e1000: Add device IDs of blade version of the 82571 quad port
[pv_ops_mirror.git] / arch / arm / vfp / vfpsingle.c
blobb252631b406bd22bcbe040ede3d3f4dfbea8e987
1 /*
2 * linux/arch/arm/vfp/vfpsingle.c
4 * This code is derived in part from John R. Housers softfloat library, which
5 * carries the following notice:
7 * ===========================================================================
8 * This C source file is part of the SoftFloat IEC/IEEE Floating-point
9 * Arithmetic Package, Release 2.
11 * Written by John R. Hauser. This work was made possible in part by the
12 * International Computer Science Institute, located at Suite 600, 1947 Center
13 * Street, Berkeley, California 94704. Funding was partially provided by the
14 * National Science Foundation under grant MIP-9311980. The original version
15 * of this code was written as part of a project to build a fixed-point vector
16 * processor in collaboration with the University of California at Berkeley,
17 * overseen by Profs. Nelson Morgan and John Wawrzynek. More information
18 * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
19 * arithmetic/softfloat.html'.
21 * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
22 * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
23 * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
24 * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
25 * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
27 * Derivative works are acceptable, even for commercial purposes, so long as
28 * (1) they include prominent notice that the work is derivative, and (2) they
29 * include prominent notice akin to these three paragraphs for those parts of
30 * this code that are retained.
31 * ===========================================================================
33 #include <linux/kernel.h>
34 #include <linux/bitops.h>
36 #include <asm/div64.h>
37 #include <asm/vfp.h>
39 #include "vfpinstr.h"
40 #include "vfp.h"
42 static struct vfp_single vfp_single_default_qnan = {
43 .exponent = 255,
44 .sign = 0,
45 .significand = VFP_SINGLE_SIGNIFICAND_QNAN,
48 static void vfp_single_dump(const char *str, struct vfp_single *s)
50 pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n",
51 str, s->sign != 0, s->exponent, s->significand);
54 static void vfp_single_normalise_denormal(struct vfp_single *vs)
56 int bits = 31 - fls(vs->significand);
58 vfp_single_dump("normalise_denormal: in", vs);
60 if (bits) {
61 vs->exponent -= bits - 1;
62 vs->significand <<= bits;
65 vfp_single_dump("normalise_denormal: out", vs);
68 #ifndef DEBUG
69 #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
70 u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions)
71 #else
72 u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func)
73 #endif
75 u32 significand, incr, rmode;
76 int exponent, shift, underflow;
78 vfp_single_dump("pack: in", vs);
81 * Infinities and NaNs are a special case.
83 if (vs->exponent == 255 && (vs->significand == 0 || exceptions))
84 goto pack;
87 * Special-case zero.
89 if (vs->significand == 0) {
90 vs->exponent = 0;
91 goto pack;
94 exponent = vs->exponent;
95 significand = vs->significand;
98 * Normalise first. Note that we shift the significand up to
99 * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
100 * significant bit.
102 shift = 32 - fls(significand);
103 if (shift < 32 && shift) {
104 exponent -= shift;
105 significand <<= shift;
108 #ifdef DEBUG
109 vs->exponent = exponent;
110 vs->significand = significand;
111 vfp_single_dump("pack: normalised", vs);
112 #endif
115 * Tiny number?
117 underflow = exponent < 0;
118 if (underflow) {
119 significand = vfp_shiftright32jamming(significand, -exponent);
120 exponent = 0;
121 #ifdef DEBUG
122 vs->exponent = exponent;
123 vs->significand = significand;
124 vfp_single_dump("pack: tiny number", vs);
125 #endif
126 if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)))
127 underflow = 0;
131 * Select rounding increment.
133 incr = 0;
134 rmode = fpscr & FPSCR_RMODE_MASK;
136 if (rmode == FPSCR_ROUND_NEAREST) {
137 incr = 1 << VFP_SINGLE_LOW_BITS;
138 if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0)
139 incr -= 1;
140 } else if (rmode == FPSCR_ROUND_TOZERO) {
141 incr = 0;
142 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0))
143 incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1;
145 pr_debug("VFP: rounding increment = 0x%08x\n", incr);
148 * Is our rounding going to overflow?
150 if ((significand + incr) < significand) {
151 exponent += 1;
152 significand = (significand >> 1) | (significand & 1);
153 incr >>= 1;
154 #ifdef DEBUG
155 vs->exponent = exponent;
156 vs->significand = significand;
157 vfp_single_dump("pack: overflow", vs);
158 #endif
162 * If any of the low bits (which will be shifted out of the
163 * number) are non-zero, the result is inexact.
165 if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))
166 exceptions |= FPSCR_IXC;
169 * Do our rounding.
171 significand += incr;
174 * Infinity?
176 if (exponent >= 254) {
177 exceptions |= FPSCR_OFC | FPSCR_IXC;
178 if (incr == 0) {
179 vs->exponent = 253;
180 vs->significand = 0x7fffffff;
181 } else {
182 vs->exponent = 255; /* infinity */
183 vs->significand = 0;
185 } else {
186 if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0)
187 exponent = 0;
188 if (exponent || significand > 0x80000000)
189 underflow = 0;
190 if (underflow)
191 exceptions |= FPSCR_UFC;
192 vs->exponent = exponent;
193 vs->significand = significand >> 1;
196 pack:
197 vfp_single_dump("pack: final", vs);
199 s32 d = vfp_single_pack(vs);
200 #ifdef DEBUG
201 pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func,
202 sd, d, exceptions);
203 #endif
204 vfp_put_float(d, sd);
207 return exceptions;
211 * Propagate the NaN, setting exceptions if it is signalling.
212 * 'n' is always a NaN. 'm' may be a number, NaN or infinity.
214 static u32
215 vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn,
216 struct vfp_single *vsm, u32 fpscr)
218 struct vfp_single *nan;
219 int tn, tm = 0;
221 tn = vfp_single_type(vsn);
223 if (vsm)
224 tm = vfp_single_type(vsm);
226 if (fpscr & FPSCR_DEFAULT_NAN)
228 * Default NaN mode - always returns a quiet NaN
230 nan = &vfp_single_default_qnan;
231 else {
233 * Contemporary mode - select the first signalling
234 * NAN, or if neither are signalling, the first
235 * quiet NAN.
237 if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
238 nan = vsn;
239 else
240 nan = vsm;
242 * Make the NaN quiet.
244 nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
247 *vsd = *nan;
250 * If one was a signalling NAN, raise invalid operation.
252 return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
257 * Extended operations
259 static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr)
261 vfp_put_float(vfp_single_packed_abs(m), sd);
262 return 0;
265 static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr)
267 vfp_put_float(m, sd);
268 return 0;
271 static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr)
273 vfp_put_float(vfp_single_packed_negate(m), sd);
274 return 0;
277 static const u16 sqrt_oddadjust[] = {
278 0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
279 0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67
282 static const u16 sqrt_evenadjust[] = {
283 0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
284 0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002
287 u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand)
289 int index;
290 u32 z, a;
292 if ((significand & 0xc0000000) != 0x40000000) {
293 printk(KERN_WARNING "VFP: estimate_sqrt: invalid significand\n");
296 a = significand << 1;
297 index = (a >> 27) & 15;
298 if (exponent & 1) {
299 z = 0x4000 + (a >> 17) - sqrt_oddadjust[index];
300 z = ((a / z) << 14) + (z << 15);
301 a >>= 1;
302 } else {
303 z = 0x8000 + (a >> 17) - sqrt_evenadjust[index];
304 z = a / z + z;
305 z = (z >= 0x20000) ? 0xffff8000 : (z << 15);
306 if (z <= a)
307 return (s32)a >> 1;
310 u64 v = (u64)a << 31;
311 do_div(v, z);
312 return v + (z >> 1);
316 static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr)
318 struct vfp_single vsm, vsd;
319 int ret, tm;
321 vfp_single_unpack(&vsm, m);
322 tm = vfp_single_type(&vsm);
323 if (tm & (VFP_NAN|VFP_INFINITY)) {
324 struct vfp_single *vsp = &vsd;
326 if (tm & VFP_NAN)
327 ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr);
328 else if (vsm.sign == 0) {
329 sqrt_copy:
330 vsp = &vsm;
331 ret = 0;
332 } else {
333 sqrt_invalid:
334 vsp = &vfp_single_default_qnan;
335 ret = FPSCR_IOC;
337 vfp_put_float(vfp_single_pack(vsp), sd);
338 return ret;
342 * sqrt(+/- 0) == +/- 0
344 if (tm & VFP_ZERO)
345 goto sqrt_copy;
348 * Normalise a denormalised number
350 if (tm & VFP_DENORMAL)
351 vfp_single_normalise_denormal(&vsm);
354 * sqrt(<0) = invalid
356 if (vsm.sign)
357 goto sqrt_invalid;
359 vfp_single_dump("sqrt", &vsm);
362 * Estimate the square root.
364 vsd.sign = 0;
365 vsd.exponent = ((vsm.exponent - 127) >> 1) + 127;
366 vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2;
368 vfp_single_dump("sqrt estimate", &vsd);
371 * And now adjust.
373 if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) {
374 if (vsd.significand < 2) {
375 vsd.significand = 0xffffffff;
376 } else {
377 u64 term;
378 s64 rem;
379 vsm.significand <<= !(vsm.exponent & 1);
380 term = (u64)vsd.significand * vsd.significand;
381 rem = ((u64)vsm.significand << 32) - term;
383 pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem);
385 while (rem < 0) {
386 vsd.significand -= 1;
387 rem += ((u64)vsd.significand << 1) | 1;
389 vsd.significand |= rem != 0;
392 vsd.significand = vfp_shiftright32jamming(vsd.significand, 1);
394 return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt");
398 * Equal := ZC
399 * Less than := N
400 * Greater than := C
401 * Unordered := CV
403 static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr)
405 s32 d;
406 u32 ret = 0;
408 d = vfp_get_float(sd);
409 if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
410 ret |= FPSCR_C | FPSCR_V;
411 if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
413 * Signalling NaN, or signalling on quiet NaN
415 ret |= FPSCR_IOC;
418 if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
419 ret |= FPSCR_C | FPSCR_V;
420 if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
422 * Signalling NaN, or signalling on quiet NaN
424 ret |= FPSCR_IOC;
427 if (ret == 0) {
428 if (d == m || vfp_single_packed_abs(d | m) == 0) {
430 * equal
432 ret |= FPSCR_Z | FPSCR_C;
433 } else if (vfp_single_packed_sign(d ^ m)) {
435 * different signs
437 if (vfp_single_packed_sign(d))
439 * d is negative, so d < m
441 ret |= FPSCR_N;
442 else
444 * d is positive, so d > m
446 ret |= FPSCR_C;
447 } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
449 * d < m
451 ret |= FPSCR_N;
452 } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
454 * d > m
456 ret |= FPSCR_C;
459 return ret;
462 static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr)
464 return vfp_compare(sd, 0, m, fpscr);
467 static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr)
469 return vfp_compare(sd, 1, m, fpscr);
472 static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr)
474 return vfp_compare(sd, 0, 0, fpscr);
477 static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr)
479 return vfp_compare(sd, 1, 0, fpscr);
482 static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr)
484 struct vfp_single vsm;
485 struct vfp_double vdd;
486 int tm;
487 u32 exceptions = 0;
489 vfp_single_unpack(&vsm, m);
491 tm = vfp_single_type(&vsm);
494 * If we have a signalling NaN, signal invalid operation.
496 if (tm == VFP_SNAN)
497 exceptions = FPSCR_IOC;
499 if (tm & VFP_DENORMAL)
500 vfp_single_normalise_denormal(&vsm);
502 vdd.sign = vsm.sign;
503 vdd.significand = (u64)vsm.significand << 32;
506 * If we have an infinity or NaN, the exponent must be 2047.
508 if (tm & (VFP_INFINITY|VFP_NAN)) {
509 vdd.exponent = 2047;
510 if (tm == VFP_QNAN)
511 vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
512 goto pack_nan;
513 } else if (tm & VFP_ZERO)
514 vdd.exponent = 0;
515 else
516 vdd.exponent = vsm.exponent + (1023 - 127);
518 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd");
520 pack_nan:
521 vfp_put_double(vfp_double_pack(&vdd), dd);
522 return exceptions;
525 static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr)
527 struct vfp_single vs;
529 vs.sign = 0;
530 vs.exponent = 127 + 31 - 1;
531 vs.significand = (u32)m;
533 return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito");
536 static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr)
538 struct vfp_single vs;
540 vs.sign = (m & 0x80000000) >> 16;
541 vs.exponent = 127 + 31 - 1;
542 vs.significand = vs.sign ? -m : m;
544 return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito");
547 static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr)
549 struct vfp_single vsm;
550 u32 d, exceptions = 0;
551 int rmode = fpscr & FPSCR_RMODE_MASK;
552 int tm;
554 vfp_single_unpack(&vsm, m);
555 vfp_single_dump("VSM", &vsm);
558 * Do we have a denormalised number?
560 tm = vfp_single_type(&vsm);
561 if (tm & VFP_DENORMAL)
562 exceptions |= FPSCR_IDC;
564 if (tm & VFP_NAN)
565 vsm.sign = 0;
567 if (vsm.exponent >= 127 + 32) {
568 d = vsm.sign ? 0 : 0xffffffff;
569 exceptions = FPSCR_IOC;
570 } else if (vsm.exponent >= 127 - 1) {
571 int shift = 127 + 31 - vsm.exponent;
572 u32 rem, incr = 0;
575 * 2^0 <= m < 2^32-2^8
577 d = (vsm.significand << 1) >> shift;
578 rem = vsm.significand << (33 - shift);
580 if (rmode == FPSCR_ROUND_NEAREST) {
581 incr = 0x80000000;
582 if ((d & 1) == 0)
583 incr -= 1;
584 } else if (rmode == FPSCR_ROUND_TOZERO) {
585 incr = 0;
586 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
587 incr = ~0;
590 if ((rem + incr) < rem) {
591 if (d < 0xffffffff)
592 d += 1;
593 else
594 exceptions |= FPSCR_IOC;
597 if (d && vsm.sign) {
598 d = 0;
599 exceptions |= FPSCR_IOC;
600 } else if (rem)
601 exceptions |= FPSCR_IXC;
602 } else {
603 d = 0;
604 if (vsm.exponent | vsm.significand) {
605 exceptions |= FPSCR_IXC;
606 if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
607 d = 1;
608 else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) {
609 d = 0;
610 exceptions |= FPSCR_IOC;
615 pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
617 vfp_put_float(d, sd);
619 return exceptions;
622 static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr)
624 return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO);
627 static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr)
629 struct vfp_single vsm;
630 u32 d, exceptions = 0;
631 int rmode = fpscr & FPSCR_RMODE_MASK;
632 int tm;
634 vfp_single_unpack(&vsm, m);
635 vfp_single_dump("VSM", &vsm);
638 * Do we have a denormalised number?
640 tm = vfp_single_type(&vsm);
641 if (vfp_single_type(&vsm) & VFP_DENORMAL)
642 exceptions |= FPSCR_IDC;
644 if (tm & VFP_NAN) {
645 d = 0;
646 exceptions |= FPSCR_IOC;
647 } else if (vsm.exponent >= 127 + 32) {
649 * m >= 2^31-2^7: invalid
651 d = 0x7fffffff;
652 if (vsm.sign)
653 d = ~d;
654 exceptions |= FPSCR_IOC;
655 } else if (vsm.exponent >= 127 - 1) {
656 int shift = 127 + 31 - vsm.exponent;
657 u32 rem, incr = 0;
659 /* 2^0 <= m <= 2^31-2^7 */
660 d = (vsm.significand << 1) >> shift;
661 rem = vsm.significand << (33 - shift);
663 if (rmode == FPSCR_ROUND_NEAREST) {
664 incr = 0x80000000;
665 if ((d & 1) == 0)
666 incr -= 1;
667 } else if (rmode == FPSCR_ROUND_TOZERO) {
668 incr = 0;
669 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
670 incr = ~0;
673 if ((rem + incr) < rem && d < 0xffffffff)
674 d += 1;
675 if (d > 0x7fffffff + (vsm.sign != 0)) {
676 d = 0x7fffffff + (vsm.sign != 0);
677 exceptions |= FPSCR_IOC;
678 } else if (rem)
679 exceptions |= FPSCR_IXC;
681 if (vsm.sign)
682 d = -d;
683 } else {
684 d = 0;
685 if (vsm.exponent | vsm.significand) {
686 exceptions |= FPSCR_IXC;
687 if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
688 d = 1;
689 else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign)
690 d = -1;
694 pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
696 vfp_put_float((s32)d, sd);
698 return exceptions;
701 static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr)
703 return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO);
706 static struct op fops_ext[32] = {
707 [FEXT_TO_IDX(FEXT_FCPY)] = { vfp_single_fcpy, 0 },
708 [FEXT_TO_IDX(FEXT_FABS)] = { vfp_single_fabs, 0 },
709 [FEXT_TO_IDX(FEXT_FNEG)] = { vfp_single_fneg, 0 },
710 [FEXT_TO_IDX(FEXT_FSQRT)] = { vfp_single_fsqrt, 0 },
711 [FEXT_TO_IDX(FEXT_FCMP)] = { vfp_single_fcmp, OP_SCALAR },
712 [FEXT_TO_IDX(FEXT_FCMPE)] = { vfp_single_fcmpe, OP_SCALAR },
713 [FEXT_TO_IDX(FEXT_FCMPZ)] = { vfp_single_fcmpz, OP_SCALAR },
714 [FEXT_TO_IDX(FEXT_FCMPEZ)] = { vfp_single_fcmpez, OP_SCALAR },
715 [FEXT_TO_IDX(FEXT_FCVT)] = { vfp_single_fcvtd, OP_SCALAR|OP_DD },
716 [FEXT_TO_IDX(FEXT_FUITO)] = { vfp_single_fuito, OP_SCALAR },
717 [FEXT_TO_IDX(FEXT_FSITO)] = { vfp_single_fsito, OP_SCALAR },
718 [FEXT_TO_IDX(FEXT_FTOUI)] = { vfp_single_ftoui, OP_SCALAR },
719 [FEXT_TO_IDX(FEXT_FTOUIZ)] = { vfp_single_ftouiz, OP_SCALAR },
720 [FEXT_TO_IDX(FEXT_FTOSI)] = { vfp_single_ftosi, OP_SCALAR },
721 [FEXT_TO_IDX(FEXT_FTOSIZ)] = { vfp_single_ftosiz, OP_SCALAR },
728 static u32
729 vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn,
730 struct vfp_single *vsm, u32 fpscr)
732 struct vfp_single *vsp;
733 u32 exceptions = 0;
734 int tn, tm;
736 tn = vfp_single_type(vsn);
737 tm = vfp_single_type(vsm);
739 if (tn & tm & VFP_INFINITY) {
741 * Two infinities. Are they different signs?
743 if (vsn->sign ^ vsm->sign) {
745 * different signs -> invalid
747 exceptions = FPSCR_IOC;
748 vsp = &vfp_single_default_qnan;
749 } else {
751 * same signs -> valid
753 vsp = vsn;
755 } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
757 * One infinity and one number -> infinity
759 vsp = vsn;
760 } else {
762 * 'n' is a NaN of some type
764 return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
766 *vsd = *vsp;
767 return exceptions;
770 static u32
771 vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn,
772 struct vfp_single *vsm, u32 fpscr)
774 u32 exp_diff, m_sig;
776 if (vsn->significand & 0x80000000 ||
777 vsm->significand & 0x80000000) {
778 pr_info("VFP: bad FP values in %s\n", __func__);
779 vfp_single_dump("VSN", vsn);
780 vfp_single_dump("VSM", vsm);
784 * Ensure that 'n' is the largest magnitude number. Note that
785 * if 'n' and 'm' have equal exponents, we do not swap them.
786 * This ensures that NaN propagation works correctly.
788 if (vsn->exponent < vsm->exponent) {
789 struct vfp_single *t = vsn;
790 vsn = vsm;
791 vsm = t;
795 * Is 'n' an infinity or a NaN? Note that 'm' may be a number,
796 * infinity or a NaN here.
798 if (vsn->exponent == 255)
799 return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr);
802 * We have two proper numbers, where 'vsn' is the larger magnitude.
804 * Copy 'n' to 'd' before doing the arithmetic.
806 *vsd = *vsn;
809 * Align both numbers.
811 exp_diff = vsn->exponent - vsm->exponent;
812 m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff);
815 * If the signs are different, we are really subtracting.
817 if (vsn->sign ^ vsm->sign) {
818 m_sig = vsn->significand - m_sig;
819 if ((s32)m_sig < 0) {
820 vsd->sign = vfp_sign_negate(vsd->sign);
821 m_sig = -m_sig;
822 } else if (m_sig == 0) {
823 vsd->sign = (fpscr & FPSCR_RMODE_MASK) ==
824 FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
826 } else {
827 m_sig = vsn->significand + m_sig;
829 vsd->significand = m_sig;
831 return 0;
834 static u32
835 vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr)
837 vfp_single_dump("VSN", vsn);
838 vfp_single_dump("VSM", vsm);
841 * Ensure that 'n' is the largest magnitude number. Note that
842 * if 'n' and 'm' have equal exponents, we do not swap them.
843 * This ensures that NaN propagation works correctly.
845 if (vsn->exponent < vsm->exponent) {
846 struct vfp_single *t = vsn;
847 vsn = vsm;
848 vsm = t;
849 pr_debug("VFP: swapping M <-> N\n");
852 vsd->sign = vsn->sign ^ vsm->sign;
855 * If 'n' is an infinity or NaN, handle it. 'm' may be anything.
857 if (vsn->exponent == 255) {
858 if (vsn->significand || (vsm->exponent == 255 && vsm->significand))
859 return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
860 if ((vsm->exponent | vsm->significand) == 0) {
861 *vsd = vfp_single_default_qnan;
862 return FPSCR_IOC;
864 vsd->exponent = vsn->exponent;
865 vsd->significand = 0;
866 return 0;
870 * If 'm' is zero, the result is always zero. In this case,
871 * 'n' may be zero or a number, but it doesn't matter which.
873 if ((vsm->exponent | vsm->significand) == 0) {
874 vsd->exponent = 0;
875 vsd->significand = 0;
876 return 0;
880 * We add 2 to the destination exponent for the same reason as
881 * the addition case - though this time we have +1 from each
882 * input operand.
884 vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2;
885 vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand);
887 vfp_single_dump("VSD", vsd);
888 return 0;
891 #define NEG_MULTIPLY (1 << 0)
892 #define NEG_SUBTRACT (1 << 1)
894 static u32
895 vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func)
897 struct vfp_single vsd, vsp, vsn, vsm;
898 u32 exceptions;
899 s32 v;
901 v = vfp_get_float(sn);
902 pr_debug("VFP: s%u = %08x\n", sn, v);
903 vfp_single_unpack(&vsn, v);
904 if (vsn.exponent == 0 && vsn.significand)
905 vfp_single_normalise_denormal(&vsn);
907 vfp_single_unpack(&vsm, m);
908 if (vsm.exponent == 0 && vsm.significand)
909 vfp_single_normalise_denormal(&vsm);
911 exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr);
912 if (negate & NEG_MULTIPLY)
913 vsp.sign = vfp_sign_negate(vsp.sign);
915 v = vfp_get_float(sd);
916 pr_debug("VFP: s%u = %08x\n", sd, v);
917 vfp_single_unpack(&vsn, v);
918 if (negate & NEG_SUBTRACT)
919 vsn.sign = vfp_sign_negate(vsn.sign);
921 exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr);
923 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func);
927 * Standard operations
931 * sd = sd + (sn * sm)
933 static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr)
935 return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac");
939 * sd = sd - (sn * sm)
941 static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr)
943 return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac");
947 * sd = -sd + (sn * sm)
949 static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr)
951 return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc");
955 * sd = -sd - (sn * sm)
957 static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr)
959 return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
963 * sd = sn * sm
965 static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr)
967 struct vfp_single vsd, vsn, vsm;
968 u32 exceptions;
969 s32 n = vfp_get_float(sn);
971 pr_debug("VFP: s%u = %08x\n", sn, n);
973 vfp_single_unpack(&vsn, n);
974 if (vsn.exponent == 0 && vsn.significand)
975 vfp_single_normalise_denormal(&vsn);
977 vfp_single_unpack(&vsm, m);
978 if (vsm.exponent == 0 && vsm.significand)
979 vfp_single_normalise_denormal(&vsm);
981 exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
982 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul");
986 * sd = -(sn * sm)
988 static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr)
990 struct vfp_single vsd, vsn, vsm;
991 u32 exceptions;
992 s32 n = vfp_get_float(sn);
994 pr_debug("VFP: s%u = %08x\n", sn, n);
996 vfp_single_unpack(&vsn, n);
997 if (vsn.exponent == 0 && vsn.significand)
998 vfp_single_normalise_denormal(&vsn);
1000 vfp_single_unpack(&vsm, m);
1001 if (vsm.exponent == 0 && vsm.significand)
1002 vfp_single_normalise_denormal(&vsm);
1004 exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
1005 vsd.sign = vfp_sign_negate(vsd.sign);
1006 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul");
1010 * sd = sn + sm
1012 static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr)
1014 struct vfp_single vsd, vsn, vsm;
1015 u32 exceptions;
1016 s32 n = vfp_get_float(sn);
1018 pr_debug("VFP: s%u = %08x\n", sn, n);
1021 * Unpack and normalise denormals.
1023 vfp_single_unpack(&vsn, n);
1024 if (vsn.exponent == 0 && vsn.significand)
1025 vfp_single_normalise_denormal(&vsn);
1027 vfp_single_unpack(&vsm, m);
1028 if (vsm.exponent == 0 && vsm.significand)
1029 vfp_single_normalise_denormal(&vsm);
1031 exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr);
1033 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd");
1037 * sd = sn - sm
1039 static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr)
1042 * Subtraction is addition with one sign inverted.
1044 return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr);
1048 * sd = sn / sm
1050 static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr)
1052 struct vfp_single vsd, vsn, vsm;
1053 u32 exceptions = 0;
1054 s32 n = vfp_get_float(sn);
1055 int tm, tn;
1057 pr_debug("VFP: s%u = %08x\n", sn, n);
1059 vfp_single_unpack(&vsn, n);
1060 vfp_single_unpack(&vsm, m);
1062 vsd.sign = vsn.sign ^ vsm.sign;
1064 tn = vfp_single_type(&vsn);
1065 tm = vfp_single_type(&vsm);
1068 * Is n a NAN?
1070 if (tn & VFP_NAN)
1071 goto vsn_nan;
1074 * Is m a NAN?
1076 if (tm & VFP_NAN)
1077 goto vsm_nan;
1080 * If n and m are infinity, the result is invalid
1081 * If n and m are zero, the result is invalid
1083 if (tm & tn & (VFP_INFINITY|VFP_ZERO))
1084 goto invalid;
1087 * If n is infinity, the result is infinity
1089 if (tn & VFP_INFINITY)
1090 goto infinity;
1093 * If m is zero, raise div0 exception
1095 if (tm & VFP_ZERO)
1096 goto divzero;
1099 * If m is infinity, or n is zero, the result is zero
1101 if (tm & VFP_INFINITY || tn & VFP_ZERO)
1102 goto zero;
1104 if (tn & VFP_DENORMAL)
1105 vfp_single_normalise_denormal(&vsn);
1106 if (tm & VFP_DENORMAL)
1107 vfp_single_normalise_denormal(&vsm);
1110 * Ok, we have two numbers, we can perform division.
1112 vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1;
1113 vsm.significand <<= 1;
1114 if (vsm.significand <= (2 * vsn.significand)) {
1115 vsn.significand >>= 1;
1116 vsd.exponent++;
1119 u64 significand = (u64)vsn.significand << 32;
1120 do_div(significand, vsm.significand);
1121 vsd.significand = significand;
1123 if ((vsd.significand & 0x3f) == 0)
1124 vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32);
1126 return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv");
1128 vsn_nan:
1129 exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr);
1130 pack:
1131 vfp_put_float(vfp_single_pack(&vsd), sd);
1132 return exceptions;
1134 vsm_nan:
1135 exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr);
1136 goto pack;
1138 zero:
1139 vsd.exponent = 0;
1140 vsd.significand = 0;
1141 goto pack;
1143 divzero:
1144 exceptions = FPSCR_DZC;
1145 infinity:
1146 vsd.exponent = 255;
1147 vsd.significand = 0;
1148 goto pack;
1150 invalid:
1151 vfp_put_float(vfp_single_pack(&vfp_single_default_qnan), sd);
1152 return FPSCR_IOC;
1155 static struct op fops[16] = {
1156 [FOP_TO_IDX(FOP_FMAC)] = { vfp_single_fmac, 0 },
1157 [FOP_TO_IDX(FOP_FNMAC)] = { vfp_single_fnmac, 0 },
1158 [FOP_TO_IDX(FOP_FMSC)] = { vfp_single_fmsc, 0 },
1159 [FOP_TO_IDX(FOP_FNMSC)] = { vfp_single_fnmsc, 0 },
1160 [FOP_TO_IDX(FOP_FMUL)] = { vfp_single_fmul, 0 },
1161 [FOP_TO_IDX(FOP_FNMUL)] = { vfp_single_fnmul, 0 },
1162 [FOP_TO_IDX(FOP_FADD)] = { vfp_single_fadd, 0 },
1163 [FOP_TO_IDX(FOP_FSUB)] = { vfp_single_fsub, 0 },
1164 [FOP_TO_IDX(FOP_FDIV)] = { vfp_single_fdiv, 0 },
1167 #define FREG_BANK(x) ((x) & 0x18)
1168 #define FREG_IDX(x) ((x) & 7)
1170 u32 vfp_single_cpdo(u32 inst, u32 fpscr)
1172 u32 op = inst & FOP_MASK;
1173 u32 exceptions = 0;
1174 unsigned int dest;
1175 unsigned int sn = vfp_get_sn(inst);
1176 unsigned int sm = vfp_get_sm(inst);
1177 unsigned int vecitr, veclen, vecstride;
1178 struct op *fop;
1180 vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK);
1182 fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)];
1185 * fcvtsd takes a dN register number as destination, not sN.
1186 * Technically, if bit 0 of dd is set, this is an invalid
1187 * instruction. However, we ignore this for efficiency.
1188 * It also only operates on scalars.
1190 if (fop->flags & OP_DD)
1191 dest = vfp_get_dd(inst);
1192 else
1193 dest = vfp_get_sd(inst);
1196 * If destination bank is zero, vector length is always '1'.
1197 * ARM DDI0100F C5.1.3, C5.3.2.
1199 if ((fop->flags & OP_SCALAR) || FREG_BANK(dest) == 0)
1200 veclen = 0;
1201 else
1202 veclen = fpscr & FPSCR_LENGTH_MASK;
1204 pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
1205 (veclen >> FPSCR_LENGTH_BIT) + 1);
1207 if (!fop->fn)
1208 goto invalid;
1210 for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
1211 s32 m = vfp_get_float(sm);
1212 u32 except;
1213 char type;
1215 type = fop->flags & OP_DD ? 'd' : 's';
1216 if (op == FOP_EXT)
1217 pr_debug("VFP: itr%d (%c%u) = op[%u] (s%u=%08x)\n",
1218 vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,
1219 sm, m);
1220 else
1221 pr_debug("VFP: itr%d (%c%u) = (s%u) op[%u] (s%u=%08x)\n",
1222 vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,
1223 FOP_TO_IDX(op), sm, m);
1225 except = fop->fn(dest, sn, m, fpscr);
1226 pr_debug("VFP: itr%d: exceptions=%08x\n",
1227 vecitr >> FPSCR_LENGTH_BIT, except);
1229 exceptions |= except;
1232 * CHECK: It appears to be undefined whether we stop when
1233 * we encounter an exception. We continue.
1235 dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 7);
1236 sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7);
1237 if (FREG_BANK(sm) != 0)
1238 sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7);
1240 return exceptions;
1242 invalid:
1243 return (u32)-1;