PCI ACPI: AER driver should only register PCIe devices with _OSC
[pv_ops_mirror.git] / drivers / firmware / dmi_scan.c
blob9008ed5ef4ce2e384b41c591cdc7c629a08af324
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/dmi.h>
6 #include <linux/efi.h>
7 #include <linux/bootmem.h>
8 #include <linux/slab.h>
9 #include <asm/dmi.h>
11 static char dmi_empty_string[] = " ";
13 static char * __init dmi_string(const struct dmi_header *dm, u8 s)
15 const u8 *bp = ((u8 *) dm) + dm->length;
16 char *str = "";
18 if (s) {
19 s--;
20 while (s > 0 && *bp) {
21 bp += strlen(bp) + 1;
22 s--;
25 if (*bp != 0) {
26 size_t len = strlen(bp)+1;
27 size_t cmp_len = len > 8 ? 8 : len;
29 if (!memcmp(bp, dmi_empty_string, cmp_len))
30 return dmi_empty_string;
31 str = dmi_alloc(len);
32 if (str != NULL)
33 strcpy(str, bp);
34 else
35 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
39 return str;
43 * We have to be cautious here. We have seen BIOSes with DMI pointers
44 * pointing to completely the wrong place for example
46 static int __init dmi_table(u32 base, int len, int num,
47 void (*decode)(const struct dmi_header *))
49 u8 *buf, *data;
50 int i = 0;
52 buf = dmi_ioremap(base, len);
53 if (buf == NULL)
54 return -1;
56 data = buf;
59 * Stop when we see all the items the table claimed to have
60 * OR we run off the end of the table (also happens)
62 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
63 const struct dmi_header *dm = (const struct dmi_header *)data;
66 * We want to know the total length (formated area and strings)
67 * before decoding to make sure we won't run off the table in
68 * dmi_decode or dmi_string
70 data += dm->length;
71 while ((data - buf < len - 1) && (data[0] || data[1]))
72 data++;
73 if (data - buf < len - 1)
74 decode(dm);
75 data += 2;
76 i++;
78 dmi_iounmap(buf, len);
79 return 0;
82 static int __init dmi_checksum(const u8 *buf)
84 u8 sum = 0;
85 int a;
87 for (a = 0; a < 15; a++)
88 sum += buf[a];
90 return sum == 0;
93 static char *dmi_ident[DMI_STRING_MAX];
94 static LIST_HEAD(dmi_devices);
95 int dmi_available;
98 * Save a DMI string
100 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
102 const char *d = (const char*) dm;
103 char *p;
105 if (dmi_ident[slot])
106 return;
108 p = dmi_string(dm, d[string]);
109 if (p == NULL)
110 return;
112 dmi_ident[slot] = p;
115 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
117 const u8 *d = (u8*) dm + index;
118 char *s;
119 int is_ff = 1, is_00 = 1, i;
121 if (dmi_ident[slot])
122 return;
124 for (i = 0; i < 16 && (is_ff || is_00); i++) {
125 if(d[i] != 0x00) is_ff = 0;
126 if(d[i] != 0xFF) is_00 = 0;
129 if (is_ff || is_00)
130 return;
132 s = dmi_alloc(16*2+4+1);
133 if (!s)
134 return;
136 sprintf(s,
137 "%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
138 d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7],
139 d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]);
141 dmi_ident[slot] = s;
144 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
146 const u8 *d = (u8*) dm + index;
147 char *s;
149 if (dmi_ident[slot])
150 return;
152 s = dmi_alloc(4);
153 if (!s)
154 return;
156 sprintf(s, "%u", *d & 0x7F);
157 dmi_ident[slot] = s;
160 static void __init dmi_save_devices(const struct dmi_header *dm)
162 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
163 struct dmi_device *dev;
165 for (i = 0; i < count; i++) {
166 const char *d = (char *)(dm + 1) + (i * 2);
168 /* Skip disabled device */
169 if ((*d & 0x80) == 0)
170 continue;
172 dev = dmi_alloc(sizeof(*dev));
173 if (!dev) {
174 printk(KERN_ERR "dmi_save_devices: out of memory.\n");
175 break;
178 dev->type = *d++ & 0x7f;
179 dev->name = dmi_string(dm, *d);
180 dev->device_data = NULL;
181 list_add(&dev->list, &dmi_devices);
185 static struct dmi_device empty_oem_string_dev = {
186 .name = dmi_empty_string,
189 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
191 int i, count = *(u8 *)(dm + 1);
192 struct dmi_device *dev;
194 for (i = 1; i <= count; i++) {
195 char *devname = dmi_string(dm, i);
197 if (!strcmp(devname, dmi_empty_string)) {
198 list_add(&empty_oem_string_dev.list, &dmi_devices);
199 continue;
202 dev = dmi_alloc(sizeof(*dev));
203 if (!dev) {
204 printk(KERN_ERR
205 "dmi_save_oem_strings_devices: out of memory.\n");
206 break;
209 dev->type = DMI_DEV_TYPE_OEM_STRING;
210 dev->name = devname;
211 dev->device_data = NULL;
213 list_add(&dev->list, &dmi_devices);
217 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
219 struct dmi_device *dev;
220 void * data;
222 data = dmi_alloc(dm->length);
223 if (data == NULL) {
224 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
225 return;
228 memcpy(data, dm, dm->length);
230 dev = dmi_alloc(sizeof(*dev));
231 if (!dev) {
232 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
233 return;
236 dev->type = DMI_DEV_TYPE_IPMI;
237 dev->name = "IPMI controller";
238 dev->device_data = data;
240 list_add(&dev->list, &dmi_devices);
244 * Process a DMI table entry. Right now all we care about are the BIOS
245 * and machine entries. For 2.5 we should pull the smbus controller info
246 * out of here.
248 static void __init dmi_decode(const struct dmi_header *dm)
250 switch(dm->type) {
251 case 0: /* BIOS Information */
252 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
253 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
254 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
255 break;
256 case 1: /* System Information */
257 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
258 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
259 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
260 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
261 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
262 break;
263 case 2: /* Base Board Information */
264 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
265 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
266 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
267 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
268 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
269 break;
270 case 3: /* Chassis Information */
271 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
272 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
273 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
274 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
275 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
276 break;
277 case 10: /* Onboard Devices Information */
278 dmi_save_devices(dm);
279 break;
280 case 11: /* OEM Strings */
281 dmi_save_oem_strings_devices(dm);
282 break;
283 case 38: /* IPMI Device Information */
284 dmi_save_ipmi_device(dm);
288 static int __init dmi_present(const char __iomem *p)
290 u8 buf[15];
292 memcpy_fromio(buf, p, 15);
293 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
294 u16 num = (buf[13] << 8) | buf[12];
295 u16 len = (buf[7] << 8) | buf[6];
296 u32 base = (buf[11] << 24) | (buf[10] << 16) |
297 (buf[9] << 8) | buf[8];
300 * DMI version 0.0 means that the real version is taken from
301 * the SMBIOS version, which we don't know at this point.
303 if (buf[14] != 0)
304 printk(KERN_INFO "DMI %d.%d present.\n",
305 buf[14] >> 4, buf[14] & 0xF);
306 else
307 printk(KERN_INFO "DMI present.\n");
308 if (dmi_table(base,len, num, dmi_decode) == 0)
309 return 0;
311 return 1;
314 void __init dmi_scan_machine(void)
316 char __iomem *p, *q;
317 int rc;
319 if (efi_enabled) {
320 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
321 goto out;
323 /* This is called as a core_initcall() because it isn't
324 * needed during early boot. This also means we can
325 * iounmap the space when we're done with it.
327 p = dmi_ioremap(efi.smbios, 32);
328 if (p == NULL)
329 goto out;
331 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
332 dmi_iounmap(p, 32);
333 if (!rc) {
334 dmi_available = 1;
335 return;
338 else {
340 * no iounmap() for that ioremap(); it would be a no-op, but
341 * it's so early in setup that sucker gets confused into doing
342 * what it shouldn't if we actually call it.
344 p = dmi_ioremap(0xF0000, 0x10000);
345 if (p == NULL)
346 goto out;
348 for (q = p; q < p + 0x10000; q += 16) {
349 rc = dmi_present(q);
350 if (!rc) {
351 dmi_available = 1;
352 dmi_iounmap(p, 0x10000);
353 return;
356 dmi_iounmap(p, 0x10000);
358 out: printk(KERN_INFO "DMI not present or invalid.\n");
362 * dmi_check_system - check system DMI data
363 * @list: array of dmi_system_id structures to match against
364 * All non-null elements of the list must match
365 * their slot's (field index's) data (i.e., each
366 * list string must be a substring of the specified
367 * DMI slot's string data) to be considered a
368 * successful match.
370 * Walk the blacklist table running matching functions until someone
371 * returns non zero or we hit the end. Callback function is called for
372 * each successful match. Returns the number of matches.
374 int dmi_check_system(const struct dmi_system_id *list)
376 int i, count = 0;
377 const struct dmi_system_id *d = list;
379 while (d->ident) {
380 for (i = 0; i < ARRAY_SIZE(d->matches); i++) {
381 int s = d->matches[i].slot;
382 if (s == DMI_NONE)
383 continue;
384 if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr))
385 continue;
386 /* No match */
387 goto fail;
389 count++;
390 if (d->callback && d->callback(d))
391 break;
392 fail: d++;
395 return count;
397 EXPORT_SYMBOL(dmi_check_system);
400 * dmi_get_system_info - return DMI data value
401 * @field: data index (see enum dmi_field)
403 * Returns one DMI data value, can be used to perform
404 * complex DMI data checks.
406 const char *dmi_get_system_info(int field)
408 return dmi_ident[field];
410 EXPORT_SYMBOL(dmi_get_system_info);
414 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
415 * @str: Case sensitive Name
417 int dmi_name_in_vendors(const char *str)
419 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
420 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
421 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
422 int i;
423 for (i = 0; fields[i] != DMI_NONE; i++) {
424 int f = fields[i];
425 if (dmi_ident[f] && strstr(dmi_ident[f], str))
426 return 1;
428 return 0;
430 EXPORT_SYMBOL(dmi_name_in_vendors);
433 * dmi_find_device - find onboard device by type/name
434 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
435 * @name: device name string or %NULL to match all
436 * @from: previous device found in search, or %NULL for new search.
438 * Iterates through the list of known onboard devices. If a device is
439 * found with a matching @vendor and @device, a pointer to its device
440 * structure is returned. Otherwise, %NULL is returned.
441 * A new search is initiated by passing %NULL as the @from argument.
442 * If @from is not %NULL, searches continue from next device.
444 const struct dmi_device * dmi_find_device(int type, const char *name,
445 const struct dmi_device *from)
447 const struct list_head *head = from ? &from->list : &dmi_devices;
448 struct list_head *d;
450 for(d = head->next; d != &dmi_devices; d = d->next) {
451 const struct dmi_device *dev =
452 list_entry(d, struct dmi_device, list);
454 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
455 ((name == NULL) || (strcmp(dev->name, name) == 0)))
456 return dev;
459 return NULL;
461 EXPORT_SYMBOL(dmi_find_device);
464 * dmi_get_year - Return year of a DMI date
465 * @field: data index (like dmi_get_system_info)
467 * Returns -1 when the field doesn't exist. 0 when it is broken.
469 int dmi_get_year(int field)
471 int year;
472 const char *s = dmi_get_system_info(field);
474 if (!s)
475 return -1;
476 if (*s == '\0')
477 return 0;
478 s = strrchr(s, '/');
479 if (!s)
480 return 0;
482 s += 1;
483 year = simple_strtoul(s, NULL, 0);
484 if (year && year < 100) { /* 2-digit year */
485 year += 1900;
486 if (year < 1996) /* no dates < spec 1.0 */
487 year += 100;
490 return year;
494 * dmi_get_slot - return dmi_ident[slot]
495 * @slot: index into dmi_ident[]
497 char *dmi_get_slot(int slot)
499 return(dmi_ident[slot]);