[NETFILTER]: x_tables: add xt_time match
[pv_ops_mirror.git] / net / sunrpc / svcsock.c
blobc75bffeb89eb705831585ba1447c0ba77dd06a9c
1 /*
2 * linux/net/sunrpc/svcsock.c
4 * These are the RPC server socket internals.
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_sock_enqueue procedure...
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/errno.h>
25 #include <linux/fcntl.h>
26 #include <linux/net.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/udp.h>
30 #include <linux/tcp.h>
31 #include <linux/unistd.h>
32 #include <linux/slab.h>
33 #include <linux/netdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/file.h>
36 #include <linux/freezer.h>
37 #include <net/sock.h>
38 #include <net/checksum.h>
39 #include <net/ip.h>
40 #include <net/ipv6.h>
41 #include <net/tcp_states.h>
42 #include <asm/uaccess.h>
43 #include <asm/ioctls.h>
45 #include <linux/sunrpc/types.h>
46 #include <linux/sunrpc/clnt.h>
47 #include <linux/sunrpc/xdr.h>
48 #include <linux/sunrpc/svcsock.h>
49 #include <linux/sunrpc/stats.h>
51 /* SMP locking strategy:
53 * svc_pool->sp_lock protects most of the fields of that pool.
54 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
55 * when both need to be taken (rare), svc_serv->sv_lock is first.
56 * BKL protects svc_serv->sv_nrthread.
57 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
58 * and the ->sk_info_authunix cache.
59 * svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
61 * Some flags can be set to certain values at any time
62 * providing that certain rules are followed:
64 * SK_CONN, SK_DATA, can be set or cleared at any time.
65 * after a set, svc_sock_enqueue must be called.
66 * after a clear, the socket must be read/accepted
67 * if this succeeds, it must be set again.
68 * SK_CLOSE can set at any time. It is never cleared.
69 * sk_inuse contains a bias of '1' until SK_DEAD is set.
70 * so when sk_inuse hits zero, we know the socket is dead
71 * and no-one is using it.
72 * SK_DEAD can only be set while SK_BUSY is held which ensures
73 * no other thread will be using the socket or will try to
74 * set SK_DEAD.
78 #define RPCDBG_FACILITY RPCDBG_SVCSOCK
81 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
82 int *errp, int flags);
83 static void svc_delete_socket(struct svc_sock *svsk);
84 static void svc_udp_data_ready(struct sock *, int);
85 static int svc_udp_recvfrom(struct svc_rqst *);
86 static int svc_udp_sendto(struct svc_rqst *);
87 static void svc_close_socket(struct svc_sock *svsk);
89 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
90 static int svc_deferred_recv(struct svc_rqst *rqstp);
91 static struct cache_deferred_req *svc_defer(struct cache_req *req);
93 /* apparently the "standard" is that clients close
94 * idle connections after 5 minutes, servers after
95 * 6 minutes
96 * http://www.connectathon.org/talks96/nfstcp.pdf
98 static int svc_conn_age_period = 6*60;
100 #ifdef CONFIG_DEBUG_LOCK_ALLOC
101 static struct lock_class_key svc_key[2];
102 static struct lock_class_key svc_slock_key[2];
104 static inline void svc_reclassify_socket(struct socket *sock)
106 struct sock *sk = sock->sk;
107 BUG_ON(sock_owned_by_user(sk));
108 switch (sk->sk_family) {
109 case AF_INET:
110 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
111 &svc_slock_key[0], "sk_lock-AF_INET-NFSD", &svc_key[0]);
112 break;
114 case AF_INET6:
115 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
116 &svc_slock_key[1], "sk_lock-AF_INET6-NFSD", &svc_key[1]);
117 break;
119 default:
120 BUG();
123 #else
124 static inline void svc_reclassify_socket(struct socket *sock)
127 #endif
129 static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
131 switch (addr->sa_family) {
132 case AF_INET:
133 snprintf(buf, len, "%u.%u.%u.%u, port=%u",
134 NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
135 ntohs(((struct sockaddr_in *) addr)->sin_port));
136 break;
138 case AF_INET6:
139 snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
140 NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
141 ntohs(((struct sockaddr_in6 *) addr)->sin6_port));
142 break;
144 default:
145 snprintf(buf, len, "unknown address type: %d", addr->sa_family);
146 break;
148 return buf;
152 * svc_print_addr - Format rq_addr field for printing
153 * @rqstp: svc_rqst struct containing address to print
154 * @buf: target buffer for formatted address
155 * @len: length of target buffer
158 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
160 return __svc_print_addr(svc_addr(rqstp), buf, len);
162 EXPORT_SYMBOL_GPL(svc_print_addr);
165 * Queue up an idle server thread. Must have pool->sp_lock held.
166 * Note: this is really a stack rather than a queue, so that we only
167 * use as many different threads as we need, and the rest don't pollute
168 * the cache.
170 static inline void
171 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
173 list_add(&rqstp->rq_list, &pool->sp_threads);
177 * Dequeue an nfsd thread. Must have pool->sp_lock held.
179 static inline void
180 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
182 list_del(&rqstp->rq_list);
186 * Release an skbuff after use
188 static inline void
189 svc_release_skb(struct svc_rqst *rqstp)
191 struct sk_buff *skb = rqstp->rq_skbuff;
192 struct svc_deferred_req *dr = rqstp->rq_deferred;
194 if (skb) {
195 rqstp->rq_skbuff = NULL;
197 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
198 skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
200 if (dr) {
201 rqstp->rq_deferred = NULL;
202 kfree(dr);
207 * Any space to write?
209 static inline unsigned long
210 svc_sock_wspace(struct svc_sock *svsk)
212 int wspace;
214 if (svsk->sk_sock->type == SOCK_STREAM)
215 wspace = sk_stream_wspace(svsk->sk_sk);
216 else
217 wspace = sock_wspace(svsk->sk_sk);
219 return wspace;
223 * Queue up a socket with data pending. If there are idle nfsd
224 * processes, wake 'em up.
227 static void
228 svc_sock_enqueue(struct svc_sock *svsk)
230 struct svc_serv *serv = svsk->sk_server;
231 struct svc_pool *pool;
232 struct svc_rqst *rqstp;
233 int cpu;
235 if (!(svsk->sk_flags &
236 ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
237 return;
238 if (test_bit(SK_DEAD, &svsk->sk_flags))
239 return;
241 cpu = get_cpu();
242 pool = svc_pool_for_cpu(svsk->sk_server, cpu);
243 put_cpu();
245 spin_lock_bh(&pool->sp_lock);
247 if (!list_empty(&pool->sp_threads) &&
248 !list_empty(&pool->sp_sockets))
249 printk(KERN_ERR
250 "svc_sock_enqueue: threads and sockets both waiting??\n");
252 if (test_bit(SK_DEAD, &svsk->sk_flags)) {
253 /* Don't enqueue dead sockets */
254 dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
255 goto out_unlock;
258 /* Mark socket as busy. It will remain in this state until the
259 * server has processed all pending data and put the socket back
260 * on the idle list. We update SK_BUSY atomically because
261 * it also guards against trying to enqueue the svc_sock twice.
263 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) {
264 /* Don't enqueue socket while already enqueued */
265 dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
266 goto out_unlock;
268 BUG_ON(svsk->sk_pool != NULL);
269 svsk->sk_pool = pool;
271 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
272 if (((atomic_read(&svsk->sk_reserved) + serv->sv_max_mesg)*2
273 > svc_sock_wspace(svsk))
274 && !test_bit(SK_CLOSE, &svsk->sk_flags)
275 && !test_bit(SK_CONN, &svsk->sk_flags)) {
276 /* Don't enqueue while not enough space for reply */
277 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
278 svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_max_mesg,
279 svc_sock_wspace(svsk));
280 svsk->sk_pool = NULL;
281 clear_bit(SK_BUSY, &svsk->sk_flags);
282 goto out_unlock;
284 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
287 if (!list_empty(&pool->sp_threads)) {
288 rqstp = list_entry(pool->sp_threads.next,
289 struct svc_rqst,
290 rq_list);
291 dprintk("svc: socket %p served by daemon %p\n",
292 svsk->sk_sk, rqstp);
293 svc_thread_dequeue(pool, rqstp);
294 if (rqstp->rq_sock)
295 printk(KERN_ERR
296 "svc_sock_enqueue: server %p, rq_sock=%p!\n",
297 rqstp, rqstp->rq_sock);
298 rqstp->rq_sock = svsk;
299 atomic_inc(&svsk->sk_inuse);
300 rqstp->rq_reserved = serv->sv_max_mesg;
301 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
302 BUG_ON(svsk->sk_pool != pool);
303 wake_up(&rqstp->rq_wait);
304 } else {
305 dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
306 list_add_tail(&svsk->sk_ready, &pool->sp_sockets);
307 BUG_ON(svsk->sk_pool != pool);
310 out_unlock:
311 spin_unlock_bh(&pool->sp_lock);
315 * Dequeue the first socket. Must be called with the pool->sp_lock held.
317 static inline struct svc_sock *
318 svc_sock_dequeue(struct svc_pool *pool)
320 struct svc_sock *svsk;
322 if (list_empty(&pool->sp_sockets))
323 return NULL;
325 svsk = list_entry(pool->sp_sockets.next,
326 struct svc_sock, sk_ready);
327 list_del_init(&svsk->sk_ready);
329 dprintk("svc: socket %p dequeued, inuse=%d\n",
330 svsk->sk_sk, atomic_read(&svsk->sk_inuse));
332 return svsk;
336 * Having read something from a socket, check whether it
337 * needs to be re-enqueued.
338 * Note: SK_DATA only gets cleared when a read-attempt finds
339 * no (or insufficient) data.
341 static inline void
342 svc_sock_received(struct svc_sock *svsk)
344 svsk->sk_pool = NULL;
345 clear_bit(SK_BUSY, &svsk->sk_flags);
346 svc_sock_enqueue(svsk);
351 * svc_reserve - change the space reserved for the reply to a request.
352 * @rqstp: The request in question
353 * @space: new max space to reserve
355 * Each request reserves some space on the output queue of the socket
356 * to make sure the reply fits. This function reduces that reserved
357 * space to be the amount of space used already, plus @space.
360 void svc_reserve(struct svc_rqst *rqstp, int space)
362 space += rqstp->rq_res.head[0].iov_len;
364 if (space < rqstp->rq_reserved) {
365 struct svc_sock *svsk = rqstp->rq_sock;
366 atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved);
367 rqstp->rq_reserved = space;
369 svc_sock_enqueue(svsk);
374 * Release a socket after use.
376 static inline void
377 svc_sock_put(struct svc_sock *svsk)
379 if (atomic_dec_and_test(&svsk->sk_inuse)) {
380 BUG_ON(! test_bit(SK_DEAD, &svsk->sk_flags));
382 dprintk("svc: releasing dead socket\n");
383 if (svsk->sk_sock->file)
384 sockfd_put(svsk->sk_sock);
385 else
386 sock_release(svsk->sk_sock);
387 if (svsk->sk_info_authunix != NULL)
388 svcauth_unix_info_release(svsk->sk_info_authunix);
389 kfree(svsk);
393 static void
394 svc_sock_release(struct svc_rqst *rqstp)
396 struct svc_sock *svsk = rqstp->rq_sock;
398 svc_release_skb(rqstp);
400 svc_free_res_pages(rqstp);
401 rqstp->rq_res.page_len = 0;
402 rqstp->rq_res.page_base = 0;
405 /* Reset response buffer and release
406 * the reservation.
407 * But first, check that enough space was reserved
408 * for the reply, otherwise we have a bug!
410 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
411 printk(KERN_ERR "RPC request reserved %d but used %d\n",
412 rqstp->rq_reserved,
413 rqstp->rq_res.len);
415 rqstp->rq_res.head[0].iov_len = 0;
416 svc_reserve(rqstp, 0);
417 rqstp->rq_sock = NULL;
419 svc_sock_put(svsk);
423 * External function to wake up a server waiting for data
424 * This really only makes sense for services like lockd
425 * which have exactly one thread anyway.
427 void
428 svc_wake_up(struct svc_serv *serv)
430 struct svc_rqst *rqstp;
431 unsigned int i;
432 struct svc_pool *pool;
434 for (i = 0; i < serv->sv_nrpools; i++) {
435 pool = &serv->sv_pools[i];
437 spin_lock_bh(&pool->sp_lock);
438 if (!list_empty(&pool->sp_threads)) {
439 rqstp = list_entry(pool->sp_threads.next,
440 struct svc_rqst,
441 rq_list);
442 dprintk("svc: daemon %p woken up.\n", rqstp);
444 svc_thread_dequeue(pool, rqstp);
445 rqstp->rq_sock = NULL;
447 wake_up(&rqstp->rq_wait);
449 spin_unlock_bh(&pool->sp_lock);
453 union svc_pktinfo_u {
454 struct in_pktinfo pkti;
455 struct in6_pktinfo pkti6;
457 #define SVC_PKTINFO_SPACE \
458 CMSG_SPACE(sizeof(union svc_pktinfo_u))
460 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
462 switch (rqstp->rq_sock->sk_sk->sk_family) {
463 case AF_INET: {
464 struct in_pktinfo *pki = CMSG_DATA(cmh);
466 cmh->cmsg_level = SOL_IP;
467 cmh->cmsg_type = IP_PKTINFO;
468 pki->ipi_ifindex = 0;
469 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
470 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
472 break;
474 case AF_INET6: {
475 struct in6_pktinfo *pki = CMSG_DATA(cmh);
477 cmh->cmsg_level = SOL_IPV6;
478 cmh->cmsg_type = IPV6_PKTINFO;
479 pki->ipi6_ifindex = 0;
480 ipv6_addr_copy(&pki->ipi6_addr,
481 &rqstp->rq_daddr.addr6);
482 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
484 break;
486 return;
490 * Generic sendto routine
492 static int
493 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
495 struct svc_sock *svsk = rqstp->rq_sock;
496 struct socket *sock = svsk->sk_sock;
497 int slen;
498 union {
499 struct cmsghdr hdr;
500 long all[SVC_PKTINFO_SPACE / sizeof(long)];
501 } buffer;
502 struct cmsghdr *cmh = &buffer.hdr;
503 int len = 0;
504 int result;
505 int size;
506 struct page **ppage = xdr->pages;
507 size_t base = xdr->page_base;
508 unsigned int pglen = xdr->page_len;
509 unsigned int flags = MSG_MORE;
510 char buf[RPC_MAX_ADDRBUFLEN];
512 slen = xdr->len;
514 if (rqstp->rq_prot == IPPROTO_UDP) {
515 struct msghdr msg = {
516 .msg_name = &rqstp->rq_addr,
517 .msg_namelen = rqstp->rq_addrlen,
518 .msg_control = cmh,
519 .msg_controllen = sizeof(buffer),
520 .msg_flags = MSG_MORE,
523 svc_set_cmsg_data(rqstp, cmh);
525 if (sock_sendmsg(sock, &msg, 0) < 0)
526 goto out;
529 /* send head */
530 if (slen == xdr->head[0].iov_len)
531 flags = 0;
532 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
533 xdr->head[0].iov_len, flags);
534 if (len != xdr->head[0].iov_len)
535 goto out;
536 slen -= xdr->head[0].iov_len;
537 if (slen == 0)
538 goto out;
540 /* send page data */
541 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
542 while (pglen > 0) {
543 if (slen == size)
544 flags = 0;
545 result = kernel_sendpage(sock, *ppage, base, size, flags);
546 if (result > 0)
547 len += result;
548 if (result != size)
549 goto out;
550 slen -= size;
551 pglen -= size;
552 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
553 base = 0;
554 ppage++;
556 /* send tail */
557 if (xdr->tail[0].iov_len) {
558 result = kernel_sendpage(sock, rqstp->rq_respages[0],
559 ((unsigned long)xdr->tail[0].iov_base)
560 & (PAGE_SIZE-1),
561 xdr->tail[0].iov_len, 0);
563 if (result > 0)
564 len += result;
566 out:
567 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
568 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
569 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
571 return len;
575 * Report socket names for nfsdfs
577 static int one_sock_name(char *buf, struct svc_sock *svsk)
579 int len;
581 switch(svsk->sk_sk->sk_family) {
582 case AF_INET:
583 len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
584 svsk->sk_sk->sk_protocol==IPPROTO_UDP?
585 "udp" : "tcp",
586 NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
587 inet_sk(svsk->sk_sk)->num);
588 break;
589 default:
590 len = sprintf(buf, "*unknown-%d*\n",
591 svsk->sk_sk->sk_family);
593 return len;
597 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
599 struct svc_sock *svsk, *closesk = NULL;
600 int len = 0;
602 if (!serv)
603 return 0;
604 spin_lock_bh(&serv->sv_lock);
605 list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
606 int onelen = one_sock_name(buf+len, svsk);
607 if (toclose && strcmp(toclose, buf+len) == 0)
608 closesk = svsk;
609 else
610 len += onelen;
612 spin_unlock_bh(&serv->sv_lock);
613 if (closesk)
614 /* Should unregister with portmap, but you cannot
615 * unregister just one protocol...
617 svc_close_socket(closesk);
618 else if (toclose)
619 return -ENOENT;
620 return len;
622 EXPORT_SYMBOL(svc_sock_names);
625 * Check input queue length
627 static int
628 svc_recv_available(struct svc_sock *svsk)
630 struct socket *sock = svsk->sk_sock;
631 int avail, err;
633 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
635 return (err >= 0)? avail : err;
639 * Generic recvfrom routine.
641 static int
642 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
644 struct svc_sock *svsk = rqstp->rq_sock;
645 struct msghdr msg = {
646 .msg_flags = MSG_DONTWAIT,
648 struct sockaddr *sin;
649 int len;
651 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
652 msg.msg_flags);
654 /* sock_recvmsg doesn't fill in the name/namelen, so we must..
656 memcpy(&rqstp->rq_addr, &svsk->sk_remote, svsk->sk_remotelen);
657 rqstp->rq_addrlen = svsk->sk_remotelen;
659 /* Destination address in request is needed for binding the
660 * source address in RPC callbacks later.
662 sin = (struct sockaddr *)&svsk->sk_local;
663 switch (sin->sa_family) {
664 case AF_INET:
665 rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
666 break;
667 case AF_INET6:
668 rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
669 break;
672 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
673 svsk, iov[0].iov_base, iov[0].iov_len, len);
675 return len;
679 * Set socket snd and rcv buffer lengths
681 static inline void
682 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
684 #if 0
685 mm_segment_t oldfs;
686 oldfs = get_fs(); set_fs(KERNEL_DS);
687 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
688 (char*)&snd, sizeof(snd));
689 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
690 (char*)&rcv, sizeof(rcv));
691 #else
692 /* sock_setsockopt limits use to sysctl_?mem_max,
693 * which isn't acceptable. Until that is made conditional
694 * on not having CAP_SYS_RESOURCE or similar, we go direct...
695 * DaveM said I could!
697 lock_sock(sock->sk);
698 sock->sk->sk_sndbuf = snd * 2;
699 sock->sk->sk_rcvbuf = rcv * 2;
700 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
701 release_sock(sock->sk);
702 #endif
705 * INET callback when data has been received on the socket.
707 static void
708 svc_udp_data_ready(struct sock *sk, int count)
710 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
712 if (svsk) {
713 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
714 svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
715 set_bit(SK_DATA, &svsk->sk_flags);
716 svc_sock_enqueue(svsk);
718 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
719 wake_up_interruptible(sk->sk_sleep);
723 * INET callback when space is newly available on the socket.
725 static void
726 svc_write_space(struct sock *sk)
728 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
730 if (svsk) {
731 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
732 svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
733 svc_sock_enqueue(svsk);
736 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
737 dprintk("RPC svc_write_space: someone sleeping on %p\n",
738 svsk);
739 wake_up_interruptible(sk->sk_sleep);
743 static inline void svc_udp_get_dest_address(struct svc_rqst *rqstp,
744 struct cmsghdr *cmh)
746 switch (rqstp->rq_sock->sk_sk->sk_family) {
747 case AF_INET: {
748 struct in_pktinfo *pki = CMSG_DATA(cmh);
749 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
750 break;
752 case AF_INET6: {
753 struct in6_pktinfo *pki = CMSG_DATA(cmh);
754 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
755 break;
761 * Receive a datagram from a UDP socket.
763 static int
764 svc_udp_recvfrom(struct svc_rqst *rqstp)
766 struct svc_sock *svsk = rqstp->rq_sock;
767 struct svc_serv *serv = svsk->sk_server;
768 struct sk_buff *skb;
769 union {
770 struct cmsghdr hdr;
771 long all[SVC_PKTINFO_SPACE / sizeof(long)];
772 } buffer;
773 struct cmsghdr *cmh = &buffer.hdr;
774 int err, len;
775 struct msghdr msg = {
776 .msg_name = svc_addr(rqstp),
777 .msg_control = cmh,
778 .msg_controllen = sizeof(buffer),
779 .msg_flags = MSG_DONTWAIT,
782 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
783 /* udp sockets need large rcvbuf as all pending
784 * requests are still in that buffer. sndbuf must
785 * also be large enough that there is enough space
786 * for one reply per thread. We count all threads
787 * rather than threads in a particular pool, which
788 * provides an upper bound on the number of threads
789 * which will access the socket.
791 svc_sock_setbufsize(svsk->sk_sock,
792 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
793 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
795 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
796 svc_sock_received(svsk);
797 return svc_deferred_recv(rqstp);
800 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
801 svc_delete_socket(svsk);
802 return 0;
805 clear_bit(SK_DATA, &svsk->sk_flags);
806 skb = NULL;
807 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
808 0, 0, MSG_PEEK | MSG_DONTWAIT);
809 if (err >= 0)
810 skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
812 if (skb == NULL) {
813 if (err != -EAGAIN) {
814 /* possibly an icmp error */
815 dprintk("svc: recvfrom returned error %d\n", -err);
816 set_bit(SK_DATA, &svsk->sk_flags);
818 svc_sock_received(svsk);
819 return -EAGAIN;
821 rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
822 if (skb->tstamp.tv64 == 0) {
823 skb->tstamp = ktime_get_real();
824 /* Don't enable netstamp, sunrpc doesn't
825 need that much accuracy */
827 svsk->sk_sk->sk_stamp = skb->tstamp;
828 set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
831 * Maybe more packets - kick another thread ASAP.
833 svc_sock_received(svsk);
835 len = skb->len - sizeof(struct udphdr);
836 rqstp->rq_arg.len = len;
838 rqstp->rq_prot = IPPROTO_UDP;
840 if (cmh->cmsg_level != IPPROTO_IP ||
841 cmh->cmsg_type != IP_PKTINFO) {
842 if (net_ratelimit())
843 printk("rpcsvc: received unknown control message:"
844 "%d/%d\n",
845 cmh->cmsg_level, cmh->cmsg_type);
846 skb_free_datagram(svsk->sk_sk, skb);
847 return 0;
849 svc_udp_get_dest_address(rqstp, cmh);
851 if (skb_is_nonlinear(skb)) {
852 /* we have to copy */
853 local_bh_disable();
854 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
855 local_bh_enable();
856 /* checksum error */
857 skb_free_datagram(svsk->sk_sk, skb);
858 return 0;
860 local_bh_enable();
861 skb_free_datagram(svsk->sk_sk, skb);
862 } else {
863 /* we can use it in-place */
864 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
865 rqstp->rq_arg.head[0].iov_len = len;
866 if (skb_checksum_complete(skb)) {
867 skb_free_datagram(svsk->sk_sk, skb);
868 return 0;
870 rqstp->rq_skbuff = skb;
873 rqstp->rq_arg.page_base = 0;
874 if (len <= rqstp->rq_arg.head[0].iov_len) {
875 rqstp->rq_arg.head[0].iov_len = len;
876 rqstp->rq_arg.page_len = 0;
877 rqstp->rq_respages = rqstp->rq_pages+1;
878 } else {
879 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
880 rqstp->rq_respages = rqstp->rq_pages + 1 +
881 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
884 if (serv->sv_stats)
885 serv->sv_stats->netudpcnt++;
887 return len;
890 static int
891 svc_udp_sendto(struct svc_rqst *rqstp)
893 int error;
895 error = svc_sendto(rqstp, &rqstp->rq_res);
896 if (error == -ECONNREFUSED)
897 /* ICMP error on earlier request. */
898 error = svc_sendto(rqstp, &rqstp->rq_res);
900 return error;
903 static void
904 svc_udp_init(struct svc_sock *svsk)
906 int one = 1;
907 mm_segment_t oldfs;
909 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
910 svsk->sk_sk->sk_write_space = svc_write_space;
911 svsk->sk_recvfrom = svc_udp_recvfrom;
912 svsk->sk_sendto = svc_udp_sendto;
914 /* initialise setting must have enough space to
915 * receive and respond to one request.
916 * svc_udp_recvfrom will re-adjust if necessary
918 svc_sock_setbufsize(svsk->sk_sock,
919 3 * svsk->sk_server->sv_max_mesg,
920 3 * svsk->sk_server->sv_max_mesg);
922 set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
923 set_bit(SK_CHNGBUF, &svsk->sk_flags);
925 oldfs = get_fs();
926 set_fs(KERNEL_DS);
927 /* make sure we get destination address info */
928 svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
929 (char __user *)&one, sizeof(one));
930 set_fs(oldfs);
934 * A data_ready event on a listening socket means there's a connection
935 * pending. Do not use state_change as a substitute for it.
937 static void
938 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
940 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
942 dprintk("svc: socket %p TCP (listen) state change %d\n",
943 sk, sk->sk_state);
946 * This callback may called twice when a new connection
947 * is established as a child socket inherits everything
948 * from a parent LISTEN socket.
949 * 1) data_ready method of the parent socket will be called
950 * when one of child sockets become ESTABLISHED.
951 * 2) data_ready method of the child socket may be called
952 * when it receives data before the socket is accepted.
953 * In case of 2, we should ignore it silently.
955 if (sk->sk_state == TCP_LISTEN) {
956 if (svsk) {
957 set_bit(SK_CONN, &svsk->sk_flags);
958 svc_sock_enqueue(svsk);
959 } else
960 printk("svc: socket %p: no user data\n", sk);
963 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
964 wake_up_interruptible_all(sk->sk_sleep);
968 * A state change on a connected socket means it's dying or dead.
970 static void
971 svc_tcp_state_change(struct sock *sk)
973 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
975 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
976 sk, sk->sk_state, sk->sk_user_data);
978 if (!svsk)
979 printk("svc: socket %p: no user data\n", sk);
980 else {
981 set_bit(SK_CLOSE, &svsk->sk_flags);
982 svc_sock_enqueue(svsk);
984 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
985 wake_up_interruptible_all(sk->sk_sleep);
988 static void
989 svc_tcp_data_ready(struct sock *sk, int count)
991 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
993 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
994 sk, sk->sk_user_data);
995 if (svsk) {
996 set_bit(SK_DATA, &svsk->sk_flags);
997 svc_sock_enqueue(svsk);
999 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1000 wake_up_interruptible(sk->sk_sleep);
1003 static inline int svc_port_is_privileged(struct sockaddr *sin)
1005 switch (sin->sa_family) {
1006 case AF_INET:
1007 return ntohs(((struct sockaddr_in *)sin)->sin_port)
1008 < PROT_SOCK;
1009 case AF_INET6:
1010 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
1011 < PROT_SOCK;
1012 default:
1013 return 0;
1018 * Accept a TCP connection
1020 static void
1021 svc_tcp_accept(struct svc_sock *svsk)
1023 struct sockaddr_storage addr;
1024 struct sockaddr *sin = (struct sockaddr *) &addr;
1025 struct svc_serv *serv = svsk->sk_server;
1026 struct socket *sock = svsk->sk_sock;
1027 struct socket *newsock;
1028 struct svc_sock *newsvsk;
1029 int err, slen;
1030 char buf[RPC_MAX_ADDRBUFLEN];
1032 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
1033 if (!sock)
1034 return;
1036 clear_bit(SK_CONN, &svsk->sk_flags);
1037 err = kernel_accept(sock, &newsock, O_NONBLOCK);
1038 if (err < 0) {
1039 if (err == -ENOMEM)
1040 printk(KERN_WARNING "%s: no more sockets!\n",
1041 serv->sv_name);
1042 else if (err != -EAGAIN && net_ratelimit())
1043 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
1044 serv->sv_name, -err);
1045 return;
1048 set_bit(SK_CONN, &svsk->sk_flags);
1049 svc_sock_enqueue(svsk);
1051 err = kernel_getpeername(newsock, sin, &slen);
1052 if (err < 0) {
1053 if (net_ratelimit())
1054 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
1055 serv->sv_name, -err);
1056 goto failed; /* aborted connection or whatever */
1059 /* Ideally, we would want to reject connections from unauthorized
1060 * hosts here, but when we get encryption, the IP of the host won't
1061 * tell us anything. For now just warn about unpriv connections.
1063 if (!svc_port_is_privileged(sin)) {
1064 dprintk(KERN_WARNING
1065 "%s: connect from unprivileged port: %s\n",
1066 serv->sv_name,
1067 __svc_print_addr(sin, buf, sizeof(buf)));
1069 dprintk("%s: connect from %s\n", serv->sv_name,
1070 __svc_print_addr(sin, buf, sizeof(buf)));
1072 /* make sure that a write doesn't block forever when
1073 * low on memory
1075 newsock->sk->sk_sndtimeo = HZ*30;
1077 if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
1078 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
1079 goto failed;
1080 memcpy(&newsvsk->sk_remote, sin, slen);
1081 newsvsk->sk_remotelen = slen;
1082 err = kernel_getsockname(newsock, sin, &slen);
1083 if (unlikely(err < 0)) {
1084 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
1085 slen = offsetof(struct sockaddr, sa_data);
1087 memcpy(&newsvsk->sk_local, sin, slen);
1089 svc_sock_received(newsvsk);
1091 /* make sure that we don't have too many active connections.
1092 * If we have, something must be dropped.
1094 * There's no point in trying to do random drop here for
1095 * DoS prevention. The NFS clients does 1 reconnect in 15
1096 * seconds. An attacker can easily beat that.
1098 * The only somewhat efficient mechanism would be if drop
1099 * old connections from the same IP first. But right now
1100 * we don't even record the client IP in svc_sock.
1102 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
1103 struct svc_sock *svsk = NULL;
1104 spin_lock_bh(&serv->sv_lock);
1105 if (!list_empty(&serv->sv_tempsocks)) {
1106 if (net_ratelimit()) {
1107 /* Try to help the admin */
1108 printk(KERN_NOTICE "%s: too many open TCP "
1109 "sockets, consider increasing the "
1110 "number of nfsd threads\n",
1111 serv->sv_name);
1112 printk(KERN_NOTICE
1113 "%s: last TCP connect from %s\n",
1114 serv->sv_name, __svc_print_addr(sin,
1115 buf, sizeof(buf)));
1118 * Always select the oldest socket. It's not fair,
1119 * but so is life
1121 svsk = list_entry(serv->sv_tempsocks.prev,
1122 struct svc_sock,
1123 sk_list);
1124 set_bit(SK_CLOSE, &svsk->sk_flags);
1125 atomic_inc(&svsk->sk_inuse);
1127 spin_unlock_bh(&serv->sv_lock);
1129 if (svsk) {
1130 svc_sock_enqueue(svsk);
1131 svc_sock_put(svsk);
1136 if (serv->sv_stats)
1137 serv->sv_stats->nettcpconn++;
1139 return;
1141 failed:
1142 sock_release(newsock);
1143 return;
1147 * Receive data from a TCP socket.
1149 static int
1150 svc_tcp_recvfrom(struct svc_rqst *rqstp)
1152 struct svc_sock *svsk = rqstp->rq_sock;
1153 struct svc_serv *serv = svsk->sk_server;
1154 int len;
1155 struct kvec *vec;
1156 int pnum, vlen;
1158 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1159 svsk, test_bit(SK_DATA, &svsk->sk_flags),
1160 test_bit(SK_CONN, &svsk->sk_flags),
1161 test_bit(SK_CLOSE, &svsk->sk_flags));
1163 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
1164 svc_sock_received(svsk);
1165 return svc_deferred_recv(rqstp);
1168 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
1169 svc_delete_socket(svsk);
1170 return 0;
1173 if (svsk->sk_sk->sk_state == TCP_LISTEN) {
1174 svc_tcp_accept(svsk);
1175 svc_sock_received(svsk);
1176 return 0;
1179 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
1180 /* sndbuf needs to have room for one request
1181 * per thread, otherwise we can stall even when the
1182 * network isn't a bottleneck.
1184 * We count all threads rather than threads in a
1185 * particular pool, which provides an upper bound
1186 * on the number of threads which will access the socket.
1188 * rcvbuf just needs to be able to hold a few requests.
1189 * Normally they will be removed from the queue
1190 * as soon a a complete request arrives.
1192 svc_sock_setbufsize(svsk->sk_sock,
1193 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1194 3 * serv->sv_max_mesg);
1196 clear_bit(SK_DATA, &svsk->sk_flags);
1198 /* Receive data. If we haven't got the record length yet, get
1199 * the next four bytes. Otherwise try to gobble up as much as
1200 * possible up to the complete record length.
1202 if (svsk->sk_tcplen < 4) {
1203 unsigned long want = 4 - svsk->sk_tcplen;
1204 struct kvec iov;
1206 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1207 iov.iov_len = want;
1208 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1209 goto error;
1210 svsk->sk_tcplen += len;
1212 if (len < want) {
1213 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1214 len, want);
1215 svc_sock_received(svsk);
1216 return -EAGAIN; /* record header not complete */
1219 svsk->sk_reclen = ntohl(svsk->sk_reclen);
1220 if (!(svsk->sk_reclen & 0x80000000)) {
1221 /* FIXME: technically, a record can be fragmented,
1222 * and non-terminal fragments will not have the top
1223 * bit set in the fragment length header.
1224 * But apparently no known nfs clients send fragmented
1225 * records. */
1226 if (net_ratelimit())
1227 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1228 " (non-terminal)\n",
1229 (unsigned long) svsk->sk_reclen);
1230 goto err_delete;
1232 svsk->sk_reclen &= 0x7fffffff;
1233 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1234 if (svsk->sk_reclen > serv->sv_max_mesg) {
1235 if (net_ratelimit())
1236 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1237 " (large)\n",
1238 (unsigned long) svsk->sk_reclen);
1239 goto err_delete;
1243 /* Check whether enough data is available */
1244 len = svc_recv_available(svsk);
1245 if (len < 0)
1246 goto error;
1248 if (len < svsk->sk_reclen) {
1249 dprintk("svc: incomplete TCP record (%d of %d)\n",
1250 len, svsk->sk_reclen);
1251 svc_sock_received(svsk);
1252 return -EAGAIN; /* record not complete */
1254 len = svsk->sk_reclen;
1255 set_bit(SK_DATA, &svsk->sk_flags);
1257 vec = rqstp->rq_vec;
1258 vec[0] = rqstp->rq_arg.head[0];
1259 vlen = PAGE_SIZE;
1260 pnum = 1;
1261 while (vlen < len) {
1262 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1263 vec[pnum].iov_len = PAGE_SIZE;
1264 pnum++;
1265 vlen += PAGE_SIZE;
1267 rqstp->rq_respages = &rqstp->rq_pages[pnum];
1269 /* Now receive data */
1270 len = svc_recvfrom(rqstp, vec, pnum, len);
1271 if (len < 0)
1272 goto error;
1274 dprintk("svc: TCP complete record (%d bytes)\n", len);
1275 rqstp->rq_arg.len = len;
1276 rqstp->rq_arg.page_base = 0;
1277 if (len <= rqstp->rq_arg.head[0].iov_len) {
1278 rqstp->rq_arg.head[0].iov_len = len;
1279 rqstp->rq_arg.page_len = 0;
1280 } else {
1281 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1284 rqstp->rq_skbuff = NULL;
1285 rqstp->rq_prot = IPPROTO_TCP;
1287 /* Reset TCP read info */
1288 svsk->sk_reclen = 0;
1289 svsk->sk_tcplen = 0;
1291 svc_sock_received(svsk);
1292 if (serv->sv_stats)
1293 serv->sv_stats->nettcpcnt++;
1295 return len;
1297 err_delete:
1298 svc_delete_socket(svsk);
1299 return -EAGAIN;
1301 error:
1302 if (len == -EAGAIN) {
1303 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1304 svc_sock_received(svsk);
1305 } else {
1306 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1307 svsk->sk_server->sv_name, -len);
1308 goto err_delete;
1311 return len;
1315 * Send out data on TCP socket.
1317 static int
1318 svc_tcp_sendto(struct svc_rqst *rqstp)
1320 struct xdr_buf *xbufp = &rqstp->rq_res;
1321 int sent;
1322 __be32 reclen;
1324 /* Set up the first element of the reply kvec.
1325 * Any other kvecs that may be in use have been taken
1326 * care of by the server implementation itself.
1328 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1329 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1331 if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1332 return -ENOTCONN;
1334 sent = svc_sendto(rqstp, &rqstp->rq_res);
1335 if (sent != xbufp->len) {
1336 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1337 rqstp->rq_sock->sk_server->sv_name,
1338 (sent<0)?"got error":"sent only",
1339 sent, xbufp->len);
1340 set_bit(SK_CLOSE, &rqstp->rq_sock->sk_flags);
1341 svc_sock_enqueue(rqstp->rq_sock);
1342 sent = -EAGAIN;
1344 return sent;
1347 static void
1348 svc_tcp_init(struct svc_sock *svsk)
1350 struct sock *sk = svsk->sk_sk;
1351 struct tcp_sock *tp = tcp_sk(sk);
1353 svsk->sk_recvfrom = svc_tcp_recvfrom;
1354 svsk->sk_sendto = svc_tcp_sendto;
1356 if (sk->sk_state == TCP_LISTEN) {
1357 dprintk("setting up TCP socket for listening\n");
1358 sk->sk_data_ready = svc_tcp_listen_data_ready;
1359 set_bit(SK_CONN, &svsk->sk_flags);
1360 } else {
1361 dprintk("setting up TCP socket for reading\n");
1362 sk->sk_state_change = svc_tcp_state_change;
1363 sk->sk_data_ready = svc_tcp_data_ready;
1364 sk->sk_write_space = svc_write_space;
1366 svsk->sk_reclen = 0;
1367 svsk->sk_tcplen = 0;
1369 tp->nonagle = 1; /* disable Nagle's algorithm */
1371 /* initialise setting must have enough space to
1372 * receive and respond to one request.
1373 * svc_tcp_recvfrom will re-adjust if necessary
1375 svc_sock_setbufsize(svsk->sk_sock,
1376 3 * svsk->sk_server->sv_max_mesg,
1377 3 * svsk->sk_server->sv_max_mesg);
1379 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1380 set_bit(SK_DATA, &svsk->sk_flags);
1381 if (sk->sk_state != TCP_ESTABLISHED)
1382 set_bit(SK_CLOSE, &svsk->sk_flags);
1386 void
1387 svc_sock_update_bufs(struct svc_serv *serv)
1390 * The number of server threads has changed. Update
1391 * rcvbuf and sndbuf accordingly on all sockets
1393 struct list_head *le;
1395 spin_lock_bh(&serv->sv_lock);
1396 list_for_each(le, &serv->sv_permsocks) {
1397 struct svc_sock *svsk =
1398 list_entry(le, struct svc_sock, sk_list);
1399 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1401 list_for_each(le, &serv->sv_tempsocks) {
1402 struct svc_sock *svsk =
1403 list_entry(le, struct svc_sock, sk_list);
1404 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1406 spin_unlock_bh(&serv->sv_lock);
1410 * Receive the next request on any socket. This code is carefully
1411 * organised not to touch any cachelines in the shared svc_serv
1412 * structure, only cachelines in the local svc_pool.
1415 svc_recv(struct svc_rqst *rqstp, long timeout)
1417 struct svc_sock *svsk = NULL;
1418 struct svc_serv *serv = rqstp->rq_server;
1419 struct svc_pool *pool = rqstp->rq_pool;
1420 int len, i;
1421 int pages;
1422 struct xdr_buf *arg;
1423 DECLARE_WAITQUEUE(wait, current);
1425 dprintk("svc: server %p waiting for data (to = %ld)\n",
1426 rqstp, timeout);
1428 if (rqstp->rq_sock)
1429 printk(KERN_ERR
1430 "svc_recv: service %p, socket not NULL!\n",
1431 rqstp);
1432 if (waitqueue_active(&rqstp->rq_wait))
1433 printk(KERN_ERR
1434 "svc_recv: service %p, wait queue active!\n",
1435 rqstp);
1438 /* now allocate needed pages. If we get a failure, sleep briefly */
1439 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1440 for (i=0; i < pages ; i++)
1441 while (rqstp->rq_pages[i] == NULL) {
1442 struct page *p = alloc_page(GFP_KERNEL);
1443 if (!p)
1444 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1445 rqstp->rq_pages[i] = p;
1447 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1448 BUG_ON(pages >= RPCSVC_MAXPAGES);
1450 /* Make arg->head point to first page and arg->pages point to rest */
1451 arg = &rqstp->rq_arg;
1452 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1453 arg->head[0].iov_len = PAGE_SIZE;
1454 arg->pages = rqstp->rq_pages + 1;
1455 arg->page_base = 0;
1456 /* save at least one page for response */
1457 arg->page_len = (pages-2)*PAGE_SIZE;
1458 arg->len = (pages-1)*PAGE_SIZE;
1459 arg->tail[0].iov_len = 0;
1461 try_to_freeze();
1462 cond_resched();
1463 if (signalled())
1464 return -EINTR;
1466 spin_lock_bh(&pool->sp_lock);
1467 if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1468 rqstp->rq_sock = svsk;
1469 atomic_inc(&svsk->sk_inuse);
1470 rqstp->rq_reserved = serv->sv_max_mesg;
1471 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
1472 } else {
1473 /* No data pending. Go to sleep */
1474 svc_thread_enqueue(pool, rqstp);
1477 * We have to be able to interrupt this wait
1478 * to bring down the daemons ...
1480 set_current_state(TASK_INTERRUPTIBLE);
1481 add_wait_queue(&rqstp->rq_wait, &wait);
1482 spin_unlock_bh(&pool->sp_lock);
1484 schedule_timeout(timeout);
1486 try_to_freeze();
1488 spin_lock_bh(&pool->sp_lock);
1489 remove_wait_queue(&rqstp->rq_wait, &wait);
1491 if (!(svsk = rqstp->rq_sock)) {
1492 svc_thread_dequeue(pool, rqstp);
1493 spin_unlock_bh(&pool->sp_lock);
1494 dprintk("svc: server %p, no data yet\n", rqstp);
1495 return signalled()? -EINTR : -EAGAIN;
1498 spin_unlock_bh(&pool->sp_lock);
1500 dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1501 rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse));
1502 len = svsk->sk_recvfrom(rqstp);
1503 dprintk("svc: got len=%d\n", len);
1505 /* No data, incomplete (TCP) read, or accept() */
1506 if (len == 0 || len == -EAGAIN) {
1507 rqstp->rq_res.len = 0;
1508 svc_sock_release(rqstp);
1509 return -EAGAIN;
1511 svsk->sk_lastrecv = get_seconds();
1512 clear_bit(SK_OLD, &svsk->sk_flags);
1514 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
1515 rqstp->rq_chandle.defer = svc_defer;
1517 if (serv->sv_stats)
1518 serv->sv_stats->netcnt++;
1519 return len;
1523 * Drop request
1525 void
1526 svc_drop(struct svc_rqst *rqstp)
1528 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1529 svc_sock_release(rqstp);
1533 * Return reply to client.
1536 svc_send(struct svc_rqst *rqstp)
1538 struct svc_sock *svsk;
1539 int len;
1540 struct xdr_buf *xb;
1542 if ((svsk = rqstp->rq_sock) == NULL) {
1543 printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1544 __FILE__, __LINE__);
1545 return -EFAULT;
1548 /* release the receive skb before sending the reply */
1549 svc_release_skb(rqstp);
1551 /* calculate over-all length */
1552 xb = & rqstp->rq_res;
1553 xb->len = xb->head[0].iov_len +
1554 xb->page_len +
1555 xb->tail[0].iov_len;
1557 /* Grab svsk->sk_mutex to serialize outgoing data. */
1558 mutex_lock(&svsk->sk_mutex);
1559 if (test_bit(SK_DEAD, &svsk->sk_flags))
1560 len = -ENOTCONN;
1561 else
1562 len = svsk->sk_sendto(rqstp);
1563 mutex_unlock(&svsk->sk_mutex);
1564 svc_sock_release(rqstp);
1566 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1567 return 0;
1568 return len;
1572 * Timer function to close old temporary sockets, using
1573 * a mark-and-sweep algorithm.
1575 static void
1576 svc_age_temp_sockets(unsigned long closure)
1578 struct svc_serv *serv = (struct svc_serv *)closure;
1579 struct svc_sock *svsk;
1580 struct list_head *le, *next;
1581 LIST_HEAD(to_be_aged);
1583 dprintk("svc_age_temp_sockets\n");
1585 if (!spin_trylock_bh(&serv->sv_lock)) {
1586 /* busy, try again 1 sec later */
1587 dprintk("svc_age_temp_sockets: busy\n");
1588 mod_timer(&serv->sv_temptimer, jiffies + HZ);
1589 return;
1592 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1593 svsk = list_entry(le, struct svc_sock, sk_list);
1595 if (!test_and_set_bit(SK_OLD, &svsk->sk_flags))
1596 continue;
1597 if (atomic_read(&svsk->sk_inuse) > 1 || test_bit(SK_BUSY, &svsk->sk_flags))
1598 continue;
1599 atomic_inc(&svsk->sk_inuse);
1600 list_move(le, &to_be_aged);
1601 set_bit(SK_CLOSE, &svsk->sk_flags);
1602 set_bit(SK_DETACHED, &svsk->sk_flags);
1604 spin_unlock_bh(&serv->sv_lock);
1606 while (!list_empty(&to_be_aged)) {
1607 le = to_be_aged.next;
1608 /* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1609 list_del_init(le);
1610 svsk = list_entry(le, struct svc_sock, sk_list);
1612 dprintk("queuing svsk %p for closing, %lu seconds old\n",
1613 svsk, get_seconds() - svsk->sk_lastrecv);
1615 /* a thread will dequeue and close it soon */
1616 svc_sock_enqueue(svsk);
1617 svc_sock_put(svsk);
1620 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1624 * Initialize socket for RPC use and create svc_sock struct
1625 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1627 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1628 struct socket *sock,
1629 int *errp, int flags)
1631 struct svc_sock *svsk;
1632 struct sock *inet;
1633 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1634 int is_temporary = flags & SVC_SOCK_TEMPORARY;
1636 dprintk("svc: svc_setup_socket %p\n", sock);
1637 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1638 *errp = -ENOMEM;
1639 return NULL;
1642 inet = sock->sk;
1644 /* Register socket with portmapper */
1645 if (*errp >= 0 && pmap_register)
1646 *errp = svc_register(serv, inet->sk_protocol,
1647 ntohs(inet_sk(inet)->sport));
1649 if (*errp < 0) {
1650 kfree(svsk);
1651 return NULL;
1654 set_bit(SK_BUSY, &svsk->sk_flags);
1655 inet->sk_user_data = svsk;
1656 svsk->sk_sock = sock;
1657 svsk->sk_sk = inet;
1658 svsk->sk_ostate = inet->sk_state_change;
1659 svsk->sk_odata = inet->sk_data_ready;
1660 svsk->sk_owspace = inet->sk_write_space;
1661 svsk->sk_server = serv;
1662 atomic_set(&svsk->sk_inuse, 1);
1663 svsk->sk_lastrecv = get_seconds();
1664 spin_lock_init(&svsk->sk_lock);
1665 INIT_LIST_HEAD(&svsk->sk_deferred);
1666 INIT_LIST_HEAD(&svsk->sk_ready);
1667 mutex_init(&svsk->sk_mutex);
1669 /* Initialize the socket */
1670 if (sock->type == SOCK_DGRAM)
1671 svc_udp_init(svsk);
1672 else
1673 svc_tcp_init(svsk);
1675 spin_lock_bh(&serv->sv_lock);
1676 if (is_temporary) {
1677 set_bit(SK_TEMP, &svsk->sk_flags);
1678 list_add(&svsk->sk_list, &serv->sv_tempsocks);
1679 serv->sv_tmpcnt++;
1680 if (serv->sv_temptimer.function == NULL) {
1681 /* setup timer to age temp sockets */
1682 setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1683 (unsigned long)serv);
1684 mod_timer(&serv->sv_temptimer,
1685 jiffies + svc_conn_age_period * HZ);
1687 } else {
1688 clear_bit(SK_TEMP, &svsk->sk_flags);
1689 list_add(&svsk->sk_list, &serv->sv_permsocks);
1691 spin_unlock_bh(&serv->sv_lock);
1693 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1694 svsk, svsk->sk_sk);
1696 return svsk;
1699 int svc_addsock(struct svc_serv *serv,
1700 int fd,
1701 char *name_return,
1702 int *proto)
1704 int err = 0;
1705 struct socket *so = sockfd_lookup(fd, &err);
1706 struct svc_sock *svsk = NULL;
1708 if (!so)
1709 return err;
1710 if (so->sk->sk_family != AF_INET)
1711 err = -EAFNOSUPPORT;
1712 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1713 so->sk->sk_protocol != IPPROTO_UDP)
1714 err = -EPROTONOSUPPORT;
1715 else if (so->state > SS_UNCONNECTED)
1716 err = -EISCONN;
1717 else {
1718 svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
1719 if (svsk) {
1720 svc_sock_received(svsk);
1721 err = 0;
1724 if (err) {
1725 sockfd_put(so);
1726 return err;
1728 if (proto) *proto = so->sk->sk_protocol;
1729 return one_sock_name(name_return, svsk);
1731 EXPORT_SYMBOL_GPL(svc_addsock);
1734 * Create socket for RPC service.
1736 static int svc_create_socket(struct svc_serv *serv, int protocol,
1737 struct sockaddr *sin, int len, int flags)
1739 struct svc_sock *svsk;
1740 struct socket *sock;
1741 int error;
1742 int type;
1743 char buf[RPC_MAX_ADDRBUFLEN];
1745 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1746 serv->sv_program->pg_name, protocol,
1747 __svc_print_addr(sin, buf, sizeof(buf)));
1749 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1750 printk(KERN_WARNING "svc: only UDP and TCP "
1751 "sockets supported\n");
1752 return -EINVAL;
1754 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1756 error = sock_create_kern(sin->sa_family, type, protocol, &sock);
1757 if (error < 0)
1758 return error;
1760 svc_reclassify_socket(sock);
1762 if (type == SOCK_STREAM)
1763 sock->sk->sk_reuse = 1; /* allow address reuse */
1764 error = kernel_bind(sock, sin, len);
1765 if (error < 0)
1766 goto bummer;
1768 if (protocol == IPPROTO_TCP) {
1769 if ((error = kernel_listen(sock, 64)) < 0)
1770 goto bummer;
1773 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1774 svc_sock_received(svsk);
1775 return ntohs(inet_sk(svsk->sk_sk)->sport);
1778 bummer:
1779 dprintk("svc: svc_create_socket error = %d\n", -error);
1780 sock_release(sock);
1781 return error;
1785 * Remove a dead socket
1787 static void
1788 svc_delete_socket(struct svc_sock *svsk)
1790 struct svc_serv *serv;
1791 struct sock *sk;
1793 dprintk("svc: svc_delete_socket(%p)\n", svsk);
1795 serv = svsk->sk_server;
1796 sk = svsk->sk_sk;
1798 sk->sk_state_change = svsk->sk_ostate;
1799 sk->sk_data_ready = svsk->sk_odata;
1800 sk->sk_write_space = svsk->sk_owspace;
1802 spin_lock_bh(&serv->sv_lock);
1804 if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags))
1805 list_del_init(&svsk->sk_list);
1807 * We used to delete the svc_sock from whichever list
1808 * it's sk_ready node was on, but we don't actually
1809 * need to. This is because the only time we're called
1810 * while still attached to a queue, the queue itself
1811 * is about to be destroyed (in svc_destroy).
1813 if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) {
1814 BUG_ON(atomic_read(&svsk->sk_inuse)<2);
1815 atomic_dec(&svsk->sk_inuse);
1816 if (test_bit(SK_TEMP, &svsk->sk_flags))
1817 serv->sv_tmpcnt--;
1820 spin_unlock_bh(&serv->sv_lock);
1823 static void svc_close_socket(struct svc_sock *svsk)
1825 set_bit(SK_CLOSE, &svsk->sk_flags);
1826 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags))
1827 /* someone else will have to effect the close */
1828 return;
1830 atomic_inc(&svsk->sk_inuse);
1831 svc_delete_socket(svsk);
1832 clear_bit(SK_BUSY, &svsk->sk_flags);
1833 svc_sock_put(svsk);
1836 void svc_force_close_socket(struct svc_sock *svsk)
1838 set_bit(SK_CLOSE, &svsk->sk_flags);
1839 if (test_bit(SK_BUSY, &svsk->sk_flags)) {
1840 /* Waiting to be processed, but no threads left,
1841 * So just remove it from the waiting list
1843 list_del_init(&svsk->sk_ready);
1844 clear_bit(SK_BUSY, &svsk->sk_flags);
1846 svc_close_socket(svsk);
1850 * svc_makesock - Make a socket for nfsd and lockd
1851 * @serv: RPC server structure
1852 * @protocol: transport protocol to use
1853 * @port: port to use
1854 * @flags: requested socket characteristics
1857 int svc_makesock(struct svc_serv *serv, int protocol, unsigned short port,
1858 int flags)
1860 struct sockaddr_in sin = {
1861 .sin_family = AF_INET,
1862 .sin_addr.s_addr = INADDR_ANY,
1863 .sin_port = htons(port),
1866 dprintk("svc: creating socket proto = %d\n", protocol);
1867 return svc_create_socket(serv, protocol, (struct sockaddr *) &sin,
1868 sizeof(sin), flags);
1872 * Handle defer and revisit of requests
1875 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1877 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1878 struct svc_sock *svsk;
1880 if (too_many) {
1881 svc_sock_put(dr->svsk);
1882 kfree(dr);
1883 return;
1885 dprintk("revisit queued\n");
1886 svsk = dr->svsk;
1887 dr->svsk = NULL;
1888 spin_lock(&svsk->sk_lock);
1889 list_add(&dr->handle.recent, &svsk->sk_deferred);
1890 spin_unlock(&svsk->sk_lock);
1891 set_bit(SK_DEFERRED, &svsk->sk_flags);
1892 svc_sock_enqueue(svsk);
1893 svc_sock_put(svsk);
1896 static struct cache_deferred_req *
1897 svc_defer(struct cache_req *req)
1899 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1900 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1901 struct svc_deferred_req *dr;
1903 if (rqstp->rq_arg.page_len)
1904 return NULL; /* if more than a page, give up FIXME */
1905 if (rqstp->rq_deferred) {
1906 dr = rqstp->rq_deferred;
1907 rqstp->rq_deferred = NULL;
1908 } else {
1909 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1910 /* FIXME maybe discard if size too large */
1911 dr = kmalloc(size, GFP_KERNEL);
1912 if (dr == NULL)
1913 return NULL;
1915 dr->handle.owner = rqstp->rq_server;
1916 dr->prot = rqstp->rq_prot;
1917 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1918 dr->addrlen = rqstp->rq_addrlen;
1919 dr->daddr = rqstp->rq_daddr;
1920 dr->argslen = rqstp->rq_arg.len >> 2;
1921 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1923 atomic_inc(&rqstp->rq_sock->sk_inuse);
1924 dr->svsk = rqstp->rq_sock;
1926 dr->handle.revisit = svc_revisit;
1927 return &dr->handle;
1931 * recv data from a deferred request into an active one
1933 static int svc_deferred_recv(struct svc_rqst *rqstp)
1935 struct svc_deferred_req *dr = rqstp->rq_deferred;
1937 rqstp->rq_arg.head[0].iov_base = dr->args;
1938 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1939 rqstp->rq_arg.page_len = 0;
1940 rqstp->rq_arg.len = dr->argslen<<2;
1941 rqstp->rq_prot = dr->prot;
1942 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1943 rqstp->rq_addrlen = dr->addrlen;
1944 rqstp->rq_daddr = dr->daddr;
1945 rqstp->rq_respages = rqstp->rq_pages;
1946 return dr->argslen<<2;
1950 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1952 struct svc_deferred_req *dr = NULL;
1954 if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1955 return NULL;
1956 spin_lock(&svsk->sk_lock);
1957 clear_bit(SK_DEFERRED, &svsk->sk_flags);
1958 if (!list_empty(&svsk->sk_deferred)) {
1959 dr = list_entry(svsk->sk_deferred.next,
1960 struct svc_deferred_req,
1961 handle.recent);
1962 list_del_init(&dr->handle.recent);
1963 set_bit(SK_DEFERRED, &svsk->sk_flags);
1965 spin_unlock(&svsk->sk_lock);
1966 return dr;