2 * linux/arch/i386/mm/fault.c
4 * Copyright (C) 1995 Linus Torvalds
7 #include <linux/signal.h>
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
16 #include <linux/smp.h>
17 #include <linux/smp_lock.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/tty.h>
21 #include <linux/vt_kern.h> /* For unblank_screen() */
22 #include <linux/highmem.h>
23 #include <linux/module.h>
24 #include <linux/kprobes.h>
25 #include <linux/uaccess.h>
27 #include <asm/system.h>
29 #include <asm/kdebug.h>
30 #include <asm/segment.h>
32 extern void die(const char *,struct pt_regs
*,long);
34 static ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain
);
36 int register_page_fault_notifier(struct notifier_block
*nb
)
39 return atomic_notifier_chain_register(¬ify_page_fault_chain
, nb
);
41 EXPORT_SYMBOL_GPL(register_page_fault_notifier
);
43 int unregister_page_fault_notifier(struct notifier_block
*nb
)
45 return atomic_notifier_chain_unregister(¬ify_page_fault_chain
, nb
);
47 EXPORT_SYMBOL_GPL(unregister_page_fault_notifier
);
49 static inline int notify_page_fault(enum die_val val
, const char *str
,
50 struct pt_regs
*regs
, long err
, int trap
, int sig
)
52 struct die_args args
= {
59 return atomic_notifier_call_chain(¬ify_page_fault_chain
, val
, &args
);
63 * Unlock any spinlocks which will prevent us from getting the
66 void bust_spinlocks(int yes
)
68 int loglevel_save
= console_loglevel
;
79 * OK, the message is on the console. Now we call printk()
80 * without oops_in_progress set so that printk will give klogd
81 * a poke. Hold onto your hats...
83 console_loglevel
= 15; /* NMI oopser may have shut the console up */
85 console_loglevel
= loglevel_save
;
89 * Return EIP plus the CS segment base. The segment limit is also
90 * adjusted, clamped to the kernel/user address space (whichever is
91 * appropriate), and returned in *eip_limit.
93 * The segment is checked, because it might have been changed by another
94 * task between the original faulting instruction and here.
96 * If CS is no longer a valid code segment, or if EIP is beyond the
97 * limit, or if it is a kernel address when CS is not a kernel segment,
98 * then the returned value will be greater than *eip_limit.
100 * This is slow, but is very rarely executed.
102 static inline unsigned long get_segment_eip(struct pt_regs
*regs
,
103 unsigned long *eip_limit
)
105 unsigned long eip
= regs
->eip
;
106 unsigned seg
= regs
->xcs
& 0xffff;
107 u32 seg_ar
, seg_limit
, base
, *desc
;
109 /* Unlikely, but must come before segment checks. */
110 if (unlikely(regs
->eflags
& VM_MASK
)) {
112 *eip_limit
= base
+ 0xffff;
113 return base
+ (eip
& 0xffff);
116 /* The standard kernel/user address space limit. */
117 *eip_limit
= user_mode(regs
) ? USER_DS
.seg
: KERNEL_DS
.seg
;
119 /* By far the most common cases. */
120 if (likely(SEGMENT_IS_FLAT_CODE(seg
)))
123 /* Check the segment exists, is within the current LDT/GDT size,
124 that kernel/user (ring 0..3) has the appropriate privilege,
125 that it's a code segment, and get the limit. */
126 __asm__ ("larl %3,%0; lsll %3,%1"
127 : "=&r" (seg_ar
), "=r" (seg_limit
) : "0" (0), "rm" (seg
));
128 if ((~seg_ar
& 0x9800) || eip
> seg_limit
) {
130 return 1; /* So that returned eip > *eip_limit. */
133 /* Get the GDT/LDT descriptor base.
134 When you look for races in this code remember that
135 LDT and other horrors are only used in user space. */
137 /* Must lock the LDT while reading it. */
138 down(¤t
->mm
->context
.sem
);
139 desc
= current
->mm
->context
.ldt
;
140 desc
= (void *)desc
+ (seg
& ~7);
142 /* Must disable preemption while reading the GDT. */
143 desc
= (u32
*)get_cpu_gdt_table(get_cpu());
144 desc
= (void *)desc
+ (seg
& ~7);
147 /* Decode the code segment base from the descriptor */
148 base
= get_desc_base((unsigned long *)desc
);
151 up(¤t
->mm
->context
.sem
);
155 /* Adjust EIP and segment limit, and clamp at the kernel limit.
156 It's legitimate for segments to wrap at 0xffffffff. */
158 if (seg_limit
< *eip_limit
&& seg_limit
>= base
)
159 *eip_limit
= seg_limit
;
164 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
165 * Check that here and ignore it.
167 static int __is_prefetch(struct pt_regs
*regs
, unsigned long addr
)
170 unsigned char *instr
= (unsigned char *)get_segment_eip (regs
, &limit
);
175 for (i
= 0; scan_more
&& i
< 15; i
++) {
176 unsigned char opcode
;
177 unsigned char instr_hi
;
178 unsigned char instr_lo
;
180 if (instr
> (unsigned char *)limit
)
182 if (probe_kernel_address(instr
, opcode
))
185 instr_hi
= opcode
& 0xf0;
186 instr_lo
= opcode
& 0x0f;
192 /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
193 scan_more
= ((instr_lo
& 7) == 0x6);
197 /* 0x64 thru 0x67 are valid prefixes in all modes. */
198 scan_more
= (instr_lo
& 0xC) == 0x4;
201 /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
202 scan_more
= !instr_lo
|| (instr_lo
>>1) == 1;
205 /* Prefetch instruction is 0x0F0D or 0x0F18 */
207 if (instr
> (unsigned char *)limit
)
209 if (probe_kernel_address(instr
, opcode
))
211 prefetch
= (instr_lo
== 0xF) &&
212 (opcode
== 0x0D || opcode
== 0x18);
222 static inline int is_prefetch(struct pt_regs
*regs
, unsigned long addr
,
223 unsigned long error_code
)
225 if (unlikely(boot_cpu_data
.x86_vendor
== X86_VENDOR_AMD
&&
226 boot_cpu_data
.x86
>= 6)) {
227 /* Catch an obscure case of prefetch inside an NX page. */
228 if (nx_enabled
&& (error_code
& 16))
230 return __is_prefetch(regs
, addr
);
235 static noinline
void force_sig_info_fault(int si_signo
, int si_code
,
236 unsigned long address
, struct task_struct
*tsk
)
240 info
.si_signo
= si_signo
;
242 info
.si_code
= si_code
;
243 info
.si_addr
= (void __user
*)address
;
244 force_sig_info(si_signo
, &info
, tsk
);
247 fastcall
void do_invalid_op(struct pt_regs
*, unsigned long);
249 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
251 unsigned index
= pgd_index(address
);
257 pgd_k
= init_mm
.pgd
+ index
;
259 if (!pgd_present(*pgd_k
))
263 * set_pgd(pgd, *pgd_k); here would be useless on PAE
264 * and redundant with the set_pmd() on non-PAE. As would
268 pud
= pud_offset(pgd
, address
);
269 pud_k
= pud_offset(pgd_k
, address
);
270 if (!pud_present(*pud_k
))
273 pmd
= pmd_offset(pud
, address
);
274 pmd_k
= pmd_offset(pud_k
, address
);
275 if (!pmd_present(*pmd_k
))
277 if (!pmd_present(*pmd
))
278 set_pmd(pmd
, *pmd_k
);
280 BUG_ON(pmd_page(*pmd
) != pmd_page(*pmd_k
));
285 * Handle a fault on the vmalloc or module mapping area
287 * This assumes no large pages in there.
289 static inline int vmalloc_fault(unsigned long address
)
291 unsigned long pgd_paddr
;
295 * Synchronize this task's top level page-table
296 * with the 'reference' page table.
298 * Do _not_ use "current" here. We might be inside
299 * an interrupt in the middle of a task switch..
301 pgd_paddr
= read_cr3();
302 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
305 pte_k
= pte_offset_kernel(pmd_k
, address
);
306 if (!pte_present(*pte_k
))
312 * This routine handles page faults. It determines the address,
313 * and the problem, and then passes it off to one of the appropriate
317 * bit 0 == 0 means no page found, 1 means protection fault
318 * bit 1 == 0 means read, 1 means write
319 * bit 2 == 0 means kernel, 1 means user-mode
320 * bit 3 == 1 means use of reserved bit detected
321 * bit 4 == 1 means fault was an instruction fetch
323 fastcall
void __kprobes
do_page_fault(struct pt_regs
*regs
,
324 unsigned long error_code
)
326 struct task_struct
*tsk
;
327 struct mm_struct
*mm
;
328 struct vm_area_struct
* vma
;
329 unsigned long address
;
333 /* get the address */
334 address
= read_cr2();
338 si_code
= SEGV_MAPERR
;
341 * We fault-in kernel-space virtual memory on-demand. The
342 * 'reference' page table is init_mm.pgd.
344 * NOTE! We MUST NOT take any locks for this case. We may
345 * be in an interrupt or a critical region, and should
346 * only copy the information from the master page table,
349 * This verifies that the fault happens in kernel space
350 * (error_code & 4) == 0, and that the fault was not a
351 * protection error (error_code & 9) == 0.
353 if (unlikely(address
>= TASK_SIZE
)) {
354 if (!(error_code
& 0x0000000d) && vmalloc_fault(address
) >= 0)
356 if (notify_page_fault(DIE_PAGE_FAULT
, "page fault", regs
, error_code
, 14,
357 SIGSEGV
) == NOTIFY_STOP
)
360 * Don't take the mm semaphore here. If we fixup a prefetch
361 * fault we could otherwise deadlock.
363 goto bad_area_nosemaphore
;
366 if (notify_page_fault(DIE_PAGE_FAULT
, "page fault", regs
, error_code
, 14,
367 SIGSEGV
) == NOTIFY_STOP
)
370 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
371 fault has been handled. */
372 if (regs
->eflags
& (X86_EFLAGS_IF
|VM_MASK
))
378 * If we're in an interrupt, have no user context or are running in an
379 * atomic region then we must not take the fault..
381 if (in_atomic() || !mm
)
382 goto bad_area_nosemaphore
;
384 /* When running in the kernel we expect faults to occur only to
385 * addresses in user space. All other faults represent errors in the
386 * kernel and should generate an OOPS. Unfortunatly, in the case of an
387 * erroneous fault occurring in a code path which already holds mmap_sem
388 * we will deadlock attempting to validate the fault against the
389 * address space. Luckily the kernel only validly references user
390 * space from well defined areas of code, which are listed in the
393 * As the vast majority of faults will be valid we will only perform
394 * the source reference check when there is a possibilty of a deadlock.
395 * Attempt to lock the address space, if we cannot we then validate the
396 * source. If this is invalid we can skip the address space check,
397 * thus avoiding the deadlock.
399 if (!down_read_trylock(&mm
->mmap_sem
)) {
400 if ((error_code
& 4) == 0 &&
401 !search_exception_tables(regs
->eip
))
402 goto bad_area_nosemaphore
;
403 down_read(&mm
->mmap_sem
);
406 vma
= find_vma(mm
, address
);
409 if (vma
->vm_start
<= address
)
411 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
413 if (error_code
& 4) {
415 * Accessing the stack below %esp is always a bug.
416 * The large cushion allows instructions like enter
417 * and pusha to work. ("enter $65535,$31" pushes
418 * 32 pointers and then decrements %esp by 65535.)
420 if (address
+ 65536 + 32 * sizeof(unsigned long) < regs
->esp
)
423 if (expand_stack(vma
, address
))
426 * Ok, we have a good vm_area for this memory access, so
430 si_code
= SEGV_ACCERR
;
432 switch (error_code
& 3) {
433 default: /* 3: write, present */
435 case 2: /* write, not present */
436 if (!(vma
->vm_flags
& VM_WRITE
))
440 case 1: /* read, present */
442 case 0: /* read, not present */
443 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
449 * If for any reason at all we couldn't handle the fault,
450 * make sure we exit gracefully rather than endlessly redo
453 switch (handle_mm_fault(mm
, vma
, address
, write
)) {
460 case VM_FAULT_SIGBUS
:
469 * Did it hit the DOS screen memory VA from vm86 mode?
471 if (regs
->eflags
& VM_MASK
) {
472 unsigned long bit
= (address
- 0xA0000) >> PAGE_SHIFT
;
474 tsk
->thread
.screen_bitmap
|= 1 << bit
;
476 up_read(&mm
->mmap_sem
);
480 * Something tried to access memory that isn't in our memory map..
481 * Fix it, but check if it's kernel or user first..
484 up_read(&mm
->mmap_sem
);
486 bad_area_nosemaphore
:
487 /* User mode accesses just cause a SIGSEGV */
488 if (error_code
& 4) {
490 * Valid to do another page fault here because this one came
493 if (is_prefetch(regs
, address
, error_code
))
496 tsk
->thread
.cr2
= address
;
497 /* Kernel addresses are always protection faults */
498 tsk
->thread
.error_code
= error_code
| (address
>= TASK_SIZE
);
499 tsk
->thread
.trap_no
= 14;
500 force_sig_info_fault(SIGSEGV
, si_code
, address
, tsk
);
504 #ifdef CONFIG_X86_F00F_BUG
506 * Pentium F0 0F C7 C8 bug workaround.
508 if (boot_cpu_data
.f00f_bug
) {
511 nr
= (address
- idt_descr
.address
) >> 3;
514 do_invalid_op(regs
, 0);
521 /* Are we prepared to handle this kernel fault? */
522 if (fixup_exception(regs
))
526 * Valid to do another page fault here, because if this fault
527 * had been triggered by is_prefetch fixup_exception would have
530 if (is_prefetch(regs
, address
, error_code
))
534 * Oops. The kernel tried to access some bad page. We'll have to
535 * terminate things with extreme prejudice.
540 if (oops_may_print()) {
541 #ifdef CONFIG_X86_PAE
542 if (error_code
& 16) {
543 pte_t
*pte
= lookup_address(address
);
545 if (pte
&& pte_present(*pte
) && !pte_exec_kernel(*pte
))
546 printk(KERN_CRIT
"kernel tried to execute "
547 "NX-protected page - exploit attempt? "
548 "(uid: %d)\n", current
->uid
);
551 if (address
< PAGE_SIZE
)
552 printk(KERN_ALERT
"BUG: unable to handle kernel NULL "
553 "pointer dereference");
555 printk(KERN_ALERT
"BUG: unable to handle kernel paging"
557 printk(" at virtual address %08lx\n",address
);
558 printk(KERN_ALERT
" printing eip:\n");
559 printk("%08lx\n", regs
->eip
);
562 page
= ((unsigned long *) __va(page
))[address
>> 22];
563 if (oops_may_print())
564 printk(KERN_ALERT
"*pde = %08lx\n", page
);
566 * We must not directly access the pte in the highpte
567 * case, the page table might be allocated in highmem.
568 * And lets rather not kmap-atomic the pte, just in case
569 * it's allocated already.
571 #ifndef CONFIG_HIGHPTE
572 if ((page
& 1) && oops_may_print()) {
574 address
&= 0x003ff000;
575 page
= ((unsigned long *) __va(page
))[address
>> PAGE_SHIFT
];
576 printk(KERN_ALERT
"*pte = %08lx\n", page
);
579 tsk
->thread
.cr2
= address
;
580 tsk
->thread
.trap_no
= 14;
581 tsk
->thread
.error_code
= error_code
;
582 die("Oops", regs
, error_code
);
587 * We ran out of memory, or some other thing happened to us that made
588 * us unable to handle the page fault gracefully.
591 up_read(&mm
->mmap_sem
);
594 down_read(&mm
->mmap_sem
);
597 printk("VM: killing process %s\n", tsk
->comm
);
603 up_read(&mm
->mmap_sem
);
605 /* Kernel mode? Handle exceptions or die */
606 if (!(error_code
& 4))
609 /* User space => ok to do another page fault */
610 if (is_prefetch(regs
, address
, error_code
))
613 tsk
->thread
.cr2
= address
;
614 tsk
->thread
.error_code
= error_code
;
615 tsk
->thread
.trap_no
= 14;
616 force_sig_info_fault(SIGBUS
, BUS_ADRERR
, address
, tsk
);
619 #ifndef CONFIG_X86_PAE
620 void vmalloc_sync_all(void)
623 * Note that races in the updates of insync and start aren't
624 * problematic: insync can only get set bits added, and updates to
625 * start are only improving performance (without affecting correctness
628 static DECLARE_BITMAP(insync
, PTRS_PER_PGD
);
629 static unsigned long start
= TASK_SIZE
;
630 unsigned long address
;
632 BUILD_BUG_ON(TASK_SIZE
& ~PGDIR_MASK
);
633 for (address
= start
; address
>= TASK_SIZE
; address
+= PGDIR_SIZE
) {
634 if (!test_bit(pgd_index(address
), insync
)) {
638 spin_lock_irqsave(&pgd_lock
, flags
);
639 for (page
= pgd_list
; page
; page
=
640 (struct page
*)page
->index
)
641 if (!vmalloc_sync_one(page_address(page
),
643 BUG_ON(page
!= pgd_list
);
646 spin_unlock_irqrestore(&pgd_lock
, flags
);
648 set_bit(pgd_index(address
), insync
);
650 if (address
== start
&& test_bit(pgd_index(address
), insync
))
651 start
= address
+ PGDIR_SIZE
;