PCI: use dev_printk in quirk messages
[pv_ops_mirror.git] / crypto / async_tx / async_tx.c
blobbc18cbb8ea79562ce05401a5734d8310cf2ea938
1 /*
2 * core routines for the asynchronous memory transfer/transform api
4 * Copyright © 2006, Intel Corporation.
6 * Dan Williams <dan.j.williams@intel.com>
8 * with architecture considerations by:
9 * Neil Brown <neilb@suse.de>
10 * Jeff Garzik <jeff@garzik.org>
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms and conditions of the GNU General Public License,
14 * version 2, as published by the Free Software Foundation.
16 * This program is distributed in the hope it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * more details.
21 * You should have received a copy of the GNU General Public License along with
22 * this program; if not, write to the Free Software Foundation, Inc.,
23 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
26 #include <linux/kernel.h>
27 #include <linux/async_tx.h>
29 #ifdef CONFIG_DMA_ENGINE
30 static enum dma_state_client
31 dma_channel_add_remove(struct dma_client *client,
32 struct dma_chan *chan, enum dma_state state);
34 static struct dma_client async_tx_dma = {
35 .event_callback = dma_channel_add_remove,
36 /* .cap_mask == 0 defaults to all channels */
39 /**
40 * dma_cap_mask_all - enable iteration over all operation types
42 static dma_cap_mask_t dma_cap_mask_all;
44 /**
45 * chan_ref_percpu - tracks channel allocations per core/opertion
47 struct chan_ref_percpu {
48 struct dma_chan_ref *ref;
51 static int channel_table_initialized;
52 static struct chan_ref_percpu *channel_table[DMA_TX_TYPE_END];
54 /**
55 * async_tx_lock - protect modification of async_tx_master_list and serialize
56 * rebalance operations
58 static spinlock_t async_tx_lock;
60 static struct list_head
61 async_tx_master_list = LIST_HEAD_INIT(async_tx_master_list);
63 /* async_tx_issue_pending_all - start all transactions on all channels */
64 void async_tx_issue_pending_all(void)
66 struct dma_chan_ref *ref;
68 rcu_read_lock();
69 list_for_each_entry_rcu(ref, &async_tx_master_list, node)
70 ref->chan->device->device_issue_pending(ref->chan);
71 rcu_read_unlock();
73 EXPORT_SYMBOL_GPL(async_tx_issue_pending_all);
75 /* dma_wait_for_async_tx - spin wait for a transcation to complete
76 * @tx: transaction to wait on
78 enum dma_status
79 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
81 enum dma_status status;
82 struct dma_async_tx_descriptor *iter;
83 struct dma_async_tx_descriptor *parent;
85 if (!tx)
86 return DMA_SUCCESS;
88 /* poll through the dependency chain, return when tx is complete */
89 do {
90 iter = tx;
92 /* find the root of the unsubmitted dependency chain */
93 while (iter->cookie == -EBUSY) {
94 parent = iter->parent;
95 if (parent && parent->cookie == -EBUSY)
96 iter = iter->parent;
97 else
98 break;
101 status = dma_sync_wait(iter->chan, iter->cookie);
102 } while (status == DMA_IN_PROGRESS || (iter != tx));
104 return status;
106 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
108 /* async_tx_run_dependencies - helper routine for dma drivers to process
109 * (start) dependent operations on their target channel
110 * @tx: transaction with dependencies
112 void
113 async_tx_run_dependencies(struct dma_async_tx_descriptor *tx)
115 struct dma_async_tx_descriptor *dep_tx, *_dep_tx;
116 struct dma_device *dev;
117 struct dma_chan *chan;
119 list_for_each_entry_safe(dep_tx, _dep_tx, &tx->depend_list,
120 depend_node) {
121 chan = dep_tx->chan;
122 dev = chan->device;
123 /* we can't depend on ourselves */
124 BUG_ON(chan == tx->chan);
125 list_del(&dep_tx->depend_node);
126 tx->tx_submit(dep_tx);
128 /* we need to poke the engine as client code does not
129 * know about dependency submission events
131 dev->device_issue_pending(chan);
134 EXPORT_SYMBOL_GPL(async_tx_run_dependencies);
136 static void
137 free_dma_chan_ref(struct rcu_head *rcu)
139 struct dma_chan_ref *ref;
140 ref = container_of(rcu, struct dma_chan_ref, rcu);
141 kfree(ref);
144 static void
145 init_dma_chan_ref(struct dma_chan_ref *ref, struct dma_chan *chan)
147 INIT_LIST_HEAD(&ref->node);
148 INIT_RCU_HEAD(&ref->rcu);
149 ref->chan = chan;
150 atomic_set(&ref->count, 0);
154 * get_chan_ref_by_cap - returns the nth channel of the given capability
155 * defaults to returning the channel with the desired capability and the
156 * lowest reference count if the index can not be satisfied
157 * @cap: capability to match
158 * @index: nth channel desired, passing -1 has the effect of forcing the
159 * default return value
161 static struct dma_chan_ref *
162 get_chan_ref_by_cap(enum dma_transaction_type cap, int index)
164 struct dma_chan_ref *ret_ref = NULL, *min_ref = NULL, *ref;
166 rcu_read_lock();
167 list_for_each_entry_rcu(ref, &async_tx_master_list, node)
168 if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
169 if (!min_ref)
170 min_ref = ref;
171 else if (atomic_read(&ref->count) <
172 atomic_read(&min_ref->count))
173 min_ref = ref;
175 if (index-- == 0) {
176 ret_ref = ref;
177 break;
180 rcu_read_unlock();
182 if (!ret_ref)
183 ret_ref = min_ref;
185 if (ret_ref)
186 atomic_inc(&ret_ref->count);
188 return ret_ref;
192 * async_tx_rebalance - redistribute the available channels, optimize
193 * for cpu isolation in the SMP case, and opertaion isolation in the
194 * uniprocessor case
196 static void async_tx_rebalance(void)
198 int cpu, cap, cpu_idx = 0;
199 unsigned long flags;
201 if (!channel_table_initialized)
202 return;
204 spin_lock_irqsave(&async_tx_lock, flags);
206 /* undo the last distribution */
207 for_each_dma_cap_mask(cap, dma_cap_mask_all)
208 for_each_possible_cpu(cpu) {
209 struct dma_chan_ref *ref =
210 per_cpu_ptr(channel_table[cap], cpu)->ref;
211 if (ref) {
212 atomic_set(&ref->count, 0);
213 per_cpu_ptr(channel_table[cap], cpu)->ref =
214 NULL;
218 for_each_dma_cap_mask(cap, dma_cap_mask_all)
219 for_each_online_cpu(cpu) {
220 struct dma_chan_ref *new;
221 if (NR_CPUS > 1)
222 new = get_chan_ref_by_cap(cap, cpu_idx++);
223 else
224 new = get_chan_ref_by_cap(cap, -1);
226 per_cpu_ptr(channel_table[cap], cpu)->ref = new;
229 spin_unlock_irqrestore(&async_tx_lock, flags);
232 static enum dma_state_client
233 dma_channel_add_remove(struct dma_client *client,
234 struct dma_chan *chan, enum dma_state state)
236 unsigned long found, flags;
237 struct dma_chan_ref *master_ref, *ref;
238 enum dma_state_client ack = DMA_DUP; /* default: take no action */
240 switch (state) {
241 case DMA_RESOURCE_AVAILABLE:
242 found = 0;
243 rcu_read_lock();
244 list_for_each_entry_rcu(ref, &async_tx_master_list, node)
245 if (ref->chan == chan) {
246 found = 1;
247 break;
249 rcu_read_unlock();
251 pr_debug("async_tx: dma resource available [%s]\n",
252 found ? "old" : "new");
254 if (!found)
255 ack = DMA_ACK;
256 else
257 break;
259 /* add the channel to the generic management list */
260 master_ref = kmalloc(sizeof(*master_ref), GFP_KERNEL);
261 if (master_ref) {
262 /* keep a reference until async_tx is unloaded */
263 dma_chan_get(chan);
264 init_dma_chan_ref(master_ref, chan);
265 spin_lock_irqsave(&async_tx_lock, flags);
266 list_add_tail_rcu(&master_ref->node,
267 &async_tx_master_list);
268 spin_unlock_irqrestore(&async_tx_lock,
269 flags);
270 } else {
271 printk(KERN_WARNING "async_tx: unable to create"
272 " new master entry in response to"
273 " a DMA_RESOURCE_ADDED event"
274 " (-ENOMEM)\n");
275 return 0;
278 async_tx_rebalance();
279 break;
280 case DMA_RESOURCE_REMOVED:
281 found = 0;
282 spin_lock_irqsave(&async_tx_lock, flags);
283 list_for_each_entry_rcu(ref, &async_tx_master_list, node)
284 if (ref->chan == chan) {
285 /* permit backing devices to go away */
286 dma_chan_put(ref->chan);
287 list_del_rcu(&ref->node);
288 call_rcu(&ref->rcu, free_dma_chan_ref);
289 found = 1;
290 break;
292 spin_unlock_irqrestore(&async_tx_lock, flags);
294 pr_debug("async_tx: dma resource removed [%s]\n",
295 found ? "ours" : "not ours");
297 if (found)
298 ack = DMA_ACK;
299 else
300 break;
302 async_tx_rebalance();
303 break;
304 case DMA_RESOURCE_SUSPEND:
305 case DMA_RESOURCE_RESUME:
306 printk(KERN_WARNING "async_tx: does not support dma channel"
307 " suspend/resume\n");
308 break;
309 default:
310 BUG();
313 return ack;
316 static int __init
317 async_tx_init(void)
319 enum dma_transaction_type cap;
321 spin_lock_init(&async_tx_lock);
322 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
324 /* an interrupt will never be an explicit operation type.
325 * clearing this bit prevents allocation to a slot in 'channel_table'
327 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
329 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
330 channel_table[cap] = alloc_percpu(struct chan_ref_percpu);
331 if (!channel_table[cap])
332 goto err;
335 channel_table_initialized = 1;
336 dma_async_client_register(&async_tx_dma);
337 dma_async_client_chan_request(&async_tx_dma);
339 printk(KERN_INFO "async_tx: api initialized (async)\n");
341 return 0;
342 err:
343 printk(KERN_ERR "async_tx: initialization failure\n");
345 while (--cap >= 0)
346 free_percpu(channel_table[cap]);
348 return 1;
351 static void __exit async_tx_exit(void)
353 enum dma_transaction_type cap;
355 channel_table_initialized = 0;
357 for_each_dma_cap_mask(cap, dma_cap_mask_all)
358 if (channel_table[cap])
359 free_percpu(channel_table[cap]);
361 dma_async_client_unregister(&async_tx_dma);
365 * async_tx_find_channel - find a channel to carry out the operation or let
366 * the transaction execute synchronously
367 * @depend_tx: transaction dependency
368 * @tx_type: transaction type
370 struct dma_chan *
371 async_tx_find_channel(struct dma_async_tx_descriptor *depend_tx,
372 enum dma_transaction_type tx_type)
374 /* see if we can keep the chain on one channel */
375 if (depend_tx &&
376 dma_has_cap(tx_type, depend_tx->chan->device->cap_mask))
377 return depend_tx->chan;
378 else if (likely(channel_table_initialized)) {
379 struct dma_chan_ref *ref;
380 int cpu = get_cpu();
381 ref = per_cpu_ptr(channel_table[tx_type], cpu)->ref;
382 put_cpu();
383 return ref ? ref->chan : NULL;
384 } else
385 return NULL;
387 EXPORT_SYMBOL_GPL(async_tx_find_channel);
388 #else
389 static int __init async_tx_init(void)
391 printk(KERN_INFO "async_tx: api initialized (sync-only)\n");
392 return 0;
395 static void __exit async_tx_exit(void)
397 do { } while (0);
399 #endif
401 void
402 async_tx_submit(struct dma_chan *chan, struct dma_async_tx_descriptor *tx,
403 enum async_tx_flags flags, struct dma_async_tx_descriptor *depend_tx,
404 dma_async_tx_callback cb_fn, void *cb_param)
406 tx->callback = cb_fn;
407 tx->callback_param = cb_param;
409 /* set this new tx to run after depend_tx if:
410 * 1/ a dependency exists (depend_tx is !NULL)
411 * 2/ the tx can not be submitted to the current channel
413 if (depend_tx && depend_tx->chan != chan) {
414 /* if ack is already set then we cannot be sure
415 * we are referring to the correct operation
417 BUG_ON(depend_tx->ack);
419 tx->parent = depend_tx;
420 spin_lock_bh(&depend_tx->lock);
421 list_add_tail(&tx->depend_node, &depend_tx->depend_list);
422 if (depend_tx->cookie == 0) {
423 struct dma_chan *dep_chan = depend_tx->chan;
424 struct dma_device *dep_dev = dep_chan->device;
425 dep_dev->device_dependency_added(dep_chan);
427 spin_unlock_bh(&depend_tx->lock);
429 /* schedule an interrupt to trigger the channel switch */
430 async_trigger_callback(ASYNC_TX_ACK, depend_tx, NULL, NULL);
431 } else {
432 tx->parent = NULL;
433 tx->tx_submit(tx);
436 if (flags & ASYNC_TX_ACK)
437 async_tx_ack(tx);
439 if (depend_tx && (flags & ASYNC_TX_DEP_ACK))
440 async_tx_ack(depend_tx);
442 EXPORT_SYMBOL_GPL(async_tx_submit);
445 * async_trigger_callback - schedules the callback function to be run after
446 * any dependent operations have been completed.
447 * @flags: ASYNC_TX_ACK, ASYNC_TX_DEP_ACK
448 * @depend_tx: 'callback' requires the completion of this transaction
449 * @cb_fn: function to call after depend_tx completes
450 * @cb_param: parameter to pass to the callback routine
452 struct dma_async_tx_descriptor *
453 async_trigger_callback(enum async_tx_flags flags,
454 struct dma_async_tx_descriptor *depend_tx,
455 dma_async_tx_callback cb_fn, void *cb_param)
457 struct dma_chan *chan;
458 struct dma_device *device;
459 struct dma_async_tx_descriptor *tx;
461 if (depend_tx) {
462 chan = depend_tx->chan;
463 device = chan->device;
465 /* see if we can schedule an interrupt
466 * otherwise poll for completion
468 if (device && !dma_has_cap(DMA_INTERRUPT, device->cap_mask))
469 device = NULL;
471 tx = device ? device->device_prep_dma_interrupt(chan) : NULL;
472 } else
473 tx = NULL;
475 if (tx) {
476 pr_debug("%s: (async)\n", __FUNCTION__);
478 async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param);
479 } else {
480 pr_debug("%s: (sync)\n", __FUNCTION__);
482 /* wait for any prerequisite operations */
483 if (depend_tx) {
484 /* if ack is already set then we cannot be sure
485 * we are referring to the correct operation
487 BUG_ON(depend_tx->ack);
488 if (dma_wait_for_async_tx(depend_tx) == DMA_ERROR)
489 panic("%s: DMA_ERROR waiting for depend_tx\n",
490 __FUNCTION__);
493 async_tx_sync_epilog(flags, depend_tx, cb_fn, cb_param);
496 return tx;
498 EXPORT_SYMBOL_GPL(async_trigger_callback);
500 module_init(async_tx_init);
501 module_exit(async_tx_exit);
503 MODULE_AUTHOR("Intel Corporation");
504 MODULE_DESCRIPTION("Asynchronous Bulk Memory Transactions API");
505 MODULE_LICENSE("GPL");