2 * linux/arch/i386/mm/fault.c
4 * Copyright (C) 1995 Linus Torvalds
7 #include <linux/signal.h>
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/init.h>
19 #include <linux/tty.h>
20 #include <linux/vt_kern.h> /* For unblank_screen() */
21 #include <linux/highmem.h>
22 #include <linux/bootmem.h> /* for max_low_pfn */
23 #include <linux/vmalloc.h>
24 #include <linux/module.h>
25 #include <linux/kprobes.h>
26 #include <linux/uaccess.h>
27 #include <linux/kdebug.h>
28 #include <linux/kprobes.h>
30 #include <asm/system.h>
32 #include <asm/segment.h>
34 extern void die(const char *,struct pt_regs
*,long);
37 static inline int notify_page_fault(struct pt_regs
*regs
)
41 /* kprobe_running() needs smp_processor_id() */
42 if (!user_mode_vm(regs
)) {
44 if (kprobe_running() && kprobe_fault_handler(regs
, 14))
52 static inline int notify_page_fault(struct pt_regs
*regs
)
59 * Return EIP plus the CS segment base. The segment limit is also
60 * adjusted, clamped to the kernel/user address space (whichever is
61 * appropriate), and returned in *eip_limit.
63 * The segment is checked, because it might have been changed by another
64 * task between the original faulting instruction and here.
66 * If CS is no longer a valid code segment, or if EIP is beyond the
67 * limit, or if it is a kernel address when CS is not a kernel segment,
68 * then the returned value will be greater than *eip_limit.
70 * This is slow, but is very rarely executed.
72 static inline unsigned long get_segment_eip(struct pt_regs
*regs
,
73 unsigned long *eip_limit
)
75 unsigned long eip
= regs
->eip
;
76 unsigned seg
= regs
->xcs
& 0xffff;
77 u32 seg_ar
, seg_limit
, base
, *desc
;
79 /* Unlikely, but must come before segment checks. */
80 if (unlikely(regs
->eflags
& VM_MASK
)) {
82 *eip_limit
= base
+ 0xffff;
83 return base
+ (eip
& 0xffff);
86 /* The standard kernel/user address space limit. */
87 *eip_limit
= user_mode(regs
) ? USER_DS
.seg
: KERNEL_DS
.seg
;
89 /* By far the most common cases. */
90 if (likely(SEGMENT_IS_FLAT_CODE(seg
)))
93 /* Check the segment exists, is within the current LDT/GDT size,
94 that kernel/user (ring 0..3) has the appropriate privilege,
95 that it's a code segment, and get the limit. */
96 __asm__ ("larl %3,%0; lsll %3,%1"
97 : "=&r" (seg_ar
), "=r" (seg_limit
) : "0" (0), "rm" (seg
));
98 if ((~seg_ar
& 0x9800) || eip
> seg_limit
) {
100 return 1; /* So that returned eip > *eip_limit. */
103 /* Get the GDT/LDT descriptor base.
104 When you look for races in this code remember that
105 LDT and other horrors are only used in user space. */
107 /* Must lock the LDT while reading it. */
108 mutex_lock(¤t
->mm
->context
.lock
);
109 desc
= current
->mm
->context
.ldt
;
110 desc
= (void *)desc
+ (seg
& ~7);
112 /* Must disable preemption while reading the GDT. */
113 desc
= (u32
*)get_cpu_gdt_table(get_cpu());
114 desc
= (void *)desc
+ (seg
& ~7);
117 /* Decode the code segment base from the descriptor */
118 base
= get_desc_base((unsigned long *)desc
);
121 mutex_unlock(¤t
->mm
->context
.lock
);
125 /* Adjust EIP and segment limit, and clamp at the kernel limit.
126 It's legitimate for segments to wrap at 0xffffffff. */
128 if (seg_limit
< *eip_limit
&& seg_limit
>= base
)
129 *eip_limit
= seg_limit
;
134 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
135 * Check that here and ignore it.
137 static int __is_prefetch(struct pt_regs
*regs
, unsigned long addr
)
140 unsigned char *instr
= (unsigned char *)get_segment_eip (regs
, &limit
);
145 for (i
= 0; scan_more
&& i
< 15; i
++) {
146 unsigned char opcode
;
147 unsigned char instr_hi
;
148 unsigned char instr_lo
;
150 if (instr
> (unsigned char *)limit
)
152 if (probe_kernel_address(instr
, opcode
))
155 instr_hi
= opcode
& 0xf0;
156 instr_lo
= opcode
& 0x0f;
162 /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
163 scan_more
= ((instr_lo
& 7) == 0x6);
167 /* 0x64 thru 0x67 are valid prefixes in all modes. */
168 scan_more
= (instr_lo
& 0xC) == 0x4;
171 /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
172 scan_more
= !instr_lo
|| (instr_lo
>>1) == 1;
175 /* Prefetch instruction is 0x0F0D or 0x0F18 */
177 if (instr
> (unsigned char *)limit
)
179 if (probe_kernel_address(instr
, opcode
))
181 prefetch
= (instr_lo
== 0xF) &&
182 (opcode
== 0x0D || opcode
== 0x18);
192 static inline int is_prefetch(struct pt_regs
*regs
, unsigned long addr
,
193 unsigned long error_code
)
195 if (unlikely(boot_cpu_data
.x86_vendor
== X86_VENDOR_AMD
&&
196 boot_cpu_data
.x86
>= 6)) {
197 /* Catch an obscure case of prefetch inside an NX page. */
198 if (nx_enabled
&& (error_code
& 16))
200 return __is_prefetch(regs
, addr
);
205 static noinline
void force_sig_info_fault(int si_signo
, int si_code
,
206 unsigned long address
, struct task_struct
*tsk
)
210 info
.si_signo
= si_signo
;
212 info
.si_code
= si_code
;
213 info
.si_addr
= (void __user
*)address
;
214 force_sig_info(si_signo
, &info
, tsk
);
217 fastcall
void do_invalid_op(struct pt_regs
*, unsigned long);
219 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
221 unsigned index
= pgd_index(address
);
227 pgd_k
= init_mm
.pgd
+ index
;
229 if (!pgd_present(*pgd_k
))
233 * set_pgd(pgd, *pgd_k); here would be useless on PAE
234 * and redundant with the set_pmd() on non-PAE. As would
238 pud
= pud_offset(pgd
, address
);
239 pud_k
= pud_offset(pgd_k
, address
);
240 if (!pud_present(*pud_k
))
243 pmd
= pmd_offset(pud
, address
);
244 pmd_k
= pmd_offset(pud_k
, address
);
245 if (!pmd_present(*pmd_k
))
247 if (!pmd_present(*pmd
)) {
248 set_pmd(pmd
, *pmd_k
);
249 arch_flush_lazy_mmu_mode();
251 BUG_ON(pmd_page(*pmd
) != pmd_page(*pmd_k
));
256 * Handle a fault on the vmalloc or module mapping area
258 * This assumes no large pages in there.
260 static inline int vmalloc_fault(unsigned long address
)
262 unsigned long pgd_paddr
;
266 * Synchronize this task's top level page-table
267 * with the 'reference' page table.
269 * Do _not_ use "current" here. We might be inside
270 * an interrupt in the middle of a task switch..
272 pgd_paddr
= read_cr3();
273 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
276 pte_k
= pte_offset_kernel(pmd_k
, address
);
277 if (!pte_present(*pte_k
))
282 int show_unhandled_signals
= 1;
285 * This routine handles page faults. It determines the address,
286 * and the problem, and then passes it off to one of the appropriate
290 * bit 0 == 0 means no page found, 1 means protection fault
291 * bit 1 == 0 means read, 1 means write
292 * bit 2 == 0 means kernel, 1 means user-mode
293 * bit 3 == 1 means use of reserved bit detected
294 * bit 4 == 1 means fault was an instruction fetch
296 fastcall
void __kprobes
do_page_fault(struct pt_regs
*regs
,
297 unsigned long error_code
)
299 struct task_struct
*tsk
;
300 struct mm_struct
*mm
;
301 struct vm_area_struct
* vma
;
302 unsigned long address
;
307 * We can fault from pretty much anywhere, with unknown IRQ state.
309 trace_hardirqs_fixup();
311 /* get the address */
312 address
= read_cr2();
316 si_code
= SEGV_MAPERR
;
319 * We fault-in kernel-space virtual memory on-demand. The
320 * 'reference' page table is init_mm.pgd.
322 * NOTE! We MUST NOT take any locks for this case. We may
323 * be in an interrupt or a critical region, and should
324 * only copy the information from the master page table,
327 * This verifies that the fault happens in kernel space
328 * (error_code & 4) == 0, and that the fault was not a
329 * protection error (error_code & 9) == 0.
331 if (unlikely(address
>= TASK_SIZE
)) {
332 if (!(error_code
& 0x0000000d) && vmalloc_fault(address
) >= 0)
334 if (notify_page_fault(regs
))
337 * Don't take the mm semaphore here. If we fixup a prefetch
338 * fault we could otherwise deadlock.
340 goto bad_area_nosemaphore
;
343 if (notify_page_fault(regs
))
346 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
347 fault has been handled. */
348 if (regs
->eflags
& (X86_EFLAGS_IF
|VM_MASK
))
354 * If we're in an interrupt, have no user context or are running in an
355 * atomic region then we must not take the fault..
357 if (in_atomic() || !mm
)
358 goto bad_area_nosemaphore
;
360 /* When running in the kernel we expect faults to occur only to
361 * addresses in user space. All other faults represent errors in the
362 * kernel and should generate an OOPS. Unfortunately, in the case of an
363 * erroneous fault occurring in a code path which already holds mmap_sem
364 * we will deadlock attempting to validate the fault against the
365 * address space. Luckily the kernel only validly references user
366 * space from well defined areas of code, which are listed in the
369 * As the vast majority of faults will be valid we will only perform
370 * the source reference check when there is a possibility of a deadlock.
371 * Attempt to lock the address space, if we cannot we then validate the
372 * source. If this is invalid we can skip the address space check,
373 * thus avoiding the deadlock.
375 if (!down_read_trylock(&mm
->mmap_sem
)) {
376 if ((error_code
& 4) == 0 &&
377 !search_exception_tables(regs
->eip
))
378 goto bad_area_nosemaphore
;
379 down_read(&mm
->mmap_sem
);
382 vma
= find_vma(mm
, address
);
385 if (vma
->vm_start
<= address
)
387 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
389 if (error_code
& 4) {
391 * Accessing the stack below %esp is always a bug.
392 * The large cushion allows instructions like enter
393 * and pusha to work. ("enter $65535,$31" pushes
394 * 32 pointers and then decrements %esp by 65535.)
396 if (address
+ 65536 + 32 * sizeof(unsigned long) < regs
->esp
)
399 if (expand_stack(vma
, address
))
402 * Ok, we have a good vm_area for this memory access, so
406 si_code
= SEGV_ACCERR
;
408 switch (error_code
& 3) {
409 default: /* 3: write, present */
411 case 2: /* write, not present */
412 if (!(vma
->vm_flags
& VM_WRITE
))
416 case 1: /* read, present */
418 case 0: /* read, not present */
419 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
425 * If for any reason at all we couldn't handle the fault,
426 * make sure we exit gracefully rather than endlessly redo
429 fault
= handle_mm_fault(mm
, vma
, address
, write
);
430 if (unlikely(fault
& VM_FAULT_ERROR
)) {
431 if (fault
& VM_FAULT_OOM
)
433 else if (fault
& VM_FAULT_SIGBUS
)
437 if (fault
& VM_FAULT_MAJOR
)
443 * Did it hit the DOS screen memory VA from vm86 mode?
445 if (regs
->eflags
& VM_MASK
) {
446 unsigned long bit
= (address
- 0xA0000) >> PAGE_SHIFT
;
448 tsk
->thread
.screen_bitmap
|= 1 << bit
;
450 up_read(&mm
->mmap_sem
);
454 * Something tried to access memory that isn't in our memory map..
455 * Fix it, but check if it's kernel or user first..
458 up_read(&mm
->mmap_sem
);
460 bad_area_nosemaphore
:
461 /* User mode accesses just cause a SIGSEGV */
462 if (error_code
& 4) {
464 * It's possible to have interrupts off here.
469 * Valid to do another page fault here because this one came
472 if (is_prefetch(regs
, address
, error_code
))
475 if (show_unhandled_signals
&& unhandled_signal(tsk
, SIGSEGV
) &&
476 printk_ratelimit()) {
477 printk("%s%s[%d]: segfault at %08lx eip %08lx "
478 "esp %08lx error %lx\n",
479 task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
,
480 tsk
->comm
, task_pid_nr(tsk
), address
, regs
->eip
,
481 regs
->esp
, error_code
);
483 tsk
->thread
.cr2
= address
;
484 /* Kernel addresses are always protection faults */
485 tsk
->thread
.error_code
= error_code
| (address
>= TASK_SIZE
);
486 tsk
->thread
.trap_no
= 14;
487 force_sig_info_fault(SIGSEGV
, si_code
, address
, tsk
);
491 #ifdef CONFIG_X86_F00F_BUG
493 * Pentium F0 0F C7 C8 bug workaround.
495 if (boot_cpu_data
.f00f_bug
) {
498 nr
= (address
- idt_descr
.address
) >> 3;
501 do_invalid_op(regs
, 0);
508 /* Are we prepared to handle this kernel fault? */
509 if (fixup_exception(regs
))
513 * Valid to do another page fault here, because if this fault
514 * had been triggered by is_prefetch fixup_exception would have
517 if (is_prefetch(regs
, address
, error_code
))
521 * Oops. The kernel tried to access some bad page. We'll have to
522 * terminate things with extreme prejudice.
527 if (oops_may_print()) {
528 __typeof__(pte_val(__pte(0))) page
;
530 #ifdef CONFIG_X86_PAE
531 if (error_code
& 16) {
532 pte_t
*pte
= lookup_address(address
);
534 if (pte
&& pte_present(*pte
) && !pte_exec_kernel(*pte
))
535 printk(KERN_CRIT
"kernel tried to execute "
536 "NX-protected page - exploit attempt? "
537 "(uid: %d)\n", current
->uid
);
540 if (address
< PAGE_SIZE
)
541 printk(KERN_ALERT
"BUG: unable to handle kernel NULL "
542 "pointer dereference");
544 printk(KERN_ALERT
"BUG: unable to handle kernel paging"
546 printk(" at virtual address %08lx\n",address
);
547 printk(KERN_ALERT
"printing eip: %08lx ", regs
->eip
);
550 page
= ((__typeof__(page
) *) __va(page
))[address
>> PGDIR_SHIFT
];
551 #ifdef CONFIG_X86_PAE
552 printk("*pdpt = %016Lx ", page
);
553 if ((page
>> PAGE_SHIFT
) < max_low_pfn
554 && page
& _PAGE_PRESENT
) {
556 page
= ((__typeof__(page
) *) __va(page
))[(address
>> PMD_SHIFT
)
557 & (PTRS_PER_PMD
- 1)];
558 printk(KERN_CONT
"*pde = %016Lx ", page
);
562 printk("*pde = %08lx ", page
);
566 * We must not directly access the pte in the highpte
567 * case if the page table is located in highmem.
568 * And let's rather not kmap-atomic the pte, just in case
569 * it's allocated already.
571 if ((page
>> PAGE_SHIFT
) < max_low_pfn
572 && (page
& _PAGE_PRESENT
)
573 && !(page
& _PAGE_PSE
)) {
575 page
= ((__typeof__(page
) *) __va(page
))[(address
>> PAGE_SHIFT
)
576 & (PTRS_PER_PTE
- 1)];
577 printk("*pte = %0*Lx ", sizeof(page
)*2, (u64
)page
);
583 tsk
->thread
.cr2
= address
;
584 tsk
->thread
.trap_no
= 14;
585 tsk
->thread
.error_code
= error_code
;
586 die("Oops", regs
, error_code
);
591 * We ran out of memory, or some other thing happened to us that made
592 * us unable to handle the page fault gracefully.
595 up_read(&mm
->mmap_sem
);
596 if (is_global_init(tsk
)) {
598 down_read(&mm
->mmap_sem
);
601 printk("VM: killing process %s\n", tsk
->comm
);
603 do_group_exit(SIGKILL
);
607 up_read(&mm
->mmap_sem
);
609 /* Kernel mode? Handle exceptions or die */
610 if (!(error_code
& 4))
613 /* User space => ok to do another page fault */
614 if (is_prefetch(regs
, address
, error_code
))
617 tsk
->thread
.cr2
= address
;
618 tsk
->thread
.error_code
= error_code
;
619 tsk
->thread
.trap_no
= 14;
620 force_sig_info_fault(SIGBUS
, BUS_ADRERR
, address
, tsk
);
623 void vmalloc_sync_all(void)
626 * Note that races in the updates of insync and start aren't
627 * problematic: insync can only get set bits added, and updates to
628 * start are only improving performance (without affecting correctness
631 static DECLARE_BITMAP(insync
, PTRS_PER_PGD
);
632 static unsigned long start
= TASK_SIZE
;
633 unsigned long address
;
635 if (SHARED_KERNEL_PMD
)
638 BUILD_BUG_ON(TASK_SIZE
& ~PGDIR_MASK
);
639 for (address
= start
; address
>= TASK_SIZE
; address
+= PGDIR_SIZE
) {
640 if (!test_bit(pgd_index(address
), insync
)) {
644 spin_lock_irqsave(&pgd_lock
, flags
);
645 for (page
= pgd_list
; page
; page
=
646 (struct page
*)page
->index
)
647 if (!vmalloc_sync_one(page_address(page
),
649 BUG_ON(page
!= pgd_list
);
652 spin_unlock_irqrestore(&pgd_lock
, flags
);
654 set_bit(pgd_index(address
), insync
);
656 if (address
== start
&& test_bit(pgd_index(address
), insync
))
657 start
= address
+ PGDIR_SIZE
;