Chinese: add translation of oops-tracing.txt
[pv_ops_mirror.git] / drivers / net / sungem.c
blob68872142530b5e5a7807157c0b8e539494e62a1b
1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
13 * TODO:
14 * - Now that the driver was significantly simplified, I need to rework
15 * the locking. I'm sure we don't need _2_ spinlocks, and we probably
16 * can avoid taking most of them for so long period of time (and schedule
17 * instead). The main issues at this point are caused by the netdev layer
18 * though:
20 * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
21 * help by net/core/dev.c, thus they can't schedule. That means they can't
22 * call napi_disable() neither, thus force gem_poll() to keep a spinlock
23 * where it could have been dropped. change_mtu especially would love also to
24 * be able to msleep instead of horrid locked delays when resetting the HW,
25 * but that read_lock() makes it impossible, unless I defer it's action to
26 * the reset task, which means it'll be asynchronous (won't take effect until
27 * the system schedules a bit).
29 * Also, it would probably be possible to also remove most of the long-life
30 * locking in open/resume code path (gem_reinit_chip) by beeing more careful
31 * about when we can start taking interrupts or get xmit() called...
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/fcntl.h>
38 #include <linux/interrupt.h>
39 #include <linux/ioport.h>
40 #include <linux/in.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/delay.h>
44 #include <linux/init.h>
45 #include <linux/errno.h>
46 #include <linux/pci.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/mii.h>
52 #include <linux/ethtool.h>
53 #include <linux/crc32.h>
54 #include <linux/random.h>
55 #include <linux/workqueue.h>
56 #include <linux/if_vlan.h>
57 #include <linux/bitops.h>
58 #include <linux/mutex.h>
59 #include <linux/mm.h>
61 #include <asm/system.h>
62 #include <asm/io.h>
63 #include <asm/byteorder.h>
64 #include <asm/uaccess.h>
65 #include <asm/irq.h>
67 #ifdef CONFIG_SPARC
68 #include <asm/idprom.h>
69 #include <asm/prom.h>
70 #endif
72 #ifdef CONFIG_PPC_PMAC
73 #include <asm/pci-bridge.h>
74 #include <asm/prom.h>
75 #include <asm/machdep.h>
76 #include <asm/pmac_feature.h>
77 #endif
79 #include "sungem_phy.h"
80 #include "sungem.h"
82 /* Stripping FCS is causing problems, disabled for now */
83 #undef STRIP_FCS
85 #define DEFAULT_MSG (NETIF_MSG_DRV | \
86 NETIF_MSG_PROBE | \
87 NETIF_MSG_LINK)
89 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
90 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
91 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
92 SUPPORTED_Pause | SUPPORTED_Autoneg)
94 #define DRV_NAME "sungem"
95 #define DRV_VERSION "0.98"
96 #define DRV_RELDATE "8/24/03"
97 #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
99 static char version[] __devinitdata =
100 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
102 MODULE_AUTHOR(DRV_AUTHOR);
103 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
104 MODULE_LICENSE("GPL");
106 #define GEM_MODULE_NAME "gem"
107 #define PFX GEM_MODULE_NAME ": "
109 static struct pci_device_id gem_pci_tbl[] = {
110 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
113 /* These models only differ from the original GEM in
114 * that their tx/rx fifos are of a different size and
115 * they only support 10/100 speeds. -DaveM
117 * Apple's GMAC does support gigabit on machines with
118 * the BCM54xx PHYs. -BenH
120 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
121 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
122 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
123 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
124 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
125 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
126 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
127 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
128 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
129 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
130 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
131 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
132 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
133 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
134 {0, }
137 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
139 static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
141 u32 cmd;
142 int limit = 10000;
144 cmd = (1 << 30);
145 cmd |= (2 << 28);
146 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
147 cmd |= (reg << 18) & MIF_FRAME_REGAD;
148 cmd |= (MIF_FRAME_TAMSB);
149 writel(cmd, gp->regs + MIF_FRAME);
151 while (limit--) {
152 cmd = readl(gp->regs + MIF_FRAME);
153 if (cmd & MIF_FRAME_TALSB)
154 break;
156 udelay(10);
159 if (!limit)
160 cmd = 0xffff;
162 return cmd & MIF_FRAME_DATA;
165 static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
167 struct gem *gp = dev->priv;
168 return __phy_read(gp, mii_id, reg);
171 static inline u16 phy_read(struct gem *gp, int reg)
173 return __phy_read(gp, gp->mii_phy_addr, reg);
176 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
178 u32 cmd;
179 int limit = 10000;
181 cmd = (1 << 30);
182 cmd |= (1 << 28);
183 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
184 cmd |= (reg << 18) & MIF_FRAME_REGAD;
185 cmd |= (MIF_FRAME_TAMSB);
186 cmd |= (val & MIF_FRAME_DATA);
187 writel(cmd, gp->regs + MIF_FRAME);
189 while (limit--) {
190 cmd = readl(gp->regs + MIF_FRAME);
191 if (cmd & MIF_FRAME_TALSB)
192 break;
194 udelay(10);
198 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
200 struct gem *gp = dev->priv;
201 __phy_write(gp, mii_id, reg, val & 0xffff);
204 static inline void phy_write(struct gem *gp, int reg, u16 val)
206 __phy_write(gp, gp->mii_phy_addr, reg, val);
209 static inline void gem_enable_ints(struct gem *gp)
211 /* Enable all interrupts but TXDONE */
212 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
215 static inline void gem_disable_ints(struct gem *gp)
217 /* Disable all interrupts, including TXDONE */
218 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
221 static void gem_get_cell(struct gem *gp)
223 BUG_ON(gp->cell_enabled < 0);
224 gp->cell_enabled++;
225 #ifdef CONFIG_PPC_PMAC
226 if (gp->cell_enabled == 1) {
227 mb();
228 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
229 udelay(10);
231 #endif /* CONFIG_PPC_PMAC */
234 /* Turn off the chip's clock */
235 static void gem_put_cell(struct gem *gp)
237 BUG_ON(gp->cell_enabled <= 0);
238 gp->cell_enabled--;
239 #ifdef CONFIG_PPC_PMAC
240 if (gp->cell_enabled == 0) {
241 mb();
242 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
243 udelay(10);
245 #endif /* CONFIG_PPC_PMAC */
248 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
250 if (netif_msg_intr(gp))
251 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
254 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
256 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
257 u32 pcs_miistat;
259 if (netif_msg_intr(gp))
260 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
261 gp->dev->name, pcs_istat);
263 if (!(pcs_istat & PCS_ISTAT_LSC)) {
264 printk(KERN_ERR "%s: PCS irq but no link status change???\n",
265 dev->name);
266 return 0;
269 /* The link status bit latches on zero, so you must
270 * read it twice in such a case to see a transition
271 * to the link being up.
273 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
274 if (!(pcs_miistat & PCS_MIISTAT_LS))
275 pcs_miistat |=
276 (readl(gp->regs + PCS_MIISTAT) &
277 PCS_MIISTAT_LS);
279 if (pcs_miistat & PCS_MIISTAT_ANC) {
280 /* The remote-fault indication is only valid
281 * when autoneg has completed.
283 if (pcs_miistat & PCS_MIISTAT_RF)
284 printk(KERN_INFO "%s: PCS AutoNEG complete, "
285 "RemoteFault\n", dev->name);
286 else
287 printk(KERN_INFO "%s: PCS AutoNEG complete.\n",
288 dev->name);
291 if (pcs_miistat & PCS_MIISTAT_LS) {
292 printk(KERN_INFO "%s: PCS link is now up.\n",
293 dev->name);
294 netif_carrier_on(gp->dev);
295 } else {
296 printk(KERN_INFO "%s: PCS link is now down.\n",
297 dev->name);
298 netif_carrier_off(gp->dev);
299 /* If this happens and the link timer is not running,
300 * reset so we re-negotiate.
302 if (!timer_pending(&gp->link_timer))
303 return 1;
306 return 0;
309 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
311 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
313 if (netif_msg_intr(gp))
314 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
315 gp->dev->name, txmac_stat);
317 /* Defer timer expiration is quite normal,
318 * don't even log the event.
320 if ((txmac_stat & MAC_TXSTAT_DTE) &&
321 !(txmac_stat & ~MAC_TXSTAT_DTE))
322 return 0;
324 if (txmac_stat & MAC_TXSTAT_URUN) {
325 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
326 dev->name);
327 gp->net_stats.tx_fifo_errors++;
330 if (txmac_stat & MAC_TXSTAT_MPE) {
331 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
332 dev->name);
333 gp->net_stats.tx_errors++;
336 /* The rest are all cases of one of the 16-bit TX
337 * counters expiring.
339 if (txmac_stat & MAC_TXSTAT_NCE)
340 gp->net_stats.collisions += 0x10000;
342 if (txmac_stat & MAC_TXSTAT_ECE) {
343 gp->net_stats.tx_aborted_errors += 0x10000;
344 gp->net_stats.collisions += 0x10000;
347 if (txmac_stat & MAC_TXSTAT_LCE) {
348 gp->net_stats.tx_aborted_errors += 0x10000;
349 gp->net_stats.collisions += 0x10000;
352 /* We do not keep track of MAC_TXSTAT_FCE and
353 * MAC_TXSTAT_PCE events.
355 return 0;
358 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
359 * so we do the following.
361 * If any part of the reset goes wrong, we return 1 and that causes the
362 * whole chip to be reset.
364 static int gem_rxmac_reset(struct gem *gp)
366 struct net_device *dev = gp->dev;
367 int limit, i;
368 u64 desc_dma;
369 u32 val;
371 /* First, reset & disable MAC RX. */
372 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
373 for (limit = 0; limit < 5000; limit++) {
374 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
375 break;
376 udelay(10);
378 if (limit == 5000) {
379 printk(KERN_ERR "%s: RX MAC will not reset, resetting whole "
380 "chip.\n", dev->name);
381 return 1;
384 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
385 gp->regs + MAC_RXCFG);
386 for (limit = 0; limit < 5000; limit++) {
387 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
388 break;
389 udelay(10);
391 if (limit == 5000) {
392 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
393 "chip.\n", dev->name);
394 return 1;
397 /* Second, disable RX DMA. */
398 writel(0, gp->regs + RXDMA_CFG);
399 for (limit = 0; limit < 5000; limit++) {
400 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
401 break;
402 udelay(10);
404 if (limit == 5000) {
405 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
406 "chip.\n", dev->name);
407 return 1;
410 udelay(5000);
412 /* Execute RX reset command. */
413 writel(gp->swrst_base | GREG_SWRST_RXRST,
414 gp->regs + GREG_SWRST);
415 for (limit = 0; limit < 5000; limit++) {
416 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
417 break;
418 udelay(10);
420 if (limit == 5000) {
421 printk(KERN_ERR "%s: RX reset command will not execute, resetting "
422 "whole chip.\n", dev->name);
423 return 1;
426 /* Refresh the RX ring. */
427 for (i = 0; i < RX_RING_SIZE; i++) {
428 struct gem_rxd *rxd = &gp->init_block->rxd[i];
430 if (gp->rx_skbs[i] == NULL) {
431 printk(KERN_ERR "%s: Parts of RX ring empty, resetting "
432 "whole chip.\n", dev->name);
433 return 1;
436 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
438 gp->rx_new = gp->rx_old = 0;
440 /* Now we must reprogram the rest of RX unit. */
441 desc_dma = (u64) gp->gblock_dvma;
442 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
443 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
444 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
445 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
446 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
447 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
448 writel(val, gp->regs + RXDMA_CFG);
449 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
450 writel(((5 & RXDMA_BLANK_IPKTS) |
451 ((8 << 12) & RXDMA_BLANK_ITIME)),
452 gp->regs + RXDMA_BLANK);
453 else
454 writel(((5 & RXDMA_BLANK_IPKTS) |
455 ((4 << 12) & RXDMA_BLANK_ITIME)),
456 gp->regs + RXDMA_BLANK);
457 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
458 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
459 writel(val, gp->regs + RXDMA_PTHRESH);
460 val = readl(gp->regs + RXDMA_CFG);
461 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
462 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
463 val = readl(gp->regs + MAC_RXCFG);
464 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
466 return 0;
469 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
471 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
472 int ret = 0;
474 if (netif_msg_intr(gp))
475 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
476 gp->dev->name, rxmac_stat);
478 if (rxmac_stat & MAC_RXSTAT_OFLW) {
479 u32 smac = readl(gp->regs + MAC_SMACHINE);
481 printk(KERN_ERR "%s: RX MAC fifo overflow smac[%08x].\n",
482 dev->name, smac);
483 gp->net_stats.rx_over_errors++;
484 gp->net_stats.rx_fifo_errors++;
486 ret = gem_rxmac_reset(gp);
489 if (rxmac_stat & MAC_RXSTAT_ACE)
490 gp->net_stats.rx_frame_errors += 0x10000;
492 if (rxmac_stat & MAC_RXSTAT_CCE)
493 gp->net_stats.rx_crc_errors += 0x10000;
495 if (rxmac_stat & MAC_RXSTAT_LCE)
496 gp->net_stats.rx_length_errors += 0x10000;
498 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
499 * events.
501 return ret;
504 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
506 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
508 if (netif_msg_intr(gp))
509 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
510 gp->dev->name, mac_cstat);
512 /* This interrupt is just for pause frame and pause
513 * tracking. It is useful for diagnostics and debug
514 * but probably by default we will mask these events.
516 if (mac_cstat & MAC_CSTAT_PS)
517 gp->pause_entered++;
519 if (mac_cstat & MAC_CSTAT_PRCV)
520 gp->pause_last_time_recvd = (mac_cstat >> 16);
522 return 0;
525 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
527 u32 mif_status = readl(gp->regs + MIF_STATUS);
528 u32 reg_val, changed_bits;
530 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
531 changed_bits = (mif_status & MIF_STATUS_STAT);
533 gem_handle_mif_event(gp, reg_val, changed_bits);
535 return 0;
538 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
540 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
542 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
543 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
544 printk(KERN_ERR "%s: PCI error [%04x] ",
545 dev->name, pci_estat);
547 if (pci_estat & GREG_PCIESTAT_BADACK)
548 printk("<No ACK64# during ABS64 cycle> ");
549 if (pci_estat & GREG_PCIESTAT_DTRTO)
550 printk("<Delayed transaction timeout> ");
551 if (pci_estat & GREG_PCIESTAT_OTHER)
552 printk("<other>");
553 printk("\n");
554 } else {
555 pci_estat |= GREG_PCIESTAT_OTHER;
556 printk(KERN_ERR "%s: PCI error\n", dev->name);
559 if (pci_estat & GREG_PCIESTAT_OTHER) {
560 u16 pci_cfg_stat;
562 /* Interrogate PCI config space for the
563 * true cause.
565 pci_read_config_word(gp->pdev, PCI_STATUS,
566 &pci_cfg_stat);
567 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
568 dev->name, pci_cfg_stat);
569 if (pci_cfg_stat & PCI_STATUS_PARITY)
570 printk(KERN_ERR "%s: PCI parity error detected.\n",
571 dev->name);
572 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
573 printk(KERN_ERR "%s: PCI target abort.\n",
574 dev->name);
575 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
576 printk(KERN_ERR "%s: PCI master acks target abort.\n",
577 dev->name);
578 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
579 printk(KERN_ERR "%s: PCI master abort.\n",
580 dev->name);
581 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
582 printk(KERN_ERR "%s: PCI system error SERR#.\n",
583 dev->name);
584 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
585 printk(KERN_ERR "%s: PCI parity error.\n",
586 dev->name);
588 /* Write the error bits back to clear them. */
589 pci_cfg_stat &= (PCI_STATUS_PARITY |
590 PCI_STATUS_SIG_TARGET_ABORT |
591 PCI_STATUS_REC_TARGET_ABORT |
592 PCI_STATUS_REC_MASTER_ABORT |
593 PCI_STATUS_SIG_SYSTEM_ERROR |
594 PCI_STATUS_DETECTED_PARITY);
595 pci_write_config_word(gp->pdev,
596 PCI_STATUS, pci_cfg_stat);
599 /* For all PCI errors, we should reset the chip. */
600 return 1;
603 /* All non-normal interrupt conditions get serviced here.
604 * Returns non-zero if we should just exit the interrupt
605 * handler right now (ie. if we reset the card which invalidates
606 * all of the other original irq status bits).
608 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
610 if (gem_status & GREG_STAT_RXNOBUF) {
611 /* Frame arrived, no free RX buffers available. */
612 if (netif_msg_rx_err(gp))
613 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
614 gp->dev->name);
615 gp->net_stats.rx_dropped++;
618 if (gem_status & GREG_STAT_RXTAGERR) {
619 /* corrupt RX tag framing */
620 if (netif_msg_rx_err(gp))
621 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
622 gp->dev->name);
623 gp->net_stats.rx_errors++;
625 goto do_reset;
628 if (gem_status & GREG_STAT_PCS) {
629 if (gem_pcs_interrupt(dev, gp, gem_status))
630 goto do_reset;
633 if (gem_status & GREG_STAT_TXMAC) {
634 if (gem_txmac_interrupt(dev, gp, gem_status))
635 goto do_reset;
638 if (gem_status & GREG_STAT_RXMAC) {
639 if (gem_rxmac_interrupt(dev, gp, gem_status))
640 goto do_reset;
643 if (gem_status & GREG_STAT_MAC) {
644 if (gem_mac_interrupt(dev, gp, gem_status))
645 goto do_reset;
648 if (gem_status & GREG_STAT_MIF) {
649 if (gem_mif_interrupt(dev, gp, gem_status))
650 goto do_reset;
653 if (gem_status & GREG_STAT_PCIERR) {
654 if (gem_pci_interrupt(dev, gp, gem_status))
655 goto do_reset;
658 return 0;
660 do_reset:
661 gp->reset_task_pending = 1;
662 schedule_work(&gp->reset_task);
664 return 1;
667 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
669 int entry, limit;
671 if (netif_msg_intr(gp))
672 printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
673 gp->dev->name, gem_status);
675 entry = gp->tx_old;
676 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
677 while (entry != limit) {
678 struct sk_buff *skb;
679 struct gem_txd *txd;
680 dma_addr_t dma_addr;
681 u32 dma_len;
682 int frag;
684 if (netif_msg_tx_done(gp))
685 printk(KERN_DEBUG "%s: tx done, slot %d\n",
686 gp->dev->name, entry);
687 skb = gp->tx_skbs[entry];
688 if (skb_shinfo(skb)->nr_frags) {
689 int last = entry + skb_shinfo(skb)->nr_frags;
690 int walk = entry;
691 int incomplete = 0;
693 last &= (TX_RING_SIZE - 1);
694 for (;;) {
695 walk = NEXT_TX(walk);
696 if (walk == limit)
697 incomplete = 1;
698 if (walk == last)
699 break;
701 if (incomplete)
702 break;
704 gp->tx_skbs[entry] = NULL;
705 gp->net_stats.tx_bytes += skb->len;
707 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
708 txd = &gp->init_block->txd[entry];
710 dma_addr = le64_to_cpu(txd->buffer);
711 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
713 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
714 entry = NEXT_TX(entry);
717 gp->net_stats.tx_packets++;
718 dev_kfree_skb_irq(skb);
720 gp->tx_old = entry;
722 if (netif_queue_stopped(dev) &&
723 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
724 netif_wake_queue(dev);
727 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
729 int cluster_start, curr, count, kick;
731 cluster_start = curr = (gp->rx_new & ~(4 - 1));
732 count = 0;
733 kick = -1;
734 wmb();
735 while (curr != limit) {
736 curr = NEXT_RX(curr);
737 if (++count == 4) {
738 struct gem_rxd *rxd =
739 &gp->init_block->rxd[cluster_start];
740 for (;;) {
741 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
742 rxd++;
743 cluster_start = NEXT_RX(cluster_start);
744 if (cluster_start == curr)
745 break;
747 kick = curr;
748 count = 0;
751 if (kick >= 0) {
752 mb();
753 writel(kick, gp->regs + RXDMA_KICK);
757 static int gem_rx(struct gem *gp, int work_to_do)
759 int entry, drops, work_done = 0;
760 u32 done;
762 if (netif_msg_rx_status(gp))
763 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
764 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
766 entry = gp->rx_new;
767 drops = 0;
768 done = readl(gp->regs + RXDMA_DONE);
769 for (;;) {
770 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
771 struct sk_buff *skb;
772 u64 status = cpu_to_le64(rxd->status_word);
773 dma_addr_t dma_addr;
774 int len;
776 if ((status & RXDCTRL_OWN) != 0)
777 break;
779 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
780 break;
782 /* When writing back RX descriptor, GEM writes status
783 * then buffer address, possibly in seperate transactions.
784 * If we don't wait for the chip to write both, we could
785 * post a new buffer to this descriptor then have GEM spam
786 * on the buffer address. We sync on the RX completion
787 * register to prevent this from happening.
789 if (entry == done) {
790 done = readl(gp->regs + RXDMA_DONE);
791 if (entry == done)
792 break;
795 /* We can now account for the work we're about to do */
796 work_done++;
798 skb = gp->rx_skbs[entry];
800 len = (status & RXDCTRL_BUFSZ) >> 16;
801 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
802 gp->net_stats.rx_errors++;
803 if (len < ETH_ZLEN)
804 gp->net_stats.rx_length_errors++;
805 if (len & RXDCTRL_BAD)
806 gp->net_stats.rx_crc_errors++;
808 /* We'll just return it to GEM. */
809 drop_it:
810 gp->net_stats.rx_dropped++;
811 goto next;
814 dma_addr = cpu_to_le64(rxd->buffer);
815 if (len > RX_COPY_THRESHOLD) {
816 struct sk_buff *new_skb;
818 new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
819 if (new_skb == NULL) {
820 drops++;
821 goto drop_it;
823 pci_unmap_page(gp->pdev, dma_addr,
824 RX_BUF_ALLOC_SIZE(gp),
825 PCI_DMA_FROMDEVICE);
826 gp->rx_skbs[entry] = new_skb;
827 new_skb->dev = gp->dev;
828 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
829 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
830 virt_to_page(new_skb->data),
831 offset_in_page(new_skb->data),
832 RX_BUF_ALLOC_SIZE(gp),
833 PCI_DMA_FROMDEVICE));
834 skb_reserve(new_skb, RX_OFFSET);
836 /* Trim the original skb for the netif. */
837 skb_trim(skb, len);
838 } else {
839 struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
841 if (copy_skb == NULL) {
842 drops++;
843 goto drop_it;
846 skb_reserve(copy_skb, 2);
847 skb_put(copy_skb, len);
848 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
849 skb_copy_from_linear_data(skb, copy_skb->data, len);
850 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
852 /* We'll reuse the original ring buffer. */
853 skb = copy_skb;
856 skb->csum = ntohs((status & RXDCTRL_TCPCSUM) ^ 0xffff);
857 skb->ip_summed = CHECKSUM_COMPLETE;
858 skb->protocol = eth_type_trans(skb, gp->dev);
860 netif_receive_skb(skb);
862 gp->net_stats.rx_packets++;
863 gp->net_stats.rx_bytes += len;
864 gp->dev->last_rx = jiffies;
866 next:
867 entry = NEXT_RX(entry);
870 gem_post_rxds(gp, entry);
872 gp->rx_new = entry;
874 if (drops)
875 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
876 gp->dev->name);
878 return work_done;
881 static int gem_poll(struct napi_struct *napi, int budget)
883 struct gem *gp = container_of(napi, struct gem, napi);
884 struct net_device *dev = gp->dev;
885 unsigned long flags;
886 int work_done;
889 * NAPI locking nightmare: See comment at head of driver
891 spin_lock_irqsave(&gp->lock, flags);
893 work_done = 0;
894 do {
895 /* Handle anomalies */
896 if (gp->status & GREG_STAT_ABNORMAL) {
897 if (gem_abnormal_irq(dev, gp, gp->status))
898 break;
901 /* Run TX completion thread */
902 spin_lock(&gp->tx_lock);
903 gem_tx(dev, gp, gp->status);
904 spin_unlock(&gp->tx_lock);
906 spin_unlock_irqrestore(&gp->lock, flags);
908 /* Run RX thread. We don't use any locking here,
909 * code willing to do bad things - like cleaning the
910 * rx ring - must call napi_disable(), which
911 * schedule_timeout()'s if polling is already disabled.
913 work_done += gem_rx(gp, budget);
915 if (work_done >= budget)
916 return work_done;
918 spin_lock_irqsave(&gp->lock, flags);
920 gp->status = readl(gp->regs + GREG_STAT);
921 } while (gp->status & GREG_STAT_NAPI);
923 __netif_rx_complete(dev, napi);
924 gem_enable_ints(gp);
926 spin_unlock_irqrestore(&gp->lock, flags);
928 return work_done;
931 static irqreturn_t gem_interrupt(int irq, void *dev_id)
933 struct net_device *dev = dev_id;
934 struct gem *gp = dev->priv;
935 unsigned long flags;
937 /* Swallow interrupts when shutting the chip down, though
938 * that shouldn't happen, we should have done free_irq() at
939 * this point...
941 if (!gp->running)
942 return IRQ_HANDLED;
944 spin_lock_irqsave(&gp->lock, flags);
946 if (netif_rx_schedule_prep(dev, &gp->napi)) {
947 u32 gem_status = readl(gp->regs + GREG_STAT);
949 if (gem_status == 0) {
950 napi_enable(&gp->napi);
951 spin_unlock_irqrestore(&gp->lock, flags);
952 return IRQ_NONE;
954 gp->status = gem_status;
955 gem_disable_ints(gp);
956 __netif_rx_schedule(dev, &gp->napi);
959 spin_unlock_irqrestore(&gp->lock, flags);
961 /* If polling was disabled at the time we received that
962 * interrupt, we may return IRQ_HANDLED here while we
963 * should return IRQ_NONE. No big deal...
965 return IRQ_HANDLED;
968 #ifdef CONFIG_NET_POLL_CONTROLLER
969 static void gem_poll_controller(struct net_device *dev)
971 /* gem_interrupt is safe to reentrance so no need
972 * to disable_irq here.
974 gem_interrupt(dev->irq, dev);
976 #endif
978 static void gem_tx_timeout(struct net_device *dev)
980 struct gem *gp = dev->priv;
982 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
983 if (!gp->running) {
984 printk("%s: hrm.. hw not running !\n", dev->name);
985 return;
987 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x]\n",
988 dev->name,
989 readl(gp->regs + TXDMA_CFG),
990 readl(gp->regs + MAC_TXSTAT),
991 readl(gp->regs + MAC_TXCFG));
992 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
993 dev->name,
994 readl(gp->regs + RXDMA_CFG),
995 readl(gp->regs + MAC_RXSTAT),
996 readl(gp->regs + MAC_RXCFG));
998 spin_lock_irq(&gp->lock);
999 spin_lock(&gp->tx_lock);
1001 gp->reset_task_pending = 1;
1002 schedule_work(&gp->reset_task);
1004 spin_unlock(&gp->tx_lock);
1005 spin_unlock_irq(&gp->lock);
1008 static __inline__ int gem_intme(int entry)
1010 /* Algorithm: IRQ every 1/2 of descriptors. */
1011 if (!(entry & ((TX_RING_SIZE>>1)-1)))
1012 return 1;
1014 return 0;
1017 static int gem_start_xmit(struct sk_buff *skb, struct net_device *dev)
1019 struct gem *gp = dev->priv;
1020 int entry;
1021 u64 ctrl;
1022 unsigned long flags;
1024 ctrl = 0;
1025 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1026 const u64 csum_start_off = skb_transport_offset(skb);
1027 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1029 ctrl = (TXDCTRL_CENAB |
1030 (csum_start_off << 15) |
1031 (csum_stuff_off << 21));
1034 local_irq_save(flags);
1035 if (!spin_trylock(&gp->tx_lock)) {
1036 /* Tell upper layer to requeue */
1037 local_irq_restore(flags);
1038 return NETDEV_TX_LOCKED;
1040 /* We raced with gem_do_stop() */
1041 if (!gp->running) {
1042 spin_unlock_irqrestore(&gp->tx_lock, flags);
1043 return NETDEV_TX_BUSY;
1046 /* This is a hard error, log it. */
1047 if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
1048 netif_stop_queue(dev);
1049 spin_unlock_irqrestore(&gp->tx_lock, flags);
1050 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
1051 dev->name);
1052 return NETDEV_TX_BUSY;
1055 entry = gp->tx_new;
1056 gp->tx_skbs[entry] = skb;
1058 if (skb_shinfo(skb)->nr_frags == 0) {
1059 struct gem_txd *txd = &gp->init_block->txd[entry];
1060 dma_addr_t mapping;
1061 u32 len;
1063 len = skb->len;
1064 mapping = pci_map_page(gp->pdev,
1065 virt_to_page(skb->data),
1066 offset_in_page(skb->data),
1067 len, PCI_DMA_TODEVICE);
1068 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1069 if (gem_intme(entry))
1070 ctrl |= TXDCTRL_INTME;
1071 txd->buffer = cpu_to_le64(mapping);
1072 wmb();
1073 txd->control_word = cpu_to_le64(ctrl);
1074 entry = NEXT_TX(entry);
1075 } else {
1076 struct gem_txd *txd;
1077 u32 first_len;
1078 u64 intme;
1079 dma_addr_t first_mapping;
1080 int frag, first_entry = entry;
1082 intme = 0;
1083 if (gem_intme(entry))
1084 intme |= TXDCTRL_INTME;
1086 /* We must give this initial chunk to the device last.
1087 * Otherwise we could race with the device.
1089 first_len = skb_headlen(skb);
1090 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1091 offset_in_page(skb->data),
1092 first_len, PCI_DMA_TODEVICE);
1093 entry = NEXT_TX(entry);
1095 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1096 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1097 u32 len;
1098 dma_addr_t mapping;
1099 u64 this_ctrl;
1101 len = this_frag->size;
1102 mapping = pci_map_page(gp->pdev,
1103 this_frag->page,
1104 this_frag->page_offset,
1105 len, PCI_DMA_TODEVICE);
1106 this_ctrl = ctrl;
1107 if (frag == skb_shinfo(skb)->nr_frags - 1)
1108 this_ctrl |= TXDCTRL_EOF;
1110 txd = &gp->init_block->txd[entry];
1111 txd->buffer = cpu_to_le64(mapping);
1112 wmb();
1113 txd->control_word = cpu_to_le64(this_ctrl | len);
1115 if (gem_intme(entry))
1116 intme |= TXDCTRL_INTME;
1118 entry = NEXT_TX(entry);
1120 txd = &gp->init_block->txd[first_entry];
1121 txd->buffer = cpu_to_le64(first_mapping);
1122 wmb();
1123 txd->control_word =
1124 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1127 gp->tx_new = entry;
1128 if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
1129 netif_stop_queue(dev);
1131 if (netif_msg_tx_queued(gp))
1132 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1133 dev->name, entry, skb->len);
1134 mb();
1135 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1136 spin_unlock_irqrestore(&gp->tx_lock, flags);
1138 dev->trans_start = jiffies;
1140 return NETDEV_TX_OK;
1143 #define STOP_TRIES 32
1145 /* Must be invoked under gp->lock and gp->tx_lock. */
1146 static void gem_reset(struct gem *gp)
1148 int limit;
1149 u32 val;
1151 /* Make sure we won't get any more interrupts */
1152 writel(0xffffffff, gp->regs + GREG_IMASK);
1154 /* Reset the chip */
1155 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1156 gp->regs + GREG_SWRST);
1158 limit = STOP_TRIES;
1160 do {
1161 udelay(20);
1162 val = readl(gp->regs + GREG_SWRST);
1163 if (limit-- <= 0)
1164 break;
1165 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1167 if (limit <= 0)
1168 printk(KERN_ERR "%s: SW reset is ghetto.\n", gp->dev->name);
1171 /* Must be invoked under gp->lock and gp->tx_lock. */
1172 static void gem_start_dma(struct gem *gp)
1174 u32 val;
1176 /* We are ready to rock, turn everything on. */
1177 val = readl(gp->regs + TXDMA_CFG);
1178 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1179 val = readl(gp->regs + RXDMA_CFG);
1180 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1181 val = readl(gp->regs + MAC_TXCFG);
1182 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1183 val = readl(gp->regs + MAC_RXCFG);
1184 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1186 (void) readl(gp->regs + MAC_RXCFG);
1187 udelay(100);
1189 gem_enable_ints(gp);
1191 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1194 /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1195 * actually stopped before about 4ms tho ...
1197 static void gem_stop_dma(struct gem *gp)
1199 u32 val;
1201 /* We are done rocking, turn everything off. */
1202 val = readl(gp->regs + TXDMA_CFG);
1203 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1204 val = readl(gp->regs + RXDMA_CFG);
1205 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1206 val = readl(gp->regs + MAC_TXCFG);
1207 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1208 val = readl(gp->regs + MAC_RXCFG);
1209 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1211 (void) readl(gp->regs + MAC_RXCFG);
1213 /* Need to wait a bit ... done by the caller */
1217 /* Must be invoked under gp->lock and gp->tx_lock. */
1218 // XXX dbl check what that function should do when called on PCS PHY
1219 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1221 u32 advertise, features;
1222 int autoneg;
1223 int speed;
1224 int duplex;
1226 if (gp->phy_type != phy_mii_mdio0 &&
1227 gp->phy_type != phy_mii_mdio1)
1228 goto non_mii;
1230 /* Setup advertise */
1231 if (found_mii_phy(gp))
1232 features = gp->phy_mii.def->features;
1233 else
1234 features = 0;
1236 advertise = features & ADVERTISE_MASK;
1237 if (gp->phy_mii.advertising != 0)
1238 advertise &= gp->phy_mii.advertising;
1240 autoneg = gp->want_autoneg;
1241 speed = gp->phy_mii.speed;
1242 duplex = gp->phy_mii.duplex;
1244 /* Setup link parameters */
1245 if (!ep)
1246 goto start_aneg;
1247 if (ep->autoneg == AUTONEG_ENABLE) {
1248 advertise = ep->advertising;
1249 autoneg = 1;
1250 } else {
1251 autoneg = 0;
1252 speed = ep->speed;
1253 duplex = ep->duplex;
1256 start_aneg:
1257 /* Sanitize settings based on PHY capabilities */
1258 if ((features & SUPPORTED_Autoneg) == 0)
1259 autoneg = 0;
1260 if (speed == SPEED_1000 &&
1261 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1262 speed = SPEED_100;
1263 if (speed == SPEED_100 &&
1264 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1265 speed = SPEED_10;
1266 if (duplex == DUPLEX_FULL &&
1267 !(features & (SUPPORTED_1000baseT_Full |
1268 SUPPORTED_100baseT_Full |
1269 SUPPORTED_10baseT_Full)))
1270 duplex = DUPLEX_HALF;
1271 if (speed == 0)
1272 speed = SPEED_10;
1274 /* If we are asleep, we don't try to actually setup the PHY, we
1275 * just store the settings
1277 if (gp->asleep) {
1278 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1279 gp->phy_mii.speed = speed;
1280 gp->phy_mii.duplex = duplex;
1281 return;
1284 /* Configure PHY & start aneg */
1285 gp->want_autoneg = autoneg;
1286 if (autoneg) {
1287 if (found_mii_phy(gp))
1288 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1289 gp->lstate = link_aneg;
1290 } else {
1291 if (found_mii_phy(gp))
1292 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1293 gp->lstate = link_force_ok;
1296 non_mii:
1297 gp->timer_ticks = 0;
1298 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1301 /* A link-up condition has occurred, initialize and enable the
1302 * rest of the chip.
1304 * Must be invoked under gp->lock and gp->tx_lock.
1306 static int gem_set_link_modes(struct gem *gp)
1308 u32 val;
1309 int full_duplex, speed, pause;
1311 full_duplex = 0;
1312 speed = SPEED_10;
1313 pause = 0;
1315 if (found_mii_phy(gp)) {
1316 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1317 return 1;
1318 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1319 speed = gp->phy_mii.speed;
1320 pause = gp->phy_mii.pause;
1321 } else if (gp->phy_type == phy_serialink ||
1322 gp->phy_type == phy_serdes) {
1323 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1325 if (pcs_lpa & PCS_MIIADV_FD)
1326 full_duplex = 1;
1327 speed = SPEED_1000;
1330 if (netif_msg_link(gp))
1331 printk(KERN_INFO "%s: Link is up at %d Mbps, %s-duplex.\n",
1332 gp->dev->name, speed, (full_duplex ? "full" : "half"));
1334 if (!gp->running)
1335 return 0;
1337 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1338 if (full_duplex) {
1339 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1340 } else {
1341 /* MAC_TXCFG_NBO must be zero. */
1343 writel(val, gp->regs + MAC_TXCFG);
1345 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1346 if (!full_duplex &&
1347 (gp->phy_type == phy_mii_mdio0 ||
1348 gp->phy_type == phy_mii_mdio1)) {
1349 val |= MAC_XIFCFG_DISE;
1350 } else if (full_duplex) {
1351 val |= MAC_XIFCFG_FLED;
1354 if (speed == SPEED_1000)
1355 val |= (MAC_XIFCFG_GMII);
1357 writel(val, gp->regs + MAC_XIFCFG);
1359 /* If gigabit and half-duplex, enable carrier extension
1360 * mode. Else, disable it.
1362 if (speed == SPEED_1000 && !full_duplex) {
1363 val = readl(gp->regs + MAC_TXCFG);
1364 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1366 val = readl(gp->regs + MAC_RXCFG);
1367 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1368 } else {
1369 val = readl(gp->regs + MAC_TXCFG);
1370 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1372 val = readl(gp->regs + MAC_RXCFG);
1373 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1376 if (gp->phy_type == phy_serialink ||
1377 gp->phy_type == phy_serdes) {
1378 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1380 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1381 pause = 1;
1384 if (netif_msg_link(gp)) {
1385 if (pause) {
1386 printk(KERN_INFO "%s: Pause is enabled "
1387 "(rxfifo: %d off: %d on: %d)\n",
1388 gp->dev->name,
1389 gp->rx_fifo_sz,
1390 gp->rx_pause_off,
1391 gp->rx_pause_on);
1392 } else {
1393 printk(KERN_INFO "%s: Pause is disabled\n",
1394 gp->dev->name);
1398 if (!full_duplex)
1399 writel(512, gp->regs + MAC_STIME);
1400 else
1401 writel(64, gp->regs + MAC_STIME);
1402 val = readl(gp->regs + MAC_MCCFG);
1403 if (pause)
1404 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1405 else
1406 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1407 writel(val, gp->regs + MAC_MCCFG);
1409 gem_start_dma(gp);
1411 return 0;
1414 /* Must be invoked under gp->lock and gp->tx_lock. */
1415 static int gem_mdio_link_not_up(struct gem *gp)
1417 switch (gp->lstate) {
1418 case link_force_ret:
1419 if (netif_msg_link(gp))
1420 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1421 " forced mode\n", gp->dev->name);
1422 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1423 gp->last_forced_speed, DUPLEX_HALF);
1424 gp->timer_ticks = 5;
1425 gp->lstate = link_force_ok;
1426 return 0;
1427 case link_aneg:
1428 /* We try forced modes after a failed aneg only on PHYs that don't
1429 * have "magic_aneg" bit set, which means they internally do the
1430 * while forced-mode thingy. On these, we just restart aneg
1432 if (gp->phy_mii.def->magic_aneg)
1433 return 1;
1434 if (netif_msg_link(gp))
1435 printk(KERN_INFO "%s: switching to forced 100bt\n",
1436 gp->dev->name);
1437 /* Try forced modes. */
1438 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1439 DUPLEX_HALF);
1440 gp->timer_ticks = 5;
1441 gp->lstate = link_force_try;
1442 return 0;
1443 case link_force_try:
1444 /* Downgrade from 100 to 10 Mbps if necessary.
1445 * If already at 10Mbps, warn user about the
1446 * situation every 10 ticks.
1448 if (gp->phy_mii.speed == SPEED_100) {
1449 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1450 DUPLEX_HALF);
1451 gp->timer_ticks = 5;
1452 if (netif_msg_link(gp))
1453 printk(KERN_INFO "%s: switching to forced 10bt\n",
1454 gp->dev->name);
1455 return 0;
1456 } else
1457 return 1;
1458 default:
1459 return 0;
1463 static void gem_link_timer(unsigned long data)
1465 struct gem *gp = (struct gem *) data;
1466 int restart_aneg = 0;
1468 if (gp->asleep)
1469 return;
1471 spin_lock_irq(&gp->lock);
1472 spin_lock(&gp->tx_lock);
1473 gem_get_cell(gp);
1475 /* If the reset task is still pending, we just
1476 * reschedule the link timer
1478 if (gp->reset_task_pending)
1479 goto restart;
1481 if (gp->phy_type == phy_serialink ||
1482 gp->phy_type == phy_serdes) {
1483 u32 val = readl(gp->regs + PCS_MIISTAT);
1485 if (!(val & PCS_MIISTAT_LS))
1486 val = readl(gp->regs + PCS_MIISTAT);
1488 if ((val & PCS_MIISTAT_LS) != 0) {
1489 gp->lstate = link_up;
1490 netif_carrier_on(gp->dev);
1491 (void)gem_set_link_modes(gp);
1493 goto restart;
1495 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1496 /* Ok, here we got a link. If we had it due to a forced
1497 * fallback, and we were configured for autoneg, we do
1498 * retry a short autoneg pass. If you know your hub is
1499 * broken, use ethtool ;)
1501 if (gp->lstate == link_force_try && gp->want_autoneg) {
1502 gp->lstate = link_force_ret;
1503 gp->last_forced_speed = gp->phy_mii.speed;
1504 gp->timer_ticks = 5;
1505 if (netif_msg_link(gp))
1506 printk(KERN_INFO "%s: Got link after fallback, retrying"
1507 " autoneg once...\n", gp->dev->name);
1508 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1509 } else if (gp->lstate != link_up) {
1510 gp->lstate = link_up;
1511 netif_carrier_on(gp->dev);
1512 if (gem_set_link_modes(gp))
1513 restart_aneg = 1;
1515 } else {
1516 /* If the link was previously up, we restart the
1517 * whole process
1519 if (gp->lstate == link_up) {
1520 gp->lstate = link_down;
1521 if (netif_msg_link(gp))
1522 printk(KERN_INFO "%s: Link down\n",
1523 gp->dev->name);
1524 netif_carrier_off(gp->dev);
1525 gp->reset_task_pending = 1;
1526 schedule_work(&gp->reset_task);
1527 restart_aneg = 1;
1528 } else if (++gp->timer_ticks > 10) {
1529 if (found_mii_phy(gp))
1530 restart_aneg = gem_mdio_link_not_up(gp);
1531 else
1532 restart_aneg = 1;
1535 if (restart_aneg) {
1536 gem_begin_auto_negotiation(gp, NULL);
1537 goto out_unlock;
1539 restart:
1540 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1541 out_unlock:
1542 gem_put_cell(gp);
1543 spin_unlock(&gp->tx_lock);
1544 spin_unlock_irq(&gp->lock);
1547 /* Must be invoked under gp->lock and gp->tx_lock. */
1548 static void gem_clean_rings(struct gem *gp)
1550 struct gem_init_block *gb = gp->init_block;
1551 struct sk_buff *skb;
1552 int i;
1553 dma_addr_t dma_addr;
1555 for (i = 0; i < RX_RING_SIZE; i++) {
1556 struct gem_rxd *rxd;
1558 rxd = &gb->rxd[i];
1559 if (gp->rx_skbs[i] != NULL) {
1560 skb = gp->rx_skbs[i];
1561 dma_addr = le64_to_cpu(rxd->buffer);
1562 pci_unmap_page(gp->pdev, dma_addr,
1563 RX_BUF_ALLOC_SIZE(gp),
1564 PCI_DMA_FROMDEVICE);
1565 dev_kfree_skb_any(skb);
1566 gp->rx_skbs[i] = NULL;
1568 rxd->status_word = 0;
1569 wmb();
1570 rxd->buffer = 0;
1573 for (i = 0; i < TX_RING_SIZE; i++) {
1574 if (gp->tx_skbs[i] != NULL) {
1575 struct gem_txd *txd;
1576 int frag;
1578 skb = gp->tx_skbs[i];
1579 gp->tx_skbs[i] = NULL;
1581 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1582 int ent = i & (TX_RING_SIZE - 1);
1584 txd = &gb->txd[ent];
1585 dma_addr = le64_to_cpu(txd->buffer);
1586 pci_unmap_page(gp->pdev, dma_addr,
1587 le64_to_cpu(txd->control_word) &
1588 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1590 if (frag != skb_shinfo(skb)->nr_frags)
1591 i++;
1593 dev_kfree_skb_any(skb);
1598 /* Must be invoked under gp->lock and gp->tx_lock. */
1599 static void gem_init_rings(struct gem *gp)
1601 struct gem_init_block *gb = gp->init_block;
1602 struct net_device *dev = gp->dev;
1603 int i;
1604 dma_addr_t dma_addr;
1606 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1608 gem_clean_rings(gp);
1610 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1611 (unsigned)VLAN_ETH_FRAME_LEN);
1613 for (i = 0; i < RX_RING_SIZE; i++) {
1614 struct sk_buff *skb;
1615 struct gem_rxd *rxd = &gb->rxd[i];
1617 skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
1618 if (!skb) {
1619 rxd->buffer = 0;
1620 rxd->status_word = 0;
1621 continue;
1624 gp->rx_skbs[i] = skb;
1625 skb->dev = dev;
1626 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1627 dma_addr = pci_map_page(gp->pdev,
1628 virt_to_page(skb->data),
1629 offset_in_page(skb->data),
1630 RX_BUF_ALLOC_SIZE(gp),
1631 PCI_DMA_FROMDEVICE);
1632 rxd->buffer = cpu_to_le64(dma_addr);
1633 wmb();
1634 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1635 skb_reserve(skb, RX_OFFSET);
1638 for (i = 0; i < TX_RING_SIZE; i++) {
1639 struct gem_txd *txd = &gb->txd[i];
1641 txd->control_word = 0;
1642 wmb();
1643 txd->buffer = 0;
1645 wmb();
1648 /* Init PHY interface and start link poll state machine */
1649 static void gem_init_phy(struct gem *gp)
1651 u32 mifcfg;
1653 /* Revert MIF CFG setting done on stop_phy */
1654 mifcfg = readl(gp->regs + MIF_CFG);
1655 mifcfg &= ~MIF_CFG_BBMODE;
1656 writel(mifcfg, gp->regs + MIF_CFG);
1658 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1659 int i;
1661 /* Those delay sucks, the HW seem to love them though, I'll
1662 * serisouly consider breaking some locks here to be able
1663 * to schedule instead
1665 for (i = 0; i < 3; i++) {
1666 #ifdef CONFIG_PPC_PMAC
1667 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1668 msleep(20);
1669 #endif
1670 /* Some PHYs used by apple have problem getting back to us,
1671 * we do an additional reset here
1673 phy_write(gp, MII_BMCR, BMCR_RESET);
1674 msleep(20);
1675 if (phy_read(gp, MII_BMCR) != 0xffff)
1676 break;
1677 if (i == 2)
1678 printk(KERN_WARNING "%s: GMAC PHY not responding !\n",
1679 gp->dev->name);
1683 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1684 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1685 u32 val;
1687 /* Init datapath mode register. */
1688 if (gp->phy_type == phy_mii_mdio0 ||
1689 gp->phy_type == phy_mii_mdio1) {
1690 val = PCS_DMODE_MGM;
1691 } else if (gp->phy_type == phy_serialink) {
1692 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1693 } else {
1694 val = PCS_DMODE_ESM;
1697 writel(val, gp->regs + PCS_DMODE);
1700 if (gp->phy_type == phy_mii_mdio0 ||
1701 gp->phy_type == phy_mii_mdio1) {
1702 // XXX check for errors
1703 mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1705 /* Init PHY */
1706 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1707 gp->phy_mii.def->ops->init(&gp->phy_mii);
1708 } else {
1709 u32 val;
1710 int limit;
1712 /* Reset PCS unit. */
1713 val = readl(gp->regs + PCS_MIICTRL);
1714 val |= PCS_MIICTRL_RST;
1715 writeb(val, gp->regs + PCS_MIICTRL);
1717 limit = 32;
1718 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1719 udelay(100);
1720 if (limit-- <= 0)
1721 break;
1723 if (limit <= 0)
1724 printk(KERN_WARNING "%s: PCS reset bit would not clear.\n",
1725 gp->dev->name);
1727 /* Make sure PCS is disabled while changing advertisement
1728 * configuration.
1730 val = readl(gp->regs + PCS_CFG);
1731 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1732 writel(val, gp->regs + PCS_CFG);
1734 /* Advertise all capabilities except assymetric
1735 * pause.
1737 val = readl(gp->regs + PCS_MIIADV);
1738 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1739 PCS_MIIADV_SP | PCS_MIIADV_AP);
1740 writel(val, gp->regs + PCS_MIIADV);
1742 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1743 * and re-enable PCS.
1745 val = readl(gp->regs + PCS_MIICTRL);
1746 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1747 val &= ~PCS_MIICTRL_WB;
1748 writel(val, gp->regs + PCS_MIICTRL);
1750 val = readl(gp->regs + PCS_CFG);
1751 val |= PCS_CFG_ENABLE;
1752 writel(val, gp->regs + PCS_CFG);
1754 /* Make sure serialink loopback is off. The meaning
1755 * of this bit is logically inverted based upon whether
1756 * you are in Serialink or SERDES mode.
1758 val = readl(gp->regs + PCS_SCTRL);
1759 if (gp->phy_type == phy_serialink)
1760 val &= ~PCS_SCTRL_LOOP;
1761 else
1762 val |= PCS_SCTRL_LOOP;
1763 writel(val, gp->regs + PCS_SCTRL);
1766 /* Default aneg parameters */
1767 gp->timer_ticks = 0;
1768 gp->lstate = link_down;
1769 netif_carrier_off(gp->dev);
1771 /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1772 spin_lock_irq(&gp->lock);
1773 gem_begin_auto_negotiation(gp, NULL);
1774 spin_unlock_irq(&gp->lock);
1777 /* Must be invoked under gp->lock and gp->tx_lock. */
1778 static void gem_init_dma(struct gem *gp)
1780 u64 desc_dma = (u64) gp->gblock_dvma;
1781 u32 val;
1783 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1784 writel(val, gp->regs + TXDMA_CFG);
1786 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1787 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1788 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1790 writel(0, gp->regs + TXDMA_KICK);
1792 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1793 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1794 writel(val, gp->regs + RXDMA_CFG);
1796 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1797 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1799 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1801 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1802 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1803 writel(val, gp->regs + RXDMA_PTHRESH);
1805 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1806 writel(((5 & RXDMA_BLANK_IPKTS) |
1807 ((8 << 12) & RXDMA_BLANK_ITIME)),
1808 gp->regs + RXDMA_BLANK);
1809 else
1810 writel(((5 & RXDMA_BLANK_IPKTS) |
1811 ((4 << 12) & RXDMA_BLANK_ITIME)),
1812 gp->regs + RXDMA_BLANK);
1815 /* Must be invoked under gp->lock and gp->tx_lock. */
1816 static u32 gem_setup_multicast(struct gem *gp)
1818 u32 rxcfg = 0;
1819 int i;
1821 if ((gp->dev->flags & IFF_ALLMULTI) ||
1822 (gp->dev->mc_count > 256)) {
1823 for (i=0; i<16; i++)
1824 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1825 rxcfg |= MAC_RXCFG_HFE;
1826 } else if (gp->dev->flags & IFF_PROMISC) {
1827 rxcfg |= MAC_RXCFG_PROM;
1828 } else {
1829 u16 hash_table[16];
1830 u32 crc;
1831 struct dev_mc_list *dmi = gp->dev->mc_list;
1832 int i;
1834 for (i = 0; i < 16; i++)
1835 hash_table[i] = 0;
1837 for (i = 0; i < gp->dev->mc_count; i++) {
1838 char *addrs = dmi->dmi_addr;
1840 dmi = dmi->next;
1842 if (!(*addrs & 1))
1843 continue;
1845 crc = ether_crc_le(6, addrs);
1846 crc >>= 24;
1847 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1849 for (i=0; i<16; i++)
1850 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1851 rxcfg |= MAC_RXCFG_HFE;
1854 return rxcfg;
1857 /* Must be invoked under gp->lock and gp->tx_lock. */
1858 static void gem_init_mac(struct gem *gp)
1860 unsigned char *e = &gp->dev->dev_addr[0];
1862 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1864 writel(0x00, gp->regs + MAC_IPG0);
1865 writel(0x08, gp->regs + MAC_IPG1);
1866 writel(0x04, gp->regs + MAC_IPG2);
1867 writel(0x40, gp->regs + MAC_STIME);
1868 writel(0x40, gp->regs + MAC_MINFSZ);
1870 /* Ethernet payload + header + FCS + optional VLAN tag. */
1871 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1873 writel(0x07, gp->regs + MAC_PASIZE);
1874 writel(0x04, gp->regs + MAC_JAMSIZE);
1875 writel(0x10, gp->regs + MAC_ATTLIM);
1876 writel(0x8808, gp->regs + MAC_MCTYPE);
1878 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1880 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1881 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1882 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1884 writel(0, gp->regs + MAC_ADDR3);
1885 writel(0, gp->regs + MAC_ADDR4);
1886 writel(0, gp->regs + MAC_ADDR5);
1888 writel(0x0001, gp->regs + MAC_ADDR6);
1889 writel(0xc200, gp->regs + MAC_ADDR7);
1890 writel(0x0180, gp->regs + MAC_ADDR8);
1892 writel(0, gp->regs + MAC_AFILT0);
1893 writel(0, gp->regs + MAC_AFILT1);
1894 writel(0, gp->regs + MAC_AFILT2);
1895 writel(0, gp->regs + MAC_AF21MSK);
1896 writel(0, gp->regs + MAC_AF0MSK);
1898 gp->mac_rx_cfg = gem_setup_multicast(gp);
1899 #ifdef STRIP_FCS
1900 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1901 #endif
1902 writel(0, gp->regs + MAC_NCOLL);
1903 writel(0, gp->regs + MAC_FASUCC);
1904 writel(0, gp->regs + MAC_ECOLL);
1905 writel(0, gp->regs + MAC_LCOLL);
1906 writel(0, gp->regs + MAC_DTIMER);
1907 writel(0, gp->regs + MAC_PATMPS);
1908 writel(0, gp->regs + MAC_RFCTR);
1909 writel(0, gp->regs + MAC_LERR);
1910 writel(0, gp->regs + MAC_AERR);
1911 writel(0, gp->regs + MAC_FCSERR);
1912 writel(0, gp->regs + MAC_RXCVERR);
1914 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1915 * them once a link is established.
1917 writel(0, gp->regs + MAC_TXCFG);
1918 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1919 writel(0, gp->regs + MAC_MCCFG);
1920 writel(0, gp->regs + MAC_XIFCFG);
1922 /* Setup MAC interrupts. We want to get all of the interesting
1923 * counter expiration events, but we do not want to hear about
1924 * normal rx/tx as the DMA engine tells us that.
1926 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1927 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1929 /* Don't enable even the PAUSE interrupts for now, we
1930 * make no use of those events other than to record them.
1932 writel(0xffffffff, gp->regs + MAC_MCMASK);
1934 /* Don't enable GEM's WOL in normal operations
1936 if (gp->has_wol)
1937 writel(0, gp->regs + WOL_WAKECSR);
1940 /* Must be invoked under gp->lock and gp->tx_lock. */
1941 static void gem_init_pause_thresholds(struct gem *gp)
1943 u32 cfg;
1945 /* Calculate pause thresholds. Setting the OFF threshold to the
1946 * full RX fifo size effectively disables PAUSE generation which
1947 * is what we do for 10/100 only GEMs which have FIFOs too small
1948 * to make real gains from PAUSE.
1950 if (gp->rx_fifo_sz <= (2 * 1024)) {
1951 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1952 } else {
1953 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1954 int off = (gp->rx_fifo_sz - (max_frame * 2));
1955 int on = off - max_frame;
1957 gp->rx_pause_off = off;
1958 gp->rx_pause_on = on;
1962 /* Configure the chip "burst" DMA mode & enable some
1963 * HW bug fixes on Apple version
1965 cfg = 0;
1966 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1967 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1968 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1969 cfg |= GREG_CFG_IBURST;
1970 #endif
1971 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1972 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1973 writel(cfg, gp->regs + GREG_CFG);
1975 /* If Infinite Burst didn't stick, then use different
1976 * thresholds (and Apple bug fixes don't exist)
1978 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1979 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1980 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1981 writel(cfg, gp->regs + GREG_CFG);
1985 static int gem_check_invariants(struct gem *gp)
1987 struct pci_dev *pdev = gp->pdev;
1988 u32 mif_cfg;
1990 /* On Apple's sungem, we can't rely on registers as the chip
1991 * was been powered down by the firmware. The PHY is looked
1992 * up later on.
1994 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1995 gp->phy_type = phy_mii_mdio0;
1996 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1997 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1998 gp->swrst_base = 0;
2000 mif_cfg = readl(gp->regs + MIF_CFG);
2001 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
2002 mif_cfg |= MIF_CFG_MDI0;
2003 writel(mif_cfg, gp->regs + MIF_CFG);
2004 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
2005 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
2007 /* We hard-code the PHY address so we can properly bring it out of
2008 * reset later on, we can't really probe it at this point, though
2009 * that isn't an issue.
2011 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
2012 gp->mii_phy_addr = 1;
2013 else
2014 gp->mii_phy_addr = 0;
2016 return 0;
2019 mif_cfg = readl(gp->regs + MIF_CFG);
2021 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2022 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
2023 /* One of the MII PHYs _must_ be present
2024 * as this chip has no gigabit PHY.
2026 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
2027 printk(KERN_ERR PFX "RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2028 mif_cfg);
2029 return -1;
2033 /* Determine initial PHY interface type guess. MDIO1 is the
2034 * external PHY and thus takes precedence over MDIO0.
2037 if (mif_cfg & MIF_CFG_MDI1) {
2038 gp->phy_type = phy_mii_mdio1;
2039 mif_cfg |= MIF_CFG_PSELECT;
2040 writel(mif_cfg, gp->regs + MIF_CFG);
2041 } else if (mif_cfg & MIF_CFG_MDI0) {
2042 gp->phy_type = phy_mii_mdio0;
2043 mif_cfg &= ~MIF_CFG_PSELECT;
2044 writel(mif_cfg, gp->regs + MIF_CFG);
2045 } else {
2046 gp->phy_type = phy_serialink;
2048 if (gp->phy_type == phy_mii_mdio1 ||
2049 gp->phy_type == phy_mii_mdio0) {
2050 int i;
2052 for (i = 0; i < 32; i++) {
2053 gp->mii_phy_addr = i;
2054 if (phy_read(gp, MII_BMCR) != 0xffff)
2055 break;
2057 if (i == 32) {
2058 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2059 printk(KERN_ERR PFX "RIO MII phy will not respond.\n");
2060 return -1;
2062 gp->phy_type = phy_serdes;
2066 /* Fetch the FIFO configurations now too. */
2067 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2068 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2070 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2071 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2072 if (gp->tx_fifo_sz != (9 * 1024) ||
2073 gp->rx_fifo_sz != (20 * 1024)) {
2074 printk(KERN_ERR PFX "GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2075 gp->tx_fifo_sz, gp->rx_fifo_sz);
2076 return -1;
2078 gp->swrst_base = 0;
2079 } else {
2080 if (gp->tx_fifo_sz != (2 * 1024) ||
2081 gp->rx_fifo_sz != (2 * 1024)) {
2082 printk(KERN_ERR PFX "RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2083 gp->tx_fifo_sz, gp->rx_fifo_sz);
2084 return -1;
2086 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2090 return 0;
2093 /* Must be invoked under gp->lock and gp->tx_lock. */
2094 static void gem_reinit_chip(struct gem *gp)
2096 /* Reset the chip */
2097 gem_reset(gp);
2099 /* Make sure ints are disabled */
2100 gem_disable_ints(gp);
2102 /* Allocate & setup ring buffers */
2103 gem_init_rings(gp);
2105 /* Configure pause thresholds */
2106 gem_init_pause_thresholds(gp);
2108 /* Init DMA & MAC engines */
2109 gem_init_dma(gp);
2110 gem_init_mac(gp);
2114 /* Must be invoked with no lock held. */
2115 static void gem_stop_phy(struct gem *gp, int wol)
2117 u32 mifcfg;
2118 unsigned long flags;
2120 /* Let the chip settle down a bit, it seems that helps
2121 * for sleep mode on some models
2123 msleep(10);
2125 /* Make sure we aren't polling PHY status change. We
2126 * don't currently use that feature though
2128 mifcfg = readl(gp->regs + MIF_CFG);
2129 mifcfg &= ~MIF_CFG_POLL;
2130 writel(mifcfg, gp->regs + MIF_CFG);
2132 if (wol && gp->has_wol) {
2133 unsigned char *e = &gp->dev->dev_addr[0];
2134 u32 csr;
2136 /* Setup wake-on-lan for MAGIC packet */
2137 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2138 gp->regs + MAC_RXCFG);
2139 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2140 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2141 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2143 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2144 csr = WOL_WAKECSR_ENABLE;
2145 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2146 csr |= WOL_WAKECSR_MII;
2147 writel(csr, gp->regs + WOL_WAKECSR);
2148 } else {
2149 writel(0, gp->regs + MAC_RXCFG);
2150 (void)readl(gp->regs + MAC_RXCFG);
2151 /* Machine sleep will die in strange ways if we
2152 * dont wait a bit here, looks like the chip takes
2153 * some time to really shut down
2155 msleep(10);
2158 writel(0, gp->regs + MAC_TXCFG);
2159 writel(0, gp->regs + MAC_XIFCFG);
2160 writel(0, gp->regs + TXDMA_CFG);
2161 writel(0, gp->regs + RXDMA_CFG);
2163 if (!wol) {
2164 spin_lock_irqsave(&gp->lock, flags);
2165 spin_lock(&gp->tx_lock);
2166 gem_reset(gp);
2167 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2168 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2169 spin_unlock(&gp->tx_lock);
2170 spin_unlock_irqrestore(&gp->lock, flags);
2172 /* No need to take the lock here */
2174 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2175 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2177 /* According to Apple, we must set the MDIO pins to this begnign
2178 * state or we may 1) eat more current, 2) damage some PHYs
2180 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2181 writel(0, gp->regs + MIF_BBCLK);
2182 writel(0, gp->regs + MIF_BBDATA);
2183 writel(0, gp->regs + MIF_BBOENAB);
2184 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2185 (void) readl(gp->regs + MAC_XIFCFG);
2190 static int gem_do_start(struct net_device *dev)
2192 struct gem *gp = dev->priv;
2193 unsigned long flags;
2195 spin_lock_irqsave(&gp->lock, flags);
2196 spin_lock(&gp->tx_lock);
2198 /* Enable the cell */
2199 gem_get_cell(gp);
2201 /* Init & setup chip hardware */
2202 gem_reinit_chip(gp);
2204 gp->running = 1;
2206 if (gp->lstate == link_up) {
2207 netif_carrier_on(gp->dev);
2208 gem_set_link_modes(gp);
2211 netif_wake_queue(gp->dev);
2213 spin_unlock(&gp->tx_lock);
2214 spin_unlock_irqrestore(&gp->lock, flags);
2216 if (request_irq(gp->pdev->irq, gem_interrupt,
2217 IRQF_SHARED, dev->name, (void *)dev)) {
2218 printk(KERN_ERR "%s: failed to request irq !\n", gp->dev->name);
2220 spin_lock_irqsave(&gp->lock, flags);
2221 spin_lock(&gp->tx_lock);
2223 gp->running = 0;
2224 gem_reset(gp);
2225 gem_clean_rings(gp);
2226 gem_put_cell(gp);
2228 spin_unlock(&gp->tx_lock);
2229 spin_unlock_irqrestore(&gp->lock, flags);
2231 return -EAGAIN;
2234 return 0;
2237 static void gem_do_stop(struct net_device *dev, int wol)
2239 struct gem *gp = dev->priv;
2240 unsigned long flags;
2242 spin_lock_irqsave(&gp->lock, flags);
2243 spin_lock(&gp->tx_lock);
2245 gp->running = 0;
2247 /* Stop netif queue */
2248 netif_stop_queue(dev);
2250 /* Make sure ints are disabled */
2251 gem_disable_ints(gp);
2253 /* We can drop the lock now */
2254 spin_unlock(&gp->tx_lock);
2255 spin_unlock_irqrestore(&gp->lock, flags);
2257 /* If we are going to sleep with WOL */
2258 gem_stop_dma(gp);
2259 msleep(10);
2260 if (!wol)
2261 gem_reset(gp);
2262 msleep(10);
2264 /* Get rid of rings */
2265 gem_clean_rings(gp);
2267 /* No irq needed anymore */
2268 free_irq(gp->pdev->irq, (void *) dev);
2270 /* Cell not needed neither if no WOL */
2271 if (!wol) {
2272 spin_lock_irqsave(&gp->lock, flags);
2273 gem_put_cell(gp);
2274 spin_unlock_irqrestore(&gp->lock, flags);
2278 static void gem_reset_task(struct work_struct *work)
2280 struct gem *gp = container_of(work, struct gem, reset_task);
2282 mutex_lock(&gp->pm_mutex);
2284 if (gp->opened)
2285 napi_disable(&gp->napi);
2287 spin_lock_irq(&gp->lock);
2288 spin_lock(&gp->tx_lock);
2290 if (gp->running) {
2291 netif_stop_queue(gp->dev);
2293 /* Reset the chip & rings */
2294 gem_reinit_chip(gp);
2295 if (gp->lstate == link_up)
2296 gem_set_link_modes(gp);
2297 netif_wake_queue(gp->dev);
2300 gp->reset_task_pending = 0;
2302 spin_unlock(&gp->tx_lock);
2303 spin_unlock_irq(&gp->lock);
2305 if (gp->opened)
2306 napi_enable(&gp->napi);
2308 mutex_unlock(&gp->pm_mutex);
2312 static int gem_open(struct net_device *dev)
2314 struct gem *gp = dev->priv;
2315 int rc = 0;
2317 mutex_lock(&gp->pm_mutex);
2319 /* We need the cell enabled */
2320 if (!gp->asleep)
2321 rc = gem_do_start(dev);
2322 gp->opened = (rc == 0);
2323 if (gp->opened)
2324 napi_enable(&gp->napi);
2326 mutex_unlock(&gp->pm_mutex);
2328 return rc;
2331 static int gem_close(struct net_device *dev)
2333 struct gem *gp = dev->priv;
2335 mutex_lock(&gp->pm_mutex);
2337 napi_disable(&gp->napi);
2339 gp->opened = 0;
2340 if (!gp->asleep)
2341 gem_do_stop(dev, 0);
2343 mutex_unlock(&gp->pm_mutex);
2345 return 0;
2348 #ifdef CONFIG_PM
2349 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2351 struct net_device *dev = pci_get_drvdata(pdev);
2352 struct gem *gp = dev->priv;
2353 unsigned long flags;
2355 mutex_lock(&gp->pm_mutex);
2357 printk(KERN_INFO "%s: suspending, WakeOnLan %s\n",
2358 dev->name,
2359 (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
2361 /* Keep the cell enabled during the entire operation */
2362 spin_lock_irqsave(&gp->lock, flags);
2363 spin_lock(&gp->tx_lock);
2364 gem_get_cell(gp);
2365 spin_unlock(&gp->tx_lock);
2366 spin_unlock_irqrestore(&gp->lock, flags);
2368 /* If the driver is opened, we stop the MAC */
2369 if (gp->opened) {
2370 napi_disable(&gp->napi);
2372 /* Stop traffic, mark us closed */
2373 netif_device_detach(dev);
2375 /* Switch off MAC, remember WOL setting */
2376 gp->asleep_wol = gp->wake_on_lan;
2377 gem_do_stop(dev, gp->asleep_wol);
2378 } else
2379 gp->asleep_wol = 0;
2381 /* Mark us asleep */
2382 gp->asleep = 1;
2383 wmb();
2385 /* Stop the link timer */
2386 del_timer_sync(&gp->link_timer);
2388 /* Now we release the mutex to not block the reset task who
2389 * can take it too. We are marked asleep, so there will be no
2390 * conflict here
2392 mutex_unlock(&gp->pm_mutex);
2394 /* Wait for a pending reset task to complete */
2395 while (gp->reset_task_pending)
2396 yield();
2397 flush_scheduled_work();
2399 /* Shut the PHY down eventually and setup WOL */
2400 gem_stop_phy(gp, gp->asleep_wol);
2402 /* Make sure bus master is disabled */
2403 pci_disable_device(gp->pdev);
2405 /* Release the cell, no need to take a lock at this point since
2406 * nothing else can happen now
2408 gem_put_cell(gp);
2410 return 0;
2413 static int gem_resume(struct pci_dev *pdev)
2415 struct net_device *dev = pci_get_drvdata(pdev);
2416 struct gem *gp = dev->priv;
2417 unsigned long flags;
2419 printk(KERN_INFO "%s: resuming\n", dev->name);
2421 mutex_lock(&gp->pm_mutex);
2423 /* Keep the cell enabled during the entire operation, no need to
2424 * take a lock here tho since nothing else can happen while we are
2425 * marked asleep
2427 gem_get_cell(gp);
2429 /* Make sure PCI access and bus master are enabled */
2430 if (pci_enable_device(gp->pdev)) {
2431 printk(KERN_ERR "%s: Can't re-enable chip !\n",
2432 dev->name);
2433 /* Put cell and forget it for now, it will be considered as
2434 * still asleep, a new sleep cycle may bring it back
2436 gem_put_cell(gp);
2437 mutex_unlock(&gp->pm_mutex);
2438 return 0;
2440 pci_set_master(gp->pdev);
2442 /* Reset everything */
2443 gem_reset(gp);
2445 /* Mark us woken up */
2446 gp->asleep = 0;
2447 wmb();
2449 /* Bring the PHY back. Again, lock is useless at this point as
2450 * nothing can be happening until we restart the whole thing
2452 gem_init_phy(gp);
2454 /* If we were opened, bring everything back */
2455 if (gp->opened) {
2456 /* Restart MAC */
2457 gem_do_start(dev);
2459 /* Re-attach net device */
2460 netif_device_attach(dev);
2462 napi_enable(&gp->napi);
2465 spin_lock_irqsave(&gp->lock, flags);
2466 spin_lock(&gp->tx_lock);
2468 /* If we had WOL enabled, the cell clock was never turned off during
2469 * sleep, so we end up beeing unbalanced. Fix that here
2471 if (gp->asleep_wol)
2472 gem_put_cell(gp);
2474 /* This function doesn't need to hold the cell, it will be held if the
2475 * driver is open by gem_do_start().
2477 gem_put_cell(gp);
2479 spin_unlock(&gp->tx_lock);
2480 spin_unlock_irqrestore(&gp->lock, flags);
2482 mutex_unlock(&gp->pm_mutex);
2484 return 0;
2486 #endif /* CONFIG_PM */
2488 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2490 struct gem *gp = dev->priv;
2491 struct net_device_stats *stats = &gp->net_stats;
2493 spin_lock_irq(&gp->lock);
2494 spin_lock(&gp->tx_lock);
2496 /* I have seen this being called while the PM was in progress,
2497 * so we shield against this
2499 if (gp->running) {
2500 stats->rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2501 writel(0, gp->regs + MAC_FCSERR);
2503 stats->rx_frame_errors += readl(gp->regs + MAC_AERR);
2504 writel(0, gp->regs + MAC_AERR);
2506 stats->rx_length_errors += readl(gp->regs + MAC_LERR);
2507 writel(0, gp->regs + MAC_LERR);
2509 stats->tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2510 stats->collisions +=
2511 (readl(gp->regs + MAC_ECOLL) +
2512 readl(gp->regs + MAC_LCOLL));
2513 writel(0, gp->regs + MAC_ECOLL);
2514 writel(0, gp->regs + MAC_LCOLL);
2517 spin_unlock(&gp->tx_lock);
2518 spin_unlock_irq(&gp->lock);
2520 return &gp->net_stats;
2523 static int gem_set_mac_address(struct net_device *dev, void *addr)
2525 struct sockaddr *macaddr = (struct sockaddr *) addr;
2526 struct gem *gp = dev->priv;
2527 unsigned char *e = &dev->dev_addr[0];
2529 if (!is_valid_ether_addr(macaddr->sa_data))
2530 return -EADDRNOTAVAIL;
2532 if (!netif_running(dev) || !netif_device_present(dev)) {
2533 /* We'll just catch it later when the
2534 * device is up'd or resumed.
2536 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2537 return 0;
2540 mutex_lock(&gp->pm_mutex);
2541 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2542 if (gp->running) {
2543 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2544 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2545 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2547 mutex_unlock(&gp->pm_mutex);
2549 return 0;
2552 static void gem_set_multicast(struct net_device *dev)
2554 struct gem *gp = dev->priv;
2555 u32 rxcfg, rxcfg_new;
2556 int limit = 10000;
2559 spin_lock_irq(&gp->lock);
2560 spin_lock(&gp->tx_lock);
2562 if (!gp->running)
2563 goto bail;
2565 netif_stop_queue(dev);
2567 rxcfg = readl(gp->regs + MAC_RXCFG);
2568 rxcfg_new = gem_setup_multicast(gp);
2569 #ifdef STRIP_FCS
2570 rxcfg_new |= MAC_RXCFG_SFCS;
2571 #endif
2572 gp->mac_rx_cfg = rxcfg_new;
2574 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2575 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2576 if (!limit--)
2577 break;
2578 udelay(10);
2581 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2582 rxcfg |= rxcfg_new;
2584 writel(rxcfg, gp->regs + MAC_RXCFG);
2586 netif_wake_queue(dev);
2588 bail:
2589 spin_unlock(&gp->tx_lock);
2590 spin_unlock_irq(&gp->lock);
2593 /* Jumbo-grams don't seem to work :-( */
2594 #define GEM_MIN_MTU 68
2595 #if 1
2596 #define GEM_MAX_MTU 1500
2597 #else
2598 #define GEM_MAX_MTU 9000
2599 #endif
2601 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2603 struct gem *gp = dev->priv;
2605 if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2606 return -EINVAL;
2608 if (!netif_running(dev) || !netif_device_present(dev)) {
2609 /* We'll just catch it later when the
2610 * device is up'd or resumed.
2612 dev->mtu = new_mtu;
2613 return 0;
2616 mutex_lock(&gp->pm_mutex);
2617 spin_lock_irq(&gp->lock);
2618 spin_lock(&gp->tx_lock);
2619 dev->mtu = new_mtu;
2620 if (gp->running) {
2621 gem_reinit_chip(gp);
2622 if (gp->lstate == link_up)
2623 gem_set_link_modes(gp);
2625 spin_unlock(&gp->tx_lock);
2626 spin_unlock_irq(&gp->lock);
2627 mutex_unlock(&gp->pm_mutex);
2629 return 0;
2632 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2634 struct gem *gp = dev->priv;
2636 strcpy(info->driver, DRV_NAME);
2637 strcpy(info->version, DRV_VERSION);
2638 strcpy(info->bus_info, pci_name(gp->pdev));
2641 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2643 struct gem *gp = dev->priv;
2645 if (gp->phy_type == phy_mii_mdio0 ||
2646 gp->phy_type == phy_mii_mdio1) {
2647 if (gp->phy_mii.def)
2648 cmd->supported = gp->phy_mii.def->features;
2649 else
2650 cmd->supported = (SUPPORTED_10baseT_Half |
2651 SUPPORTED_10baseT_Full);
2653 /* XXX hardcoded stuff for now */
2654 cmd->port = PORT_MII;
2655 cmd->transceiver = XCVR_EXTERNAL;
2656 cmd->phy_address = 0; /* XXX fixed PHYAD */
2658 /* Return current PHY settings */
2659 spin_lock_irq(&gp->lock);
2660 cmd->autoneg = gp->want_autoneg;
2661 cmd->speed = gp->phy_mii.speed;
2662 cmd->duplex = gp->phy_mii.duplex;
2663 cmd->advertising = gp->phy_mii.advertising;
2665 /* If we started with a forced mode, we don't have a default
2666 * advertise set, we need to return something sensible so
2667 * userland can re-enable autoneg properly.
2669 if (cmd->advertising == 0)
2670 cmd->advertising = cmd->supported;
2671 spin_unlock_irq(&gp->lock);
2672 } else { // XXX PCS ?
2673 cmd->supported =
2674 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2675 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2676 SUPPORTED_Autoneg);
2677 cmd->advertising = cmd->supported;
2678 cmd->speed = 0;
2679 cmd->duplex = cmd->port = cmd->phy_address =
2680 cmd->transceiver = cmd->autoneg = 0;
2682 cmd->maxtxpkt = cmd->maxrxpkt = 0;
2684 return 0;
2687 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2689 struct gem *gp = dev->priv;
2691 /* Verify the settings we care about. */
2692 if (cmd->autoneg != AUTONEG_ENABLE &&
2693 cmd->autoneg != AUTONEG_DISABLE)
2694 return -EINVAL;
2696 if (cmd->autoneg == AUTONEG_ENABLE &&
2697 cmd->advertising == 0)
2698 return -EINVAL;
2700 if (cmd->autoneg == AUTONEG_DISABLE &&
2701 ((cmd->speed != SPEED_1000 &&
2702 cmd->speed != SPEED_100 &&
2703 cmd->speed != SPEED_10) ||
2704 (cmd->duplex != DUPLEX_HALF &&
2705 cmd->duplex != DUPLEX_FULL)))
2706 return -EINVAL;
2708 /* Apply settings and restart link process. */
2709 spin_lock_irq(&gp->lock);
2710 gem_get_cell(gp);
2711 gem_begin_auto_negotiation(gp, cmd);
2712 gem_put_cell(gp);
2713 spin_unlock_irq(&gp->lock);
2715 return 0;
2718 static int gem_nway_reset(struct net_device *dev)
2720 struct gem *gp = dev->priv;
2722 if (!gp->want_autoneg)
2723 return -EINVAL;
2725 /* Restart link process. */
2726 spin_lock_irq(&gp->lock);
2727 gem_get_cell(gp);
2728 gem_begin_auto_negotiation(gp, NULL);
2729 gem_put_cell(gp);
2730 spin_unlock_irq(&gp->lock);
2732 return 0;
2735 static u32 gem_get_msglevel(struct net_device *dev)
2737 struct gem *gp = dev->priv;
2738 return gp->msg_enable;
2741 static void gem_set_msglevel(struct net_device *dev, u32 value)
2743 struct gem *gp = dev->priv;
2744 gp->msg_enable = value;
2748 /* Add more when I understand how to program the chip */
2749 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2751 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2753 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2755 struct gem *gp = dev->priv;
2757 /* Add more when I understand how to program the chip */
2758 if (gp->has_wol) {
2759 wol->supported = WOL_SUPPORTED_MASK;
2760 wol->wolopts = gp->wake_on_lan;
2761 } else {
2762 wol->supported = 0;
2763 wol->wolopts = 0;
2767 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2769 struct gem *gp = dev->priv;
2771 if (!gp->has_wol)
2772 return -EOPNOTSUPP;
2773 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2774 return 0;
2777 static const struct ethtool_ops gem_ethtool_ops = {
2778 .get_drvinfo = gem_get_drvinfo,
2779 .get_link = ethtool_op_get_link,
2780 .get_settings = gem_get_settings,
2781 .set_settings = gem_set_settings,
2782 .nway_reset = gem_nway_reset,
2783 .get_msglevel = gem_get_msglevel,
2784 .set_msglevel = gem_set_msglevel,
2785 .get_wol = gem_get_wol,
2786 .set_wol = gem_set_wol,
2789 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2791 struct gem *gp = dev->priv;
2792 struct mii_ioctl_data *data = if_mii(ifr);
2793 int rc = -EOPNOTSUPP;
2794 unsigned long flags;
2796 /* Hold the PM mutex while doing ioctl's or we may collide
2797 * with power management.
2799 mutex_lock(&gp->pm_mutex);
2801 spin_lock_irqsave(&gp->lock, flags);
2802 gem_get_cell(gp);
2803 spin_unlock_irqrestore(&gp->lock, flags);
2805 switch (cmd) {
2806 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2807 data->phy_id = gp->mii_phy_addr;
2808 /* Fallthrough... */
2810 case SIOCGMIIREG: /* Read MII PHY register. */
2811 if (!gp->running)
2812 rc = -EAGAIN;
2813 else {
2814 data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2815 data->reg_num & 0x1f);
2816 rc = 0;
2818 break;
2820 case SIOCSMIIREG: /* Write MII PHY register. */
2821 if (!capable(CAP_NET_ADMIN))
2822 rc = -EPERM;
2823 else if (!gp->running)
2824 rc = -EAGAIN;
2825 else {
2826 __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2827 data->val_in);
2828 rc = 0;
2830 break;
2833 spin_lock_irqsave(&gp->lock, flags);
2834 gem_put_cell(gp);
2835 spin_unlock_irqrestore(&gp->lock, flags);
2837 mutex_unlock(&gp->pm_mutex);
2839 return rc;
2842 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2843 /* Fetch MAC address from vital product data of PCI ROM. */
2844 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2846 int this_offset;
2848 for (this_offset = 0x20; this_offset < len; this_offset++) {
2849 void __iomem *p = rom_base + this_offset;
2850 int i;
2852 if (readb(p + 0) != 0x90 ||
2853 readb(p + 1) != 0x00 ||
2854 readb(p + 2) != 0x09 ||
2855 readb(p + 3) != 0x4e ||
2856 readb(p + 4) != 0x41 ||
2857 readb(p + 5) != 0x06)
2858 continue;
2860 this_offset += 6;
2861 p += 6;
2863 for (i = 0; i < 6; i++)
2864 dev_addr[i] = readb(p + i);
2865 return 1;
2867 return 0;
2870 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2872 size_t size;
2873 void __iomem *p = pci_map_rom(pdev, &size);
2875 if (p) {
2876 int found;
2878 found = readb(p) == 0x55 &&
2879 readb(p + 1) == 0xaa &&
2880 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2881 pci_unmap_rom(pdev, p);
2882 if (found)
2883 return;
2886 /* Sun MAC prefix then 3 random bytes. */
2887 dev_addr[0] = 0x08;
2888 dev_addr[1] = 0x00;
2889 dev_addr[2] = 0x20;
2890 get_random_bytes(dev_addr + 3, 3);
2891 return;
2893 #endif /* not Sparc and not PPC */
2895 static int __devinit gem_get_device_address(struct gem *gp)
2897 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2898 struct net_device *dev = gp->dev;
2899 const unsigned char *addr;
2901 addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2902 if (addr == NULL) {
2903 #ifdef CONFIG_SPARC
2904 addr = idprom->id_ethaddr;
2905 #else
2906 printk("\n");
2907 printk(KERN_ERR "%s: can't get mac-address\n", dev->name);
2908 return -1;
2909 #endif
2911 memcpy(dev->dev_addr, addr, 6);
2912 #else
2913 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2914 #endif
2915 return 0;
2918 static void gem_remove_one(struct pci_dev *pdev)
2920 struct net_device *dev = pci_get_drvdata(pdev);
2922 if (dev) {
2923 struct gem *gp = dev->priv;
2925 unregister_netdev(dev);
2927 /* Stop the link timer */
2928 del_timer_sync(&gp->link_timer);
2930 /* We shouldn't need any locking here */
2931 gem_get_cell(gp);
2933 /* Wait for a pending reset task to complete */
2934 while (gp->reset_task_pending)
2935 yield();
2936 flush_scheduled_work();
2938 /* Shut the PHY down */
2939 gem_stop_phy(gp, 0);
2941 gem_put_cell(gp);
2943 /* Make sure bus master is disabled */
2944 pci_disable_device(gp->pdev);
2946 /* Free resources */
2947 pci_free_consistent(pdev,
2948 sizeof(struct gem_init_block),
2949 gp->init_block,
2950 gp->gblock_dvma);
2951 iounmap(gp->regs);
2952 pci_release_regions(pdev);
2953 free_netdev(dev);
2955 pci_set_drvdata(pdev, NULL);
2959 static int __devinit gem_init_one(struct pci_dev *pdev,
2960 const struct pci_device_id *ent)
2962 static int gem_version_printed = 0;
2963 unsigned long gemreg_base, gemreg_len;
2964 struct net_device *dev;
2965 struct gem *gp;
2966 int err, pci_using_dac;
2967 DECLARE_MAC_BUF(mac);
2969 if (gem_version_printed++ == 0)
2970 printk(KERN_INFO "%s", version);
2972 /* Apple gmac note: during probe, the chip is powered up by
2973 * the arch code to allow the code below to work (and to let
2974 * the chip be probed on the config space. It won't stay powered
2975 * up until the interface is brought up however, so we can't rely
2976 * on register configuration done at this point.
2978 err = pci_enable_device(pdev);
2979 if (err) {
2980 printk(KERN_ERR PFX "Cannot enable MMIO operation, "
2981 "aborting.\n");
2982 return err;
2984 pci_set_master(pdev);
2986 /* Configure DMA attributes. */
2988 /* All of the GEM documentation states that 64-bit DMA addressing
2989 * is fully supported and should work just fine. However the
2990 * front end for RIO based GEMs is different and only supports
2991 * 32-bit addressing.
2993 * For now we assume the various PPC GEMs are 32-bit only as well.
2995 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2996 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2997 !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
2998 pci_using_dac = 1;
2999 } else {
3000 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3001 if (err) {
3002 printk(KERN_ERR PFX "No usable DMA configuration, "
3003 "aborting.\n");
3004 goto err_disable_device;
3006 pci_using_dac = 0;
3009 gemreg_base = pci_resource_start(pdev, 0);
3010 gemreg_len = pci_resource_len(pdev, 0);
3012 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3013 printk(KERN_ERR PFX "Cannot find proper PCI device "
3014 "base address, aborting.\n");
3015 err = -ENODEV;
3016 goto err_disable_device;
3019 dev = alloc_etherdev(sizeof(*gp));
3020 if (!dev) {
3021 printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
3022 err = -ENOMEM;
3023 goto err_disable_device;
3025 SET_NETDEV_DEV(dev, &pdev->dev);
3027 gp = dev->priv;
3029 err = pci_request_regions(pdev, DRV_NAME);
3030 if (err) {
3031 printk(KERN_ERR PFX "Cannot obtain PCI resources, "
3032 "aborting.\n");
3033 goto err_out_free_netdev;
3036 gp->pdev = pdev;
3037 dev->base_addr = (long) pdev;
3038 gp->dev = dev;
3040 gp->msg_enable = DEFAULT_MSG;
3042 spin_lock_init(&gp->lock);
3043 spin_lock_init(&gp->tx_lock);
3044 mutex_init(&gp->pm_mutex);
3046 init_timer(&gp->link_timer);
3047 gp->link_timer.function = gem_link_timer;
3048 gp->link_timer.data = (unsigned long) gp;
3050 INIT_WORK(&gp->reset_task, gem_reset_task);
3052 gp->lstate = link_down;
3053 gp->timer_ticks = 0;
3054 netif_carrier_off(dev);
3056 gp->regs = ioremap(gemreg_base, gemreg_len);
3057 if (gp->regs == 0UL) {
3058 printk(KERN_ERR PFX "Cannot map device registers, "
3059 "aborting.\n");
3060 err = -EIO;
3061 goto err_out_free_res;
3064 /* On Apple, we want a reference to the Open Firmware device-tree
3065 * node. We use it for clock control.
3067 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
3068 gp->of_node = pci_device_to_OF_node(pdev);
3069 #endif
3071 /* Only Apple version supports WOL afaik */
3072 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
3073 gp->has_wol = 1;
3075 /* Make sure cell is enabled */
3076 gem_get_cell(gp);
3078 /* Make sure everything is stopped and in init state */
3079 gem_reset(gp);
3081 /* Fill up the mii_phy structure (even if we won't use it) */
3082 gp->phy_mii.dev = dev;
3083 gp->phy_mii.mdio_read = _phy_read;
3084 gp->phy_mii.mdio_write = _phy_write;
3085 #ifdef CONFIG_PPC_PMAC
3086 gp->phy_mii.platform_data = gp->of_node;
3087 #endif
3088 /* By default, we start with autoneg */
3089 gp->want_autoneg = 1;
3091 /* Check fifo sizes, PHY type, etc... */
3092 if (gem_check_invariants(gp)) {
3093 err = -ENODEV;
3094 goto err_out_iounmap;
3097 /* It is guaranteed that the returned buffer will be at least
3098 * PAGE_SIZE aligned.
3100 gp->init_block = (struct gem_init_block *)
3101 pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
3102 &gp->gblock_dvma);
3103 if (!gp->init_block) {
3104 printk(KERN_ERR PFX "Cannot allocate init block, "
3105 "aborting.\n");
3106 err = -ENOMEM;
3107 goto err_out_iounmap;
3110 if (gem_get_device_address(gp))
3111 goto err_out_free_consistent;
3113 dev->open = gem_open;
3114 dev->stop = gem_close;
3115 dev->hard_start_xmit = gem_start_xmit;
3116 dev->get_stats = gem_get_stats;
3117 dev->set_multicast_list = gem_set_multicast;
3118 dev->do_ioctl = gem_ioctl;
3119 netif_napi_add(dev, &gp->napi, gem_poll, 64);
3120 dev->ethtool_ops = &gem_ethtool_ops;
3121 dev->tx_timeout = gem_tx_timeout;
3122 dev->watchdog_timeo = 5 * HZ;
3123 dev->change_mtu = gem_change_mtu;
3124 dev->irq = pdev->irq;
3125 dev->dma = 0;
3126 dev->set_mac_address = gem_set_mac_address;
3127 #ifdef CONFIG_NET_POLL_CONTROLLER
3128 dev->poll_controller = gem_poll_controller;
3129 #endif
3131 /* Set that now, in case PM kicks in now */
3132 pci_set_drvdata(pdev, dev);
3134 /* Detect & init PHY, start autoneg, we release the cell now
3135 * too, it will be managed by whoever needs it
3137 gem_init_phy(gp);
3139 spin_lock_irq(&gp->lock);
3140 gem_put_cell(gp);
3141 spin_unlock_irq(&gp->lock);
3143 /* Register with kernel */
3144 if (register_netdev(dev)) {
3145 printk(KERN_ERR PFX "Cannot register net device, "
3146 "aborting.\n");
3147 err = -ENOMEM;
3148 goto err_out_free_consistent;
3151 printk(KERN_INFO "%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet "
3152 "%s\n",
3153 dev->name, print_mac(mac, dev->dev_addr));
3155 if (gp->phy_type == phy_mii_mdio0 ||
3156 gp->phy_type == phy_mii_mdio1)
3157 printk(KERN_INFO "%s: Found %s PHY\n", dev->name,
3158 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
3160 /* GEM can do it all... */
3161 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_LLTX;
3162 if (pci_using_dac)
3163 dev->features |= NETIF_F_HIGHDMA;
3165 return 0;
3167 err_out_free_consistent:
3168 gem_remove_one(pdev);
3169 err_out_iounmap:
3170 gem_put_cell(gp);
3171 iounmap(gp->regs);
3173 err_out_free_res:
3174 pci_release_regions(pdev);
3176 err_out_free_netdev:
3177 free_netdev(dev);
3178 err_disable_device:
3179 pci_disable_device(pdev);
3180 return err;
3185 static struct pci_driver gem_driver = {
3186 .name = GEM_MODULE_NAME,
3187 .id_table = gem_pci_tbl,
3188 .probe = gem_init_one,
3189 .remove = gem_remove_one,
3190 #ifdef CONFIG_PM
3191 .suspend = gem_suspend,
3192 .resume = gem_resume,
3193 #endif /* CONFIG_PM */
3196 static int __init gem_init(void)
3198 return pci_register_driver(&gem_driver);
3201 static void __exit gem_cleanup(void)
3203 pci_unregister_driver(&gem_driver);
3206 module_init(gem_init);
3207 module_exit(gem_cleanup);