2 * Suspend support specific for i386.
4 * Distribute under GPLv2
6 * Copyright (c) 2002 Pavel Machek <pavel@suse.cz>
7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
10 #include <linux/smp.h>
11 #include <linux/suspend.h>
12 #include <asm/proto.h>
14 #include <asm/pgtable.h>
17 /* References to section boundaries */
18 extern const void __nosave_begin
, __nosave_end
;
20 static void fix_processor_context(void);
22 struct saved_context saved_context
;
25 * __save_processor_state - save CPU registers before creating a
26 * hibernation image and before restoring the memory state from it
27 * @ctxt - structure to store the registers contents in
29 * NOTE: If there is a CPU register the modification of which by the
30 * boot kernel (ie. the kernel used for loading the hibernation image)
31 * might affect the operations of the restored target kernel (ie. the one
32 * saved in the hibernation image), then its contents must be saved by this
33 * function. In other words, if kernel A is hibernated and different
34 * kernel B is used for loading the hibernation image into memory, the
35 * kernel A's __save_processor_state() function must save all registers
36 * needed by kernel A, so that it can operate correctly after the resume
37 * regardless of what kernel B does in the meantime.
39 static void __save_processor_state(struct saved_context
*ctxt
)
46 store_gdt((struct desc_ptr
*)&ctxt
->gdt_limit
);
47 store_idt((struct desc_ptr
*)&ctxt
->idt_limit
);
50 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
54 asm volatile ("movw %%ds, %0" : "=m" (ctxt
->ds
));
55 asm volatile ("movw %%es, %0" : "=m" (ctxt
->es
));
56 asm volatile ("movw %%fs, %0" : "=m" (ctxt
->fs
));
57 asm volatile ("movw %%gs, %0" : "=m" (ctxt
->gs
));
58 asm volatile ("movw %%ss, %0" : "=m" (ctxt
->ss
));
60 rdmsrl(MSR_FS_BASE
, ctxt
->fs_base
);
61 rdmsrl(MSR_GS_BASE
, ctxt
->gs_base
);
62 rdmsrl(MSR_KERNEL_GS_BASE
, ctxt
->gs_kernel_base
);
63 mtrr_save_fixed_ranges(NULL
);
68 rdmsrl(MSR_EFER
, ctxt
->efer
);
69 ctxt
->cr0
= read_cr0();
70 ctxt
->cr2
= read_cr2();
71 ctxt
->cr3
= read_cr3();
72 ctxt
->cr4
= read_cr4();
73 ctxt
->cr8
= read_cr8();
76 void save_processor_state(void)
78 __save_processor_state(&saved_context
);
81 static void do_fpu_end(void)
84 * Restore FPU regs if necessary
90 * __restore_processor_state - restore the contents of CPU registers saved
91 * by __save_processor_state()
92 * @ctxt - structure to load the registers contents from
94 static void __restore_processor_state(struct saved_context
*ctxt
)
99 wrmsrl(MSR_EFER
, ctxt
->efer
);
100 write_cr8(ctxt
->cr8
);
101 write_cr4(ctxt
->cr4
);
102 write_cr3(ctxt
->cr3
);
103 write_cr2(ctxt
->cr2
);
104 write_cr0(ctxt
->cr0
);
107 * now restore the descriptor tables to their proper values
108 * ltr is done i fix_processor_context().
110 load_gdt((const struct desc_ptr
*)&ctxt
->gdt_limit
);
111 load_idt((const struct desc_ptr
*)&ctxt
->idt_limit
);
117 asm volatile ("movw %0, %%ds" :: "r" (ctxt
->ds
));
118 asm volatile ("movw %0, %%es" :: "r" (ctxt
->es
));
119 asm volatile ("movw %0, %%fs" :: "r" (ctxt
->fs
));
120 load_gs_index(ctxt
->gs
);
121 asm volatile ("movw %0, %%ss" :: "r" (ctxt
->ss
));
123 wrmsrl(MSR_FS_BASE
, ctxt
->fs_base
);
124 wrmsrl(MSR_GS_BASE
, ctxt
->gs_base
);
125 wrmsrl(MSR_KERNEL_GS_BASE
, ctxt
->gs_kernel_base
);
127 fix_processor_context();
133 void restore_processor_state(void)
135 __restore_processor_state(&saved_context
);
138 static void fix_processor_context(void)
140 int cpu
= smp_processor_id();
141 struct tss_struct
*t
= &per_cpu(init_tss
, cpu
);
144 * This just modifies memory; should not be necessary. But... This
145 * is necessary, because 386 hardware has concept of busy TSS or some
148 set_tss_desc(cpu
, t
);
150 get_cpu_gdt_table(cpu
)[GDT_ENTRY_TSS
].type
= 9;
152 syscall_init(); /* This sets MSR_*STAR and related */
153 load_TR_desc(); /* This does ltr */
154 load_LDT(¤t
->active_mm
->context
); /* This does lldt */
157 * Now maybe reload the debug registers
159 if (current
->thread
.debugreg7
){
160 loaddebug(¤t
->thread
, 0);
161 loaddebug(¤t
->thread
, 1);
162 loaddebug(¤t
->thread
, 2);
163 loaddebug(¤t
->thread
, 3);
165 loaddebug(¤t
->thread
, 6);
166 loaddebug(¤t
->thread
, 7);
170 #ifdef CONFIG_HIBERNATION
171 /* Defined in arch/x86_64/kernel/suspend_asm.S */
172 extern int restore_image(void);
175 * Address to jump to in the last phase of restore in order to get to the image
176 * kernel's text (this value is passed in the image header).
178 unsigned long restore_jump_address
;
181 * Value of the cr3 register from before the hibernation (this value is passed
182 * in the image header).
184 unsigned long restore_cr3
;
186 pgd_t
*temp_level4_pgt
;
188 void *relocated_restore_code
;
190 static int res_phys_pud_init(pud_t
*pud
, unsigned long address
, unsigned long end
)
194 i
= pud_index(address
);
196 for (; i
< PTRS_PER_PUD
; pud
++, i
++) {
200 paddr
= address
+ i
*PUD_SIZE
;
204 pmd
= (pmd_t
*)get_safe_page(GFP_ATOMIC
);
207 set_pud(pud
, __pud(__pa(pmd
) | _KERNPG_TABLE
));
208 for (j
= 0; j
< PTRS_PER_PMD
; pmd
++, j
++, paddr
+= PMD_SIZE
) {
213 pe
= __PAGE_KERNEL_LARGE_EXEC
| paddr
;
214 pe
&= __supported_pte_mask
;
215 set_pmd(pmd
, __pmd(pe
));
221 static int set_up_temporary_mappings(void)
223 unsigned long start
, end
, next
;
226 temp_level4_pgt
= (pgd_t
*)get_safe_page(GFP_ATOMIC
);
227 if (!temp_level4_pgt
)
230 /* It is safe to reuse the original kernel mapping */
231 set_pgd(temp_level4_pgt
+ pgd_index(__START_KERNEL_map
),
232 init_level4_pgt
[pgd_index(__START_KERNEL_map
)]);
234 /* Set up the direct mapping from scratch */
235 start
= (unsigned long)pfn_to_kaddr(0);
236 end
= (unsigned long)pfn_to_kaddr(end_pfn
);
238 for (; start
< end
; start
= next
) {
239 pud_t
*pud
= (pud_t
*)get_safe_page(GFP_ATOMIC
);
242 next
= start
+ PGDIR_SIZE
;
245 if ((error
= res_phys_pud_init(pud
, __pa(start
), __pa(next
))))
247 set_pgd(temp_level4_pgt
+ pgd_index(start
),
248 mk_kernel_pgd(__pa(pud
)));
253 int swsusp_arch_resume(void)
257 /* We have got enough memory and from now on we cannot recover */
258 if ((error
= set_up_temporary_mappings()))
261 relocated_restore_code
= (void *)get_safe_page(GFP_ATOMIC
);
262 if (!relocated_restore_code
)
264 memcpy(relocated_restore_code
, &core_restore_code
,
265 &restore_registers
- &core_restore_code
);
272 * pfn_is_nosave - check if given pfn is in the 'nosave' section
275 int pfn_is_nosave(unsigned long pfn
)
277 unsigned long nosave_begin_pfn
= __pa_symbol(&__nosave_begin
) >> PAGE_SHIFT
;
278 unsigned long nosave_end_pfn
= PAGE_ALIGN(__pa_symbol(&__nosave_end
)) >> PAGE_SHIFT
;
279 return (pfn
>= nosave_begin_pfn
) && (pfn
< nosave_end_pfn
);
282 struct restore_data_record
{
283 unsigned long jump_address
;
288 #define RESTORE_MAGIC 0x0123456789ABCDEFUL
291 * arch_hibernation_header_save - populate the architecture specific part
292 * of a hibernation image header
293 * @addr: address to save the data at
295 int arch_hibernation_header_save(void *addr
, unsigned int max_size
)
297 struct restore_data_record
*rdr
= addr
;
299 if (max_size
< sizeof(struct restore_data_record
))
301 rdr
->jump_address
= restore_jump_address
;
302 rdr
->cr3
= restore_cr3
;
303 rdr
->magic
= RESTORE_MAGIC
;
308 * arch_hibernation_header_restore - read the architecture specific data
309 * from the hibernation image header
310 * @addr: address to read the data from
312 int arch_hibernation_header_restore(void *addr
)
314 struct restore_data_record
*rdr
= addr
;
316 restore_jump_address
= rdr
->jump_address
;
317 restore_cr3
= rdr
->cr3
;
318 return (rdr
->magic
== RESTORE_MAGIC
) ? 0 : -EINVAL
;
320 #endif /* CONFIG_HIBERNATION */