[CRYPTO] api: Remove deprecated interface
[pv_ops_mirror.git] / arch / cris / arch-v32 / kernel / arbiter.c
blob420a5312ed039ff451e73939a7dc25ddaf5a5859
1 /*
2 * Memory arbiter functions. Allocates bandwidth through the
3 * arbiter and sets up arbiter breakpoints.
5 * The algorithm first assigns slots to the clients that has specified
6 * bandwidth (e.g. ethernet) and then the remaining slots are divided
7 * on all the active clients.
9 * Copyright (c) 2004, 2005 Axis Communications AB.
12 #include <asm/arch/hwregs/reg_map.h>
13 #include <asm/arch/hwregs/reg_rdwr.h>
14 #include <asm/arch/hwregs/marb_defs.h>
15 #include <asm/arch/arbiter.h>
16 #include <asm/arch/hwregs/intr_vect.h>
17 #include <linux/interrupt.h>
18 #include <linux/signal.h>
19 #include <linux/errno.h>
20 #include <linux/spinlock.h>
21 #include <asm/io.h>
23 struct crisv32_watch_entry
25 unsigned long instance;
26 watch_callback* cb;
27 unsigned long start;
28 unsigned long end;
29 int used;
32 #define NUMBER_OF_BP 4
33 #define NBR_OF_CLIENTS 14
34 #define NBR_OF_SLOTS 64
35 #define SDRAM_BANDWIDTH 100000000 /* Some kind of expected value */
36 #define INTMEM_BANDWIDTH 400000000
37 #define NBR_OF_REGIONS 2
39 static struct crisv32_watch_entry watches[NUMBER_OF_BP] =
41 {regi_marb_bp0},
42 {regi_marb_bp1},
43 {regi_marb_bp2},
44 {regi_marb_bp3}
47 static int requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
48 static int active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
49 static int max_bandwidth[NBR_OF_REGIONS] = {SDRAM_BANDWIDTH, INTMEM_BANDWIDTH};
51 DEFINE_SPINLOCK(arbiter_lock);
53 static irqreturn_t
54 crisv32_arbiter_irq(int irq, void* dev_id, struct pt_regs* regs);
56 static void crisv32_arbiter_config(int region)
58 int slot;
59 int client;
60 int interval = 0;
61 int val[NBR_OF_SLOTS];
63 for (slot = 0; slot < NBR_OF_SLOTS; slot++)
64 val[slot] = NBR_OF_CLIENTS + 1;
66 for (client = 0; client < NBR_OF_CLIENTS; client++)
68 int pos;
69 if (!requested_slots[region][client])
70 continue;
71 interval = NBR_OF_SLOTS / requested_slots[region][client];
72 pos = 0;
73 while (pos < NBR_OF_SLOTS)
75 if (val[pos] != NBR_OF_CLIENTS + 1)
76 pos++;
77 else
79 val[pos] = client;
80 pos += interval;
85 client = 0;
86 for (slot = 0; slot < NBR_OF_SLOTS; slot++)
88 if (val[slot] == NBR_OF_CLIENTS + 1)
90 int first = client;
91 while(!active_clients[region][client]) {
92 client = (client + 1) % NBR_OF_CLIENTS;
93 if (client == first)
94 break;
96 val[slot] = client;
97 client = (client + 1) % NBR_OF_CLIENTS;
99 if (region == EXT_REGION)
100 REG_WR_INT_VECT(marb, regi_marb, rw_ext_slots, slot, val[slot]);
101 else if (region == INT_REGION)
102 REG_WR_INT_VECT(marb, regi_marb, rw_int_slots, slot, val[slot]);
106 extern char _stext, _etext;
108 static void crisv32_arbiter_init(void)
110 static int initialized = 0;
112 if (initialized)
113 return;
115 initialized = 1;
117 /* CPU caches are active. */
118 active_clients[EXT_REGION][10] = active_clients[EXT_REGION][11] = 1;
119 crisv32_arbiter_config(EXT_REGION);
120 crisv32_arbiter_config(INT_REGION);
122 if (request_irq(MEMARB_INTR_VECT, crisv32_arbiter_irq, IRQF_DISABLED,
123 "arbiter", NULL))
124 printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
126 #ifndef CONFIG_ETRAX_KGDB
127 /* Global watch for writes to kernel text segment. */
128 crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext,
129 arbiter_all_clients, arbiter_all_write, NULL);
130 #endif
135 int crisv32_arbiter_allocate_bandwidth(int client, int region,
136 unsigned long bandwidth)
138 int i;
139 int total_assigned = 0;
140 int total_clients = 0;
141 int req;
143 crisv32_arbiter_init();
145 for (i = 0; i < NBR_OF_CLIENTS; i++)
147 total_assigned += requested_slots[region][i];
148 total_clients += active_clients[region][i];
150 req = NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);
152 if (total_assigned + total_clients + req + 1 > NBR_OF_SLOTS)
153 return -ENOMEM;
155 active_clients[region][client] = 1;
156 requested_slots[region][client] = req;
157 crisv32_arbiter_config(region);
159 return 0;
162 int crisv32_arbiter_watch(unsigned long start, unsigned long size,
163 unsigned long clients, unsigned long accesses,
164 watch_callback* cb)
166 int i;
168 crisv32_arbiter_init();
170 if (start > 0x80000000) {
171 printk("Arbiter: %lX doesn't look like a physical address", start);
172 return -EFAULT;
175 spin_lock(&arbiter_lock);
177 for (i = 0; i < NUMBER_OF_BP; i++) {
178 if (!watches[i].used) {
179 reg_marb_rw_intr_mask intr_mask = REG_RD(marb, regi_marb, rw_intr_mask);
181 watches[i].used = 1;
182 watches[i].start = start;
183 watches[i].end = start + size;
184 watches[i].cb = cb;
186 REG_WR_INT(marb_bp, watches[i].instance, rw_first_addr, watches[i].start);
187 REG_WR_INT(marb_bp, watches[i].instance, rw_last_addr, watches[i].end);
188 REG_WR_INT(marb_bp, watches[i].instance, rw_op, accesses);
189 REG_WR_INT(marb_bp, watches[i].instance, rw_clients, clients);
191 if (i == 0)
192 intr_mask.bp0 = regk_marb_yes;
193 else if (i == 1)
194 intr_mask.bp1 = regk_marb_yes;
195 else if (i == 2)
196 intr_mask.bp2 = regk_marb_yes;
197 else if (i == 3)
198 intr_mask.bp3 = regk_marb_yes;
200 REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
201 spin_unlock(&arbiter_lock);
203 return i;
206 spin_unlock(&arbiter_lock);
207 return -ENOMEM;
210 int crisv32_arbiter_unwatch(int id)
212 reg_marb_rw_intr_mask intr_mask = REG_RD(marb, regi_marb, rw_intr_mask);
214 crisv32_arbiter_init();
216 spin_lock(&arbiter_lock);
218 if ((id < 0) || (id >= NUMBER_OF_BP) || (!watches[id].used)) {
219 spin_unlock(&arbiter_lock);
220 return -EINVAL;
223 memset(&watches[id], 0, sizeof(struct crisv32_watch_entry));
225 if (id == 0)
226 intr_mask.bp0 = regk_marb_no;
227 else if (id == 1)
228 intr_mask.bp2 = regk_marb_no;
229 else if (id == 2)
230 intr_mask.bp2 = regk_marb_no;
231 else if (id == 3)
232 intr_mask.bp3 = regk_marb_no;
234 REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
236 spin_unlock(&arbiter_lock);
237 return 0;
240 extern void show_registers(struct pt_regs *regs);
242 static irqreturn_t
243 crisv32_arbiter_irq(int irq, void* dev_id, struct pt_regs* regs)
245 reg_marb_r_masked_intr masked_intr = REG_RD(marb, regi_marb, r_masked_intr);
246 reg_marb_bp_r_brk_clients r_clients;
247 reg_marb_bp_r_brk_addr r_addr;
248 reg_marb_bp_r_brk_op r_op;
249 reg_marb_bp_r_brk_first_client r_first;
250 reg_marb_bp_r_brk_size r_size;
251 reg_marb_bp_rw_ack ack = {0};
252 reg_marb_rw_ack_intr ack_intr = {.bp0=1,.bp1=1,.bp2=1,.bp3=1};
253 struct crisv32_watch_entry* watch;
255 if (masked_intr.bp0) {
256 watch = &watches[0];
257 ack_intr.bp0 = regk_marb_yes;
258 } else if (masked_intr.bp1) {
259 watch = &watches[1];
260 ack_intr.bp1 = regk_marb_yes;
261 } else if (masked_intr.bp2) {
262 watch = &watches[2];
263 ack_intr.bp2 = regk_marb_yes;
264 } else if (masked_intr.bp3) {
265 watch = &watches[3];
266 ack_intr.bp3 = regk_marb_yes;
267 } else {
268 return IRQ_NONE;
271 /* Retrieve all useful information and print it. */
272 r_clients = REG_RD(marb_bp, watch->instance, r_brk_clients);
273 r_addr = REG_RD(marb_bp, watch->instance, r_brk_addr);
274 r_op = REG_RD(marb_bp, watch->instance, r_brk_op);
275 r_first = REG_RD(marb_bp, watch->instance, r_brk_first_client);
276 r_size = REG_RD(marb_bp, watch->instance, r_brk_size);
278 printk("Arbiter IRQ\n");
279 printk("Clients %X addr %X op %X first %X size %X\n",
280 REG_TYPE_CONV(int, reg_marb_bp_r_brk_clients, r_clients),
281 REG_TYPE_CONV(int, reg_marb_bp_r_brk_addr, r_addr),
282 REG_TYPE_CONV(int, reg_marb_bp_r_brk_op, r_op),
283 REG_TYPE_CONV(int, reg_marb_bp_r_brk_first_client, r_first),
284 REG_TYPE_CONV(int, reg_marb_bp_r_brk_size, r_size));
286 REG_WR(marb_bp, watch->instance, rw_ack, ack);
287 REG_WR(marb, regi_marb, rw_ack_intr, ack_intr);
289 printk("IRQ occured at %lX\n", regs->erp);
291 if (watch->cb)
292 watch->cb();
295 return IRQ_HANDLED;