA_CFG_BASE
| (0x7ff << 10) | TXDMA_CFG_PMODE
);
1784 writel(val
, gp
->regs
+ TXDMA_CFG
);
1786 writel(desc_dma
>> 32, gp
->regs
+ TXDMA_DBHI
);
1787 writel(desc_dma
& 0xffffffff, gp
->regs
+ TXDMA_DBLOW
);
1788 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
1790 writel(0, gp
->regs
+ TXDMA_KICK
);
1792 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
1793 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
1794 writel(val
, gp
->regs
+ RXDMA_CFG
);
1796 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
1797 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
1799 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1801 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
1802 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
1803 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
1805 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
1806 writel(((5 & RXDMA_BLANK_IPKTS
) |
1807 ((8 << 12) & RXDMA_BLANK_ITIME
)),
1808 gp
->regs
+ RXDMA_BLANK
);
1810 writel(((5 & RXDMA_BLANK_IPKTS
) |
1811 ((4 << 12) & RXDMA_BLANK_ITIME
)),
1812 gp
->regs
+ RXDMA_BLANK
);
1815 /* Must be invoked under gp->lock and gp->tx_lock. */
1816 static u32
gem_setup_multicast(struct gem
*gp
)
1821 if ((gp
->dev
->flags
& IFF_ALLMULTI
) ||
1822 (gp
->dev
->mc_count
> 256)) {
1823 for (i
=0; i
<16; i
++)
1824 writel(0xffff, gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1825 rxcfg
|= MAC_RXCFG_HFE
;
1826 } else if (gp
->dev
->flags
& IFF_PROMISC
) {
1827 rxcfg
|= MAC_RXCFG_PROM
;
1831 struct dev_mc_list
*dmi
= gp
->dev
->mc_list
;
1834 for (i
= 0; i
< 16; i
++)
1837 for (i
= 0; i
< gp
->dev
->mc_count
; i
++) {
1838 char *addrs
= dmi
->dmi_addr
;
1845 crc
= ether_crc_le(6, addrs
);
1847 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
1849 for (i
=0; i
<16; i
++)
1850 writel(hash_table
[i
], gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1851 rxcfg
|= MAC_RXCFG_HFE
;
1857 /* Must be invoked under gp->lock and gp->tx_lock. */
1858 static void gem_init_mac(struct gem
*gp
)
1860 unsigned char *e
= &gp
->dev
->dev_addr
[0];
1862 writel(0x1bf0, gp
->regs
+ MAC_SNDPAUSE
);
1864 writel(0x00, gp
->regs
+ MAC_IPG0
);
1865 writel(0x08, gp
->regs
+ MAC_IPG1
);
1866 writel(0x04, gp
->regs
+ MAC_IPG2
);
1867 writel(0x40, gp
->regs
+ MAC_STIME
);
1868 writel(0x40, gp
->regs
+ MAC_MINFSZ
);
1870 /* Ethernet payload + header + FCS + optional VLAN tag. */
1871 writel(0x20000000 | (gp
->rx_buf_sz
+ 4), gp
->regs
+ MAC_MAXFSZ
);
1873 writel(0x07, gp
->regs
+ MAC_PASIZE
);
1874 writel(0x04, gp
->regs
+ MAC_JAMSIZE
);
1875 writel(0x10, gp
->regs
+ MAC_ATTLIM
);
1876 writel(0x8808, gp
->regs
+ MAC_MCTYPE
);
1878 writel((e
[5] | (e
[4] << 8)) & 0x3ff, gp
->regs
+ MAC_RANDSEED
);
1880 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
1881 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
1882 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
1884 writel(0, gp
->regs
+ MAC_ADDR3
);
1885 writel(0, gp
->regs
+ MAC_ADDR4
);
1886 writel(0, gp
->regs
+ MAC_ADDR5
);
1888 writel(0x0001, gp
->regs
+ MAC_ADDR6
);
1889 writel(0xc200, gp
->regs
+ MAC_ADDR7
);
1890 writel(0x0180, gp
->regs
+ MAC_ADDR8
);
1892 writel(0, gp
->regs
+ MAC_AFILT0
);
1893 writel(0, gp
->regs
+ MAC_AFILT1
);
1894 writel(0, gp
->regs
+ MAC_AFILT2
);
1895 writel(0, gp
->regs
+ MAC_AF21MSK
);
1896 writel(0, gp
->regs
+ MAC_AF0MSK
);
1898 gp
->mac_rx_cfg
= gem_setup_multicast(gp
);
1900 gp
->mac_rx_cfg
|= MAC_RXCFG_SFCS
;
1902 writel(0, gp
->regs
+ MAC_NCOLL
);
1903 writel(0, gp
->regs
+ MAC_FASUCC
);
1904 writel(0, gp
->regs
+ MAC_ECOLL
);
1905 writel(0, gp
->regs
+ MAC_LCOLL
);
1906 writel(0, gp
->regs
+ MAC_DTIMER
);
1907 writel(0, gp
->regs
+ MAC_PATMPS
);
1908 writel(0, gp
->regs
+ MAC_RFCTR
);
1909 writel(0, gp
->regs
+ MAC_LERR
);
1910 writel(0, gp
->regs
+ MAC_AERR
);
1911 writel(0, gp
->regs
+ MAC_FCSERR
);
1912 writel(0, gp
->regs
+ MAC_RXCVERR
);
1914 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1915 * them once a link is established.
1917 writel(0, gp
->regs
+ MAC_TXCFG
);
1918 writel(gp
->mac_rx_cfg
, gp
->regs
+ MAC_RXCFG
);
1919 writel(0, gp
->regs
+ MAC_MCCFG
);
1920 writel(0, gp
->regs
+ MAC_XIFCFG
);
1922 /* Setup MAC interrupts. We want to get all of the interesting
1923 * counter expiration events, but we do not want to hear about
1924 * normal rx/tx as the DMA engine tells us that.
1926 writel(MAC_TXSTAT_XMIT
, gp
->regs
+ MAC_TXMASK
);
1927 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
1929 /* Don't enable even the PAUSE interrupts for now, we
1930 * make no use of those events other than to record them.
1932 writel(0xffffffff, gp
->regs
+ MAC_MCMASK
);
1934 /* Don't enable GEM's WOL in normal operations
1937 writel(0, gp
->regs
+ WOL_WAKECSR
);
1940 /* Must be invoked under gp->lock and gp->tx_lock. */
1941 static void gem_init_pause_thresholds(struct gem
*gp
)
1945 /* Calculate pause thresholds. Setting the OFF threshold to the
1946 * full RX fifo size effectively disables PAUSE generation which
1947 * is what we do for 10/100 only GEMs which have FIFOs too small
1948 * to make real gains from PAUSE.
1950 if (gp
->rx_fifo_sz
<= (2 * 1024)) {
1951 gp
->rx_pause_off
= gp
->rx_pause_on
= gp
->rx_fifo_sz
;
1953 int max_frame
= (gp
->rx_buf_sz
+ 4 + 64) & ~63;
1954 int off
= (gp
->rx_fifo_sz
- (max_frame
* 2));
1955 int on
= off
- max_frame
;
1957 gp
->rx_pause_off
= off
;
1958 gp
->rx_pause_on
= on
;
1962 /* Configure the chip "burst" DMA mode & enable some
1963 * HW bug fixes on Apple version
1966 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
1967 cfg
|= GREG_CFG_RONPAULBIT
| GREG_CFG_ENBUG2FIX
;
1968 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1969 cfg
|= GREG_CFG_IBURST
;
1971 cfg
|= ((31 << 1) & GREG_CFG_TXDMALIM
);
1972 cfg
|= ((31 << 6) & GREG_CFG_RXDMALIM
);
1973 writel(cfg
, gp
->regs
+ GREG_CFG
);
1975 /* If Infinite Burst didn't stick, then use different
1976 * thresholds (and Apple bug fixes don't exist)
1978 if (!(readl(gp
->regs
+ GREG_CFG
) & GREG_CFG_IBURST
)) {
1979 cfg
= ((2 << 1) & GREG_CFG_TXDMALIM
);
1980 cfg
|= ((8 << 6) & GREG_CFG_RXDMALIM
);
1981 writel(cfg
, gp
->regs
+ GREG_CFG
);
1985 static int gem_check_invariants(struct gem
*gp
)
1987 struct pci_dev
*pdev
= gp
->pdev
;
1990 /* On Apple's sungem, we can't rely on registers as the chip
1991 * was been powered down by the firmware. The PHY is looked
1994 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1995 gp
->phy_type
= phy_mii_mdio0
;
1996 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
1997 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
2000 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
2001 mif_cfg
&= ~(MIF_CFG_PSELECT
|MIF_CFG_POLL
|MIF_CFG_BBMODE
|MIF_CFG_MDI1
);
2002 mif_cfg
|= MIF_CFG_MDI0
;
2003 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2004 writel(PCS_DMODE_MGM
, gp
->regs
+ PCS_DMODE
);
2005 writel(MAC_XIFCFG_OE
, gp
->regs
+ MAC_XIFCFG
);
2007 /* We hard-code the PHY address so we can properly bring it out of
2008 * reset later on, we can't really probe it at this point, though
2009 * that isn't an issue.
2011 if (gp
->pdev
->device
== PCI_DEVICE_ID_APPLE_K2_GMAC
)
2012 gp
->mii_phy_addr
= 1;
2014 gp
->mii_phy_addr
= 0;
2019 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
2021 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2022 pdev
->device
== PCI_DEVICE_ID_SUN_RIO_GEM
) {
2023 /* One of the MII PHYs _must_ be present
2024 * as this chip has no gigabit PHY.
2026 if ((mif_cfg
& (MIF_CFG_MDI0
| MIF_CFG_MDI1
)) == 0) {
2027 printk(KERN_ERR PFX
"RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2033 /* Determine initial PHY interface type guess. MDIO1 is the
2034 * external PHY and thus takes precedence over MDIO0.
2037 if (mif_cfg
& MIF_CFG_MDI1
) {
2038 gp
->phy_type
= phy_mii_mdio1
;
2039 mif_cfg
|= MIF_CFG_PSELECT
;
2040 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2041 } else if (mif_cfg
& MIF_CFG_MDI0
) {
2042 gp
->phy_type
= phy_mii_mdio0
;
2043 mif_cfg
&= ~MIF_CFG_PSELECT
;
2044 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2046 gp
->phy_type
= phy_serialink
;
2048 if (gp
->phy_type
== phy_mii_mdio1
||
2049 gp
->phy_type
== phy_mii_mdio0
) {
2052 for (i
= 0; i
< 32; i
++) {
2053 gp
->mii_phy_addr
= i
;
2054 if (phy_read(gp
, MII_BMCR
) != 0xffff)
2058 if (pdev
->device
!= PCI_DEVICE_ID_SUN_GEM
) {
2059 printk(KERN_ERR PFX
"RIO MII phy will not respond.\n");
2062 gp
->phy_type
= phy_serdes
;
2066 /* Fetch the FIFO configurations now too. */
2067 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
2068 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
2070 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
) {
2071 if (pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
2072 if (gp
->tx_fifo_sz
!= (9 * 1024) ||
2073 gp
->rx_fifo_sz
!= (20 * 1024)) {
2074 printk(KERN_ERR PFX
"GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2075 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2080 if (gp
->tx_fifo_sz
!= (2 * 1024) ||
2081 gp
->rx_fifo_sz
!= (2 * 1024)) {
2082 printk(KERN_ERR PFX
"RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2083 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2086 gp
->swrst_base
= (64 / 4) << GREG_SWRST_CACHE_SHIFT
;
2093 /* Must be invoked under gp->lock and gp->tx_lock. */
2094 static void gem_reinit_chip(struct gem
*gp
)
2096 /* Reset the chip */
2099 /* Make sure ints are disabled */
2100 gem_disable_ints(gp
);
2102 /* Allocate & setup ring buffers */
2105 /* Configure pause thresholds */
2106 gem_init_pause_thresholds(gp
);
2108 /* Init DMA & MAC engines */
2114 /* Must be invoked with no lock held. */
2115 static void gem_stop_phy(struct gem
*gp
, int wol
)
2118 unsigned long flags
;
2120 /* Let the chip settle down a bit, it seems that helps
2121 * for sleep mode on some models
2125 /* Make sure we aren't polling PHY status change. We
2126 * don't currently use that feature though
2128 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
2129 mifcfg
&= ~MIF_CFG_POLL
;
2130 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
2132 if (wol
&& gp
->has_wol
) {
2133 unsigned char *e
= &gp
->dev
->dev_addr
[0];
2136 /* Setup wake-on-lan for MAGIC packet */
2137 writel(MAC_RXCFG_HFE
| MAC_RXCFG_SFCS
| MAC_RXCFG_ENAB
,
2138 gp
->regs
+ MAC_RXCFG
);
2139 writel((e
[4] << 8) | e
[5], gp
->regs
+ WOL_MATCH0
);
2140 writel((e
[2] << 8) | e
[3], gp
->regs
+ WOL_MATCH1
);
2141 writel((e
[0] << 8) | e
[1], gp
->regs
+ WOL_MATCH2
);
2143 writel(WOL_MCOUNT_N
| WOL_MCOUNT_M
, gp
->regs
+ WOL_MCOUNT
);
2144 csr
= WOL_WAKECSR_ENABLE
;
2145 if ((readl(gp
->regs
+ MAC_XIFCFG
) & MAC_XIFCFG_GMII
) == 0)
2146 csr
|= WOL_WAKECSR_MII
;
2147 writel(csr
, gp
->regs
+ WOL_WAKECSR
);
2149 writel(0, gp
->regs
+ MAC_RXCFG
);
2150 (void)readl(gp
->regs
+ MAC_RXCFG
);
2151 /* Machine sleep will die in strange ways if we
2152 * dont wait a bit here, looks like the chip takes
2153 * some time to really shut down
2158 writel(0, gp
->regs
+ MAC_TXCFG
);
2159 writel(0, gp
->regs
+ MAC_XIFCFG
);
2160 writel(0, gp
->regs
+ TXDMA_CFG
);
2161 writel(0, gp
->regs
+ RXDMA_CFG
);
2164 spin_lock_irqsave(&gp
->lock
, flags
);
2165 spin_lock(&gp
->tx_lock
);
2167 writel(MAC_TXRST_CMD
, gp
->regs
+ MAC_TXRST
);
2168 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
2169 spin_unlock(&gp
->tx_lock
);
2170 spin_unlock_irqrestore(&gp
->lock
, flags
);
2172 /* No need to take the lock here */
2174 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->suspend
)
2175 gp
->phy_mii
.def
->ops
->suspend(&gp
->phy_mii
);
2177 /* According to Apple, we must set the MDIO pins to this begnign
2178 * state or we may 1) eat more current, 2) damage some PHYs
2180 writel(mifcfg
| MIF_CFG_BBMODE
, gp
->regs
+ MIF_CFG
);
2181 writel(0, gp
->regs
+ MIF_BBCLK
);
2182 writel(0, gp
->regs
+ MIF_BBDATA
);
2183 writel(0, gp
->regs
+ MIF_BBOENAB
);
2184 writel(MAC_XIFCFG_GMII
| MAC_XIFCFG_LBCK
, gp
->regs
+ MAC_XIFCFG
);
2185 (void) readl(gp
->regs
+ MAC_XIFCFG
);
2190 static int gem_do_start(struct net_device
*dev
)
2192 struct gem
*gp
= dev
->priv
;
2193 unsigned long flags
;
2195 spin_lock_irqsave(&gp
->lock
, flags
);
2196 spin_lock(&gp
->tx_lock
);
2198 /* Enable the cell */
2201 /* Init & setup chip hardware */
2202 gem_reinit_chip(gp
);
2206 if (gp
->lstate
== link_up
) {
2207 netif_carrier_on(gp
->dev
);
2208 gem_set_link_modes(gp
);
2211 netif_wake_queue(gp
->dev
);
2213 spin_unlock(&gp
->tx_lock
);
2214 spin_unlock_irqrestore(&gp
->lock
, flags
);
2216 if (request_irq(gp
->pdev
->irq
, gem_interrupt
,
2217 IRQF_SHARED
, dev
->name
, (void *)dev
)) {
2218 printk(KERN_ERR
"%s: failed to request irq !\n", gp
->dev
->name
);
2220 spin_lock_irqsave(&gp
->lock
, flags
);
2221 spin_lock(&gp
->tx_lock
);
2225 gem_clean_rings(gp
);
2228 spin_unlock(&gp
->tx_lock
);
2229 spin_unlock_irqrestore(&gp
->lock
, flags
);
2237 static void gem_do_stop(struct net_device
*dev
, int wol
)
2239 struct gem
*gp
= dev
->priv
;
2240 unsigned long flags
;
2242 spin_lock_irqsave(&gp
->lock
, flags
);
2243 spin_lock(&gp
->tx_lock
);
2247 /* Stop netif queue */
2248 netif_stop_queue(dev
);
2250 /* Make sure ints are disabled */
2251 gem_disable_ints(gp
);
2253 /* We can drop the lock now */
2254 spin_unlock(&gp
->tx_lock
);
2255 spin_unlock_irqrestore(&gp
->lock
, flags
);
2257 /* If we are going to sleep with WOL */
2264 /* Get rid of rings */
2265 gem_clean_rings(gp
);
2267 /* No irq needed anymore */
2268 free_irq(gp
->pdev
->irq
, (void *) dev
);
2270 /* Cell not needed neither if no WOL */
2272 spin_lock_irqsave(&gp
->lock
, flags
);
2274 spin_unlock_irqrestore(&gp
->lock
, flags
);
2278 static void gem_reset_task(struct work_struct
*work
)
2280 struct gem
*gp
= container_of(work
, struct gem
, reset_task
);
2282 mutex_lock(&gp
->pm_mutex
);
2285 napi_disable(&gp
->napi
);
2287 spin_lock_irq(&gp
->lock
);
2288 spin_lock(&gp
->tx_lock
);
2291 netif_stop_queue(gp
->dev
);
2293 /* Reset the chip & rings */
2294 gem_reinit_chip(gp
);
2295 if (gp
->lstate
== link_up
)
2296 gem_set_link_modes(gp
);
2297 netif_wake_queue(gp
->dev
);
2300 gp
->reset_task_pending
= 0;
2302 spin_unlock(&gp
->tx_lock
);
2303 spin_unlock_irq(&gp
->lock
);
2306 napi_enable(&gp
->napi
);
2308 mutex_unlock(&gp
->pm_mutex
);
2312 static int gem_open(struct net_device
*dev
)
2314 struct gem
*gp
= dev
->priv
;
2317 mutex_lock(&gp
->pm_mutex
);
2319 /* We need the cell enabled */
2321 rc
= gem_do_start(dev
);
2322 gp
->opened
= (rc
== 0);
2324 napi_enable(&gp
->napi
);
2326 mutex_unlock(&gp
->pm_mutex
);
2331 static int gem_close(struct net_device
*dev
)
2333 struct gem
*gp
= dev
->priv
;
2335 mutex_lock(&gp
->pm_mutex
);
2337 napi_disable(&gp
->napi
);
2341 gem_do_stop(dev
, 0);
2343 mutex_unlock(&gp
->pm_mutex
);
2349 static int gem_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2351 struct net_device
*dev
= pci_get_drvdata(pdev
);
2352 struct gem
*gp
= dev
->priv
;
2353 unsigned long flags
;
2355 mutex_lock(&gp
->pm_mutex
);
2357 printk(KERN_INFO
"%s: suspending, WakeOnLan %s\n",
2359 (gp
->wake_on_lan
&& gp
->opened
) ? "enabled" : "disabled");
2361 /* Keep the cell enabled during the entire operation */
2362 spin_lock_irqsave(&gp
->lock
, flags
);
2363 spin_lock(&gp
->tx_lock
);
2365 spin_unlock(&gp
->tx_lock
);
2366 spin_unlock_irqrestore(&gp
->lock
, flags
);
2368 /* If the driver is opened, we stop the MAC */
2370 napi_disable(&gp
->napi
);
2372 /* Stop traffic, mark us closed */
2373 netif_device_detach(dev
);
2375 /* Switch off MAC, remember WOL setting */
2376 gp
->asleep_wol
= gp
->wake_on_lan
;
2377 gem_do_stop(dev
, gp
->asleep_wol
);
2381 /* Mark us asleep */
2385 /* Stop the link timer */
2386 del_timer_sync(&gp
->link_timer
);
2388 /* Now we release the mutex to not block the reset task who
2389 * can take it too. We are marked asleep, so there will be no
2392 mutex_unlock(&gp
->pm_mutex
);
2394 /* Wait for a pending reset task to complete */
2395 while (gp
->reset_task_pending
)
2397 flush_scheduled_work();
2399 /* Shut the PHY down eventually and setup WOL */
2400 gem_stop_phy(gp
, gp
->asleep_wol
);
2402 /* Make sure bus master is disabled */
2403 pci_disable_device(gp
->pdev
);
2405 /* Release the cell, no need to take a lock at this point since
2406 * nothing else can happen now
2413 static int gem_resume(struct pci_dev
*pdev
)
2415 struct net_device
*dev
= pci_get_drvdata(pdev
);
2416 struct gem
*gp
= dev
->priv
;
2417 unsigned long flags
;
2419 printk(KERN_INFO
"%s: resuming\n", dev
->name
);
2421 mutex_lock(&gp
->pm_mutex
);
2423 /* Keep the cell enabled during the entire operation, no need to
2424 * take a lock here tho since nothing else can happen while we are
2429 /* Make sure PCI access and bus master are enabled */
2430 if (pci_enable_device(gp
->pdev
)) {
2431 printk(KERN_ERR
"%s: Can't re-enable chip !\n",
2433 /* Put cell and forget it for now, it will be considered as
2434 * still asleep, a new sleep cycle may bring it back
2437 mutex_unlock(&gp
->pm_mutex
);
2440 pci_set_master(gp
->pdev
);
2442 /* Reset everything */
2445 /* Mark us woken up */
2449 /* Bring the PHY back. Again, lock is useless at this point as
2450 * nothing can be happening until we restart the whole thing
2454 /* If we were opened, bring everything back */
2459 /* Re-attach net device */
2460 netif_device_attach(dev
);
2462 napi_enable(&gp
->napi
);
2465 spin_lock_irqsave(&gp
->lock
, flags
);
2466 spin_lock(&gp
->tx_lock
);
2468 /* If we had WOL enabled, the cell clock was never turned off during
2469 * sleep, so we end up beeing unbalanced. Fix that here
2474 /* This function doesn't need to hold the cell, it will be held if the
2475 * driver is open by gem_do_start().
2479 spin_unlock(&gp
->tx_lock
);
2480 spin_unlock_irqrestore(&gp
->lock
, flags
);
2482 mutex_unlock(&gp
->pm_mutex
);
2486 #endif /* CONFIG_PM */
2488 static struct net_device_stats
*gem_get_stats(struct net_device
*dev
)
2490 struct gem
*gp
= dev
->priv
;
2491 struct net_device_stats
*stats
= &gp
->net_stats
;
2493 spin_lock_irq(&gp
->lock
);
2494 spin_lock(&gp
->tx_lock
);
2496 /* I have seen this being called while the PM was in progress,
2497 * so we shield against this
2500 stats
->rx_crc_errors
+= readl(gp
->regs
+ MAC_FCSERR
);
2501 writel(0, gp
->regs
+ MAC_FCSERR
);
2503 stats
->rx_frame_errors
+= readl(gp
->regs
+ MAC_AERR
);
2504 writel(0, gp
->regs
+ MAC_AERR
);
2506 stats
->rx_length_errors
+= readl(gp
->regs
+ MAC_LERR
);
2507 writel(0, gp
->regs
+ MAC_LERR
);
2509 stats
->tx_aborted_errors
+= readl(gp
->regs
+ MAC_ECOLL
);
2510 stats
->collisions
+=
2511 (readl(gp
->regs
+ MAC_ECOLL
) +
2512 readl(gp
->regs
+ MAC_LCOLL
));
2513 writel(0, gp
->regs
+ MAC_ECOLL
);
2514 writel(0, gp
->regs
+ MAC_LCOLL
);
2517 spin_unlock(&gp
->tx_lock
);
2518 spin_unlock_irq(&gp
->lock
);
2520 return &gp
->net_stats
;
2523 static int gem_set_mac_address(struct net_device
*dev
, void *addr
)
2525 struct sockaddr
*macaddr
= (struct sockaddr
*) addr
;
2526 struct gem
*gp
= dev
->priv
;
2527 unsigned char *e
= &dev
->dev_addr
[0];
2529 if (!is_valid_ether_addr(macaddr
->sa_data
))
2530 return -EADDRNOTAVAIL
;
2532 if (!netif_running(dev
) || !netif_device_present(dev
)) {
2533 /* We'll just catch it later when the
2534 * device is up'd or resumed.
2536 memcpy(dev
->dev_addr
, macaddr
->sa_data
, dev
->addr_len
);
2540 mutex_lock(&gp
->pm_mutex
);
2541 memcpy(dev
->dev_addr
, macaddr
->sa_data
, dev
->addr_len
);
2543 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
2544 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
2545 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
2547 mutex_unlock(&gp
->pm_mutex
);
2552 static void gem_set_multicast(struct net_device
*dev
)
2554 struct gem
*gp
= dev
->priv
;
2555 u32 rxcfg
, rxcfg_new
;
2559 spin_lock_irq(&gp
->lock
);
2560 spin_lock(&gp
->tx_lock
);
2565 netif_stop_queue(dev
);
2567 rxcfg
= readl(gp
->regs
+ MAC_RXCFG
);
2568 rxcfg_new
= gem_setup_multicast(gp
);
2570 rxcfg_new
|= MAC_RXCFG_SFCS
;
2572 gp
->mac_rx_cfg
= rxcfg_new
;
2574 writel(rxcfg
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
2575 while (readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
) {
2581 rxcfg
&= ~(MAC_RXCFG_PROM
| MAC_RXCFG_HFE
);
2584 writel(rxcfg
, gp
->regs
+ MAC_RXCFG
);
2586 netif_wake_queue(dev
);
2589 spin_unlock(&gp
->tx_lock
);
2590 spin_unlock_irq(&gp
->lock
);
2593 /* Jumbo-grams don't seem to work :-( */
2594 #define GEM_MIN_MTU 68
2596 #define GEM_MAX_MTU 1500
2598 #define GEM_MAX_MTU 9000
2601 static int gem_change_mtu(struct net_device
*dev
, int new_mtu
)
2603 struct gem
*gp
= dev
->priv
;
2605 if (new_mtu
< GEM_MIN_MTU
|| new_mtu
> GEM_MAX_MTU
)
2608 if (!netif_running(dev
) || !netif_device_present(dev
)) {
2609 /* We'll just catch it later when the
2610 * device is up'd or resumed.
2616 mutex_lock(&gp
->pm_mutex
);
2617 spin_lock_irq(&gp
->lock
);
2618 spin_lock(&gp
->tx_lock
);
2621 gem_reinit_chip(gp
);
2622 if (gp
->lstate
== link_up
)
2623 gem_set_link_modes(gp
);
2625 spin_unlock(&gp
->tx_lock
);
2626 spin_unlock_irq(&gp
->lock
);
2627 mutex_unlock(&gp
->pm_mutex
);
2632 static void gem_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
2634 struct gem
*gp
= dev
->priv
;
2636 strcpy(info
->driver
, DRV_NAME
);
2637 strcpy(info
->version
, DRV_VERSION
);
2638 strcpy(info
->bus_info
, pci_name(gp
->pdev
));
2641 static int gem_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2643 struct gem
*gp
= dev
->priv
;
2645 if (gp
->phy_type
== phy_mii_mdio0
||
2646 gp
->phy_type
== phy_mii_mdio1
) {
2647 if (gp
->phy_mii
.def
)
2648 cmd
->supported
= gp
->phy_mii
.def
->features
;
2650 cmd
->supported
= (SUPPORTED_10baseT_Half
|
2651 SUPPORTED_10baseT_Full
);
2653 /* XXX hardcoded stuff for now */
2654 cmd
->port
= PORT_MII
;
2655 cmd
->transceiver
= XCVR_EXTERNAL
;
2656 cmd
->phy_address
= 0; /* XXX fixed PHYAD */
2658 /* Return current PHY settings */
2659 spin_lock_irq(&gp
->lock
);
2660 cmd
->autoneg
= gp
->want_autoneg
;
2661 cmd
->speed
= gp
->phy_mii
.speed
;
2662 cmd
->duplex
= gp
->phy_mii
.duplex
;
2663 cmd
->advertising
= gp
->phy_mii
.advertising
;
2665 /* If we started with a forced mode, we don't have a default
2666 * advertise set, we need to return something sensible so
2667 * userland can re-enable autoneg properly.
2669 if (cmd
->advertising
== 0)
2670 cmd
->advertising
= cmd
->supported
;
2671 spin_unlock_irq(&gp
->lock
);
2672 } else { // XXX PCS ?
2674 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2675 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2677 cmd
->advertising
= cmd
->supported
;
2679 cmd
->duplex
= cmd
->port
= cmd
->phy_address
=
2680 cmd
->transceiver
= cmd
->autoneg
= 0;
2682 cmd
->maxtxpkt
= cmd
->maxrxpkt
= 0;
2687 static int gem_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2689 struct gem
*gp
= dev
->priv
;
2691 /* Verify the settings we care about. */
2692 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
2693 cmd
->autoneg
!= AUTONEG_DISABLE
)
2696 if (cmd
->autoneg
== AUTONEG_ENABLE
&&
2697 cmd
->advertising
== 0)
2700 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
2701 ((cmd
->speed
!= SPEED_1000
&&
2702 cmd
->speed
!= SPEED_100
&&
2703 cmd
->speed
!= SPEED_10
) ||
2704 (cmd
->duplex
!= DUPLEX_HALF
&&
2705 cmd
->duplex
!= DUPLEX_FULL
)))
2708 /* Apply settings and restart link process. */
2709 spin_lock_irq(&gp
->lock
);
2711 gem_begin_auto_negotiation(gp
, cmd
);
2713 spin_unlock_irq(&gp
->lock
);
2718 static int gem_nway_reset(struct net_device
*dev
)
2720 struct gem
*gp
= dev
->priv
;
2722 if (!gp
->want_autoneg
)
2725 /* Restart link process. */
2726 spin_lock_irq(&gp
->lock
);
2728 gem_begin_auto_negotiation(gp
, NULL
);
2730 spin_unlock_irq(&gp
->lock
);
2735 static u32
gem_get_msglevel(struct net_device
*dev
)
2737 struct gem
*gp
= dev
->priv
;
2738 return gp
->msg_enable
;
2741 static void gem_set_msglevel(struct net_device
*dev
, u32 value
)
2743 struct gem
*gp
= dev
->priv
;
2744 gp
->msg_enable
= value
;
2748 /* Add more when I understand how to program the chip */
2749 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2751 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2753 static void gem_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2755 struct gem
*gp
= dev
->priv
;
2757 /* Add more when I understand how to program the chip */
2759 wol
->supported
= WOL_SUPPORTED_MASK
;
2760 wol
->wolopts
= gp
->wake_on_lan
;
2767 static int gem_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2769 struct gem
*gp
= dev
->priv
;
2773 gp
->wake_on_lan
= wol
->wolopts
& WOL_SUPPORTED_MASK
;
2777 static const struct ethtool_ops gem_ethtool_ops
= {
2778 .get_drvinfo
= gem_get_drvinfo
,
2779 .get_link
= ethtool_op_get_link
,
2780 .get_settings
= gem_get_settings
,
2781 .set_settings
= gem_set_settings
,
2782 .nway_reset
= gem_nway_reset
,
2783 .get_msglevel
= gem_get_msglevel
,
2784 .set_msglevel
= gem_set_msglevel
,
2785 .get_wol
= gem_get_wol
,
2786 .set_wol
= gem_set_wol
,
2789 static int gem_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2791 struct gem
*gp
= dev
->priv
;
2792 struct mii_ioctl_data
*data
= if_mii(ifr
);
2793 int rc
= -EOPNOTSUPP
;
2794 unsigned long flags
;
2796 /* Hold the PM mutex while doing ioctl's or we may collide
2797 * with power management.
2799 mutex_lock(&gp
->pm_mutex
);
2801 spin_lock_irqsave(&gp
->lock
, flags
);
2803 spin_unlock_irqrestore(&gp
->lock
, flags
);
2806 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
2807 data
->phy_id
= gp
->mii_phy_addr
;
2808 /* Fallthrough... */
2810 case SIOCGMIIREG
: /* Read MII PHY register. */
2814 data
->val_out
= __phy_read(gp
, data
->phy_id
& 0x1f,
2815 data
->reg_num
& 0x1f);
2820 case SIOCSMIIREG
: /* Write MII PHY register. */
2821 if (!capable(CAP_NET_ADMIN
))
2823 else if (!gp
->running
)
2826 __phy_write(gp
, data
->phy_id
& 0x1f, data
->reg_num
& 0x1f,
2833 spin_lock_irqsave(&gp
->lock
, flags
);
2835 spin_unlock_irqrestore(&gp
->lock
, flags
);
2837 mutex_unlock(&gp
->pm_mutex
);
2842 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2843 /* Fetch MAC address from vital product data of PCI ROM. */
2844 static int find_eth_addr_in_vpd(void __iomem
*rom_base
, int len
, unsigned char *dev_addr
)
2848 for (this_offset
= 0x20; this_offset
< len
; this_offset
++) {
2849 void __iomem
*p
= rom_base
+ this_offset
;
2852 if (readb(p
+ 0) != 0x90 ||
2853 readb(p
+ 1) != 0x00 ||
2854 readb(p
+ 2) != 0x09 ||
2855 readb(p
+ 3) != 0x4e ||
2856 readb(p
+ 4) != 0x41 ||
2857 readb(p
+ 5) != 0x06)
2863 for (i
= 0; i
< 6; i
++)
2864 dev_addr
[i
] = readb(p
+ i
);
2870 static void get_gem_mac_nonobp(struct pci_dev
*pdev
, unsigned char *dev_addr
)
2873 void __iomem
*p
= pci_map_rom(pdev
, &size
);
2878 found
= readb(p
) == 0x55 &&
2879 readb(p
+ 1) == 0xaa &&
2880 find_eth_addr_in_vpd(p
, (64 * 1024), dev_addr
);
2881 pci_unmap_rom(pdev
, p
);
2886 /* Sun MAC prefix then 3 random bytes. */
2890 get_random_bytes(dev_addr
+ 3, 3);
2893 #endif /* not Sparc and not PPC */
2895 static int __devinit
gem_get_device_address(struct gem
*gp
)
2897 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2898 struct net_device
*dev
= gp
->dev
;
2899 const unsigned char *addr
;
2901 addr
= of_get_property(gp
->of_node
, "local-mac-address", NULL
);
2904 addr
= idprom
->id_ethaddr
;
2907 printk(KERN_ERR
"%s: can't get mac-address\n", dev
->name
);
2911 memcpy(dev
->dev_addr
, addr
, 6);
2913 get_gem_mac_nonobp(gp
->pdev
, gp
->dev
->dev_addr
);
2918 static void gem_remove_one(struct pci_dev
*pdev
)
2920 struct net_device
*dev
= pci_get_drvdata(pdev
);
2923 struct gem
*gp
= dev
->priv
;
2925 unregister_netdev(dev
);
2927 /* Stop the link timer */
2928 del_timer_sync(&gp
->link_timer
);
2930 /* We shouldn't need any locking here */
2933 /* Wait for a pending reset task to complete */
2934 while (gp
->reset_task_pending
)
2936 flush_scheduled_work();
2938 /* Shut the PHY down */
2939 gem_stop_phy(gp
, 0);
2943 /* Make sure bus master is disabled */
2944 pci_disable_device(gp
->pdev
);
2946 /* Free resources */
2947 pci_free_consistent(pdev
,
2948 sizeof(struct gem_init_block
),
2952 pci_release_regions(pdev
);
2955 pci_set_drvdata(pdev
, NULL
);
2959 static int __devinit
gem_init_one(struct pci_dev
*pdev
,
2960 const struct pci_device_id
*ent
)
2962 static int gem_version_printed
= 0;
2963 unsigned long gemreg_base
, gemreg_len
;
2964 struct net_device
*dev
;
2966 int err
, pci_using_dac
;
2967 DECLARE_MAC_BUF(mac
);
2969 if (gem_version_printed
++ == 0)
2970 printk(KERN_INFO
"%s", version
);
2972 /* Apple gmac note: during probe, the chip is powered up by
2973 * the arch code to allow the code below to work (and to let
2974 * the chip be probed on the config space. It won't stay powered
2975 * up until the interface is brought up however, so we can't rely
2976 * on register configuration done at this point.
2978 err
= pci_enable_device(pdev
);
2980 printk(KERN_ERR PFX
"Cannot enable MMIO operation, "
2984 pci_set_master(pdev
);
2986 /* Configure DMA attributes. */
2988 /* All of the GEM documentation states that 64-bit DMA addressing
2989 * is fully supported and should work just fine. However the
2990 * front end for RIO based GEMs is different and only supports
2991 * 32-bit addressing.
2993 * For now we assume the various PPC GEMs are 32-bit only as well.
2995 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2996 pdev
->device
== PCI_DEVICE_ID_SUN_GEM
&&
2997 !pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
3000 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
3002 printk(KERN_ERR PFX
"No usable DMA configuration, "
3004 goto err_disable_device
;
3009 gemreg_base
= pci_resource_start(pdev
, 0);
3010 gemreg_len
= pci_resource_len(pdev
, 0);
3012 if ((pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) != 0) {
3013 printk(KERN_ERR PFX
"Cannot find proper PCI device "
3014 "base address, aborting.\n");
3016 goto err_disable_device
;
3019 dev
= alloc_etherdev(sizeof(*gp
));
3021 printk(KERN_ERR PFX
"Etherdev alloc failed, aborting.\n");
3023 goto err_disable_device
;
3025 SET_NETDEV_DEV(dev
, &pdev
->dev
);
3029 err
= pci_request_regions(pdev
, DRV_NAME
);
3031 printk(KERN_ERR PFX
"Cannot obtain PCI resources, "
3033 goto err_out_free_netdev
;
3037 dev
->base_addr
= (long) pdev
;
3040 gp
->msg_enable
= DEFAULT_MSG
;
3042 spin_lock_init(&gp
->lock
);
3043 spin_lock_init(&gp
->tx_lock
);
3044 mutex_init(&gp
->pm_mutex
);
3046 init_timer(&gp
->link_timer
);
3047 gp
->link_timer
.function
= gem_link_timer
;
3048 gp
->link_timer
.data
= (unsigned long) gp
;
3050 INIT_WORK(&gp
->reset_task
, gem_reset_task
);
3052 gp
->lstate
= link_down
;
3053 gp
->timer_ticks
= 0;
3054 netif_carrier_off(dev
);
3056 gp
->regs
= ioremap(gemreg_base
, gemreg_len
);
3057 if (gp
->regs
== 0UL) {
3058 printk(KERN_ERR PFX
"Cannot map device registers, "
3061 goto err_out_free_res
;
3064 /* On Apple, we want a reference to the Open Firmware device-tree
3065 * node. We use it for clock control.
3067 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
3068 gp
->of_node
= pci_device_to_OF_node(pdev
);
3071 /* Only Apple version supports WOL afaik */
3072 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
3075 /* Make sure cell is enabled */
3078 /* Make sure everything is stopped and in init state */
3081 /* Fill up the mii_phy structure (even if we won't use it) */
3082 gp
->phy_mii
.dev
= dev
;
3083 gp
->phy_mii
.mdio_read
= _phy_read
;
3084 gp
->phy_mii
.mdio_write
= _phy_write
;
3085 #ifdef CONFIG_PPC_PMAC
3086 gp
->phy_mii
.platform_data
= gp
->of_node
;
3088 /* By default, we start with autoneg */
3089 gp
->want_autoneg
= 1;
3091 /* Check fifo sizes, PHY type, etc... */
3092 if (gem_check_invariants(gp
)) {
3094 goto err_out_iounmap
;
3097 /* It is guaranteed that the returned buffer will be at least
3098 * PAGE_SIZE aligned.
3100 gp
->init_block
= (struct gem_init_block
*)
3101 pci_alloc_consistent(pdev
, sizeof(struct gem_init_block
),
3103 if (!gp
->init_block
) {
3104 printk(KERN_ERR PFX
"Cannot allocate init block, "
3107 goto err_out_iounmap
;
3110 if (gem_get_device_address(gp
))
3111 goto err_out_free_consistent
;
3113 dev
->open
= gem_open
;
3114 dev
->stop
= gem_close
;
3115 dev
->hard_start_xmit
= gem_start_xmit
;
3116 dev
->get_stats
= gem_get_stats
;
3117 dev
->set_multicast_list
= gem_set_multicast
;
3118 dev
->do_ioctl
= gem_ioctl
;
3119 netif_napi_add(dev
, &gp
->napi
, gem_poll
, 64);
3120 dev
->ethtool_ops
= &gem_ethtool_ops
;
3121 dev
->tx_timeout
= gem_tx_timeout
;
3122 dev
->watchdog_timeo
= 5 * HZ
;
3123 dev
->change_mtu
= gem_change_mtu
;
3124 dev
->irq
= pdev
->irq
;
3126 dev
->set_mac_address
= gem_set_mac_address
;
3127 #ifdef CONFIG_NET_POLL_CONTROLLER
3128 dev
->poll_controller
= gem_poll_controller
;
3131 /* Set that now, in case PM kicks in now */
3132 pci_set_drvdata(pdev
, dev
);
3134 /* Detect & init PHY, start autoneg, we release the cell now
3135 * too, it will be managed by whoever needs it
3139 spin_lock_irq(&gp
->lock
);
3141 spin_unlock_irq(&gp
->lock
);
3143 /* Register with kernel */
3144 if (register_netdev(dev
)) {
3145 printk(KERN_ERR PFX
"Cannot register net device, "
3148 goto err_out_free_consistent
;
3151 printk(KERN_INFO
"%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet "
3153 dev
->name
, print_mac(mac
, dev
->dev_addr
));
3155 if (gp
->phy_type
== phy_mii_mdio0
||
3156 gp
->phy_type
== phy_mii_mdio1
)
3157 printk(KERN_INFO
"%s: Found %s PHY\n", dev
->name
,
3158 gp
->phy_mii
.def
? gp
->phy_mii
.def
->name
: "no");
3160 /* GEM can do it all... */
3161 dev
->features
|= NETIF_F_SG
| NETIF_F_HW_CSUM
| NETIF_F_LLTX
;
3163 dev
->features
|= NETIF_F_HIGHDMA
;
3167 err_out_free_consistent
:
3168 gem_remove_one(pdev
);
3174 pci_release_regions(pdev
);
3176 err_out_free_netdev
:
3179 pci_disable_device(pdev
);
3185 static struct pci_driver gem_driver
= {
3186 .name
= GEM_MODULE_NAME
,
3187 .id_table
= gem_pci_tbl
,
3188 .probe
= gem_init_one
,
3189 .remove
= gem_remove_one
,
3191 .suspend
= gem_suspend
,
3192 .resume
= gem_resume
,
3193 #endif /* CONFIG_PM */
3196 static int __init
gem_init(void)
3198 return pci_register_driver(&gem_driver
);
3201 static void __exit
gem_cleanup(void)
3203 pci_unregister_driver(&gem_driver
);
3206 module_init(gem_init
);
3207 module_exit(gem_cleanup
);