Revert "Fix very high interrupt rate for IRQ8 (rtc) unless pnpacpi=off"
[pv_ops_mirror.git] / arch / x86 / mm / fault_32.c
bloba2273d44aa279fae2dd739d6247d60a487e93ea0
1 /*
2 * linux/arch/i386/mm/fault.c
4 * Copyright (C) 1995 Linus Torvalds
5 */
7 #include <linux/signal.h>
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/init.h>
19 #include <linux/tty.h>
20 #include <linux/vt_kern.h> /* For unblank_screen() */
21 #include <linux/highmem.h>
22 #include <linux/bootmem.h> /* for max_low_pfn */
23 #include <linux/vmalloc.h>
24 #include <linux/module.h>
25 #include <linux/kprobes.h>
26 #include <linux/uaccess.h>
27 #include <linux/kdebug.h>
28 #include <linux/kprobes.h>
30 #include <asm/system.h>
31 #include <asm/desc.h>
32 #include <asm/segment.h>
34 extern void die(const char *,struct pt_regs *,long);
36 #ifdef CONFIG_KPROBES
37 static inline int notify_page_fault(struct pt_regs *regs)
39 int ret = 0;
41 /* kprobe_running() needs smp_processor_id() */
42 if (!user_mode_vm(regs)) {
43 preempt_disable();
44 if (kprobe_running() && kprobe_fault_handler(regs, 14))
45 ret = 1;
46 preempt_enable();
49 return ret;
51 #else
52 static inline int notify_page_fault(struct pt_regs *regs)
54 return 0;
56 #endif
59 * Return EIP plus the CS segment base. The segment limit is also
60 * adjusted, clamped to the kernel/user address space (whichever is
61 * appropriate), and returned in *eip_limit.
63 * The segment is checked, because it might have been changed by another
64 * task between the original faulting instruction and here.
66 * If CS is no longer a valid code segment, or if EIP is beyond the
67 * limit, or if it is a kernel address when CS is not a kernel segment,
68 * then the returned value will be greater than *eip_limit.
70 * This is slow, but is very rarely executed.
72 static inline unsigned long get_segment_eip(struct pt_regs *regs,
73 unsigned long *eip_limit)
75 unsigned long eip = regs->eip;
76 unsigned seg = regs->xcs & 0xffff;
77 u32 seg_ar, seg_limit, base, *desc;
79 /* Unlikely, but must come before segment checks. */
80 if (unlikely(regs->eflags & VM_MASK)) {
81 base = seg << 4;
82 *eip_limit = base + 0xffff;
83 return base + (eip & 0xffff);
86 /* The standard kernel/user address space limit. */
87 *eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg;
89 /* By far the most common cases. */
90 if (likely(SEGMENT_IS_FLAT_CODE(seg)))
91 return eip;
93 /* Check the segment exists, is within the current LDT/GDT size,
94 that kernel/user (ring 0..3) has the appropriate privilege,
95 that it's a code segment, and get the limit. */
96 __asm__ ("larl %3,%0; lsll %3,%1"
97 : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
98 if ((~seg_ar & 0x9800) || eip > seg_limit) {
99 *eip_limit = 0;
100 return 1; /* So that returned eip > *eip_limit. */
103 /* Get the GDT/LDT descriptor base.
104 When you look for races in this code remember that
105 LDT and other horrors are only used in user space. */
106 if (seg & (1<<2)) {
107 /* Must lock the LDT while reading it. */
108 mutex_lock(&current->mm->context.lock);
109 desc = current->mm->context.ldt;
110 desc = (void *)desc + (seg & ~7);
111 } else {
112 /* Must disable preemption while reading the GDT. */
113 desc = (u32 *)get_cpu_gdt_table(get_cpu());
114 desc = (void *)desc + (seg & ~7);
117 /* Decode the code segment base from the descriptor */
118 base = get_desc_base((unsigned long *)desc);
120 if (seg & (1<<2)) {
121 mutex_unlock(&current->mm->context.lock);
122 } else
123 put_cpu();
125 /* Adjust EIP and segment limit, and clamp at the kernel limit.
126 It's legitimate for segments to wrap at 0xffffffff. */
127 seg_limit += base;
128 if (seg_limit < *eip_limit && seg_limit >= base)
129 *eip_limit = seg_limit;
130 return eip + base;
134 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
135 * Check that here and ignore it.
137 static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
139 unsigned long limit;
140 unsigned char *instr = (unsigned char *)get_segment_eip (regs, &limit);
141 int scan_more = 1;
142 int prefetch = 0;
143 int i;
145 for (i = 0; scan_more && i < 15; i++) {
146 unsigned char opcode;
147 unsigned char instr_hi;
148 unsigned char instr_lo;
150 if (instr > (unsigned char *)limit)
151 break;
152 if (probe_kernel_address(instr, opcode))
153 break;
155 instr_hi = opcode & 0xf0;
156 instr_lo = opcode & 0x0f;
157 instr++;
159 switch (instr_hi) {
160 case 0x20:
161 case 0x30:
162 /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
163 scan_more = ((instr_lo & 7) == 0x6);
164 break;
166 case 0x60:
167 /* 0x64 thru 0x67 are valid prefixes in all modes. */
168 scan_more = (instr_lo & 0xC) == 0x4;
169 break;
170 case 0xF0:
171 /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
172 scan_more = !instr_lo || (instr_lo>>1) == 1;
173 break;
174 case 0x00:
175 /* Prefetch instruction is 0x0F0D or 0x0F18 */
176 scan_more = 0;
177 if (instr > (unsigned char *)limit)
178 break;
179 if (probe_kernel_address(instr, opcode))
180 break;
181 prefetch = (instr_lo == 0xF) &&
182 (opcode == 0x0D || opcode == 0x18);
183 break;
184 default:
185 scan_more = 0;
186 break;
189 return prefetch;
192 static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
193 unsigned long error_code)
195 if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
196 boot_cpu_data.x86 >= 6)) {
197 /* Catch an obscure case of prefetch inside an NX page. */
198 if (nx_enabled && (error_code & 16))
199 return 0;
200 return __is_prefetch(regs, addr);
202 return 0;
205 static noinline void force_sig_info_fault(int si_signo, int si_code,
206 unsigned long address, struct task_struct *tsk)
208 siginfo_t info;
210 info.si_signo = si_signo;
211 info.si_errno = 0;
212 info.si_code = si_code;
213 info.si_addr = (void __user *)address;
214 force_sig_info(si_signo, &info, tsk);
217 fastcall void do_invalid_op(struct pt_regs *, unsigned long);
219 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
221 unsigned index = pgd_index(address);
222 pgd_t *pgd_k;
223 pud_t *pud, *pud_k;
224 pmd_t *pmd, *pmd_k;
226 pgd += index;
227 pgd_k = init_mm.pgd + index;
229 if (!pgd_present(*pgd_k))
230 return NULL;
233 * set_pgd(pgd, *pgd_k); here would be useless on PAE
234 * and redundant with the set_pmd() on non-PAE. As would
235 * set_pud.
238 pud = pud_offset(pgd, address);
239 pud_k = pud_offset(pgd_k, address);
240 if (!pud_present(*pud_k))
241 return NULL;
243 pmd = pmd_offset(pud, address);
244 pmd_k = pmd_offset(pud_k, address);
245 if (!pmd_present(*pmd_k))
246 return NULL;
247 if (!pmd_present(*pmd)) {
248 set_pmd(pmd, *pmd_k);
249 arch_flush_lazy_mmu_mode();
250 } else
251 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
252 return pmd_k;
256 * Handle a fault on the vmalloc or module mapping area
258 * This assumes no large pages in there.
260 static inline int vmalloc_fault(unsigned long address)
262 unsigned long pgd_paddr;
263 pmd_t *pmd_k;
264 pte_t *pte_k;
266 * Synchronize this task's top level page-table
267 * with the 'reference' page table.
269 * Do _not_ use "current" here. We might be inside
270 * an interrupt in the middle of a task switch..
272 pgd_paddr = read_cr3();
273 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
274 if (!pmd_k)
275 return -1;
276 pte_k = pte_offset_kernel(pmd_k, address);
277 if (!pte_present(*pte_k))
278 return -1;
279 return 0;
282 int show_unhandled_signals = 1;
285 * This routine handles page faults. It determines the address,
286 * and the problem, and then passes it off to one of the appropriate
287 * routines.
289 * error_code:
290 * bit 0 == 0 means no page found, 1 means protection fault
291 * bit 1 == 0 means read, 1 means write
292 * bit 2 == 0 means kernel, 1 means user-mode
293 * bit 3 == 1 means use of reserved bit detected
294 * bit 4 == 1 means fault was an instruction fetch
296 fastcall void __kprobes do_page_fault(struct pt_regs *regs,
297 unsigned long error_code)
299 struct task_struct *tsk;
300 struct mm_struct *mm;
301 struct vm_area_struct * vma;
302 unsigned long address;
303 int write, si_code;
304 int fault;
307 * We can fault from pretty much anywhere, with unknown IRQ state.
309 trace_hardirqs_fixup();
311 /* get the address */
312 address = read_cr2();
314 tsk = current;
316 si_code = SEGV_MAPERR;
319 * We fault-in kernel-space virtual memory on-demand. The
320 * 'reference' page table is init_mm.pgd.
322 * NOTE! We MUST NOT take any locks for this case. We may
323 * be in an interrupt or a critical region, and should
324 * only copy the information from the master page table,
325 * nothing more.
327 * This verifies that the fault happens in kernel space
328 * (error_code & 4) == 0, and that the fault was not a
329 * protection error (error_code & 9) == 0.
331 if (unlikely(address >= TASK_SIZE)) {
332 if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0)
333 return;
334 if (notify_page_fault(regs))
335 return;
337 * Don't take the mm semaphore here. If we fixup a prefetch
338 * fault we could otherwise deadlock.
340 goto bad_area_nosemaphore;
343 if (notify_page_fault(regs))
344 return;
346 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
347 fault has been handled. */
348 if (regs->eflags & (X86_EFLAGS_IF|VM_MASK))
349 local_irq_enable();
351 mm = tsk->mm;
354 * If we're in an interrupt, have no user context or are running in an
355 * atomic region then we must not take the fault..
357 if (in_atomic() || !mm)
358 goto bad_area_nosemaphore;
360 /* When running in the kernel we expect faults to occur only to
361 * addresses in user space. All other faults represent errors in the
362 * kernel and should generate an OOPS. Unfortunately, in the case of an
363 * erroneous fault occurring in a code path which already holds mmap_sem
364 * we will deadlock attempting to validate the fault against the
365 * address space. Luckily the kernel only validly references user
366 * space from well defined areas of code, which are listed in the
367 * exceptions table.
369 * As the vast majority of faults will be valid we will only perform
370 * the source reference check when there is a possibility of a deadlock.
371 * Attempt to lock the address space, if we cannot we then validate the
372 * source. If this is invalid we can skip the address space check,
373 * thus avoiding the deadlock.
375 if (!down_read_trylock(&mm->mmap_sem)) {
376 if ((error_code & 4) == 0 &&
377 !search_exception_tables(regs->eip))
378 goto bad_area_nosemaphore;
379 down_read(&mm->mmap_sem);
382 vma = find_vma(mm, address);
383 if (!vma)
384 goto bad_area;
385 if (vma->vm_start <= address)
386 goto good_area;
387 if (!(vma->vm_flags & VM_GROWSDOWN))
388 goto bad_area;
389 if (error_code & 4) {
391 * Accessing the stack below %esp is always a bug.
392 * The large cushion allows instructions like enter
393 * and pusha to work. ("enter $65535,$31" pushes
394 * 32 pointers and then decrements %esp by 65535.)
396 if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp)
397 goto bad_area;
399 if (expand_stack(vma, address))
400 goto bad_area;
402 * Ok, we have a good vm_area for this memory access, so
403 * we can handle it..
405 good_area:
406 si_code = SEGV_ACCERR;
407 write = 0;
408 switch (error_code & 3) {
409 default: /* 3: write, present */
410 /* fall through */
411 case 2: /* write, not present */
412 if (!(vma->vm_flags & VM_WRITE))
413 goto bad_area;
414 write++;
415 break;
416 case 1: /* read, present */
417 goto bad_area;
418 case 0: /* read, not present */
419 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
420 goto bad_area;
423 survive:
425 * If for any reason at all we couldn't handle the fault,
426 * make sure we exit gracefully rather than endlessly redo
427 * the fault.
429 fault = handle_mm_fault(mm, vma, address, write);
430 if (unlikely(fault & VM_FAULT_ERROR)) {
431 if (fault & VM_FAULT_OOM)
432 goto out_of_memory;
433 else if (fault & VM_FAULT_SIGBUS)
434 goto do_sigbus;
435 BUG();
437 if (fault & VM_FAULT_MAJOR)
438 tsk->maj_flt++;
439 else
440 tsk->min_flt++;
443 * Did it hit the DOS screen memory VA from vm86 mode?
445 if (regs->eflags & VM_MASK) {
446 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
447 if (bit < 32)
448 tsk->thread.screen_bitmap |= 1 << bit;
450 up_read(&mm->mmap_sem);
451 return;
454 * Something tried to access memory that isn't in our memory map..
455 * Fix it, but check if it's kernel or user first..
457 bad_area:
458 up_read(&mm->mmap_sem);
460 bad_area_nosemaphore:
461 /* User mode accesses just cause a SIGSEGV */
462 if (error_code & 4) {
464 * It's possible to have interrupts off here.
466 local_irq_enable();
469 * Valid to do another page fault here because this one came
470 * from user space.
472 if (is_prefetch(regs, address, error_code))
473 return;
475 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
476 printk_ratelimit()) {
477 printk("%s%s[%d]: segfault at %08lx eip %08lx "
478 "esp %08lx error %lx\n",
479 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
480 tsk->comm, task_pid_nr(tsk), address, regs->eip,
481 regs->esp, error_code);
483 tsk->thread.cr2 = address;
484 /* Kernel addresses are always protection faults */
485 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
486 tsk->thread.trap_no = 14;
487 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
488 return;
491 #ifdef CONFIG_X86_F00F_BUG
493 * Pentium F0 0F C7 C8 bug workaround.
495 if (boot_cpu_data.f00f_bug) {
496 unsigned long nr;
498 nr = (address - idt_descr.address) >> 3;
500 if (nr == 6) {
501 do_invalid_op(regs, 0);
502 return;
505 #endif
507 no_context:
508 /* Are we prepared to handle this kernel fault? */
509 if (fixup_exception(regs))
510 return;
513 * Valid to do another page fault here, because if this fault
514 * had been triggered by is_prefetch fixup_exception would have
515 * handled it.
517 if (is_prefetch(regs, address, error_code))
518 return;
521 * Oops. The kernel tried to access some bad page. We'll have to
522 * terminate things with extreme prejudice.
525 bust_spinlocks(1);
527 if (oops_may_print()) {
528 __typeof__(pte_val(__pte(0))) page;
530 #ifdef CONFIG_X86_PAE
531 if (error_code & 16) {
532 pte_t *pte = lookup_address(address);
534 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
535 printk(KERN_CRIT "kernel tried to execute "
536 "NX-protected page - exploit attempt? "
537 "(uid: %d)\n", current->uid);
539 #endif
540 if (address < PAGE_SIZE)
541 printk(KERN_ALERT "BUG: unable to handle kernel NULL "
542 "pointer dereference");
543 else
544 printk(KERN_ALERT "BUG: unable to handle kernel paging"
545 " request");
546 printk(" at virtual address %08lx\n",address);
547 printk(KERN_ALERT "printing eip: %08lx ", regs->eip);
549 page = read_cr3();
550 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
551 #ifdef CONFIG_X86_PAE
552 printk("*pdpt = %016Lx ", page);
553 if ((page >> PAGE_SHIFT) < max_low_pfn
554 && page & _PAGE_PRESENT) {
555 page &= PAGE_MASK;
556 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
557 & (PTRS_PER_PMD - 1)];
558 printk(KERN_CONT "*pde = %016Lx ", page);
559 page &= ~_PAGE_NX;
561 #else
562 printk("*pde = %08lx ", page);
563 #endif
566 * We must not directly access the pte in the highpte
567 * case if the page table is located in highmem.
568 * And let's rather not kmap-atomic the pte, just in case
569 * it's allocated already.
571 if ((page >> PAGE_SHIFT) < max_low_pfn
572 && (page & _PAGE_PRESENT)
573 && !(page & _PAGE_PSE)) {
574 page &= PAGE_MASK;
575 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
576 & (PTRS_PER_PTE - 1)];
577 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
580 printk("\n");
583 tsk->thread.cr2 = address;
584 tsk->thread.trap_no = 14;
585 tsk->thread.error_code = error_code;
586 die("Oops", regs, error_code);
587 bust_spinlocks(0);
588 do_exit(SIGKILL);
591 * We ran out of memory, or some other thing happened to us that made
592 * us unable to handle the page fault gracefully.
594 out_of_memory:
595 up_read(&mm->mmap_sem);
596 if (is_global_init(tsk)) {
597 yield();
598 down_read(&mm->mmap_sem);
599 goto survive;
601 printk("VM: killing process %s\n", tsk->comm);
602 if (error_code & 4)
603 do_group_exit(SIGKILL);
604 goto no_context;
606 do_sigbus:
607 up_read(&mm->mmap_sem);
609 /* Kernel mode? Handle exceptions or die */
610 if (!(error_code & 4))
611 goto no_context;
613 /* User space => ok to do another page fault */
614 if (is_prefetch(regs, address, error_code))
615 return;
617 tsk->thread.cr2 = address;
618 tsk->thread.error_code = error_code;
619 tsk->thread.trap_no = 14;
620 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
623 void vmalloc_sync_all(void)
626 * Note that races in the updates of insync and start aren't
627 * problematic: insync can only get set bits added, and updates to
628 * start are only improving performance (without affecting correctness
629 * if undone).
631 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
632 static unsigned long start = TASK_SIZE;
633 unsigned long address;
635 if (SHARED_KERNEL_PMD)
636 return;
638 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
639 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
640 if (!test_bit(pgd_index(address), insync)) {
641 unsigned long flags;
642 struct page *page;
644 spin_lock_irqsave(&pgd_lock, flags);
645 for (page = pgd_list; page; page =
646 (struct page *)page->index)
647 if (!vmalloc_sync_one(page_address(page),
648 address)) {
649 BUG_ON(page != pgd_list);
650 break;
652 spin_unlock_irqrestore(&pgd_lock, flags);
653 if (!page)
654 set_bit(pgd_index(address), insync);
656 if (address == start && test_bit(pgd_index(address), insync))
657 start = address + PGDIR_SIZE;