2 * Definitions for the 'struct sk_buff' memory handlers.
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 (((X) - sizeof(struct skb_shared_info)) & \
45 ~(SMP_CACHE_BYTES - 1))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
51 /* A. Checksumming of received packets by device.
53 * NONE: device failed to checksum this packet.
54 * skb->csum is undefined.
56 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
57 * skb->csum is undefined.
58 * It is bad option, but, unfortunately, many of vendors do this.
59 * Apparently with secret goal to sell you new device, when you
60 * will add new protocol to your host. F.e. IPv6. 8)
62 * COMPLETE: the most generic way. Device supplied checksum of _all_
63 * the packet as seen by netif_rx in skb->csum.
64 * NOTE: Even if device supports only some protocols, but
65 * is able to produce some skb->csum, it MUST use COMPLETE,
68 * PARTIAL: identical to the case for output below. This may occur
69 * on a packet received directly from another Linux OS, e.g.,
70 * a virtualised Linux kernel on the same host. The packet can
71 * be treated in the same way as UNNECESSARY except that on
72 * output (i.e., forwarding) the checksum must be filled in
73 * by the OS or the hardware.
75 * B. Checksumming on output.
77 * NONE: skb is checksummed by protocol or csum is not required.
79 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
80 * from skb->csum_start to the end and to record the checksum
81 * at skb->csum_start + skb->csum_offset.
83 * Device must show its capabilities in dev->features, set
84 * at device setup time.
85 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
87 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
88 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
89 * TCP/UDP over IPv4. Sigh. Vendors like this
90 * way by an unknown reason. Though, see comment above
91 * about CHECKSUM_UNNECESSARY. 8)
92 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
94 * Any questions? No questions, good. --ANK
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack
{
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info
{
109 struct net_device
*physindev
;
110 struct net_device
*physoutdev
;
111 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
112 struct net_device
*netoutdev
;
115 unsigned long data
[32 / sizeof(unsigned long)];
119 struct sk_buff_head
{
120 /* These two members must be first. */
121 struct sk_buff
*next
;
122 struct sk_buff
*prev
;
130 /* To allow 64K frame to be packed as single skb without frag_list */
131 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
133 typedef struct skb_frag_struct skb_frag_t
;
135 struct skb_frag_struct
{
141 /* This data is invariant across clones and lives at
142 * the end of the header data, ie. at skb->end.
144 struct skb_shared_info
{
146 unsigned short nr_frags
;
147 unsigned short gso_size
;
148 /* Warning: this field is not always filled in (UFO)! */
149 unsigned short gso_segs
;
150 unsigned short gso_type
;
152 struct sk_buff
*frag_list
;
153 skb_frag_t frags
[MAX_SKB_FRAGS
];
156 /* We divide dataref into two halves. The higher 16 bits hold references
157 * to the payload part of skb->data. The lower 16 bits hold references to
158 * the entire skb->data. A clone of a headerless skb holds the length of
159 * the header in skb->hdr_len.
161 * All users must obey the rule that the skb->data reference count must be
162 * greater than or equal to the payload reference count.
164 * Holding a reference to the payload part means that the user does not
165 * care about modifications to the header part of skb->data.
167 #define SKB_DATAREF_SHIFT 16
168 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
172 SKB_FCLONE_UNAVAILABLE
,
178 SKB_GSO_TCPV4
= 1 << 0,
179 SKB_GSO_UDP
= 1 << 1,
181 /* This indicates the skb is from an untrusted source. */
182 SKB_GSO_DODGY
= 1 << 2,
184 /* This indicates the tcp segment has CWR set. */
185 SKB_GSO_TCP_ECN
= 1 << 3,
187 SKB_GSO_TCPV6
= 1 << 4,
190 #if BITS_PER_LONG > 32
191 #define NET_SKBUFF_DATA_USES_OFFSET 1
194 #ifdef NET_SKBUFF_DATA_USES_OFFSET
195 typedef unsigned int sk_buff_data_t
;
197 typedef unsigned char *sk_buff_data_t
;
201 * struct sk_buff - socket buffer
202 * @next: Next buffer in list
203 * @prev: Previous buffer in list
204 * @sk: Socket we are owned by
205 * @tstamp: Time we arrived
206 * @dev: Device we arrived on/are leaving by
207 * @transport_header: Transport layer header
208 * @network_header: Network layer header
209 * @mac_header: Link layer header
210 * @dst: destination entry
211 * @sp: the security path, used for xfrm
212 * @cb: Control buffer. Free for use by every layer. Put private vars here
213 * @len: Length of actual data
214 * @data_len: Data length
215 * @mac_len: Length of link layer header
216 * @hdr_len: writable header length of cloned skb
217 * @csum: Checksum (must include start/offset pair)
218 * @csum_start: Offset from skb->head where checksumming should start
219 * @csum_offset: Offset from csum_start where checksum should be stored
220 * @local_df: allow local fragmentation
221 * @cloned: Head may be cloned (check refcnt to be sure)
222 * @nohdr: Payload reference only, must not modify header
223 * @pkt_type: Packet class
224 * @fclone: skbuff clone status
225 * @ip_summed: Driver fed us an IP checksum
226 * @priority: Packet queueing priority
227 * @users: User count - see {datagram,tcp}.c
228 * @protocol: Packet protocol from driver
229 * @truesize: Buffer size
230 * @head: Head of buffer
231 * @data: Data head pointer
232 * @tail: Tail pointer
234 * @destructor: Destruct function
235 * @mark: Generic packet mark
236 * @nfct: Associated connection, if any
237 * @ipvs_property: skbuff is owned by ipvs
238 * @nf_trace: netfilter packet trace flag
239 * @nfctinfo: Relationship of this skb to the connection
240 * @nfct_reasm: netfilter conntrack re-assembly pointer
241 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
242 * @iif: ifindex of device we arrived on
243 * @queue_mapping: Queue mapping for multiqueue devices
244 * @tc_index: Traffic control index
245 * @tc_verd: traffic control verdict
246 * @dma_cookie: a cookie to one of several possible DMA operations
247 * done by skb DMA functions
248 * @secmark: security marking
252 /* These two members must be first. */
253 struct sk_buff
*next
;
254 struct sk_buff
*prev
;
258 struct net_device
*dev
;
260 struct dst_entry
*dst
;
264 * This is the control buffer. It is free to use for every
265 * layer. Please put your private variables there. If you
266 * want to keep them across layers you have to do a skb_clone()
267 * first. This is owned by whoever has the skb queued ATM.
294 void (*destructor
)(struct sk_buff
*skb
);
295 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
296 struct nf_conntrack
*nfct
;
297 struct sk_buff
*nfct_reasm
;
299 #ifdef CONFIG_BRIDGE_NETFILTER
300 struct nf_bridge_info
*nf_bridge
;
306 #ifdef CONFIG_NET_SCHED
307 __u16 tc_index
; /* traffic control index */
308 #ifdef CONFIG_NET_CLS_ACT
309 __u16 tc_verd
; /* traffic control verdict */
314 #ifdef CONFIG_NET_DMA
315 dma_cookie_t dma_cookie
;
317 #ifdef CONFIG_NETWORK_SECMARK
323 sk_buff_data_t transport_header
;
324 sk_buff_data_t network_header
;
325 sk_buff_data_t mac_header
;
326 /* These elements must be at the end, see alloc_skb() for details. */
331 unsigned int truesize
;
337 * Handling routines are only of interest to the kernel
339 #include <linux/slab.h>
341 #include <asm/system.h>
343 extern void kfree_skb(struct sk_buff
*skb
);
344 extern void __kfree_skb(struct sk_buff
*skb
);
345 extern struct sk_buff
*__alloc_skb(unsigned int size
,
346 gfp_t priority
, int fclone
, int node
);
347 static inline struct sk_buff
*alloc_skb(unsigned int size
,
350 return __alloc_skb(size
, priority
, 0, -1);
353 static inline struct sk_buff
*alloc_skb_fclone(unsigned int size
,
356 return __alloc_skb(size
, priority
, 1, -1);
359 extern void kfree_skbmem(struct sk_buff
*skb
);
360 extern struct sk_buff
*skb_clone(struct sk_buff
*skb
,
362 extern struct sk_buff
*skb_copy(const struct sk_buff
*skb
,
364 extern struct sk_buff
*pskb_copy(struct sk_buff
*skb
,
366 extern int pskb_expand_head(struct sk_buff
*skb
,
367 int nhead
, int ntail
,
369 extern struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
,
370 unsigned int headroom
);
371 extern struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
372 int newheadroom
, int newtailroom
,
374 extern int skb_to_sgvec(struct sk_buff
*skb
,
375 struct scatterlist
*sg
, int offset
,
377 extern int skb_cow_data(struct sk_buff
*skb
, int tailbits
,
378 struct sk_buff
**trailer
);
379 extern int skb_pad(struct sk_buff
*skb
, int pad
);
380 #define dev_kfree_skb(a) kfree_skb(a)
381 extern void skb_over_panic(struct sk_buff
*skb
, int len
,
383 extern void skb_under_panic(struct sk_buff
*skb
, int len
,
385 extern void skb_truesize_bug(struct sk_buff
*skb
);
387 static inline void skb_truesize_check(struct sk_buff
*skb
)
389 if (unlikely((int)skb
->truesize
< sizeof(struct sk_buff
) + skb
->len
))
390 skb_truesize_bug(skb
);
393 extern int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
394 int getfrag(void *from
, char *to
, int offset
,
395 int len
,int odd
, struct sk_buff
*skb
),
396 void *from
, int length
);
403 __u32 stepped_offset
;
404 struct sk_buff
*root_skb
;
405 struct sk_buff
*cur_skb
;
409 extern void skb_prepare_seq_read(struct sk_buff
*skb
,
410 unsigned int from
, unsigned int to
,
411 struct skb_seq_state
*st
);
412 extern unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
413 struct skb_seq_state
*st
);
414 extern void skb_abort_seq_read(struct skb_seq_state
*st
);
416 extern unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
417 unsigned int to
, struct ts_config
*config
,
418 struct ts_state
*state
);
420 #ifdef NET_SKBUFF_DATA_USES_OFFSET
421 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
423 return skb
->head
+ skb
->end
;
426 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
433 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
436 * skb_queue_empty - check if a queue is empty
439 * Returns true if the queue is empty, false otherwise.
441 static inline int skb_queue_empty(const struct sk_buff_head
*list
)
443 return list
->next
== (struct sk_buff
*)list
;
447 * skb_get - reference buffer
448 * @skb: buffer to reference
450 * Makes another reference to a socket buffer and returns a pointer
453 static inline struct sk_buff
*skb_get(struct sk_buff
*skb
)
455 atomic_inc(&skb
->users
);
460 * If users == 1, we are the only owner and are can avoid redundant
465 * skb_cloned - is the buffer a clone
466 * @skb: buffer to check
468 * Returns true if the buffer was generated with skb_clone() and is
469 * one of multiple shared copies of the buffer. Cloned buffers are
470 * shared data so must not be written to under normal circumstances.
472 static inline int skb_cloned(const struct sk_buff
*skb
)
474 return skb
->cloned
&&
475 (atomic_read(&skb_shinfo(skb
)->dataref
) & SKB_DATAREF_MASK
) != 1;
479 * skb_header_cloned - is the header a clone
480 * @skb: buffer to check
482 * Returns true if modifying the header part of the buffer requires
483 * the data to be copied.
485 static inline int skb_header_cloned(const struct sk_buff
*skb
)
492 dataref
= atomic_read(&skb_shinfo(skb
)->dataref
);
493 dataref
= (dataref
& SKB_DATAREF_MASK
) - (dataref
>> SKB_DATAREF_SHIFT
);
498 * skb_header_release - release reference to header
499 * @skb: buffer to operate on
501 * Drop a reference to the header part of the buffer. This is done
502 * by acquiring a payload reference. You must not read from the header
503 * part of skb->data after this.
505 static inline void skb_header_release(struct sk_buff
*skb
)
509 atomic_add(1 << SKB_DATAREF_SHIFT
, &skb_shinfo(skb
)->dataref
);
513 * skb_shared - is the buffer shared
514 * @skb: buffer to check
516 * Returns true if more than one person has a reference to this
519 static inline int skb_shared(const struct sk_buff
*skb
)
521 return atomic_read(&skb
->users
) != 1;
525 * skb_share_check - check if buffer is shared and if so clone it
526 * @skb: buffer to check
527 * @pri: priority for memory allocation
529 * If the buffer is shared the buffer is cloned and the old copy
530 * drops a reference. A new clone with a single reference is returned.
531 * If the buffer is not shared the original buffer is returned. When
532 * being called from interrupt status or with spinlocks held pri must
535 * NULL is returned on a memory allocation failure.
537 static inline struct sk_buff
*skb_share_check(struct sk_buff
*skb
,
540 might_sleep_if(pri
& __GFP_WAIT
);
541 if (skb_shared(skb
)) {
542 struct sk_buff
*nskb
= skb_clone(skb
, pri
);
550 * Copy shared buffers into a new sk_buff. We effectively do COW on
551 * packets to handle cases where we have a local reader and forward
552 * and a couple of other messy ones. The normal one is tcpdumping
553 * a packet thats being forwarded.
557 * skb_unshare - make a copy of a shared buffer
558 * @skb: buffer to check
559 * @pri: priority for memory allocation
561 * If the socket buffer is a clone then this function creates a new
562 * copy of the data, drops a reference count on the old copy and returns
563 * the new copy with the reference count at 1. If the buffer is not a clone
564 * the original buffer is returned. When called with a spinlock held or
565 * from interrupt state @pri must be %GFP_ATOMIC
567 * %NULL is returned on a memory allocation failure.
569 static inline struct sk_buff
*skb_unshare(struct sk_buff
*skb
,
572 might_sleep_if(pri
& __GFP_WAIT
);
573 if (skb_cloned(skb
)) {
574 struct sk_buff
*nskb
= skb_copy(skb
, pri
);
575 kfree_skb(skb
); /* Free our shared copy */
583 * @list_: list to peek at
585 * Peek an &sk_buff. Unlike most other operations you _MUST_
586 * be careful with this one. A peek leaves the buffer on the
587 * list and someone else may run off with it. You must hold
588 * the appropriate locks or have a private queue to do this.
590 * Returns %NULL for an empty list or a pointer to the head element.
591 * The reference count is not incremented and the reference is therefore
592 * volatile. Use with caution.
594 static inline struct sk_buff
*skb_peek(struct sk_buff_head
*list_
)
596 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->next
;
597 if (list
== (struct sk_buff
*)list_
)
604 * @list_: list to peek at
606 * Peek an &sk_buff. Unlike most other operations you _MUST_
607 * be careful with this one. A peek leaves the buffer on the
608 * list and someone else may run off with it. You must hold
609 * the appropriate locks or have a private queue to do this.
611 * Returns %NULL for an empty list or a pointer to the tail element.
612 * The reference count is not incremented and the reference is therefore
613 * volatile. Use with caution.
615 static inline struct sk_buff
*skb_peek_tail(struct sk_buff_head
*list_
)
617 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->prev
;
618 if (list
== (struct sk_buff
*)list_
)
624 * skb_queue_len - get queue length
625 * @list_: list to measure
627 * Return the length of an &sk_buff queue.
629 static inline __u32
skb_queue_len(const struct sk_buff_head
*list_
)
635 * This function creates a split out lock class for each invocation;
636 * this is needed for now since a whole lot of users of the skb-queue
637 * infrastructure in drivers have different locking usage (in hardirq)
638 * than the networking core (in softirq only). In the long run either the
639 * network layer or drivers should need annotation to consolidate the
640 * main types of usage into 3 classes.
642 static inline void skb_queue_head_init(struct sk_buff_head
*list
)
644 spin_lock_init(&list
->lock
);
645 list
->prev
= list
->next
= (struct sk_buff
*)list
;
649 static inline void skb_queue_head_init_class(struct sk_buff_head
*list
,
650 struct lock_class_key
*class)
652 skb_queue_head_init(list
);
653 lockdep_set_class(&list
->lock
, class);
657 * Insert an sk_buff at the start of a list.
659 * The "__skb_xxxx()" functions are the non-atomic ones that
660 * can only be called with interrupts disabled.
664 * __skb_queue_after - queue a buffer at the list head
666 * @prev: place after this buffer
667 * @newsk: buffer to queue
669 * Queue a buffer int the middle of a list. This function takes no locks
670 * and you must therefore hold required locks before calling it.
672 * A buffer cannot be placed on two lists at the same time.
674 static inline void __skb_queue_after(struct sk_buff_head
*list
,
675 struct sk_buff
*prev
,
676 struct sk_buff
*newsk
)
678 struct sk_buff
*next
;
684 next
->prev
= prev
->next
= newsk
;
688 * __skb_queue_head - queue a buffer at the list head
690 * @newsk: buffer to queue
692 * Queue a buffer at the start of a list. This function takes no locks
693 * and you must therefore hold required locks before calling it.
695 * A buffer cannot be placed on two lists at the same time.
697 extern void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
698 static inline void __skb_queue_head(struct sk_buff_head
*list
,
699 struct sk_buff
*newsk
)
701 __skb_queue_after(list
, (struct sk_buff
*)list
, newsk
);
705 * __skb_queue_tail - queue a buffer at the list tail
707 * @newsk: buffer to queue
709 * Queue a buffer at the end of a list. This function takes no locks
710 * and you must therefore hold required locks before calling it.
712 * A buffer cannot be placed on two lists at the same time.
714 extern void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
715 static inline void __skb_queue_tail(struct sk_buff_head
*list
,
716 struct sk_buff
*newsk
)
718 struct sk_buff
*prev
, *next
;
721 next
= (struct sk_buff
*)list
;
725 next
->prev
= prev
->next
= newsk
;
730 * __skb_dequeue - remove from the head of the queue
731 * @list: list to dequeue from
733 * Remove the head of the list. This function does not take any locks
734 * so must be used with appropriate locks held only. The head item is
735 * returned or %NULL if the list is empty.
737 extern struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
);
738 static inline struct sk_buff
*__skb_dequeue(struct sk_buff_head
*list
)
740 struct sk_buff
*next
, *prev
, *result
;
742 prev
= (struct sk_buff
*) list
;
751 result
->next
= result
->prev
= NULL
;
758 * Insert a packet on a list.
760 extern void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
);
761 static inline void __skb_insert(struct sk_buff
*newsk
,
762 struct sk_buff
*prev
, struct sk_buff
*next
,
763 struct sk_buff_head
*list
)
767 next
->prev
= prev
->next
= newsk
;
772 * Place a packet after a given packet in a list.
774 extern void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
);
775 static inline void __skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
777 __skb_insert(newsk
, old
, old
->next
, list
);
781 * remove sk_buff from list. _Must_ be called atomically, and with
784 extern void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
);
785 static inline void __skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
787 struct sk_buff
*next
, *prev
;
792 skb
->next
= skb
->prev
= NULL
;
798 /* XXX: more streamlined implementation */
801 * __skb_dequeue_tail - remove from the tail of the queue
802 * @list: list to dequeue from
804 * Remove the tail of the list. This function does not take any locks
805 * so must be used with appropriate locks held only. The tail item is
806 * returned or %NULL if the list is empty.
808 extern struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
);
809 static inline struct sk_buff
*__skb_dequeue_tail(struct sk_buff_head
*list
)
811 struct sk_buff
*skb
= skb_peek_tail(list
);
813 __skb_unlink(skb
, list
);
818 static inline int skb_is_nonlinear(const struct sk_buff
*skb
)
820 return skb
->data_len
;
823 static inline unsigned int skb_headlen(const struct sk_buff
*skb
)
825 return skb
->len
- skb
->data_len
;
828 static inline int skb_pagelen(const struct sk_buff
*skb
)
832 for (i
= (int)skb_shinfo(skb
)->nr_frags
- 1; i
>= 0; i
--)
833 len
+= skb_shinfo(skb
)->frags
[i
].size
;
834 return len
+ skb_headlen(skb
);
837 static inline void skb_fill_page_desc(struct sk_buff
*skb
, int i
,
838 struct page
*page
, int off
, int size
)
840 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
843 frag
->page_offset
= off
;
845 skb_shinfo(skb
)->nr_frags
= i
+ 1;
848 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
849 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
850 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
852 #ifdef NET_SKBUFF_DATA_USES_OFFSET
853 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
855 return skb
->head
+ skb
->tail
;
858 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
860 skb
->tail
= skb
->data
- skb
->head
;
863 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
865 skb_reset_tail_pointer(skb
);
868 #else /* NET_SKBUFF_DATA_USES_OFFSET */
869 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
874 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
876 skb
->tail
= skb
->data
;
879 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
881 skb
->tail
= skb
->data
+ offset
;
884 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
887 * Add data to an sk_buff
889 static inline unsigned char *__skb_put(struct sk_buff
*skb
, unsigned int len
)
891 unsigned char *tmp
= skb_tail_pointer(skb
);
892 SKB_LINEAR_ASSERT(skb
);
899 * skb_put - add data to a buffer
900 * @skb: buffer to use
901 * @len: amount of data to add
903 * This function extends the used data area of the buffer. If this would
904 * exceed the total buffer size the kernel will panic. A pointer to the
905 * first byte of the extra data is returned.
907 static inline unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
909 unsigned char *tmp
= skb_tail_pointer(skb
);
910 SKB_LINEAR_ASSERT(skb
);
913 if (unlikely(skb
->tail
> skb
->end
))
914 skb_over_panic(skb
, len
, current_text_addr());
918 static inline unsigned char *__skb_push(struct sk_buff
*skb
, unsigned int len
)
926 * skb_push - add data to the start of a buffer
927 * @skb: buffer to use
928 * @len: amount of data to add
930 * This function extends the used data area of the buffer at the buffer
931 * start. If this would exceed the total buffer headroom the kernel will
932 * panic. A pointer to the first byte of the extra data is returned.
934 static inline unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
938 if (unlikely(skb
->data
<skb
->head
))
939 skb_under_panic(skb
, len
, current_text_addr());
943 static inline unsigned char *__skb_pull(struct sk_buff
*skb
, unsigned int len
)
946 BUG_ON(skb
->len
< skb
->data_len
);
947 return skb
->data
+= len
;
951 * skb_pull - remove data from the start of a buffer
952 * @skb: buffer to use
953 * @len: amount of data to remove
955 * This function removes data from the start of a buffer, returning
956 * the memory to the headroom. A pointer to the next data in the buffer
957 * is returned. Once the data has been pulled future pushes will overwrite
960 static inline unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
962 return unlikely(len
> skb
->len
) ? NULL
: __skb_pull(skb
, len
);
965 extern unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
);
967 static inline unsigned char *__pskb_pull(struct sk_buff
*skb
, unsigned int len
)
969 if (len
> skb_headlen(skb
) &&
970 !__pskb_pull_tail(skb
, len
-skb_headlen(skb
)))
973 return skb
->data
+= len
;
976 static inline unsigned char *pskb_pull(struct sk_buff
*skb
, unsigned int len
)
978 return unlikely(len
> skb
->len
) ? NULL
: __pskb_pull(skb
, len
);
981 static inline int pskb_may_pull(struct sk_buff
*skb
, unsigned int len
)
983 if (likely(len
<= skb_headlen(skb
)))
985 if (unlikely(len
> skb
->len
))
987 return __pskb_pull_tail(skb
, len
-skb_headlen(skb
)) != NULL
;
991 * skb_headroom - bytes at buffer head
992 * @skb: buffer to check
994 * Return the number of bytes of free space at the head of an &sk_buff.
996 static inline int skb_headroom(const struct sk_buff
*skb
)
998 return skb
->data
- skb
->head
;
1002 * skb_tailroom - bytes at buffer end
1003 * @skb: buffer to check
1005 * Return the number of bytes of free space at the tail of an sk_buff
1007 static inline int skb_tailroom(const struct sk_buff
*skb
)
1009 return skb_is_nonlinear(skb
) ? 0 : skb
->end
- skb
->tail
;
1013 * skb_reserve - adjust headroom
1014 * @skb: buffer to alter
1015 * @len: bytes to move
1017 * Increase the headroom of an empty &sk_buff by reducing the tail
1018 * room. This is only allowed for an empty buffer.
1020 static inline void skb_reserve(struct sk_buff
*skb
, int len
)
1026 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1027 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1029 return skb
->head
+ skb
->transport_header
;
1032 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1034 skb
->transport_header
= skb
->data
- skb
->head
;
1037 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1040 skb_reset_transport_header(skb
);
1041 skb
->transport_header
+= offset
;
1044 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1046 return skb
->head
+ skb
->network_header
;
1049 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1051 skb
->network_header
= skb
->data
- skb
->head
;
1054 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1056 skb_reset_network_header(skb
);
1057 skb
->network_header
+= offset
;
1060 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1062 return skb
->head
+ skb
->mac_header
;
1065 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1067 return skb
->mac_header
!= ~0U;
1070 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1072 skb
->mac_header
= skb
->data
- skb
->head
;
1075 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1077 skb_reset_mac_header(skb
);
1078 skb
->mac_header
+= offset
;
1081 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1083 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1085 return skb
->transport_header
;
1088 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1090 skb
->transport_header
= skb
->data
;
1093 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1096 skb
->transport_header
= skb
->data
+ offset
;
1099 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1101 return skb
->network_header
;
1104 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1106 skb
->network_header
= skb
->data
;
1109 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1111 skb
->network_header
= skb
->data
+ offset
;
1114 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1116 return skb
->mac_header
;
1119 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1121 return skb
->mac_header
!= NULL
;
1124 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1126 skb
->mac_header
= skb
->data
;
1129 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1131 skb
->mac_header
= skb
->data
+ offset
;
1133 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1135 static inline int skb_transport_offset(const struct sk_buff
*skb
)
1137 return skb_transport_header(skb
) - skb
->data
;
1140 static inline u32
skb_network_header_len(const struct sk_buff
*skb
)
1142 return skb
->transport_header
- skb
->network_header
;
1145 static inline int skb_network_offset(const struct sk_buff
*skb
)
1147 return skb_network_header(skb
) - skb
->data
;
1151 * CPUs often take a performance hit when accessing unaligned memory
1152 * locations. The actual performance hit varies, it can be small if the
1153 * hardware handles it or large if we have to take an exception and fix it
1156 * Since an ethernet header is 14 bytes network drivers often end up with
1157 * the IP header at an unaligned offset. The IP header can be aligned by
1158 * shifting the start of the packet by 2 bytes. Drivers should do this
1161 * skb_reserve(NET_IP_ALIGN);
1163 * The downside to this alignment of the IP header is that the DMA is now
1164 * unaligned. On some architectures the cost of an unaligned DMA is high
1165 * and this cost outweighs the gains made by aligning the IP header.
1167 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1170 #ifndef NET_IP_ALIGN
1171 #define NET_IP_ALIGN 2
1175 * The networking layer reserves some headroom in skb data (via
1176 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1177 * the header has to grow. In the default case, if the header has to grow
1178 * 16 bytes or less we avoid the reallocation.
1180 * Unfortunately this headroom changes the DMA alignment of the resulting
1181 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1182 * on some architectures. An architecture can override this value,
1183 * perhaps setting it to a cacheline in size (since that will maintain
1184 * cacheline alignment of the DMA). It must be a power of 2.
1186 * Various parts of the networking layer expect at least 16 bytes of
1187 * headroom, you should not reduce this.
1190 #define NET_SKB_PAD 16
1193 extern int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
);
1195 static inline void __skb_trim(struct sk_buff
*skb
, unsigned int len
)
1197 if (unlikely(skb
->data_len
)) {
1202 skb_set_tail_pointer(skb
, len
);
1206 * skb_trim - remove end from a buffer
1207 * @skb: buffer to alter
1210 * Cut the length of a buffer down by removing data from the tail. If
1211 * the buffer is already under the length specified it is not modified.
1212 * The skb must be linear.
1214 static inline void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1217 __skb_trim(skb
, len
);
1221 static inline int __pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1224 return ___pskb_trim(skb
, len
);
1225 __skb_trim(skb
, len
);
1229 static inline int pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1231 return (len
< skb
->len
) ? __pskb_trim(skb
, len
) : 0;
1235 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1236 * @skb: buffer to alter
1239 * This is identical to pskb_trim except that the caller knows that
1240 * the skb is not cloned so we should never get an error due to out-
1243 static inline void pskb_trim_unique(struct sk_buff
*skb
, unsigned int len
)
1245 int err
= pskb_trim(skb
, len
);
1250 * skb_orphan - orphan a buffer
1251 * @skb: buffer to orphan
1253 * If a buffer currently has an owner then we call the owner's
1254 * destructor function and make the @skb unowned. The buffer continues
1255 * to exist but is no longer charged to its former owner.
1257 static inline void skb_orphan(struct sk_buff
*skb
)
1259 if (skb
->destructor
)
1260 skb
->destructor(skb
);
1261 skb
->destructor
= NULL
;
1266 * __skb_queue_purge - empty a list
1267 * @list: list to empty
1269 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1270 * the list and one reference dropped. This function does not take the
1271 * list lock and the caller must hold the relevant locks to use it.
1273 extern void skb_queue_purge(struct sk_buff_head
*list
);
1274 static inline void __skb_queue_purge(struct sk_buff_head
*list
)
1276 struct sk_buff
*skb
;
1277 while ((skb
= __skb_dequeue(list
)) != NULL
)
1282 * __dev_alloc_skb - allocate an skbuff for receiving
1283 * @length: length to allocate
1284 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1286 * Allocate a new &sk_buff and assign it a usage count of one. The
1287 * buffer has unspecified headroom built in. Users should allocate
1288 * the headroom they think they need without accounting for the
1289 * built in space. The built in space is used for optimisations.
1291 * %NULL is returned if there is no free memory.
1293 static inline struct sk_buff
*__dev_alloc_skb(unsigned int length
,
1296 struct sk_buff
*skb
= alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
);
1298 skb_reserve(skb
, NET_SKB_PAD
);
1303 * dev_alloc_skb - allocate an skbuff for receiving
1304 * @length: length to allocate
1306 * Allocate a new &sk_buff and assign it a usage count of one. The
1307 * buffer has unspecified headroom built in. Users should allocate
1308 * the headroom they think they need without accounting for the
1309 * built in space. The built in space is used for optimisations.
1311 * %NULL is returned if there is no free memory. Although this function
1312 * allocates memory it can be called from an interrupt.
1314 static inline struct sk_buff
*dev_alloc_skb(unsigned int length
)
1316 return __dev_alloc_skb(length
, GFP_ATOMIC
);
1319 extern struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
1320 unsigned int length
, gfp_t gfp_mask
);
1323 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1324 * @dev: network device to receive on
1325 * @length: length to allocate
1327 * Allocate a new &sk_buff and assign it a usage count of one. The
1328 * buffer has unspecified headroom built in. Users should allocate
1329 * the headroom they think they need without accounting for the
1330 * built in space. The built in space is used for optimisations.
1332 * %NULL is returned if there is no free memory. Although this function
1333 * allocates memory it can be called from an interrupt.
1335 static inline struct sk_buff
*netdev_alloc_skb(struct net_device
*dev
,
1336 unsigned int length
)
1338 return __netdev_alloc_skb(dev
, length
, GFP_ATOMIC
);
1342 * skb_clone_writable - is the header of a clone writable
1343 * @skb: buffer to check
1344 * @len: length up to which to write
1346 * Returns true if modifying the header part of the cloned buffer
1347 * does not requires the data to be copied.
1349 static inline int skb_clone_writable(struct sk_buff
*skb
, int len
)
1351 return !skb_header_cloned(skb
) &&
1352 skb_headroom(skb
) + len
<= skb
->hdr_len
;
1355 static inline int __skb_cow(struct sk_buff
*skb
, unsigned int headroom
,
1360 if (headroom
< NET_SKB_PAD
)
1361 headroom
= NET_SKB_PAD
;
1362 if (headroom
> skb_headroom(skb
))
1363 delta
= headroom
- skb_headroom(skb
);
1365 if (delta
|| cloned
)
1366 return pskb_expand_head(skb
, ALIGN(delta
, NET_SKB_PAD
), 0,
1372 * skb_cow - copy header of skb when it is required
1373 * @skb: buffer to cow
1374 * @headroom: needed headroom
1376 * If the skb passed lacks sufficient headroom or its data part
1377 * is shared, data is reallocated. If reallocation fails, an error
1378 * is returned and original skb is not changed.
1380 * The result is skb with writable area skb->head...skb->tail
1381 * and at least @headroom of space at head.
1383 static inline int skb_cow(struct sk_buff
*skb
, unsigned int headroom
)
1385 return __skb_cow(skb
, headroom
, skb_cloned(skb
));
1389 * skb_cow_head - skb_cow but only making the head writable
1390 * @skb: buffer to cow
1391 * @headroom: needed headroom
1393 * This function is identical to skb_cow except that we replace the
1394 * skb_cloned check by skb_header_cloned. It should be used when
1395 * you only need to push on some header and do not need to modify
1398 static inline int skb_cow_head(struct sk_buff
*skb
, unsigned int headroom
)
1400 return __skb_cow(skb
, headroom
, skb_header_cloned(skb
));
1404 * skb_padto - pad an skbuff up to a minimal size
1405 * @skb: buffer to pad
1406 * @len: minimal length
1408 * Pads up a buffer to ensure the trailing bytes exist and are
1409 * blanked. If the buffer already contains sufficient data it
1410 * is untouched. Otherwise it is extended. Returns zero on
1411 * success. The skb is freed on error.
1414 static inline int skb_padto(struct sk_buff
*skb
, unsigned int len
)
1416 unsigned int size
= skb
->len
;
1417 if (likely(size
>= len
))
1419 return skb_pad(skb
, len
-size
);
1422 static inline int skb_add_data(struct sk_buff
*skb
,
1423 char __user
*from
, int copy
)
1425 const int off
= skb
->len
;
1427 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1429 __wsum csum
= csum_and_copy_from_user(from
, skb_put(skb
, copy
),
1432 skb
->csum
= csum_block_add(skb
->csum
, csum
, off
);
1435 } else if (!copy_from_user(skb_put(skb
, copy
), from
, copy
))
1438 __skb_trim(skb
, off
);
1442 static inline int skb_can_coalesce(struct sk_buff
*skb
, int i
,
1443 struct page
*page
, int off
)
1446 struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
1448 return page
== frag
->page
&&
1449 off
== frag
->page_offset
+ frag
->size
;
1454 static inline int __skb_linearize(struct sk_buff
*skb
)
1456 return __pskb_pull_tail(skb
, skb
->data_len
) ? 0 : -ENOMEM
;
1460 * skb_linearize - convert paged skb to linear one
1461 * @skb: buffer to linarize
1463 * If there is no free memory -ENOMEM is returned, otherwise zero
1464 * is returned and the old skb data released.
1466 static inline int skb_linearize(struct sk_buff
*skb
)
1468 return skb_is_nonlinear(skb
) ? __skb_linearize(skb
) : 0;
1472 * skb_linearize_cow - make sure skb is linear and writable
1473 * @skb: buffer to process
1475 * If there is no free memory -ENOMEM is returned, otherwise zero
1476 * is returned and the old skb data released.
1478 static inline int skb_linearize_cow(struct sk_buff
*skb
)
1480 return skb_is_nonlinear(skb
) || skb_cloned(skb
) ?
1481 __skb_linearize(skb
) : 0;
1485 * skb_postpull_rcsum - update checksum for received skb after pull
1486 * @skb: buffer to update
1487 * @start: start of data before pull
1488 * @len: length of data pulled
1490 * After doing a pull on a received packet, you need to call this to
1491 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1492 * CHECKSUM_NONE so that it can be recomputed from scratch.
1495 static inline void skb_postpull_rcsum(struct sk_buff
*skb
,
1496 const void *start
, unsigned int len
)
1498 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1499 skb
->csum
= csum_sub(skb
->csum
, csum_partial(start
, len
, 0));
1502 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
);
1505 * pskb_trim_rcsum - trim received skb and update checksum
1506 * @skb: buffer to trim
1509 * This is exactly the same as pskb_trim except that it ensures the
1510 * checksum of received packets are still valid after the operation.
1513 static inline int pskb_trim_rcsum(struct sk_buff
*skb
, unsigned int len
)
1515 if (likely(len
>= skb
->len
))
1517 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1518 skb
->ip_summed
= CHECKSUM_NONE
;
1519 return __pskb_trim(skb
, len
);
1522 #define skb_queue_walk(queue, skb) \
1523 for (skb = (queue)->next; \
1524 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1527 #define skb_queue_walk_safe(queue, skb, tmp) \
1528 for (skb = (queue)->next, tmp = skb->next; \
1529 skb != (struct sk_buff *)(queue); \
1530 skb = tmp, tmp = skb->next)
1532 #define skb_queue_reverse_walk(queue, skb) \
1533 for (skb = (queue)->prev; \
1534 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1538 extern struct sk_buff
*skb_recv_datagram(struct sock
*sk
, unsigned flags
,
1539 int noblock
, int *err
);
1540 extern unsigned int datagram_poll(struct file
*file
, struct socket
*sock
,
1541 struct poll_table_struct
*wait
);
1542 extern int skb_copy_datagram_iovec(const struct sk_buff
*from
,
1543 int offset
, struct iovec
*to
,
1545 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff
*skb
,
1548 extern void skb_free_datagram(struct sock
*sk
, struct sk_buff
*skb
);
1549 extern void skb_kill_datagram(struct sock
*sk
, struct sk_buff
*skb
,
1550 unsigned int flags
);
1551 extern __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1552 int len
, __wsum csum
);
1553 extern int skb_copy_bits(const struct sk_buff
*skb
, int offset
,
1555 extern int skb_store_bits(struct sk_buff
*skb
, int offset
,
1556 const void *from
, int len
);
1557 extern __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
,
1558 int offset
, u8
*to
, int len
,
1560 extern void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
);
1561 extern void skb_split(struct sk_buff
*skb
,
1562 struct sk_buff
*skb1
, const u32 len
);
1564 extern struct sk_buff
*skb_segment(struct sk_buff
*skb
, int features
);
1566 static inline void *skb_header_pointer(const struct sk_buff
*skb
, int offset
,
1567 int len
, void *buffer
)
1569 int hlen
= skb_headlen(skb
);
1571 if (hlen
- offset
>= len
)
1572 return skb
->data
+ offset
;
1574 if (skb_copy_bits(skb
, offset
, buffer
, len
) < 0)
1580 static inline void skb_copy_from_linear_data(const struct sk_buff
*skb
,
1582 const unsigned int len
)
1584 memcpy(to
, skb
->data
, len
);
1587 static inline void skb_copy_from_linear_data_offset(const struct sk_buff
*skb
,
1588 const int offset
, void *to
,
1589 const unsigned int len
)
1591 memcpy(to
, skb
->data
+ offset
, len
);
1594 static inline void skb_copy_to_linear_data(struct sk_buff
*skb
,
1596 const unsigned int len
)
1598 memcpy(skb
->data
, from
, len
);
1601 static inline void skb_copy_to_linear_data_offset(struct sk_buff
*skb
,
1604 const unsigned int len
)
1606 memcpy(skb
->data
+ offset
, from
, len
);
1609 extern void skb_init(void);
1612 * skb_get_timestamp - get timestamp from a skb
1613 * @skb: skb to get stamp from
1614 * @stamp: pointer to struct timeval to store stamp in
1616 * Timestamps are stored in the skb as offsets to a base timestamp.
1617 * This function converts the offset back to a struct timeval and stores
1620 static inline void skb_get_timestamp(const struct sk_buff
*skb
, struct timeval
*stamp
)
1622 *stamp
= ktime_to_timeval(skb
->tstamp
);
1625 static inline void __net_timestamp(struct sk_buff
*skb
)
1627 skb
->tstamp
= ktime_get_real();
1630 static inline ktime_t
net_timedelta(ktime_t t
)
1632 return ktime_sub(ktime_get_real(), t
);
1635 static inline ktime_t
net_invalid_timestamp(void)
1637 return ktime_set(0, 0);
1640 extern __sum16
__skb_checksum_complete_head(struct sk_buff
*skb
, int len
);
1641 extern __sum16
__skb_checksum_complete(struct sk_buff
*skb
);
1643 static inline int skb_csum_unnecessary(const struct sk_buff
*skb
)
1645 return skb
->ip_summed
& CHECKSUM_UNNECESSARY
;
1649 * skb_checksum_complete - Calculate checksum of an entire packet
1650 * @skb: packet to process
1652 * This function calculates the checksum over the entire packet plus
1653 * the value of skb->csum. The latter can be used to supply the
1654 * checksum of a pseudo header as used by TCP/UDP. It returns the
1657 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1658 * this function can be used to verify that checksum on received
1659 * packets. In that case the function should return zero if the
1660 * checksum is correct. In particular, this function will return zero
1661 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1662 * hardware has already verified the correctness of the checksum.
1664 static inline __sum16
skb_checksum_complete(struct sk_buff
*skb
)
1666 return skb_csum_unnecessary(skb
) ?
1667 0 : __skb_checksum_complete(skb
);
1670 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1671 extern void nf_conntrack_destroy(struct nf_conntrack
*nfct
);
1672 static inline void nf_conntrack_put(struct nf_conntrack
*nfct
)
1674 if (nfct
&& atomic_dec_and_test(&nfct
->use
))
1675 nf_conntrack_destroy(nfct
);
1677 static inline void nf_conntrack_get(struct nf_conntrack
*nfct
)
1680 atomic_inc(&nfct
->use
);
1682 static inline void nf_conntrack_get_reasm(struct sk_buff
*skb
)
1685 atomic_inc(&skb
->users
);
1687 static inline void nf_conntrack_put_reasm(struct sk_buff
*skb
)
1693 #ifdef CONFIG_BRIDGE_NETFILTER
1694 static inline void nf_bridge_put(struct nf_bridge_info
*nf_bridge
)
1696 if (nf_bridge
&& atomic_dec_and_test(&nf_bridge
->use
))
1699 static inline void nf_bridge_get(struct nf_bridge_info
*nf_bridge
)
1702 atomic_inc(&nf_bridge
->use
);
1704 #endif /* CONFIG_BRIDGE_NETFILTER */
1705 static inline void nf_reset(struct sk_buff
*skb
)
1707 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1708 nf_conntrack_put(skb
->nfct
);
1710 nf_conntrack_put_reasm(skb
->nfct_reasm
);
1711 skb
->nfct_reasm
= NULL
;
1713 #ifdef CONFIG_BRIDGE_NETFILTER
1714 nf_bridge_put(skb
->nf_bridge
);
1715 skb
->nf_bridge
= NULL
;
1719 /* Note: This doesn't put any conntrack and bridge info in dst. */
1720 static inline void __nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
1722 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1723 dst
->nfct
= src
->nfct
;
1724 nf_conntrack_get(src
->nfct
);
1725 dst
->nfctinfo
= src
->nfctinfo
;
1726 dst
->nfct_reasm
= src
->nfct_reasm
;
1727 nf_conntrack_get_reasm(src
->nfct_reasm
);
1729 #ifdef CONFIG_BRIDGE_NETFILTER
1730 dst
->nf_bridge
= src
->nf_bridge
;
1731 nf_bridge_get(src
->nf_bridge
);
1735 static inline void nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
1737 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1738 nf_conntrack_put(dst
->nfct
);
1739 nf_conntrack_put_reasm(dst
->nfct_reasm
);
1741 #ifdef CONFIG_BRIDGE_NETFILTER
1742 nf_bridge_put(dst
->nf_bridge
);
1744 __nf_copy(dst
, src
);
1747 #ifdef CONFIG_NETWORK_SECMARK
1748 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
1750 to
->secmark
= from
->secmark
;
1753 static inline void skb_init_secmark(struct sk_buff
*skb
)
1758 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
1761 static inline void skb_init_secmark(struct sk_buff
*skb
)
1765 static inline void skb_set_queue_mapping(struct sk_buff
*skb
, u16 queue_mapping
)
1767 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1768 skb
->queue_mapping
= queue_mapping
;
1772 static inline void skb_copy_queue_mapping(struct sk_buff
*to
, const struct sk_buff
*from
)
1774 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1775 to
->queue_mapping
= from
->queue_mapping
;
1779 static inline int skb_is_gso(const struct sk_buff
*skb
)
1781 return skb_shinfo(skb
)->gso_size
;
1784 static inline void skb_forward_csum(struct sk_buff
*skb
)
1786 /* Unfortunately we don't support this one. Any brave souls? */
1787 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1788 skb
->ip_summed
= CHECKSUM_NONE
;
1791 #endif /* __KERNEL__ */
1792 #endif /* _LINUX_SKBUFF_H */