4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr
;
68 EXPORT_SYMBOL(max_mapnr
);
69 EXPORT_SYMBOL(mem_map
);
72 unsigned long num_physpages
;
74 * A number of key systems in x86 including ioremap() rely on the assumption
75 * that high_memory defines the upper bound on direct map memory, then end
76 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 EXPORT_SYMBOL(num_physpages
);
83 EXPORT_SYMBOL(high_memory
);
85 int randomize_va_space __read_mostly
= 1;
87 static int __init
disable_randmaps(char *s
)
89 randomize_va_space
= 0;
92 __setup("norandmaps", disable_randmaps
);
96 * If a p?d_bad entry is found while walking page tables, report
97 * the error, before resetting entry to p?d_none. Usually (but
98 * very seldom) called out from the p?d_none_or_clear_bad macros.
101 void pgd_clear_bad(pgd_t
*pgd
)
107 void pud_clear_bad(pud_t
*pud
)
113 void pmd_clear_bad(pmd_t
*pmd
)
120 * Note: this doesn't free the actual pages themselves. That
121 * has been handled earlier when unmapping all the memory regions.
123 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
)
125 struct page
*page
= pmd_page(*pmd
);
127 pte_lock_deinit(page
);
128 pte_free_tlb(tlb
, page
);
129 dec_zone_page_state(page
, NR_PAGETABLE
);
133 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
134 unsigned long addr
, unsigned long end
,
135 unsigned long floor
, unsigned long ceiling
)
142 pmd
= pmd_offset(pud
, addr
);
144 next
= pmd_addr_end(addr
, end
);
145 if (pmd_none_or_clear_bad(pmd
))
147 free_pte_range(tlb
, pmd
);
148 } while (pmd
++, addr
= next
, addr
!= end
);
158 if (end
- 1 > ceiling
- 1)
161 pmd
= pmd_offset(pud
, start
);
163 pmd_free_tlb(tlb
, pmd
);
166 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
167 unsigned long addr
, unsigned long end
,
168 unsigned long floor
, unsigned long ceiling
)
175 pud
= pud_offset(pgd
, addr
);
177 next
= pud_addr_end(addr
, end
);
178 if (pud_none_or_clear_bad(pud
))
180 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
181 } while (pud
++, addr
= next
, addr
!= end
);
187 ceiling
&= PGDIR_MASK
;
191 if (end
- 1 > ceiling
- 1)
194 pud
= pud_offset(pgd
, start
);
196 pud_free_tlb(tlb
, pud
);
200 * This function frees user-level page tables of a process.
202 * Must be called with pagetable lock held.
204 void free_pgd_range(struct mmu_gather
**tlb
,
205 unsigned long addr
, unsigned long end
,
206 unsigned long floor
, unsigned long ceiling
)
213 * The next few lines have given us lots of grief...
215 * Why are we testing PMD* at this top level? Because often
216 * there will be no work to do at all, and we'd prefer not to
217 * go all the way down to the bottom just to discover that.
219 * Why all these "- 1"s? Because 0 represents both the bottom
220 * of the address space and the top of it (using -1 for the
221 * top wouldn't help much: the masks would do the wrong thing).
222 * The rule is that addr 0 and floor 0 refer to the bottom of
223 * the address space, but end 0 and ceiling 0 refer to the top
224 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 * that end 0 case should be mythical).
227 * Wherever addr is brought up or ceiling brought down, we must
228 * be careful to reject "the opposite 0" before it confuses the
229 * subsequent tests. But what about where end is brought down
230 * by PMD_SIZE below? no, end can't go down to 0 there.
232 * Whereas we round start (addr) and ceiling down, by different
233 * masks at different levels, in order to test whether a table
234 * now has no other vmas using it, so can be freed, we don't
235 * bother to round floor or end up - the tests don't need that.
249 if (end
- 1 > ceiling
- 1)
255 pgd
= pgd_offset((*tlb
)->mm
, addr
);
257 next
= pgd_addr_end(addr
, end
);
258 if (pgd_none_or_clear_bad(pgd
))
260 free_pud_range(*tlb
, pgd
, addr
, next
, floor
, ceiling
);
261 } while (pgd
++, addr
= next
, addr
!= end
);
264 flush_tlb_pgtables((*tlb
)->mm
, start
, end
);
267 void free_pgtables(struct mmu_gather
**tlb
, struct vm_area_struct
*vma
,
268 unsigned long floor
, unsigned long ceiling
)
271 struct vm_area_struct
*next
= vma
->vm_next
;
272 unsigned long addr
= vma
->vm_start
;
275 * Hide vma from rmap and vmtruncate before freeing pgtables
277 anon_vma_unlink(vma
);
278 unlink_file_vma(vma
);
280 if (is_vm_hugetlb_page(vma
)) {
281 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
282 floor
, next
? next
->vm_start
: ceiling
);
285 * Optimization: gather nearby vmas into one call down
287 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
288 && !is_vm_hugetlb_page(next
)) {
291 anon_vma_unlink(vma
);
292 unlink_file_vma(vma
);
294 free_pgd_range(tlb
, addr
, vma
->vm_end
,
295 floor
, next
? next
->vm_start
: ceiling
);
301 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
303 struct page
*new = pte_alloc_one(mm
, address
);
308 spin_lock(&mm
->page_table_lock
);
309 if (pmd_present(*pmd
)) { /* Another has populated it */
310 pte_lock_deinit(new);
314 inc_zone_page_state(new, NR_PAGETABLE
);
315 pmd_populate(mm
, pmd
, new);
317 spin_unlock(&mm
->page_table_lock
);
321 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
323 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
327 spin_lock(&init_mm
.page_table_lock
);
328 if (pmd_present(*pmd
)) /* Another has populated it */
329 pte_free_kernel(new);
331 pmd_populate_kernel(&init_mm
, pmd
, new);
332 spin_unlock(&init_mm
.page_table_lock
);
336 static inline void add_mm_rss(struct mm_struct
*mm
, int file_rss
, int anon_rss
)
339 add_mm_counter(mm
, file_rss
, file_rss
);
341 add_mm_counter(mm
, anon_rss
, anon_rss
);
345 * This function is called to print an error when a bad pte
346 * is found. For example, we might have a PFN-mapped pte in
347 * a region that doesn't allow it.
349 * The calling function must still handle the error.
351 void print_bad_pte(struct vm_area_struct
*vma
, pte_t pte
, unsigned long vaddr
)
353 printk(KERN_ERR
"Bad pte = %08llx, process = %s, "
354 "vm_flags = %lx, vaddr = %lx\n",
355 (long long)pte_val(pte
),
356 (vma
->vm_mm
== current
->mm
? current
->comm
: "???"),
357 vma
->vm_flags
, vaddr
);
361 static inline int is_cow_mapping(unsigned int flags
)
363 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
367 * This function gets the "struct page" associated with a pte.
369 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
370 * will have each page table entry just pointing to a raw page frame
371 * number, and as far as the VM layer is concerned, those do not have
372 * pages associated with them - even if the PFN might point to memory
373 * that otherwise is perfectly fine and has a "struct page".
375 * The way we recognize those mappings is through the rules set up
376 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
377 * and the vm_pgoff will point to the first PFN mapped: thus every
378 * page that is a raw mapping will always honor the rule
380 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
382 * and if that isn't true, the page has been COW'ed (in which case it
383 * _does_ have a "struct page" associated with it even if it is in a
386 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
, pte_t pte
)
388 unsigned long pfn
= pte_pfn(pte
);
390 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
391 unsigned long off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
392 if (pfn
== vma
->vm_pgoff
+ off
)
394 if (!is_cow_mapping(vma
->vm_flags
))
399 * Add some anal sanity checks for now. Eventually,
400 * we should just do "return pfn_to_page(pfn)", but
401 * in the meantime we check that we get a valid pfn,
402 * and that the resulting page looks ok.
404 if (unlikely(!pfn_valid(pfn
))) {
405 print_bad_pte(vma
, pte
, addr
);
410 * NOTE! We still have PageReserved() pages in the page
413 * The PAGE_ZERO() pages and various VDSO mappings can
414 * cause them to exist.
416 return pfn_to_page(pfn
);
420 * copy one vm_area from one task to the other. Assumes the page tables
421 * already present in the new task to be cleared in the whole range
422 * covered by this vma.
426 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
427 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
428 unsigned long addr
, int *rss
)
430 unsigned long vm_flags
= vma
->vm_flags
;
431 pte_t pte
= *src_pte
;
434 /* pte contains position in swap or file, so copy. */
435 if (unlikely(!pte_present(pte
))) {
436 if (!pte_file(pte
)) {
437 swp_entry_t entry
= pte_to_swp_entry(pte
);
439 swap_duplicate(entry
);
440 /* make sure dst_mm is on swapoff's mmlist. */
441 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
442 spin_lock(&mmlist_lock
);
443 if (list_empty(&dst_mm
->mmlist
))
444 list_add(&dst_mm
->mmlist
,
446 spin_unlock(&mmlist_lock
);
448 if (is_write_migration_entry(entry
) &&
449 is_cow_mapping(vm_flags
)) {
451 * COW mappings require pages in both parent
452 * and child to be set to read.
454 make_migration_entry_read(&entry
);
455 pte
= swp_entry_to_pte(entry
);
456 set_pte_at(src_mm
, addr
, src_pte
, pte
);
463 * If it's a COW mapping, write protect it both
464 * in the parent and the child
466 if (is_cow_mapping(vm_flags
)) {
467 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
468 pte
= pte_wrprotect(pte
);
472 * If it's a shared mapping, mark it clean in
475 if (vm_flags
& VM_SHARED
)
476 pte
= pte_mkclean(pte
);
477 pte
= pte_mkold(pte
);
479 page
= vm_normal_page(vma
, addr
, pte
);
482 page_dup_rmap(page
, vma
, addr
);
483 rss
[!!PageAnon(page
)]++;
487 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
490 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
491 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
492 unsigned long addr
, unsigned long end
)
494 pte_t
*src_pte
, *dst_pte
;
495 spinlock_t
*src_ptl
, *dst_ptl
;
501 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
504 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
505 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
506 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
507 arch_enter_lazy_mmu_mode();
511 * We are holding two locks at this point - either of them
512 * could generate latencies in another task on another CPU.
514 if (progress
>= 32) {
516 if (need_resched() ||
517 need_lockbreak(src_ptl
) ||
518 need_lockbreak(dst_ptl
))
521 if (pte_none(*src_pte
)) {
525 copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
, vma
, addr
, rss
);
527 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
529 arch_leave_lazy_mmu_mode();
530 spin_unlock(src_ptl
);
531 pte_unmap_nested(src_pte
- 1);
532 add_mm_rss(dst_mm
, rss
[0], rss
[1]);
533 pte_unmap_unlock(dst_pte
- 1, dst_ptl
);
540 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
541 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
542 unsigned long addr
, unsigned long end
)
544 pmd_t
*src_pmd
, *dst_pmd
;
547 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
550 src_pmd
= pmd_offset(src_pud
, addr
);
552 next
= pmd_addr_end(addr
, end
);
553 if (pmd_none_or_clear_bad(src_pmd
))
555 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
558 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
562 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
563 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
564 unsigned long addr
, unsigned long end
)
566 pud_t
*src_pud
, *dst_pud
;
569 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
572 src_pud
= pud_offset(src_pgd
, addr
);
574 next
= pud_addr_end(addr
, end
);
575 if (pud_none_or_clear_bad(src_pud
))
577 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
580 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
584 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
585 struct vm_area_struct
*vma
)
587 pgd_t
*src_pgd
, *dst_pgd
;
589 unsigned long addr
= vma
->vm_start
;
590 unsigned long end
= vma
->vm_end
;
593 * Don't copy ptes where a page fault will fill them correctly.
594 * Fork becomes much lighter when there are big shared or private
595 * readonly mappings. The tradeoff is that copy_page_range is more
596 * efficient than faulting.
598 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
603 if (is_vm_hugetlb_page(vma
))
604 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
606 dst_pgd
= pgd_offset(dst_mm
, addr
);
607 src_pgd
= pgd_offset(src_mm
, addr
);
609 next
= pgd_addr_end(addr
, end
);
610 if (pgd_none_or_clear_bad(src_pgd
))
612 if (copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
615 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
619 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
620 struct vm_area_struct
*vma
, pmd_t
*pmd
,
621 unsigned long addr
, unsigned long end
,
622 long *zap_work
, struct zap_details
*details
)
624 struct mm_struct
*mm
= tlb
->mm
;
630 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
631 arch_enter_lazy_mmu_mode();
634 if (pte_none(ptent
)) {
639 (*zap_work
) -= PAGE_SIZE
;
641 if (pte_present(ptent
)) {
644 page
= vm_normal_page(vma
, addr
, ptent
);
645 if (unlikely(details
) && page
) {
647 * unmap_shared_mapping_pages() wants to
648 * invalidate cache without truncating:
649 * unmap shared but keep private pages.
651 if (details
->check_mapping
&&
652 details
->check_mapping
!= page
->mapping
)
655 * Each page->index must be checked when
656 * invalidating or truncating nonlinear.
658 if (details
->nonlinear_vma
&&
659 (page
->index
< details
->first_index
||
660 page
->index
> details
->last_index
))
663 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
665 tlb_remove_tlb_entry(tlb
, pte
, addr
);
668 if (unlikely(details
) && details
->nonlinear_vma
669 && linear_page_index(details
->nonlinear_vma
,
670 addr
) != page
->index
)
671 set_pte_at(mm
, addr
, pte
,
672 pgoff_to_pte(page
->index
));
676 if (pte_dirty(ptent
))
677 set_page_dirty(page
);
678 if (pte_young(ptent
))
679 SetPageReferenced(page
);
682 page_remove_rmap(page
, vma
);
683 tlb_remove_page(tlb
, page
);
687 * If details->check_mapping, we leave swap entries;
688 * if details->nonlinear_vma, we leave file entries.
690 if (unlikely(details
))
692 if (!pte_file(ptent
))
693 free_swap_and_cache(pte_to_swp_entry(ptent
));
694 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
695 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
697 add_mm_rss(mm
, file_rss
, anon_rss
);
698 arch_leave_lazy_mmu_mode();
699 pte_unmap_unlock(pte
- 1, ptl
);
704 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
705 struct vm_area_struct
*vma
, pud_t
*pud
,
706 unsigned long addr
, unsigned long end
,
707 long *zap_work
, struct zap_details
*details
)
712 pmd
= pmd_offset(pud
, addr
);
714 next
= pmd_addr_end(addr
, end
);
715 if (pmd_none_or_clear_bad(pmd
)) {
719 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
721 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
726 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
727 struct vm_area_struct
*vma
, pgd_t
*pgd
,
728 unsigned long addr
, unsigned long end
,
729 long *zap_work
, struct zap_details
*details
)
734 pud
= pud_offset(pgd
, addr
);
736 next
= pud_addr_end(addr
, end
);
737 if (pud_none_or_clear_bad(pud
)) {
741 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
743 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
748 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
749 struct vm_area_struct
*vma
,
750 unsigned long addr
, unsigned long end
,
751 long *zap_work
, struct zap_details
*details
)
756 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
760 tlb_start_vma(tlb
, vma
);
761 pgd
= pgd_offset(vma
->vm_mm
, addr
);
763 next
= pgd_addr_end(addr
, end
);
764 if (pgd_none_or_clear_bad(pgd
)) {
768 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
770 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
771 tlb_end_vma(tlb
, vma
);
776 #ifdef CONFIG_PREEMPT
777 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
779 /* No preempt: go for improved straight-line efficiency */
780 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
784 * unmap_vmas - unmap a range of memory covered by a list of vma's
785 * @tlbp: address of the caller's struct mmu_gather
786 * @vma: the starting vma
787 * @start_addr: virtual address at which to start unmapping
788 * @end_addr: virtual address at which to end unmapping
789 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
790 * @details: details of nonlinear truncation or shared cache invalidation
792 * Returns the end address of the unmapping (restart addr if interrupted).
794 * Unmap all pages in the vma list.
796 * We aim to not hold locks for too long (for scheduling latency reasons).
797 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
798 * return the ending mmu_gather to the caller.
800 * Only addresses between `start' and `end' will be unmapped.
802 * The VMA list must be sorted in ascending virtual address order.
804 * unmap_vmas() assumes that the caller will flush the whole unmapped address
805 * range after unmap_vmas() returns. So the only responsibility here is to
806 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
807 * drops the lock and schedules.
809 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
810 struct vm_area_struct
*vma
, unsigned long start_addr
,
811 unsigned long end_addr
, unsigned long *nr_accounted
,
812 struct zap_details
*details
)
814 long zap_work
= ZAP_BLOCK_SIZE
;
815 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
816 int tlb_start_valid
= 0;
817 unsigned long start
= start_addr
;
818 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
819 int fullmm
= (*tlbp
)->fullmm
;
821 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
824 start
= max(vma
->vm_start
, start_addr
);
825 if (start
>= vma
->vm_end
)
827 end
= min(vma
->vm_end
, end_addr
);
828 if (end
<= vma
->vm_start
)
831 if (vma
->vm_flags
& VM_ACCOUNT
)
832 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
834 while (start
!= end
) {
835 if (!tlb_start_valid
) {
840 if (unlikely(is_vm_hugetlb_page(vma
))) {
841 unmap_hugepage_range(vma
, start
, end
);
842 zap_work
-= (end
- start
) /
843 (HPAGE_SIZE
/ PAGE_SIZE
);
846 start
= unmap_page_range(*tlbp
, vma
,
847 start
, end
, &zap_work
, details
);
850 BUG_ON(start
!= end
);
854 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
856 if (need_resched() ||
857 (i_mmap_lock
&& need_lockbreak(i_mmap_lock
))) {
865 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
867 zap_work
= ZAP_BLOCK_SIZE
;
871 return start
; /* which is now the end (or restart) address */
875 * zap_page_range - remove user pages in a given range
876 * @vma: vm_area_struct holding the applicable pages
877 * @address: starting address of pages to zap
878 * @size: number of bytes to zap
879 * @details: details of nonlinear truncation or shared cache invalidation
881 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
882 unsigned long size
, struct zap_details
*details
)
884 struct mm_struct
*mm
= vma
->vm_mm
;
885 struct mmu_gather
*tlb
;
886 unsigned long end
= address
+ size
;
887 unsigned long nr_accounted
= 0;
890 tlb
= tlb_gather_mmu(mm
, 0);
891 update_hiwater_rss(mm
);
892 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
894 tlb_finish_mmu(tlb
, address
, end
);
899 * Do a quick page-table lookup for a single page.
901 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
910 struct mm_struct
*mm
= vma
->vm_mm
;
912 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
914 BUG_ON(flags
& FOLL_GET
);
919 pgd
= pgd_offset(mm
, address
);
920 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
923 pud
= pud_offset(pgd
, address
);
924 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
927 pmd
= pmd_offset(pud
, address
);
928 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
931 if (pmd_huge(*pmd
)) {
932 BUG_ON(flags
& FOLL_GET
);
933 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
937 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
942 if (!pte_present(pte
))
944 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
946 page
= vm_normal_page(vma
, address
, pte
);
950 if (flags
& FOLL_GET
)
952 if (flags
& FOLL_TOUCH
) {
953 if ((flags
& FOLL_WRITE
) &&
954 !pte_dirty(pte
) && !PageDirty(page
))
955 set_page_dirty(page
);
956 mark_page_accessed(page
);
959 pte_unmap_unlock(ptep
, ptl
);
965 * When core dumping an enormous anonymous area that nobody
966 * has touched so far, we don't want to allocate page tables.
968 if (flags
& FOLL_ANON
) {
969 page
= ZERO_PAGE(address
);
970 if (flags
& FOLL_GET
)
972 BUG_ON(flags
& FOLL_WRITE
);
977 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
978 unsigned long start
, int len
, int write
, int force
,
979 struct page
**pages
, struct vm_area_struct
**vmas
)
982 unsigned int vm_flags
;
985 * Require read or write permissions.
986 * If 'force' is set, we only require the "MAY" flags.
988 vm_flags
= write
? (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
989 vm_flags
&= force
? (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
993 struct vm_area_struct
*vma
;
994 unsigned int foll_flags
;
996 vma
= find_extend_vma(mm
, start
);
997 if (!vma
&& in_gate_area(tsk
, start
)) {
998 unsigned long pg
= start
& PAGE_MASK
;
999 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1004 if (write
) /* user gate pages are read-only */
1005 return i
? : -EFAULT
;
1007 pgd
= pgd_offset_k(pg
);
1009 pgd
= pgd_offset_gate(mm
, pg
);
1010 BUG_ON(pgd_none(*pgd
));
1011 pud
= pud_offset(pgd
, pg
);
1012 BUG_ON(pud_none(*pud
));
1013 pmd
= pmd_offset(pud
, pg
);
1015 return i
? : -EFAULT
;
1016 pte
= pte_offset_map(pmd
, pg
);
1017 if (pte_none(*pte
)) {
1019 return i
? : -EFAULT
;
1022 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1036 if (!vma
|| (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
1037 || !(vm_flags
& vma
->vm_flags
))
1038 return i
? : -EFAULT
;
1040 if (is_vm_hugetlb_page(vma
)) {
1041 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1046 foll_flags
= FOLL_TOUCH
;
1048 foll_flags
|= FOLL_GET
;
1049 if (!write
&& !(vma
->vm_flags
& VM_LOCKED
) &&
1050 (!vma
->vm_ops
|| !vma
->vm_ops
->nopage
))
1051 foll_flags
|= FOLL_ANON
;
1057 * If tsk is ooming, cut off its access to large memory
1058 * allocations. It has a pending SIGKILL, but it can't
1059 * be processed until returning to user space.
1061 if (unlikely(test_tsk_thread_flag(tsk
, TIF_MEMDIE
)))
1065 foll_flags
|= FOLL_WRITE
;
1068 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1070 ret
= __handle_mm_fault(mm
, vma
, start
,
1071 foll_flags
& FOLL_WRITE
);
1073 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1074 * broken COW when necessary, even if maybe_mkwrite
1075 * decided not to set pte_write. We can thus safely do
1076 * subsequent page lookups as if they were reads.
1078 if (ret
& VM_FAULT_WRITE
)
1079 foll_flags
&= ~FOLL_WRITE
;
1081 switch (ret
& ~VM_FAULT_WRITE
) {
1082 case VM_FAULT_MINOR
:
1085 case VM_FAULT_MAJOR
:
1088 case VM_FAULT_SIGBUS
:
1089 return i
? i
: -EFAULT
;
1091 return i
? i
: -ENOMEM
;
1100 flush_anon_page(vma
, page
, start
);
1101 flush_dcache_page(page
);
1108 } while (len
&& start
< vma
->vm_end
);
1112 EXPORT_SYMBOL(get_user_pages
);
1114 static int zeromap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1115 unsigned long addr
, unsigned long end
, pgprot_t prot
)
1121 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1124 arch_enter_lazy_mmu_mode();
1126 struct page
*page
= ZERO_PAGE(addr
);
1127 pte_t zero_pte
= pte_wrprotect(mk_pte(page
, prot
));
1129 if (unlikely(!pte_none(*pte
))) {
1134 page_cache_get(page
);
1135 page_add_file_rmap(page
);
1136 inc_mm_counter(mm
, file_rss
);
1137 set_pte_at(mm
, addr
, pte
, zero_pte
);
1138 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1139 arch_leave_lazy_mmu_mode();
1140 pte_unmap_unlock(pte
- 1, ptl
);
1144 static inline int zeromap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1145 unsigned long addr
, unsigned long end
, pgprot_t prot
)
1151 pmd
= pmd_alloc(mm
, pud
, addr
);
1155 next
= pmd_addr_end(addr
, end
);
1156 err
= zeromap_pte_range(mm
, pmd
, addr
, next
, prot
);
1159 } while (pmd
++, addr
= next
, addr
!= end
);
1163 static inline int zeromap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1164 unsigned long addr
, unsigned long end
, pgprot_t prot
)
1170 pud
= pud_alloc(mm
, pgd
, addr
);
1174 next
= pud_addr_end(addr
, end
);
1175 err
= zeromap_pmd_range(mm
, pud
, addr
, next
, prot
);
1178 } while (pud
++, addr
= next
, addr
!= end
);
1182 int zeromap_page_range(struct vm_area_struct
*vma
,
1183 unsigned long addr
, unsigned long size
, pgprot_t prot
)
1187 unsigned long end
= addr
+ size
;
1188 struct mm_struct
*mm
= vma
->vm_mm
;
1191 BUG_ON(addr
>= end
);
1192 pgd
= pgd_offset(mm
, addr
);
1193 flush_cache_range(vma
, addr
, end
);
1195 next
= pgd_addr_end(addr
, end
);
1196 err
= zeromap_pud_range(mm
, pgd
, addr
, next
, prot
);
1199 } while (pgd
++, addr
= next
, addr
!= end
);
1203 pte_t
* fastcall
get_locked_pte(struct mm_struct
*mm
, unsigned long addr
, spinlock_t
**ptl
)
1205 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1206 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1208 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1210 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1216 * This is the old fallback for page remapping.
1218 * For historical reasons, it only allows reserved pages. Only
1219 * old drivers should use this, and they needed to mark their
1220 * pages reserved for the old functions anyway.
1222 static int insert_page(struct mm_struct
*mm
, unsigned long addr
, struct page
*page
, pgprot_t prot
)
1232 flush_dcache_page(page
);
1233 pte
= get_locked_pte(mm
, addr
, &ptl
);
1237 if (!pte_none(*pte
))
1240 /* Ok, finally just insert the thing.. */
1242 inc_mm_counter(mm
, file_rss
);
1243 page_add_file_rmap(page
);
1244 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1248 pte_unmap_unlock(pte
, ptl
);
1254 * vm_insert_page - insert single page into user vma
1255 * @vma: user vma to map to
1256 * @addr: target user address of this page
1257 * @page: source kernel page
1259 * This allows drivers to insert individual pages they've allocated
1262 * The page has to be a nice clean _individual_ kernel allocation.
1263 * If you allocate a compound page, you need to have marked it as
1264 * such (__GFP_COMP), or manually just split the page up yourself
1265 * (see split_page()).
1267 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1268 * took an arbitrary page protection parameter. This doesn't allow
1269 * that. Your vma protection will have to be set up correctly, which
1270 * means that if you want a shared writable mapping, you'd better
1271 * ask for a shared writable mapping!
1273 * The page does not need to be reserved.
1275 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
, struct page
*page
)
1277 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1279 if (!page_count(page
))
1281 vma
->vm_flags
|= VM_INSERTPAGE
;
1282 return insert_page(vma
->vm_mm
, addr
, page
, vma
->vm_page_prot
);
1284 EXPORT_SYMBOL(vm_insert_page
);
1287 * vm_insert_pfn - insert single pfn into user vma
1288 * @vma: user vma to map to
1289 * @addr: target user address of this page
1290 * @pfn: source kernel pfn
1292 * Similar to vm_inert_page, this allows drivers to insert individual pages
1293 * they've allocated into a user vma. Same comments apply.
1295 * This function should only be called from a vm_ops->fault handler, and
1296 * in that case the handler should return NULL.
1298 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1301 struct mm_struct
*mm
= vma
->vm_mm
;
1306 BUG_ON(!(vma
->vm_flags
& VM_PFNMAP
));
1307 BUG_ON(is_cow_mapping(vma
->vm_flags
));
1310 pte
= get_locked_pte(mm
, addr
, &ptl
);
1314 if (!pte_none(*pte
))
1317 /* Ok, finally just insert the thing.. */
1318 entry
= pfn_pte(pfn
, vma
->vm_page_prot
);
1319 set_pte_at(mm
, addr
, pte
, entry
);
1320 update_mmu_cache(vma
, addr
, entry
);
1324 pte_unmap_unlock(pte
, ptl
);
1329 EXPORT_SYMBOL(vm_insert_pfn
);
1332 * maps a range of physical memory into the requested pages. the old
1333 * mappings are removed. any references to nonexistent pages results
1334 * in null mappings (currently treated as "copy-on-access")
1336 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1337 unsigned long addr
, unsigned long end
,
1338 unsigned long pfn
, pgprot_t prot
)
1343 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1346 arch_enter_lazy_mmu_mode();
1348 BUG_ON(!pte_none(*pte
));
1349 set_pte_at(mm
, addr
, pte
, pfn_pte(pfn
, prot
));
1351 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1352 arch_leave_lazy_mmu_mode();
1353 pte_unmap_unlock(pte
- 1, ptl
);
1357 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1358 unsigned long addr
, unsigned long end
,
1359 unsigned long pfn
, pgprot_t prot
)
1364 pfn
-= addr
>> PAGE_SHIFT
;
1365 pmd
= pmd_alloc(mm
, pud
, addr
);
1369 next
= pmd_addr_end(addr
, end
);
1370 if (remap_pte_range(mm
, pmd
, addr
, next
,
1371 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1373 } while (pmd
++, addr
= next
, addr
!= end
);
1377 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1378 unsigned long addr
, unsigned long end
,
1379 unsigned long pfn
, pgprot_t prot
)
1384 pfn
-= addr
>> PAGE_SHIFT
;
1385 pud
= pud_alloc(mm
, pgd
, addr
);
1389 next
= pud_addr_end(addr
, end
);
1390 if (remap_pmd_range(mm
, pud
, addr
, next
,
1391 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1393 } while (pud
++, addr
= next
, addr
!= end
);
1398 * remap_pfn_range - remap kernel memory to userspace
1399 * @vma: user vma to map to
1400 * @addr: target user address to start at
1401 * @pfn: physical address of kernel memory
1402 * @size: size of map area
1403 * @prot: page protection flags for this mapping
1405 * Note: this is only safe if the mm semaphore is held when called.
1407 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1408 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1412 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1413 struct mm_struct
*mm
= vma
->vm_mm
;
1417 * Physically remapped pages are special. Tell the
1418 * rest of the world about it:
1419 * VM_IO tells people not to look at these pages
1420 * (accesses can have side effects).
1421 * VM_RESERVED is specified all over the place, because
1422 * in 2.4 it kept swapout's vma scan off this vma; but
1423 * in 2.6 the LRU scan won't even find its pages, so this
1424 * flag means no more than count its pages in reserved_vm,
1425 * and omit it from core dump, even when VM_IO turned off.
1426 * VM_PFNMAP tells the core MM that the base pages are just
1427 * raw PFN mappings, and do not have a "struct page" associated
1430 * There's a horrible special case to handle copy-on-write
1431 * behaviour that some programs depend on. We mark the "original"
1432 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1434 if (is_cow_mapping(vma
->vm_flags
)) {
1435 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1437 vma
->vm_pgoff
= pfn
;
1440 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1442 BUG_ON(addr
>= end
);
1443 pfn
-= addr
>> PAGE_SHIFT
;
1444 pgd
= pgd_offset(mm
, addr
);
1445 flush_cache_range(vma
, addr
, end
);
1447 next
= pgd_addr_end(addr
, end
);
1448 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1449 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1452 } while (pgd
++, addr
= next
, addr
!= end
);
1455 EXPORT_SYMBOL(remap_pfn_range
);
1457 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1458 unsigned long addr
, unsigned long end
,
1459 pte_fn_t fn
, void *data
)
1463 struct page
*pmd_page
;
1464 spinlock_t
*uninitialized_var(ptl
);
1466 pte
= (mm
== &init_mm
) ?
1467 pte_alloc_kernel(pmd
, addr
) :
1468 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1472 BUG_ON(pmd_huge(*pmd
));
1474 pmd_page
= pmd_page(*pmd
);
1477 err
= fn(pte
, pmd_page
, addr
, data
);
1480 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1483 pte_unmap_unlock(pte
-1, ptl
);
1487 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1488 unsigned long addr
, unsigned long end
,
1489 pte_fn_t fn
, void *data
)
1495 pmd
= pmd_alloc(mm
, pud
, addr
);
1499 next
= pmd_addr_end(addr
, end
);
1500 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1503 } while (pmd
++, addr
= next
, addr
!= end
);
1507 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1508 unsigned long addr
, unsigned long end
,
1509 pte_fn_t fn
, void *data
)
1515 pud
= pud_alloc(mm
, pgd
, addr
);
1519 next
= pud_addr_end(addr
, end
);
1520 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1523 } while (pud
++, addr
= next
, addr
!= end
);
1528 * Scan a region of virtual memory, filling in page tables as necessary
1529 * and calling a provided function on each leaf page table.
1531 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1532 unsigned long size
, pte_fn_t fn
, void *data
)
1536 unsigned long end
= addr
+ size
;
1539 BUG_ON(addr
>= end
);
1540 pgd
= pgd_offset(mm
, addr
);
1542 next
= pgd_addr_end(addr
, end
);
1543 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1546 } while (pgd
++, addr
= next
, addr
!= end
);
1549 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1552 * handle_pte_fault chooses page fault handler according to an entry
1553 * which was read non-atomically. Before making any commitment, on
1554 * those architectures or configurations (e.g. i386 with PAE) which
1555 * might give a mix of unmatched parts, do_swap_page and do_file_page
1556 * must check under lock before unmapping the pte and proceeding
1557 * (but do_wp_page is only called after already making such a check;
1558 * and do_anonymous_page and do_no_page can safely check later on).
1560 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1561 pte_t
*page_table
, pte_t orig_pte
)
1564 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1565 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1566 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1568 same
= pte_same(*page_table
, orig_pte
);
1572 pte_unmap(page_table
);
1577 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1578 * servicing faults for write access. In the normal case, do always want
1579 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1580 * that do not have writing enabled, when used by access_process_vm.
1582 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1584 if (likely(vma
->vm_flags
& VM_WRITE
))
1585 pte
= pte_mkwrite(pte
);
1589 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1592 * If the source page was a PFN mapping, we don't have
1593 * a "struct page" for it. We do a best-effort copy by
1594 * just copying from the original user address. If that
1595 * fails, we just zero-fill it. Live with it.
1597 if (unlikely(!src
)) {
1598 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
1599 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1602 * This really shouldn't fail, because the page is there
1603 * in the page tables. But it might just be unreadable,
1604 * in which case we just give up and fill the result with
1607 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1608 memset(kaddr
, 0, PAGE_SIZE
);
1609 kunmap_atomic(kaddr
, KM_USER0
);
1610 flush_dcache_page(dst
);
1614 copy_user_highpage(dst
, src
, va
, vma
);
1618 * This routine handles present pages, when users try to write
1619 * to a shared page. It is done by copying the page to a new address
1620 * and decrementing the shared-page counter for the old page.
1622 * Note that this routine assumes that the protection checks have been
1623 * done by the caller (the low-level page fault routine in most cases).
1624 * Thus we can safely just mark it writable once we've done any necessary
1627 * We also mark the page dirty at this point even though the page will
1628 * change only once the write actually happens. This avoids a few races,
1629 * and potentially makes it more efficient.
1631 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1632 * but allow concurrent faults), with pte both mapped and locked.
1633 * We return with mmap_sem still held, but pte unmapped and unlocked.
1635 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1636 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1637 spinlock_t
*ptl
, pte_t orig_pte
)
1639 struct page
*old_page
, *new_page
;
1641 int reuse
= 0, ret
= VM_FAULT_MINOR
;
1642 struct page
*dirty_page
= NULL
;
1644 old_page
= vm_normal_page(vma
, address
, orig_pte
);
1649 * Take out anonymous pages first, anonymous shared vmas are
1650 * not dirty accountable.
1652 if (PageAnon(old_page
)) {
1653 if (!TestSetPageLocked(old_page
)) {
1654 reuse
= can_share_swap_page(old_page
);
1655 unlock_page(old_page
);
1657 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
1658 (VM_WRITE
|VM_SHARED
))) {
1660 * Only catch write-faults on shared writable pages,
1661 * read-only shared pages can get COWed by
1662 * get_user_pages(.write=1, .force=1).
1664 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
1666 * Notify the address space that the page is about to
1667 * become writable so that it can prohibit this or wait
1668 * for the page to get into an appropriate state.
1670 * We do this without the lock held, so that it can
1671 * sleep if it needs to.
1673 page_cache_get(old_page
);
1674 pte_unmap_unlock(page_table
, ptl
);
1676 if (vma
->vm_ops
->page_mkwrite(vma
, old_page
) < 0)
1677 goto unwritable_page
;
1680 * Since we dropped the lock we need to revalidate
1681 * the PTE as someone else may have changed it. If
1682 * they did, we just return, as we can count on the
1683 * MMU to tell us if they didn't also make it writable.
1685 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
1687 page_cache_release(old_page
);
1688 if (!pte_same(*page_table
, orig_pte
))
1691 dirty_page
= old_page
;
1692 get_page(dirty_page
);
1697 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1698 entry
= pte_mkyoung(orig_pte
);
1699 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1700 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1)) {
1701 update_mmu_cache(vma
, address
, entry
);
1702 lazy_mmu_prot_update(entry
);
1704 ret
|= VM_FAULT_WRITE
;
1709 * Ok, we need to copy. Oh, well..
1711 page_cache_get(old_page
);
1713 pte_unmap_unlock(page_table
, ptl
);
1715 if (unlikely(anon_vma_prepare(vma
)))
1717 if (old_page
== ZERO_PAGE(address
)) {
1718 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
1722 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
1725 cow_user_page(new_page
, old_page
, address
, vma
);
1729 * Re-check the pte - we dropped the lock
1731 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1732 if (likely(pte_same(*page_table
, orig_pte
))) {
1734 page_remove_rmap(old_page
, vma
);
1735 if (!PageAnon(old_page
)) {
1736 dec_mm_counter(mm
, file_rss
);
1737 inc_mm_counter(mm
, anon_rss
);
1740 inc_mm_counter(mm
, anon_rss
);
1741 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1742 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
1743 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1744 lazy_mmu_prot_update(entry
);
1746 * Clear the pte entry and flush it first, before updating the
1747 * pte with the new entry. This will avoid a race condition
1748 * seen in the presence of one thread doing SMC and another
1751 ptep_clear_flush(vma
, address
, page_table
);
1752 set_pte_at(mm
, address
, page_table
, entry
);
1753 update_mmu_cache(vma
, address
, entry
);
1754 lru_cache_add_active(new_page
);
1755 page_add_new_anon_rmap(new_page
, vma
, address
);
1757 /* Free the old page.. */
1758 new_page
= old_page
;
1759 ret
|= VM_FAULT_WRITE
;
1762 page_cache_release(new_page
);
1764 page_cache_release(old_page
);
1766 pte_unmap_unlock(page_table
, ptl
);
1768 set_page_dirty_balance(dirty_page
);
1769 put_page(dirty_page
);
1774 page_cache_release(old_page
);
1775 return VM_FAULT_OOM
;
1778 page_cache_release(old_page
);
1779 return VM_FAULT_SIGBUS
;
1783 * Helper functions for unmap_mapping_range().
1785 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1787 * We have to restart searching the prio_tree whenever we drop the lock,
1788 * since the iterator is only valid while the lock is held, and anyway
1789 * a later vma might be split and reinserted earlier while lock dropped.
1791 * The list of nonlinear vmas could be handled more efficiently, using
1792 * a placeholder, but handle it in the same way until a need is shown.
1793 * It is important to search the prio_tree before nonlinear list: a vma
1794 * may become nonlinear and be shifted from prio_tree to nonlinear list
1795 * while the lock is dropped; but never shifted from list to prio_tree.
1797 * In order to make forward progress despite restarting the search,
1798 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1799 * quickly skip it next time around. Since the prio_tree search only
1800 * shows us those vmas affected by unmapping the range in question, we
1801 * can't efficiently keep all vmas in step with mapping->truncate_count:
1802 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1803 * mapping->truncate_count and vma->vm_truncate_count are protected by
1806 * In order to make forward progress despite repeatedly restarting some
1807 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1808 * and restart from that address when we reach that vma again. It might
1809 * have been split or merged, shrunk or extended, but never shifted: so
1810 * restart_addr remains valid so long as it remains in the vma's range.
1811 * unmap_mapping_range forces truncate_count to leap over page-aligned
1812 * values so we can save vma's restart_addr in its truncate_count field.
1814 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1816 static void reset_vma_truncate_counts(struct address_space
*mapping
)
1818 struct vm_area_struct
*vma
;
1819 struct prio_tree_iter iter
;
1821 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
1822 vma
->vm_truncate_count
= 0;
1823 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1824 vma
->vm_truncate_count
= 0;
1827 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
1828 unsigned long start_addr
, unsigned long end_addr
,
1829 struct zap_details
*details
)
1831 unsigned long restart_addr
;
1835 restart_addr
= vma
->vm_truncate_count
;
1836 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
1837 start_addr
= restart_addr
;
1838 if (start_addr
>= end_addr
) {
1839 /* Top of vma has been split off since last time */
1840 vma
->vm_truncate_count
= details
->truncate_count
;
1845 restart_addr
= zap_page_range(vma
, start_addr
,
1846 end_addr
- start_addr
, details
);
1847 need_break
= need_resched() ||
1848 need_lockbreak(details
->i_mmap_lock
);
1850 if (restart_addr
>= end_addr
) {
1851 /* We have now completed this vma: mark it so */
1852 vma
->vm_truncate_count
= details
->truncate_count
;
1856 /* Note restart_addr in vma's truncate_count field */
1857 vma
->vm_truncate_count
= restart_addr
;
1862 spin_unlock(details
->i_mmap_lock
);
1864 spin_lock(details
->i_mmap_lock
);
1868 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
1869 struct zap_details
*details
)
1871 struct vm_area_struct
*vma
;
1872 struct prio_tree_iter iter
;
1873 pgoff_t vba
, vea
, zba
, zea
;
1876 vma_prio_tree_foreach(vma
, &iter
, root
,
1877 details
->first_index
, details
->last_index
) {
1878 /* Skip quickly over those we have already dealt with */
1879 if (vma
->vm_truncate_count
== details
->truncate_count
)
1882 vba
= vma
->vm_pgoff
;
1883 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
1884 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1885 zba
= details
->first_index
;
1888 zea
= details
->last_index
;
1892 if (unmap_mapping_range_vma(vma
,
1893 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
1894 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
1900 static inline void unmap_mapping_range_list(struct list_head
*head
,
1901 struct zap_details
*details
)
1903 struct vm_area_struct
*vma
;
1906 * In nonlinear VMAs there is no correspondence between virtual address
1907 * offset and file offset. So we must perform an exhaustive search
1908 * across *all* the pages in each nonlinear VMA, not just the pages
1909 * whose virtual address lies outside the file truncation point.
1912 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
1913 /* Skip quickly over those we have already dealt with */
1914 if (vma
->vm_truncate_count
== details
->truncate_count
)
1916 details
->nonlinear_vma
= vma
;
1917 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
1918 vma
->vm_end
, details
) < 0)
1924 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1925 * @mapping: the address space containing mmaps to be unmapped.
1926 * @holebegin: byte in first page to unmap, relative to the start of
1927 * the underlying file. This will be rounded down to a PAGE_SIZE
1928 * boundary. Note that this is different from vmtruncate(), which
1929 * must keep the partial page. In contrast, we must get rid of
1931 * @holelen: size of prospective hole in bytes. This will be rounded
1932 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1934 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1935 * but 0 when invalidating pagecache, don't throw away private data.
1937 void unmap_mapping_range(struct address_space
*mapping
,
1938 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
1940 struct zap_details details
;
1941 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
1942 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1944 /* Check for overflow. */
1945 if (sizeof(holelen
) > sizeof(hlen
)) {
1947 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1948 if (holeend
& ~(long long)ULONG_MAX
)
1949 hlen
= ULONG_MAX
- hba
+ 1;
1952 details
.check_mapping
= even_cows
? NULL
: mapping
;
1953 details
.nonlinear_vma
= NULL
;
1954 details
.first_index
= hba
;
1955 details
.last_index
= hba
+ hlen
- 1;
1956 if (details
.last_index
< details
.first_index
)
1957 details
.last_index
= ULONG_MAX
;
1958 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
1960 spin_lock(&mapping
->i_mmap_lock
);
1962 /* serialize i_size write against truncate_count write */
1964 /* Protect against page faults, and endless unmapping loops */
1965 mapping
->truncate_count
++;
1967 * For archs where spin_lock has inclusive semantics like ia64
1968 * this smp_mb() will prevent to read pagetable contents
1969 * before the truncate_count increment is visible to
1973 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
1974 if (mapping
->truncate_count
== 0)
1975 reset_vma_truncate_counts(mapping
);
1976 mapping
->truncate_count
++;
1978 details
.truncate_count
= mapping
->truncate_count
;
1980 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
1981 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
1982 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
1983 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
1984 spin_unlock(&mapping
->i_mmap_lock
);
1986 EXPORT_SYMBOL(unmap_mapping_range
);
1989 * vmtruncate - unmap mappings "freed" by truncate() syscall
1990 * @inode: inode of the file used
1991 * @offset: file offset to start truncating
1993 * NOTE! We have to be ready to update the memory sharing
1994 * between the file and the memory map for a potential last
1995 * incomplete page. Ugly, but necessary.
1997 int vmtruncate(struct inode
* inode
, loff_t offset
)
1999 struct address_space
*mapping
= inode
->i_mapping
;
2000 unsigned long limit
;
2002 if (inode
->i_size
< offset
)
2005 * truncation of in-use swapfiles is disallowed - it would cause
2006 * subsequent swapout to scribble on the now-freed blocks.
2008 if (IS_SWAPFILE(inode
))
2010 i_size_write(inode
, offset
);
2011 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
2012 truncate_inode_pages(mapping
, offset
);
2016 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
2017 if (limit
!= RLIM_INFINITY
&& offset
> limit
)
2019 if (offset
> inode
->i_sb
->s_maxbytes
)
2021 i_size_write(inode
, offset
);
2024 if (inode
->i_op
&& inode
->i_op
->truncate
)
2025 inode
->i_op
->truncate(inode
);
2028 send_sig(SIGXFSZ
, current
, 0);
2034 EXPORT_SYMBOL(vmtruncate
);
2036 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
2038 struct address_space
*mapping
= inode
->i_mapping
;
2041 * If the underlying filesystem is not going to provide
2042 * a way to truncate a range of blocks (punch a hole) -
2043 * we should return failure right now.
2045 if (!inode
->i_op
|| !inode
->i_op
->truncate_range
)
2048 mutex_lock(&inode
->i_mutex
);
2049 down_write(&inode
->i_alloc_sem
);
2050 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2051 truncate_inode_pages_range(mapping
, offset
, end
);
2052 inode
->i_op
->truncate_range(inode
, offset
, end
);
2053 up_write(&inode
->i_alloc_sem
);
2054 mutex_unlock(&inode
->i_mutex
);
2060 * swapin_readahead - swap in pages in hope we need them soon
2061 * @entry: swap entry of this memory
2062 * @addr: address to start
2063 * @vma: user vma this addresses belong to
2065 * Primitive swap readahead code. We simply read an aligned block of
2066 * (1 << page_cluster) entries in the swap area. This method is chosen
2067 * because it doesn't cost us any seek time. We also make sure to queue
2068 * the 'original' request together with the readahead ones...
2070 * This has been extended to use the NUMA policies from the mm triggering
2073 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
2075 void swapin_readahead(swp_entry_t entry
, unsigned long addr
,struct vm_area_struct
*vma
)
2078 struct vm_area_struct
*next_vma
= vma
? vma
->vm_next
: NULL
;
2081 struct page
*new_page
;
2082 unsigned long offset
;
2085 * Get the number of handles we should do readahead io to.
2087 num
= valid_swaphandles(entry
, &offset
);
2088 for (i
= 0; i
< num
; offset
++, i
++) {
2089 /* Ok, do the async read-ahead now */
2090 new_page
= read_swap_cache_async(swp_entry(swp_type(entry
),
2091 offset
), vma
, addr
);
2094 page_cache_release(new_page
);
2097 * Find the next applicable VMA for the NUMA policy.
2103 if (addr
>= vma
->vm_end
) {
2105 next_vma
= vma
? vma
->vm_next
: NULL
;
2107 if (vma
&& addr
< vma
->vm_start
)
2110 if (next_vma
&& addr
>= next_vma
->vm_start
) {
2112 next_vma
= vma
->vm_next
;
2117 lru_add_drain(); /* Push any new pages onto the LRU now */
2121 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2122 * but allow concurrent faults), and pte mapped but not yet locked.
2123 * We return with mmap_sem still held, but pte unmapped and unlocked.
2125 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2126 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2127 int write_access
, pte_t orig_pte
)
2133 int ret
= VM_FAULT_MINOR
;
2135 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2138 entry
= pte_to_swp_entry(orig_pte
);
2139 if (is_migration_entry(entry
)) {
2140 migration_entry_wait(mm
, pmd
, address
);
2143 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2144 page
= lookup_swap_cache(entry
);
2146 grab_swap_token(); /* Contend for token _before_ read-in */
2147 swapin_readahead(entry
, address
, vma
);
2148 page
= read_swap_cache_async(entry
, vma
, address
);
2151 * Back out if somebody else faulted in this pte
2152 * while we released the pte lock.
2154 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2155 if (likely(pte_same(*page_table
, orig_pte
)))
2157 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2161 /* Had to read the page from swap area: Major fault */
2162 ret
= VM_FAULT_MAJOR
;
2163 count_vm_event(PGMAJFAULT
);
2166 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2167 mark_page_accessed(page
);
2171 * Back out if somebody else already faulted in this pte.
2173 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2174 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2177 if (unlikely(!PageUptodate(page
))) {
2178 ret
= VM_FAULT_SIGBUS
;
2182 /* The page isn't present yet, go ahead with the fault. */
2184 inc_mm_counter(mm
, anon_rss
);
2185 pte
= mk_pte(page
, vma
->vm_page_prot
);
2186 if (write_access
&& can_share_swap_page(page
)) {
2187 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2191 flush_icache_page(vma
, page
);
2192 set_pte_at(mm
, address
, page_table
, pte
);
2193 page_add_anon_rmap(page
, vma
, address
);
2197 remove_exclusive_swap_page(page
);
2201 if (do_wp_page(mm
, vma
, address
,
2202 page_table
, pmd
, ptl
, pte
) == VM_FAULT_OOM
)
2207 /* No need to invalidate - it was non-present before */
2208 update_mmu_cache(vma
, address
, pte
);
2209 lazy_mmu_prot_update(pte
);
2211 pte_unmap_unlock(page_table
, ptl
);
2215 pte_unmap_unlock(page_table
, ptl
);
2217 page_cache_release(page
);
2222 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2223 * but allow concurrent faults), and pte mapped but not yet locked.
2224 * We return with mmap_sem still held, but pte unmapped and unlocked.
2226 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2227 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2235 /* Allocate our own private page. */
2236 pte_unmap(page_table
);
2238 if (unlikely(anon_vma_prepare(vma
)))
2240 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2244 entry
= mk_pte(page
, vma
->vm_page_prot
);
2245 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2247 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2248 if (!pte_none(*page_table
))
2250 inc_mm_counter(mm
, anon_rss
);
2251 lru_cache_add_active(page
);
2252 page_add_new_anon_rmap(page
, vma
, address
);
2254 /* Map the ZERO_PAGE - vm_page_prot is readonly */
2255 page
= ZERO_PAGE(address
);
2256 page_cache_get(page
);
2257 entry
= mk_pte(page
, vma
->vm_page_prot
);
2259 ptl
= pte_lockptr(mm
, pmd
);
2261 if (!pte_none(*page_table
))
2263 inc_mm_counter(mm
, file_rss
);
2264 page_add_file_rmap(page
);
2267 set_pte_at(mm
, address
, page_table
, entry
);
2269 /* No need to invalidate - it was non-present before */
2270 update_mmu_cache(vma
, address
, entry
);
2271 lazy_mmu_prot_update(entry
);
2273 pte_unmap_unlock(page_table
, ptl
);
2274 return VM_FAULT_MINOR
;
2276 page_cache_release(page
);
2279 return VM_FAULT_OOM
;
2283 * do_no_page() tries to create a new page mapping. It aggressively
2284 * tries to share with existing pages, but makes a separate copy if
2285 * the "write_access" parameter is true in order to avoid the next
2288 * As this is called only for pages that do not currently exist, we
2289 * do not need to flush old virtual caches or the TLB.
2291 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2292 * but allow concurrent faults), and pte mapped but not yet locked.
2293 * We return with mmap_sem still held, but pte unmapped and unlocked.
2295 static int do_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2296 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2300 struct page
*new_page
;
2301 struct address_space
*mapping
= NULL
;
2303 unsigned int sequence
= 0;
2304 int ret
= VM_FAULT_MINOR
;
2306 struct page
*dirty_page
= NULL
;
2308 pte_unmap(page_table
);
2309 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
2312 mapping
= vma
->vm_file
->f_mapping
;
2313 sequence
= mapping
->truncate_count
;
2314 smp_rmb(); /* serializes i_size against truncate_count */
2317 new_page
= vma
->vm_ops
->nopage(vma
, address
& PAGE_MASK
, &ret
);
2319 * No smp_rmb is needed here as long as there's a full
2320 * spin_lock/unlock sequence inside the ->nopage callback
2321 * (for the pagecache lookup) that acts as an implicit
2322 * smp_mb() and prevents the i_size read to happen
2323 * after the next truncate_count read.
2326 /* no page was available -- either SIGBUS, OOM or REFAULT */
2327 if (unlikely(new_page
== NOPAGE_SIGBUS
))
2328 return VM_FAULT_SIGBUS
;
2329 else if (unlikely(new_page
== NOPAGE_OOM
))
2330 return VM_FAULT_OOM
;
2331 else if (unlikely(new_page
== NOPAGE_REFAULT
))
2332 return VM_FAULT_MINOR
;
2335 * Should we do an early C-O-W break?
2338 if (!(vma
->vm_flags
& VM_SHARED
)) {
2341 if (unlikely(anon_vma_prepare(vma
)))
2343 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2347 copy_user_highpage(page
, new_page
, address
, vma
);
2348 page_cache_release(new_page
);
2353 /* if the page will be shareable, see if the backing
2354 * address space wants to know that the page is about
2355 * to become writable */
2356 if (vma
->vm_ops
->page_mkwrite
&&
2357 vma
->vm_ops
->page_mkwrite(vma
, new_page
) < 0
2359 page_cache_release(new_page
);
2360 return VM_FAULT_SIGBUS
;
2365 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2367 * For a file-backed vma, someone could have truncated or otherwise
2368 * invalidated this page. If unmap_mapping_range got called,
2369 * retry getting the page.
2371 if (mapping
&& unlikely(sequence
!= mapping
->truncate_count
)) {
2372 pte_unmap_unlock(page_table
, ptl
);
2373 page_cache_release(new_page
);
2375 sequence
= mapping
->truncate_count
;
2381 * This silly early PAGE_DIRTY setting removes a race
2382 * due to the bad i386 page protection. But it's valid
2383 * for other architectures too.
2385 * Note that if write_access is true, we either now have
2386 * an exclusive copy of the page, or this is a shared mapping,
2387 * so we can make it writable and dirty to avoid having to
2388 * handle that later.
2390 /* Only go through if we didn't race with anybody else... */
2391 if (pte_none(*page_table
)) {
2392 flush_icache_page(vma
, new_page
);
2393 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2395 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2396 set_pte_at(mm
, address
, page_table
, entry
);
2398 inc_mm_counter(mm
, anon_rss
);
2399 lru_cache_add_active(new_page
);
2400 page_add_new_anon_rmap(new_page
, vma
, address
);
2402 inc_mm_counter(mm
, file_rss
);
2403 page_add_file_rmap(new_page
);
2405 dirty_page
= new_page
;
2406 get_page(dirty_page
);
2410 /* One of our sibling threads was faster, back out. */
2411 page_cache_release(new_page
);
2415 /* no need to invalidate: a not-present page shouldn't be cached */
2416 update_mmu_cache(vma
, address
, entry
);
2417 lazy_mmu_prot_update(entry
);
2419 pte_unmap_unlock(page_table
, ptl
);
2421 set_page_dirty_balance(dirty_page
);
2422 put_page(dirty_page
);
2426 page_cache_release(new_page
);
2427 return VM_FAULT_OOM
;
2431 * do_no_pfn() tries to create a new page mapping for a page without
2432 * a struct_page backing it
2434 * As this is called only for pages that do not currently exist, we
2435 * do not need to flush old virtual caches or the TLB.
2437 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2438 * but allow concurrent faults), and pte mapped but not yet locked.
2439 * We return with mmap_sem still held, but pte unmapped and unlocked.
2441 * It is expected that the ->nopfn handler always returns the same pfn
2442 * for a given virtual mapping.
2444 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2446 static noinline
int do_no_pfn(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2447 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2453 int ret
= VM_FAULT_MINOR
;
2455 pte_unmap(page_table
);
2456 BUG_ON(!(vma
->vm_flags
& VM_PFNMAP
));
2457 BUG_ON(is_cow_mapping(vma
->vm_flags
));
2459 pfn
= vma
->vm_ops
->nopfn(vma
, address
& PAGE_MASK
);
2460 if (unlikely(pfn
== NOPFN_OOM
))
2461 return VM_FAULT_OOM
;
2462 else if (unlikely(pfn
== NOPFN_SIGBUS
))
2463 return VM_FAULT_SIGBUS
;
2464 else if (unlikely(pfn
== NOPFN_REFAULT
))
2465 return VM_FAULT_MINOR
;
2467 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2469 /* Only go through if we didn't race with anybody else... */
2470 if (pte_none(*page_table
)) {
2471 entry
= pfn_pte(pfn
, vma
->vm_page_prot
);
2473 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2474 set_pte_at(mm
, address
, page_table
, entry
);
2476 pte_unmap_unlock(page_table
, ptl
);
2481 * Fault of a previously existing named mapping. Repopulate the pte
2482 * from the encoded file_pte if possible. This enables swappable
2485 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2486 * but allow concurrent faults), and pte mapped but not yet locked.
2487 * We return with mmap_sem still held, but pte unmapped and unlocked.
2489 static int do_file_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2490 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2491 int write_access
, pte_t orig_pte
)
2496 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2497 return VM_FAULT_MINOR
;
2499 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
2501 * Page table corrupted: show pte and kill process.
2503 print_bad_pte(vma
, orig_pte
, address
);
2504 return VM_FAULT_OOM
;
2506 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2508 pgoff
= pte_to_pgoff(orig_pte
);
2509 err
= vma
->vm_ops
->populate(vma
, address
& PAGE_MASK
, PAGE_SIZE
,
2510 vma
->vm_page_prot
, pgoff
, 0);
2512 return VM_FAULT_OOM
;
2514 return VM_FAULT_SIGBUS
;
2515 return VM_FAULT_MAJOR
;
2519 * These routines also need to handle stuff like marking pages dirty
2520 * and/or accessed for architectures that don't do it in hardware (most
2521 * RISC architectures). The early dirtying is also good on the i386.
2523 * There is also a hook called "update_mmu_cache()" that architectures
2524 * with external mmu caches can use to update those (ie the Sparc or
2525 * PowerPC hashed page tables that act as extended TLBs).
2527 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2528 * but allow concurrent faults), and pte mapped but not yet locked.
2529 * We return with mmap_sem still held, but pte unmapped and unlocked.
2531 static inline int handle_pte_fault(struct mm_struct
*mm
,
2532 struct vm_area_struct
*vma
, unsigned long address
,
2533 pte_t
*pte
, pmd_t
*pmd
, int write_access
)
2539 if (!pte_present(entry
)) {
2540 if (pte_none(entry
)) {
2542 if (vma
->vm_ops
->nopage
)
2543 return do_no_page(mm
, vma
, address
,
2546 if (unlikely(vma
->vm_ops
->nopfn
))
2547 return do_no_pfn(mm
, vma
, address
, pte
,
2550 return do_anonymous_page(mm
, vma
, address
,
2551 pte
, pmd
, write_access
);
2553 if (pte_file(entry
))
2554 return do_file_page(mm
, vma
, address
,
2555 pte
, pmd
, write_access
, entry
);
2556 return do_swap_page(mm
, vma
, address
,
2557 pte
, pmd
, write_access
, entry
);
2560 ptl
= pte_lockptr(mm
, pmd
);
2562 if (unlikely(!pte_same(*pte
, entry
)))
2565 if (!pte_write(entry
))
2566 return do_wp_page(mm
, vma
, address
,
2567 pte
, pmd
, ptl
, entry
);
2568 entry
= pte_mkdirty(entry
);
2570 entry
= pte_mkyoung(entry
);
2571 if (ptep_set_access_flags(vma
, address
, pte
, entry
, write_access
)) {
2572 update_mmu_cache(vma
, address
, entry
);
2573 lazy_mmu_prot_update(entry
);
2576 * This is needed only for protection faults but the arch code
2577 * is not yet telling us if this is a protection fault or not.
2578 * This still avoids useless tlb flushes for .text page faults
2582 flush_tlb_page(vma
, address
);
2585 pte_unmap_unlock(pte
, ptl
);
2586 return VM_FAULT_MINOR
;
2590 * By the time we get here, we already hold the mm semaphore
2592 int __handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2593 unsigned long address
, int write_access
)
2600 __set_current_state(TASK_RUNNING
);
2602 count_vm_event(PGFAULT
);
2604 if (unlikely(is_vm_hugetlb_page(vma
)))
2605 return hugetlb_fault(mm
, vma
, address
, write_access
);
2607 pgd
= pgd_offset(mm
, address
);
2608 pud
= pud_alloc(mm
, pgd
, address
);
2610 return VM_FAULT_OOM
;
2611 pmd
= pmd_alloc(mm
, pud
, address
);
2613 return VM_FAULT_OOM
;
2614 pte
= pte_alloc_map(mm
, pmd
, address
);
2616 return VM_FAULT_OOM
;
2618 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, write_access
);
2621 EXPORT_SYMBOL_GPL(__handle_mm_fault
);
2623 #ifndef __PAGETABLE_PUD_FOLDED
2625 * Allocate page upper directory.
2626 * We've already handled the fast-path in-line.
2628 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
2630 pud_t
*new = pud_alloc_one(mm
, address
);
2634 spin_lock(&mm
->page_table_lock
);
2635 if (pgd_present(*pgd
)) /* Another has populated it */
2638 pgd_populate(mm
, pgd
, new);
2639 spin_unlock(&mm
->page_table_lock
);
2642 #endif /* __PAGETABLE_PUD_FOLDED */
2644 #ifndef __PAGETABLE_PMD_FOLDED
2646 * Allocate page middle directory.
2647 * We've already handled the fast-path in-line.
2649 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
2651 pmd_t
*new = pmd_alloc_one(mm
, address
);
2655 spin_lock(&mm
->page_table_lock
);
2656 #ifndef __ARCH_HAS_4LEVEL_HACK
2657 if (pud_present(*pud
)) /* Another has populated it */
2660 pud_populate(mm
, pud
, new);
2662 if (pgd_present(*pud
)) /* Another has populated it */
2665 pgd_populate(mm
, pud
, new);
2666 #endif /* __ARCH_HAS_4LEVEL_HACK */
2667 spin_unlock(&mm
->page_table_lock
);
2670 #endif /* __PAGETABLE_PMD_FOLDED */
2672 int make_pages_present(unsigned long addr
, unsigned long end
)
2674 int ret
, len
, write
;
2675 struct vm_area_struct
* vma
;
2677 vma
= find_vma(current
->mm
, addr
);
2680 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
2681 BUG_ON(addr
>= end
);
2682 BUG_ON(end
> vma
->vm_end
);
2683 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
2684 ret
= get_user_pages(current
, current
->mm
, addr
,
2685 len
, write
, 0, NULL
, NULL
);
2688 return ret
== len
? 0 : -1;
2692 * Map a vmalloc()-space virtual address to the physical page.
2694 struct page
* vmalloc_to_page(void * vmalloc_addr
)
2696 unsigned long addr
= (unsigned long) vmalloc_addr
;
2697 struct page
*page
= NULL
;
2698 pgd_t
*pgd
= pgd_offset_k(addr
);
2703 if (!pgd_none(*pgd
)) {
2704 pud
= pud_offset(pgd
, addr
);
2705 if (!pud_none(*pud
)) {
2706 pmd
= pmd_offset(pud
, addr
);
2707 if (!pmd_none(*pmd
)) {
2708 ptep
= pte_offset_map(pmd
, addr
);
2710 if (pte_present(pte
))
2711 page
= pte_page(pte
);
2719 EXPORT_SYMBOL(vmalloc_to_page
);
2722 * Map a vmalloc()-space virtual address to the physical page frame number.
2724 unsigned long vmalloc_to_pfn(void * vmalloc_addr
)
2726 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
2729 EXPORT_SYMBOL(vmalloc_to_pfn
);
2731 #if !defined(__HAVE_ARCH_GATE_AREA)
2733 #if defined(AT_SYSINFO_EHDR)
2734 static struct vm_area_struct gate_vma
;
2736 static int __init
gate_vma_init(void)
2738 gate_vma
.vm_mm
= NULL
;
2739 gate_vma
.vm_start
= FIXADDR_USER_START
;
2740 gate_vma
.vm_end
= FIXADDR_USER_END
;
2741 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
2742 gate_vma
.vm_page_prot
= __P101
;
2744 * Make sure the vDSO gets into every core dump.
2745 * Dumping its contents makes post-mortem fully interpretable later
2746 * without matching up the same kernel and hardware config to see
2747 * what PC values meant.
2749 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
2752 __initcall(gate_vma_init
);
2755 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
2757 #ifdef AT_SYSINFO_EHDR
2764 int in_gate_area_no_task(unsigned long addr
)
2766 #ifdef AT_SYSINFO_EHDR
2767 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
2773 #endif /* __HAVE_ARCH_GATE_AREA */
2776 * Access another process' address space.
2777 * Source/target buffer must be kernel space,
2778 * Do not walk the page table directly, use get_user_pages
2780 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
2782 struct mm_struct
*mm
;
2783 struct vm_area_struct
*vma
;
2785 void *old_buf
= buf
;
2787 mm
= get_task_mm(tsk
);
2791 down_read(&mm
->mmap_sem
);
2792 /* ignore errors, just check how much was sucessfully transfered */
2794 int bytes
, ret
, offset
;
2797 ret
= get_user_pages(tsk
, mm
, addr
, 1,
2798 write
, 1, &page
, &vma
);
2803 offset
= addr
& (PAGE_SIZE
-1);
2804 if (bytes
> PAGE_SIZE
-offset
)
2805 bytes
= PAGE_SIZE
-offset
;
2809 copy_to_user_page(vma
, page
, addr
,
2810 maddr
+ offset
, buf
, bytes
);
2811 set_page_dirty_lock(page
);
2813 copy_from_user_page(vma
, page
, addr
,
2814 buf
, maddr
+ offset
, bytes
);
2817 page_cache_release(page
);
2822 up_read(&mm
->mmap_sem
);
2825 return buf
- old_buf
;