x86: revert CONFIG_X86_HT semantics change
[pv_ops_mirror.git] / ipc / sem.c
blob35952c0bae4629cac017c4c62623c91a022ebee5
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7 * This code underwent a massive rewrite in order to solve some problems
8 * with the original code. In particular the original code failed to
9 * wake up processes that were waiting for semval to go to 0 if the
10 * value went to 0 and was then incremented rapidly enough. In solving
11 * this problem I have also modified the implementation so that it
12 * processes pending operations in a FIFO manner, thus give a guarantee
13 * that processes waiting for a lock on the semaphore won't starve
14 * unless another locking process fails to unlock.
15 * In addition the following two changes in behavior have been introduced:
16 * - The original implementation of semop returned the value
17 * last semaphore element examined on success. This does not
18 * match the manual page specifications, and effectively
19 * allows the user to read the semaphore even if they do not
20 * have read permissions. The implementation now returns 0
21 * on success as stated in the manual page.
22 * - There is some confusion over whether the set of undo adjustments
23 * to be performed at exit should be done in an atomic manner.
24 * That is, if we are attempting to decrement the semval should we queue
25 * up and wait until we can do so legally?
26 * The original implementation attempted to do this.
27 * The current implementation does not do so. This is because I don't
28 * think it is the right thing (TM) to do, and because I couldn't
29 * see a clean way to get the old behavior with the new design.
30 * The POSIX standard and SVID should be consulted to determine
31 * what behavior is mandated.
33 * Further notes on refinement (Christoph Rohland, December 1998):
34 * - The POSIX standard says, that the undo adjustments simply should
35 * redo. So the current implementation is o.K.
36 * - The previous code had two flaws:
37 * 1) It actively gave the semaphore to the next waiting process
38 * sleeping on the semaphore. Since this process did not have the
39 * cpu this led to many unnecessary context switches and bad
40 * performance. Now we only check which process should be able to
41 * get the semaphore and if this process wants to reduce some
42 * semaphore value we simply wake it up without doing the
43 * operation. So it has to try to get it later. Thus e.g. the
44 * running process may reacquire the semaphore during the current
45 * time slice. If it only waits for zero or increases the semaphore,
46 * we do the operation in advance and wake it up.
47 * 2) It did not wake up all zero waiting processes. We try to do
48 * better but only get the semops right which only wait for zero or
49 * increase. If there are decrement operations in the operations
50 * array we do the same as before.
52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53 * check/retry algorithm for waking up blocked processes as the new scheduler
54 * is better at handling thread switch than the old one.
56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
58 * SMP-threaded, sysctl's added
59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
60 * Enforced range limit on SEM_UNDO
61 * (c) 2001 Red Hat Inc <alan@redhat.com>
62 * Lockless wakeup
63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
65 * support for audit of ipc object properties and permission changes
66 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
68 * namespaces support
69 * OpenVZ, SWsoft Inc.
70 * Pavel Emelianov <xemul@openvz.org>
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/rwsem.h>
84 #include <linux/nsproxy.h>
86 #include <asm/uaccess.h>
87 #include "util.h"
89 #define sem_ids(ns) (*((ns)->ids[IPC_SEM_IDS]))
91 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
92 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
93 #define sem_buildid(id, seq) ipc_buildid(id, seq)
95 static struct ipc_ids init_sem_ids;
97 static int newary(struct ipc_namespace *, struct ipc_params *);
98 static void freeary(struct ipc_namespace *, struct sem_array *);
99 #ifdef CONFIG_PROC_FS
100 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
101 #endif
103 #define SEMMSL_FAST 256 /* 512 bytes on stack */
104 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
107 * linked list protection:
108 * sem_undo.id_next,
109 * sem_array.sem_pending{,last},
110 * sem_array.sem_undo: sem_lock() for read/write
111 * sem_undo.proc_next: only "current" is allowed to read/write that field.
115 #define sc_semmsl sem_ctls[0]
116 #define sc_semmns sem_ctls[1]
117 #define sc_semopm sem_ctls[2]
118 #define sc_semmni sem_ctls[3]
120 static void __sem_init_ns(struct ipc_namespace *ns, struct ipc_ids *ids)
122 ns->ids[IPC_SEM_IDS] = ids;
123 ns->sc_semmsl = SEMMSL;
124 ns->sc_semmns = SEMMNS;
125 ns->sc_semopm = SEMOPM;
126 ns->sc_semmni = SEMMNI;
127 ns->used_sems = 0;
128 ipc_init_ids(ids);
131 int sem_init_ns(struct ipc_namespace *ns)
133 struct ipc_ids *ids;
135 ids = kmalloc(sizeof(struct ipc_ids), GFP_KERNEL);
136 if (ids == NULL)
137 return -ENOMEM;
139 __sem_init_ns(ns, ids);
140 return 0;
143 void sem_exit_ns(struct ipc_namespace *ns)
145 struct sem_array *sma;
146 int next_id;
147 int total, in_use;
149 down_write(&sem_ids(ns).rw_mutex);
151 in_use = sem_ids(ns).in_use;
153 for (total = 0, next_id = 0; total < in_use; next_id++) {
154 sma = idr_find(&sem_ids(ns).ipcs_idr, next_id);
155 if (sma == NULL)
156 continue;
157 ipc_lock_by_ptr(&sma->sem_perm);
158 freeary(ns, sma);
159 total++;
161 up_write(&sem_ids(ns).rw_mutex);
163 kfree(ns->ids[IPC_SEM_IDS]);
164 ns->ids[IPC_SEM_IDS] = NULL;
167 void __init sem_init (void)
169 __sem_init_ns(&init_ipc_ns, &init_sem_ids);
170 ipc_init_proc_interface("sysvipc/sem",
171 " key semid perms nsems uid gid cuid cgid otime ctime\n",
172 IPC_SEM_IDS, sysvipc_sem_proc_show);
176 * This routine is called in the paths where the rw_mutex is held to protect
177 * access to the idr tree.
179 static inline struct sem_array *sem_lock_check_down(struct ipc_namespace *ns,
180 int id)
182 struct kern_ipc_perm *ipcp = ipc_lock_check_down(&sem_ids(ns), id);
184 return container_of(ipcp, struct sem_array, sem_perm);
188 * sem_lock_(check_) routines are called in the paths where the rw_mutex
189 * is not held.
191 static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
193 struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
195 return container_of(ipcp, struct sem_array, sem_perm);
198 static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
199 int id)
201 struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
203 return container_of(ipcp, struct sem_array, sem_perm);
206 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
208 ipc_rmid(&sem_ids(ns), &s->sem_perm);
212 * Lockless wakeup algorithm:
213 * Without the check/retry algorithm a lockless wakeup is possible:
214 * - queue.status is initialized to -EINTR before blocking.
215 * - wakeup is performed by
216 * * unlinking the queue entry from sma->sem_pending
217 * * setting queue.status to IN_WAKEUP
218 * This is the notification for the blocked thread that a
219 * result value is imminent.
220 * * call wake_up_process
221 * * set queue.status to the final value.
222 * - the previously blocked thread checks queue.status:
223 * * if it's IN_WAKEUP, then it must wait until the value changes
224 * * if it's not -EINTR, then the operation was completed by
225 * update_queue. semtimedop can return queue.status without
226 * performing any operation on the sem array.
227 * * otherwise it must acquire the spinlock and check what's up.
229 * The two-stage algorithm is necessary to protect against the following
230 * races:
231 * - if queue.status is set after wake_up_process, then the woken up idle
232 * thread could race forward and try (and fail) to acquire sma->lock
233 * before update_queue had a chance to set queue.status
234 * - if queue.status is written before wake_up_process and if the
235 * blocked process is woken up by a signal between writing
236 * queue.status and the wake_up_process, then the woken up
237 * process could return from semtimedop and die by calling
238 * sys_exit before wake_up_process is called. Then wake_up_process
239 * will oops, because the task structure is already invalid.
240 * (yes, this happened on s390 with sysv msg).
243 #define IN_WAKEUP 1
246 * newary - Create a new semaphore set
247 * @ns: namespace
248 * @params: ptr to the structure that contains key, semflg and nsems
250 * Called with sem_ids.rw_mutex held (as a writer)
253 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
255 int id;
256 int retval;
257 struct sem_array *sma;
258 int size;
259 key_t key = params->key;
260 int nsems = params->u.nsems;
261 int semflg = params->flg;
263 if (!nsems)
264 return -EINVAL;
265 if (ns->used_sems + nsems > ns->sc_semmns)
266 return -ENOSPC;
268 size = sizeof (*sma) + nsems * sizeof (struct sem);
269 sma = ipc_rcu_alloc(size);
270 if (!sma) {
271 return -ENOMEM;
273 memset (sma, 0, size);
275 sma->sem_perm.mode = (semflg & S_IRWXUGO);
276 sma->sem_perm.key = key;
278 sma->sem_perm.security = NULL;
279 retval = security_sem_alloc(sma);
280 if (retval) {
281 ipc_rcu_putref(sma);
282 return retval;
285 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
286 if (id < 0) {
287 security_sem_free(sma);
288 ipc_rcu_putref(sma);
289 return id;
291 ns->used_sems += nsems;
293 sma->sem_perm.id = sem_buildid(id, sma->sem_perm.seq);
294 sma->sem_base = (struct sem *) &sma[1];
295 /* sma->sem_pending = NULL; */
296 sma->sem_pending_last = &sma->sem_pending;
297 /* sma->undo = NULL; */
298 sma->sem_nsems = nsems;
299 sma->sem_ctime = get_seconds();
300 sem_unlock(sma);
302 return sma->sem_perm.id;
307 * Called with sem_ids.rw_mutex and ipcp locked.
309 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
311 struct sem_array *sma;
313 sma = container_of(ipcp, struct sem_array, sem_perm);
314 return security_sem_associate(sma, semflg);
318 * Called with sem_ids.rw_mutex and ipcp locked.
320 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
321 struct ipc_params *params)
323 struct sem_array *sma;
325 sma = container_of(ipcp, struct sem_array, sem_perm);
326 if (params->u.nsems > sma->sem_nsems)
327 return -EINVAL;
329 return 0;
332 asmlinkage long sys_semget(key_t key, int nsems, int semflg)
334 struct ipc_namespace *ns;
335 struct ipc_ops sem_ops;
336 struct ipc_params sem_params;
338 ns = current->nsproxy->ipc_ns;
340 if (nsems < 0 || nsems > ns->sc_semmsl)
341 return -EINVAL;
343 sem_ops.getnew = newary;
344 sem_ops.associate = sem_security;
345 sem_ops.more_checks = sem_more_checks;
347 sem_params.key = key;
348 sem_params.flg = semflg;
349 sem_params.u.nsems = nsems;
351 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
354 /* Manage the doubly linked list sma->sem_pending as a FIFO:
355 * insert new queue elements at the tail sma->sem_pending_last.
357 static inline void append_to_queue (struct sem_array * sma,
358 struct sem_queue * q)
360 *(q->prev = sma->sem_pending_last) = q;
361 *(sma->sem_pending_last = &q->next) = NULL;
364 static inline void prepend_to_queue (struct sem_array * sma,
365 struct sem_queue * q)
367 q->next = sma->sem_pending;
368 *(q->prev = &sma->sem_pending) = q;
369 if (q->next)
370 q->next->prev = &q->next;
371 else /* sma->sem_pending_last == &sma->sem_pending */
372 sma->sem_pending_last = &q->next;
375 static inline void remove_from_queue (struct sem_array * sma,
376 struct sem_queue * q)
378 *(q->prev) = q->next;
379 if (q->next)
380 q->next->prev = q->prev;
381 else /* sma->sem_pending_last == &q->next */
382 sma->sem_pending_last = q->prev;
383 q->prev = NULL; /* mark as removed */
387 * Determine whether a sequence of semaphore operations would succeed
388 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
391 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
392 int nsops, struct sem_undo *un, int pid)
394 int result, sem_op;
395 struct sembuf *sop;
396 struct sem * curr;
398 for (sop = sops; sop < sops + nsops; sop++) {
399 curr = sma->sem_base + sop->sem_num;
400 sem_op = sop->sem_op;
401 result = curr->semval;
403 if (!sem_op && result)
404 goto would_block;
406 result += sem_op;
407 if (result < 0)
408 goto would_block;
409 if (result > SEMVMX)
410 goto out_of_range;
411 if (sop->sem_flg & SEM_UNDO) {
412 int undo = un->semadj[sop->sem_num] - sem_op;
414 * Exceeding the undo range is an error.
416 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
417 goto out_of_range;
419 curr->semval = result;
422 sop--;
423 while (sop >= sops) {
424 sma->sem_base[sop->sem_num].sempid = pid;
425 if (sop->sem_flg & SEM_UNDO)
426 un->semadj[sop->sem_num] -= sop->sem_op;
427 sop--;
430 sma->sem_otime = get_seconds();
431 return 0;
433 out_of_range:
434 result = -ERANGE;
435 goto undo;
437 would_block:
438 if (sop->sem_flg & IPC_NOWAIT)
439 result = -EAGAIN;
440 else
441 result = 1;
443 undo:
444 sop--;
445 while (sop >= sops) {
446 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
447 sop--;
450 return result;
453 /* Go through the pending queue for the indicated semaphore
454 * looking for tasks that can be completed.
456 static void update_queue (struct sem_array * sma)
458 int error;
459 struct sem_queue * q;
461 q = sma->sem_pending;
462 while(q) {
463 error = try_atomic_semop(sma, q->sops, q->nsops,
464 q->undo, q->pid);
466 /* Does q->sleeper still need to sleep? */
467 if (error <= 0) {
468 struct sem_queue *n;
469 remove_from_queue(sma,q);
470 q->status = IN_WAKEUP;
472 * Continue scanning. The next operation
473 * that must be checked depends on the type of the
474 * completed operation:
475 * - if the operation modified the array, then
476 * restart from the head of the queue and
477 * check for threads that might be waiting
478 * for semaphore values to become 0.
479 * - if the operation didn't modify the array,
480 * then just continue.
482 if (q->alter)
483 n = sma->sem_pending;
484 else
485 n = q->next;
486 wake_up_process(q->sleeper);
487 /* hands-off: q will disappear immediately after
488 * writing q->status.
490 smp_wmb();
491 q->status = error;
492 q = n;
493 } else {
494 q = q->next;
499 /* The following counts are associated to each semaphore:
500 * semncnt number of tasks waiting on semval being nonzero
501 * semzcnt number of tasks waiting on semval being zero
502 * This model assumes that a task waits on exactly one semaphore.
503 * Since semaphore operations are to be performed atomically, tasks actually
504 * wait on a whole sequence of semaphores simultaneously.
505 * The counts we return here are a rough approximation, but still
506 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
508 static int count_semncnt (struct sem_array * sma, ushort semnum)
510 int semncnt;
511 struct sem_queue * q;
513 semncnt = 0;
514 for (q = sma->sem_pending; q; q = q->next) {
515 struct sembuf * sops = q->sops;
516 int nsops = q->nsops;
517 int i;
518 for (i = 0; i < nsops; i++)
519 if (sops[i].sem_num == semnum
520 && (sops[i].sem_op < 0)
521 && !(sops[i].sem_flg & IPC_NOWAIT))
522 semncnt++;
524 return semncnt;
526 static int count_semzcnt (struct sem_array * sma, ushort semnum)
528 int semzcnt;
529 struct sem_queue * q;
531 semzcnt = 0;
532 for (q = sma->sem_pending; q; q = q->next) {
533 struct sembuf * sops = q->sops;
534 int nsops = q->nsops;
535 int i;
536 for (i = 0; i < nsops; i++)
537 if (sops[i].sem_num == semnum
538 && (sops[i].sem_op == 0)
539 && !(sops[i].sem_flg & IPC_NOWAIT))
540 semzcnt++;
542 return semzcnt;
545 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
546 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
547 * remains locked on exit.
549 static void freeary(struct ipc_namespace *ns, struct sem_array *sma)
551 struct sem_undo *un;
552 struct sem_queue *q;
554 /* Invalidate the existing undo structures for this semaphore set.
555 * (They will be freed without any further action in exit_sem()
556 * or during the next semop.)
558 for (un = sma->undo; un; un = un->id_next)
559 un->semid = -1;
561 /* Wake up all pending processes and let them fail with EIDRM. */
562 q = sma->sem_pending;
563 while(q) {
564 struct sem_queue *n;
565 /* lazy remove_from_queue: we are killing the whole queue */
566 q->prev = NULL;
567 n = q->next;
568 q->status = IN_WAKEUP;
569 wake_up_process(q->sleeper); /* doesn't sleep */
570 smp_wmb();
571 q->status = -EIDRM; /* hands-off q */
572 q = n;
575 /* Remove the semaphore set from the IDR */
576 sem_rmid(ns, sma);
577 sem_unlock(sma);
579 ns->used_sems -= sma->sem_nsems;
580 security_sem_free(sma);
581 ipc_rcu_putref(sma);
584 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
586 switch(version) {
587 case IPC_64:
588 return copy_to_user(buf, in, sizeof(*in));
589 case IPC_OLD:
591 struct semid_ds out;
593 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
595 out.sem_otime = in->sem_otime;
596 out.sem_ctime = in->sem_ctime;
597 out.sem_nsems = in->sem_nsems;
599 return copy_to_user(buf, &out, sizeof(out));
601 default:
602 return -EINVAL;
606 static int semctl_nolock(struct ipc_namespace *ns, int semid, int semnum,
607 int cmd, int version, union semun arg)
609 int err = -EINVAL;
610 struct sem_array *sma;
612 switch(cmd) {
613 case IPC_INFO:
614 case SEM_INFO:
616 struct seminfo seminfo;
617 int max_id;
619 err = security_sem_semctl(NULL, cmd);
620 if (err)
621 return err;
623 memset(&seminfo,0,sizeof(seminfo));
624 seminfo.semmni = ns->sc_semmni;
625 seminfo.semmns = ns->sc_semmns;
626 seminfo.semmsl = ns->sc_semmsl;
627 seminfo.semopm = ns->sc_semopm;
628 seminfo.semvmx = SEMVMX;
629 seminfo.semmnu = SEMMNU;
630 seminfo.semmap = SEMMAP;
631 seminfo.semume = SEMUME;
632 down_read(&sem_ids(ns).rw_mutex);
633 if (cmd == SEM_INFO) {
634 seminfo.semusz = sem_ids(ns).in_use;
635 seminfo.semaem = ns->used_sems;
636 } else {
637 seminfo.semusz = SEMUSZ;
638 seminfo.semaem = SEMAEM;
640 max_id = ipc_get_maxid(&sem_ids(ns));
641 up_read(&sem_ids(ns).rw_mutex);
642 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
643 return -EFAULT;
644 return (max_id < 0) ? 0: max_id;
646 case SEM_STAT:
648 struct semid64_ds tbuf;
649 int id;
651 sma = sem_lock(ns, semid);
652 if (IS_ERR(sma))
653 return PTR_ERR(sma);
655 err = -EACCES;
656 if (ipcperms (&sma->sem_perm, S_IRUGO))
657 goto out_unlock;
659 err = security_sem_semctl(sma, cmd);
660 if (err)
661 goto out_unlock;
663 id = sma->sem_perm.id;
665 memset(&tbuf, 0, sizeof(tbuf));
667 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
668 tbuf.sem_otime = sma->sem_otime;
669 tbuf.sem_ctime = sma->sem_ctime;
670 tbuf.sem_nsems = sma->sem_nsems;
671 sem_unlock(sma);
672 if (copy_semid_to_user (arg.buf, &tbuf, version))
673 return -EFAULT;
674 return id;
676 default:
677 return -EINVAL;
679 return err;
680 out_unlock:
681 sem_unlock(sma);
682 return err;
685 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
686 int cmd, int version, union semun arg)
688 struct sem_array *sma;
689 struct sem* curr;
690 int err;
691 ushort fast_sem_io[SEMMSL_FAST];
692 ushort* sem_io = fast_sem_io;
693 int nsems;
695 sma = sem_lock_check(ns, semid);
696 if (IS_ERR(sma))
697 return PTR_ERR(sma);
699 nsems = sma->sem_nsems;
701 err = -EACCES;
702 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
703 goto out_unlock;
705 err = security_sem_semctl(sma, cmd);
706 if (err)
707 goto out_unlock;
709 err = -EACCES;
710 switch (cmd) {
711 case GETALL:
713 ushort __user *array = arg.array;
714 int i;
716 if(nsems > SEMMSL_FAST) {
717 ipc_rcu_getref(sma);
718 sem_unlock(sma);
720 sem_io = ipc_alloc(sizeof(ushort)*nsems);
721 if(sem_io == NULL) {
722 ipc_lock_by_ptr(&sma->sem_perm);
723 ipc_rcu_putref(sma);
724 sem_unlock(sma);
725 return -ENOMEM;
728 ipc_lock_by_ptr(&sma->sem_perm);
729 ipc_rcu_putref(sma);
730 if (sma->sem_perm.deleted) {
731 sem_unlock(sma);
732 err = -EIDRM;
733 goto out_free;
737 for (i = 0; i < sma->sem_nsems; i++)
738 sem_io[i] = sma->sem_base[i].semval;
739 sem_unlock(sma);
740 err = 0;
741 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
742 err = -EFAULT;
743 goto out_free;
745 case SETALL:
747 int i;
748 struct sem_undo *un;
750 ipc_rcu_getref(sma);
751 sem_unlock(sma);
753 if(nsems > SEMMSL_FAST) {
754 sem_io = ipc_alloc(sizeof(ushort)*nsems);
755 if(sem_io == NULL) {
756 ipc_lock_by_ptr(&sma->sem_perm);
757 ipc_rcu_putref(sma);
758 sem_unlock(sma);
759 return -ENOMEM;
763 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
764 ipc_lock_by_ptr(&sma->sem_perm);
765 ipc_rcu_putref(sma);
766 sem_unlock(sma);
767 err = -EFAULT;
768 goto out_free;
771 for (i = 0; i < nsems; i++) {
772 if (sem_io[i] > SEMVMX) {
773 ipc_lock_by_ptr(&sma->sem_perm);
774 ipc_rcu_putref(sma);
775 sem_unlock(sma);
776 err = -ERANGE;
777 goto out_free;
780 ipc_lock_by_ptr(&sma->sem_perm);
781 ipc_rcu_putref(sma);
782 if (sma->sem_perm.deleted) {
783 sem_unlock(sma);
784 err = -EIDRM;
785 goto out_free;
788 for (i = 0; i < nsems; i++)
789 sma->sem_base[i].semval = sem_io[i];
790 for (un = sma->undo; un; un = un->id_next)
791 for (i = 0; i < nsems; i++)
792 un->semadj[i] = 0;
793 sma->sem_ctime = get_seconds();
794 /* maybe some queued-up processes were waiting for this */
795 update_queue(sma);
796 err = 0;
797 goto out_unlock;
799 case IPC_STAT:
801 struct semid64_ds tbuf;
802 memset(&tbuf,0,sizeof(tbuf));
803 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
804 tbuf.sem_otime = sma->sem_otime;
805 tbuf.sem_ctime = sma->sem_ctime;
806 tbuf.sem_nsems = sma->sem_nsems;
807 sem_unlock(sma);
808 if (copy_semid_to_user (arg.buf, &tbuf, version))
809 return -EFAULT;
810 return 0;
812 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
814 err = -EINVAL;
815 if(semnum < 0 || semnum >= nsems)
816 goto out_unlock;
818 curr = &sma->sem_base[semnum];
820 switch (cmd) {
821 case GETVAL:
822 err = curr->semval;
823 goto out_unlock;
824 case GETPID:
825 err = curr->sempid;
826 goto out_unlock;
827 case GETNCNT:
828 err = count_semncnt(sma,semnum);
829 goto out_unlock;
830 case GETZCNT:
831 err = count_semzcnt(sma,semnum);
832 goto out_unlock;
833 case SETVAL:
835 int val = arg.val;
836 struct sem_undo *un;
837 err = -ERANGE;
838 if (val > SEMVMX || val < 0)
839 goto out_unlock;
841 for (un = sma->undo; un; un = un->id_next)
842 un->semadj[semnum] = 0;
843 curr->semval = val;
844 curr->sempid = task_tgid_vnr(current);
845 sma->sem_ctime = get_seconds();
846 /* maybe some queued-up processes were waiting for this */
847 update_queue(sma);
848 err = 0;
849 goto out_unlock;
852 out_unlock:
853 sem_unlock(sma);
854 out_free:
855 if(sem_io != fast_sem_io)
856 ipc_free(sem_io, sizeof(ushort)*nsems);
857 return err;
860 struct sem_setbuf {
861 uid_t uid;
862 gid_t gid;
863 mode_t mode;
866 static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version)
868 switch(version) {
869 case IPC_64:
871 struct semid64_ds tbuf;
873 if(copy_from_user(&tbuf, buf, sizeof(tbuf)))
874 return -EFAULT;
876 out->uid = tbuf.sem_perm.uid;
877 out->gid = tbuf.sem_perm.gid;
878 out->mode = tbuf.sem_perm.mode;
880 return 0;
882 case IPC_OLD:
884 struct semid_ds tbuf_old;
886 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
887 return -EFAULT;
889 out->uid = tbuf_old.sem_perm.uid;
890 out->gid = tbuf_old.sem_perm.gid;
891 out->mode = tbuf_old.sem_perm.mode;
893 return 0;
895 default:
896 return -EINVAL;
900 static int semctl_down(struct ipc_namespace *ns, int semid, int semnum,
901 int cmd, int version, union semun arg)
903 struct sem_array *sma;
904 int err;
905 struct sem_setbuf uninitialized_var(setbuf);
906 struct kern_ipc_perm *ipcp;
908 if(cmd == IPC_SET) {
909 if(copy_semid_from_user (&setbuf, arg.buf, version))
910 return -EFAULT;
912 sma = sem_lock_check_down(ns, semid);
913 if (IS_ERR(sma))
914 return PTR_ERR(sma);
916 ipcp = &sma->sem_perm;
918 err = audit_ipc_obj(ipcp);
919 if (err)
920 goto out_unlock;
922 if (cmd == IPC_SET) {
923 err = audit_ipc_set_perm(0, setbuf.uid, setbuf.gid, setbuf.mode);
924 if (err)
925 goto out_unlock;
927 if (current->euid != ipcp->cuid &&
928 current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) {
929 err=-EPERM;
930 goto out_unlock;
933 err = security_sem_semctl(sma, cmd);
934 if (err)
935 goto out_unlock;
937 switch(cmd){
938 case IPC_RMID:
939 freeary(ns, sma);
940 err = 0;
941 break;
942 case IPC_SET:
943 ipcp->uid = setbuf.uid;
944 ipcp->gid = setbuf.gid;
945 ipcp->mode = (ipcp->mode & ~S_IRWXUGO)
946 | (setbuf.mode & S_IRWXUGO);
947 sma->sem_ctime = get_seconds();
948 sem_unlock(sma);
949 err = 0;
950 break;
951 default:
952 sem_unlock(sma);
953 err = -EINVAL;
954 break;
956 return err;
958 out_unlock:
959 sem_unlock(sma);
960 return err;
963 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg)
965 int err = -EINVAL;
966 int version;
967 struct ipc_namespace *ns;
969 if (semid < 0)
970 return -EINVAL;
972 version = ipc_parse_version(&cmd);
973 ns = current->nsproxy->ipc_ns;
975 switch(cmd) {
976 case IPC_INFO:
977 case SEM_INFO:
978 case SEM_STAT:
979 err = semctl_nolock(ns,semid,semnum,cmd,version,arg);
980 return err;
981 case GETALL:
982 case GETVAL:
983 case GETPID:
984 case GETNCNT:
985 case GETZCNT:
986 case IPC_STAT:
987 case SETVAL:
988 case SETALL:
989 err = semctl_main(ns,semid,semnum,cmd,version,arg);
990 return err;
991 case IPC_RMID:
992 case IPC_SET:
993 down_write(&sem_ids(ns).rw_mutex);
994 err = semctl_down(ns,semid,semnum,cmd,version,arg);
995 up_write(&sem_ids(ns).rw_mutex);
996 return err;
997 default:
998 return -EINVAL;
1002 /* If the task doesn't already have a undo_list, then allocate one
1003 * here. We guarantee there is only one thread using this undo list,
1004 * and current is THE ONE
1006 * If this allocation and assignment succeeds, but later
1007 * portions of this code fail, there is no need to free the sem_undo_list.
1008 * Just let it stay associated with the task, and it'll be freed later
1009 * at exit time.
1011 * This can block, so callers must hold no locks.
1013 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1015 struct sem_undo_list *undo_list;
1017 undo_list = current->sysvsem.undo_list;
1018 if (!undo_list) {
1019 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1020 if (undo_list == NULL)
1021 return -ENOMEM;
1022 spin_lock_init(&undo_list->lock);
1023 atomic_set(&undo_list->refcnt, 1);
1024 current->sysvsem.undo_list = undo_list;
1026 *undo_listp = undo_list;
1027 return 0;
1030 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1032 struct sem_undo **last, *un;
1034 last = &ulp->proc_list;
1035 un = *last;
1036 while(un != NULL) {
1037 if(un->semid==semid)
1038 break;
1039 if(un->semid==-1) {
1040 *last=un->proc_next;
1041 kfree(un);
1042 } else {
1043 last=&un->proc_next;
1045 un=*last;
1047 return un;
1050 static struct sem_undo *find_undo(struct ipc_namespace *ns, int semid)
1052 struct sem_array *sma;
1053 struct sem_undo_list *ulp;
1054 struct sem_undo *un, *new;
1055 int nsems;
1056 int error;
1058 error = get_undo_list(&ulp);
1059 if (error)
1060 return ERR_PTR(error);
1062 spin_lock(&ulp->lock);
1063 un = lookup_undo(ulp, semid);
1064 spin_unlock(&ulp->lock);
1065 if (likely(un!=NULL))
1066 goto out;
1068 /* no undo structure around - allocate one. */
1069 sma = sem_lock_check(ns, semid);
1070 if (IS_ERR(sma))
1071 return ERR_PTR(PTR_ERR(sma));
1073 nsems = sma->sem_nsems;
1074 ipc_rcu_getref(sma);
1075 sem_unlock(sma);
1077 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1078 if (!new) {
1079 ipc_lock_by_ptr(&sma->sem_perm);
1080 ipc_rcu_putref(sma);
1081 sem_unlock(sma);
1082 return ERR_PTR(-ENOMEM);
1084 new->semadj = (short *) &new[1];
1085 new->semid = semid;
1087 spin_lock(&ulp->lock);
1088 un = lookup_undo(ulp, semid);
1089 if (un) {
1090 spin_unlock(&ulp->lock);
1091 kfree(new);
1092 ipc_lock_by_ptr(&sma->sem_perm);
1093 ipc_rcu_putref(sma);
1094 sem_unlock(sma);
1095 goto out;
1097 ipc_lock_by_ptr(&sma->sem_perm);
1098 ipc_rcu_putref(sma);
1099 if (sma->sem_perm.deleted) {
1100 sem_unlock(sma);
1101 spin_unlock(&ulp->lock);
1102 kfree(new);
1103 un = ERR_PTR(-EIDRM);
1104 goto out;
1106 new->proc_next = ulp->proc_list;
1107 ulp->proc_list = new;
1108 new->id_next = sma->undo;
1109 sma->undo = new;
1110 sem_unlock(sma);
1111 un = new;
1112 spin_unlock(&ulp->lock);
1113 out:
1114 return un;
1117 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops,
1118 unsigned nsops, const struct timespec __user *timeout)
1120 int error = -EINVAL;
1121 struct sem_array *sma;
1122 struct sembuf fast_sops[SEMOPM_FAST];
1123 struct sembuf* sops = fast_sops, *sop;
1124 struct sem_undo *un;
1125 int undos = 0, alter = 0, max;
1126 struct sem_queue queue;
1127 unsigned long jiffies_left = 0;
1128 struct ipc_namespace *ns;
1130 ns = current->nsproxy->ipc_ns;
1132 if (nsops < 1 || semid < 0)
1133 return -EINVAL;
1134 if (nsops > ns->sc_semopm)
1135 return -E2BIG;
1136 if(nsops > SEMOPM_FAST) {
1137 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1138 if(sops==NULL)
1139 return -ENOMEM;
1141 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1142 error=-EFAULT;
1143 goto out_free;
1145 if (timeout) {
1146 struct timespec _timeout;
1147 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1148 error = -EFAULT;
1149 goto out_free;
1151 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1152 _timeout.tv_nsec >= 1000000000L) {
1153 error = -EINVAL;
1154 goto out_free;
1156 jiffies_left = timespec_to_jiffies(&_timeout);
1158 max = 0;
1159 for (sop = sops; sop < sops + nsops; sop++) {
1160 if (sop->sem_num >= max)
1161 max = sop->sem_num;
1162 if (sop->sem_flg & SEM_UNDO)
1163 undos = 1;
1164 if (sop->sem_op != 0)
1165 alter = 1;
1168 retry_undos:
1169 if (undos) {
1170 un = find_undo(ns, semid);
1171 if (IS_ERR(un)) {
1172 error = PTR_ERR(un);
1173 goto out_free;
1175 } else
1176 un = NULL;
1178 sma = sem_lock_check(ns, semid);
1179 if (IS_ERR(sma)) {
1180 error = PTR_ERR(sma);
1181 goto out_free;
1185 * semid identifiers are not unique - find_undo may have
1186 * allocated an undo structure, it was invalidated by an RMID
1187 * and now a new array with received the same id. Check and retry.
1189 if (un && un->semid == -1) {
1190 sem_unlock(sma);
1191 goto retry_undos;
1193 error = -EFBIG;
1194 if (max >= sma->sem_nsems)
1195 goto out_unlock_free;
1197 error = -EACCES;
1198 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1199 goto out_unlock_free;
1201 error = security_sem_semop(sma, sops, nsops, alter);
1202 if (error)
1203 goto out_unlock_free;
1205 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1206 if (error <= 0) {
1207 if (alter && error == 0)
1208 update_queue (sma);
1209 goto out_unlock_free;
1212 /* We need to sleep on this operation, so we put the current
1213 * task into the pending queue and go to sleep.
1216 queue.sma = sma;
1217 queue.sops = sops;
1218 queue.nsops = nsops;
1219 queue.undo = un;
1220 queue.pid = task_tgid_vnr(current);
1221 queue.id = semid;
1222 queue.alter = alter;
1223 if (alter)
1224 append_to_queue(sma ,&queue);
1225 else
1226 prepend_to_queue(sma ,&queue);
1228 queue.status = -EINTR;
1229 queue.sleeper = current;
1230 current->state = TASK_INTERRUPTIBLE;
1231 sem_unlock(sma);
1233 if (timeout)
1234 jiffies_left = schedule_timeout(jiffies_left);
1235 else
1236 schedule();
1238 error = queue.status;
1239 while(unlikely(error == IN_WAKEUP)) {
1240 cpu_relax();
1241 error = queue.status;
1244 if (error != -EINTR) {
1245 /* fast path: update_queue already obtained all requested
1246 * resources */
1247 goto out_free;
1250 sma = sem_lock(ns, semid);
1251 if (IS_ERR(sma)) {
1252 BUG_ON(queue.prev != NULL);
1253 error = -EIDRM;
1254 goto out_free;
1258 * If queue.status != -EINTR we are woken up by another process
1260 error = queue.status;
1261 if (error != -EINTR) {
1262 goto out_unlock_free;
1266 * If an interrupt occurred we have to clean up the queue
1268 if (timeout && jiffies_left == 0)
1269 error = -EAGAIN;
1270 remove_from_queue(sma,&queue);
1271 goto out_unlock_free;
1273 out_unlock_free:
1274 sem_unlock(sma);
1275 out_free:
1276 if(sops != fast_sops)
1277 kfree(sops);
1278 return error;
1281 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops)
1283 return sys_semtimedop(semid, tsops, nsops, NULL);
1286 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1287 * parent and child tasks.
1290 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1292 struct sem_undo_list *undo_list;
1293 int error;
1295 if (clone_flags & CLONE_SYSVSEM) {
1296 error = get_undo_list(&undo_list);
1297 if (error)
1298 return error;
1299 atomic_inc(&undo_list->refcnt);
1300 tsk->sysvsem.undo_list = undo_list;
1301 } else
1302 tsk->sysvsem.undo_list = NULL;
1304 return 0;
1308 * add semadj values to semaphores, free undo structures.
1309 * undo structures are not freed when semaphore arrays are destroyed
1310 * so some of them may be out of date.
1311 * IMPLEMENTATION NOTE: There is some confusion over whether the
1312 * set of adjustments that needs to be done should be done in an atomic
1313 * manner or not. That is, if we are attempting to decrement the semval
1314 * should we queue up and wait until we can do so legally?
1315 * The original implementation attempted to do this (queue and wait).
1316 * The current implementation does not do so. The POSIX standard
1317 * and SVID should be consulted to determine what behavior is mandated.
1319 void exit_sem(struct task_struct *tsk)
1321 struct sem_undo_list *undo_list;
1322 struct sem_undo *u, **up;
1323 struct ipc_namespace *ns;
1325 undo_list = tsk->sysvsem.undo_list;
1326 if (!undo_list)
1327 return;
1329 if (!atomic_dec_and_test(&undo_list->refcnt))
1330 return;
1332 ns = tsk->nsproxy->ipc_ns;
1333 /* There's no need to hold the semundo list lock, as current
1334 * is the last task exiting for this undo list.
1336 for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) {
1337 struct sem_array *sma;
1338 int nsems, i;
1339 struct sem_undo *un, **unp;
1340 int semid;
1342 semid = u->semid;
1344 if(semid == -1)
1345 continue;
1346 sma = sem_lock(ns, semid);
1347 if (IS_ERR(sma))
1348 continue;
1350 if (u->semid == -1)
1351 goto next_entry;
1353 BUG_ON(sem_checkid(sma, u->semid));
1355 /* remove u from the sma->undo list */
1356 for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
1357 if (u == un)
1358 goto found;
1360 printk ("exit_sem undo list error id=%d\n", u->semid);
1361 goto next_entry;
1362 found:
1363 *unp = un->id_next;
1364 /* perform adjustments registered in u */
1365 nsems = sma->sem_nsems;
1366 for (i = 0; i < nsems; i++) {
1367 struct sem * semaphore = &sma->sem_base[i];
1368 if (u->semadj[i]) {
1369 semaphore->semval += u->semadj[i];
1371 * Range checks of the new semaphore value,
1372 * not defined by sus:
1373 * - Some unices ignore the undo entirely
1374 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1375 * - some cap the value (e.g. FreeBSD caps
1376 * at 0, but doesn't enforce SEMVMX)
1378 * Linux caps the semaphore value, both at 0
1379 * and at SEMVMX.
1381 * Manfred <manfred@colorfullife.com>
1383 if (semaphore->semval < 0)
1384 semaphore->semval = 0;
1385 if (semaphore->semval > SEMVMX)
1386 semaphore->semval = SEMVMX;
1387 semaphore->sempid = task_tgid_vnr(current);
1390 sma->sem_otime = get_seconds();
1391 /* maybe some queued-up processes were waiting for this */
1392 update_queue(sma);
1393 next_entry:
1394 sem_unlock(sma);
1396 kfree(undo_list);
1399 #ifdef CONFIG_PROC_FS
1400 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1402 struct sem_array *sma = it;
1404 return seq_printf(s,
1405 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",
1406 sma->sem_perm.key,
1407 sma->sem_perm.id,
1408 sma->sem_perm.mode,
1409 sma->sem_nsems,
1410 sma->sem_perm.uid,
1411 sma->sem_perm.gid,
1412 sma->sem_perm.cuid,
1413 sma->sem_perm.cgid,
1414 sma->sem_otime,
1415 sma->sem_ctime);
1417 #endif