e1000: Add device IDs of blade version of the 82571 quad port
[pv_ops_mirror.git] / net / sctp / ulpqueue.c
blobfa0ba2a5564e51c8a6f78aa6d40481fc80f52a02
1 /* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
9 * This abstraction carries sctp events to the ULP (sockets).
11 * The SCTP reference implementation is free software;
12 * you can redistribute it and/or modify it under the terms of
13 * the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * The SCTP reference implementation is distributed in the hope that it
18 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
19 * ************************
20 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21 * See the GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with GNU CC; see the file COPYING. If not, write to
25 * the Free Software Foundation, 59 Temple Place - Suite 330,
26 * Boston, MA 02111-1307, USA.
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <lksctp-developers@lists.sourceforge.net>
32 * Or submit a bug report through the following website:
33 * http://www.sf.net/projects/lksctp
35 * Written or modified by:
36 * Jon Grimm <jgrimm@us.ibm.com>
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Sridhar Samudrala <sri@us.ibm.com>
40 * Any bugs reported given to us we will try to fix... any fixes shared will
41 * be incorporated into the next SCTP release.
44 #include <linux/types.h>
45 #include <linux/skbuff.h>
46 #include <net/sock.h>
47 #include <net/sctp/structs.h>
48 #include <net/sctp/sctp.h>
49 #include <net/sctp/sm.h>
51 /* Forward declarations for internal helpers. */
52 static struct sctp_ulpevent * sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
53 struct sctp_ulpevent *);
54 static struct sctp_ulpevent * sctp_ulpq_order(struct sctp_ulpq *,
55 struct sctp_ulpevent *);
57 /* 1st Level Abstractions */
59 /* Initialize a ULP queue from a block of memory. */
60 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
61 struct sctp_association *asoc)
63 memset(ulpq, 0, sizeof(struct sctp_ulpq));
65 ulpq->asoc = asoc;
66 skb_queue_head_init(&ulpq->reasm);
67 skb_queue_head_init(&ulpq->lobby);
68 ulpq->pd_mode = 0;
69 ulpq->malloced = 0;
71 return ulpq;
75 /* Flush the reassembly and ordering queues. */
76 void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
78 struct sk_buff *skb;
79 struct sctp_ulpevent *event;
81 while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
82 event = sctp_skb2event(skb);
83 sctp_ulpevent_free(event);
86 while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
87 event = sctp_skb2event(skb);
88 sctp_ulpevent_free(event);
93 /* Dispose of a ulpqueue. */
94 void sctp_ulpq_free(struct sctp_ulpq *ulpq)
96 sctp_ulpq_flush(ulpq);
97 if (ulpq->malloced)
98 kfree(ulpq);
101 /* Process an incoming DATA chunk. */
102 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
103 gfp_t gfp)
105 struct sk_buff_head temp;
106 sctp_data_chunk_t *hdr;
107 struct sctp_ulpevent *event;
109 hdr = (sctp_data_chunk_t *) chunk->chunk_hdr;
111 /* Create an event from the incoming chunk. */
112 event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
113 if (!event)
114 return -ENOMEM;
116 /* Do reassembly if needed. */
117 event = sctp_ulpq_reasm(ulpq, event);
119 /* Do ordering if needed. */
120 if ((event) && (event->msg_flags & MSG_EOR)){
121 /* Create a temporary list to collect chunks on. */
122 skb_queue_head_init(&temp);
123 __skb_queue_tail(&temp, sctp_event2skb(event));
125 event = sctp_ulpq_order(ulpq, event);
128 /* Send event to the ULP. 'event' is the sctp_ulpevent for
129 * very first SKB on the 'temp' list.
131 if (event)
132 sctp_ulpq_tail_event(ulpq, event);
134 return 0;
137 /* Add a new event for propagation to the ULP. */
138 /* Clear the partial delivery mode for this socket. Note: This
139 * assumes that no association is currently in partial delivery mode.
141 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc)
143 struct sctp_sock *sp = sctp_sk(sk);
145 if (atomic_dec_and_test(&sp->pd_mode)) {
146 /* This means there are no other associations in PD, so
147 * we can go ahead and clear out the lobby in one shot
149 if (!skb_queue_empty(&sp->pd_lobby)) {
150 struct list_head *list;
151 sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue);
152 list = (struct list_head *)&sctp_sk(sk)->pd_lobby;
153 INIT_LIST_HEAD(list);
154 return 1;
156 } else {
157 /* There are other associations in PD, so we only need to
158 * pull stuff out of the lobby that belongs to the
159 * associations that is exiting PD (all of its notifications
160 * are posted here).
162 if (!skb_queue_empty(&sp->pd_lobby) && asoc) {
163 struct sk_buff *skb, *tmp;
164 struct sctp_ulpevent *event;
166 sctp_skb_for_each(skb, &sp->pd_lobby, tmp) {
167 event = sctp_skb2event(skb);
168 if (event->asoc == asoc) {
169 __skb_unlink(skb, &sp->pd_lobby);
170 __skb_queue_tail(&sk->sk_receive_queue,
171 skb);
177 return 0;
180 /* Set the pd_mode on the socket and ulpq */
181 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq)
183 struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk);
185 atomic_inc(&sp->pd_mode);
186 ulpq->pd_mode = 1;
189 /* Clear the pd_mode and restart any pending messages waiting for delivery. */
190 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
192 ulpq->pd_mode = 0;
193 return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc);
196 /* If the SKB of 'event' is on a list, it is the first such member
197 * of that list.
199 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event)
201 struct sock *sk = ulpq->asoc->base.sk;
202 struct sk_buff_head *queue, *skb_list;
203 struct sk_buff *skb = sctp_event2skb(event);
204 int clear_pd = 0;
206 skb_list = (struct sk_buff_head *) skb->prev;
208 /* If the socket is just going to throw this away, do not
209 * even try to deliver it.
211 if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN))
212 goto out_free;
214 /* Check if the user wishes to receive this event. */
215 if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe))
216 goto out_free;
218 /* If we are in partial delivery mode, post to the lobby until
219 * partial delivery is cleared, unless, of course _this_ is
220 * the association the cause of the partial delivery.
223 if (atomic_read(&sctp_sk(sk)->pd_mode) == 0) {
224 queue = &sk->sk_receive_queue;
225 } else {
226 if (ulpq->pd_mode) {
227 /* If the association is in partial delivery, we
228 * need to finish delivering the partially processed
229 * packet before passing any other data. This is
230 * because we don't truly support stream interleaving.
232 if ((event->msg_flags & MSG_NOTIFICATION) ||
233 (SCTP_DATA_NOT_FRAG ==
234 (event->msg_flags & SCTP_DATA_FRAG_MASK)))
235 queue = &sctp_sk(sk)->pd_lobby;
236 else {
237 clear_pd = event->msg_flags & MSG_EOR;
238 queue = &sk->sk_receive_queue;
240 } else {
242 * If fragment interleave is enabled, we
243 * can queue this to the recieve queue instead
244 * of the lobby.
246 if (sctp_sk(sk)->frag_interleave)
247 queue = &sk->sk_receive_queue;
248 else
249 queue = &sctp_sk(sk)->pd_lobby;
253 /* If we are harvesting multiple skbs they will be
254 * collected on a list.
256 if (skb_list)
257 sctp_skb_list_tail(skb_list, queue);
258 else
259 __skb_queue_tail(queue, skb);
261 /* Did we just complete partial delivery and need to get
262 * rolling again? Move pending data to the receive
263 * queue.
265 if (clear_pd)
266 sctp_ulpq_clear_pd(ulpq);
268 if (queue == &sk->sk_receive_queue)
269 sk->sk_data_ready(sk, 0);
270 return 1;
272 out_free:
273 if (skb_list)
274 sctp_queue_purge_ulpevents(skb_list);
275 else
276 sctp_ulpevent_free(event);
278 return 0;
281 /* 2nd Level Abstractions */
283 /* Helper function to store chunks that need to be reassembled. */
284 static inline void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
285 struct sctp_ulpevent *event)
287 struct sk_buff *pos;
288 struct sctp_ulpevent *cevent;
289 __u32 tsn, ctsn;
291 tsn = event->tsn;
293 /* See if it belongs at the end. */
294 pos = skb_peek_tail(&ulpq->reasm);
295 if (!pos) {
296 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
297 return;
300 /* Short circuit just dropping it at the end. */
301 cevent = sctp_skb2event(pos);
302 ctsn = cevent->tsn;
303 if (TSN_lt(ctsn, tsn)) {
304 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
305 return;
308 /* Find the right place in this list. We store them by TSN. */
309 skb_queue_walk(&ulpq->reasm, pos) {
310 cevent = sctp_skb2event(pos);
311 ctsn = cevent->tsn;
313 if (TSN_lt(tsn, ctsn))
314 break;
317 /* Insert before pos. */
318 __skb_insert(sctp_event2skb(event), pos->prev, pos, &ulpq->reasm);
322 /* Helper function to return an event corresponding to the reassembled
323 * datagram.
324 * This routine creates a re-assembled skb given the first and last skb's
325 * as stored in the reassembly queue. The skb's may be non-linear if the sctp
326 * payload was fragmented on the way and ip had to reassemble them.
327 * We add the rest of skb's to the first skb's fraglist.
329 static struct sctp_ulpevent *sctp_make_reassembled_event(struct sk_buff_head *queue, struct sk_buff *f_frag, struct sk_buff *l_frag)
331 struct sk_buff *pos;
332 struct sk_buff *new = NULL;
333 struct sctp_ulpevent *event;
334 struct sk_buff *pnext, *last;
335 struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
337 /* Store the pointer to the 2nd skb */
338 if (f_frag == l_frag)
339 pos = NULL;
340 else
341 pos = f_frag->next;
343 /* Get the last skb in the f_frag's frag_list if present. */
344 for (last = list; list; last = list, list = list->next);
346 /* Add the list of remaining fragments to the first fragments
347 * frag_list.
349 if (last)
350 last->next = pos;
351 else {
352 if (skb_cloned(f_frag)) {
353 /* This is a cloned skb, we can't just modify
354 * the frag_list. We need a new skb to do that.
355 * Instead of calling skb_unshare(), we'll do it
356 * ourselves since we need to delay the free.
358 new = skb_copy(f_frag, GFP_ATOMIC);
359 if (!new)
360 return NULL; /* try again later */
362 sctp_skb_set_owner_r(new, f_frag->sk);
364 skb_shinfo(new)->frag_list = pos;
365 } else
366 skb_shinfo(f_frag)->frag_list = pos;
369 /* Remove the first fragment from the reassembly queue. */
370 __skb_unlink(f_frag, queue);
372 /* if we did unshare, then free the old skb and re-assign */
373 if (new) {
374 kfree_skb(f_frag);
375 f_frag = new;
378 while (pos) {
380 pnext = pos->next;
382 /* Update the len and data_len fields of the first fragment. */
383 f_frag->len += pos->len;
384 f_frag->data_len += pos->len;
386 /* Remove the fragment from the reassembly queue. */
387 __skb_unlink(pos, queue);
389 /* Break if we have reached the last fragment. */
390 if (pos == l_frag)
391 break;
392 pos->next = pnext;
393 pos = pnext;
396 event = sctp_skb2event(f_frag);
397 SCTP_INC_STATS(SCTP_MIB_REASMUSRMSGS);
399 return event;
403 /* Helper function to check if an incoming chunk has filled up the last
404 * missing fragment in a SCTP datagram and return the corresponding event.
406 static inline struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
408 struct sk_buff *pos;
409 struct sctp_ulpevent *cevent;
410 struct sk_buff *first_frag = NULL;
411 __u32 ctsn, next_tsn;
412 struct sctp_ulpevent *retval = NULL;
413 struct sk_buff *pd_first = NULL;
414 struct sk_buff *pd_last = NULL;
415 size_t pd_len = 0;
416 struct sctp_association *asoc;
417 u32 pd_point;
419 /* Initialized to 0 just to avoid compiler warning message. Will
420 * never be used with this value. It is referenced only after it
421 * is set when we find the first fragment of a message.
423 next_tsn = 0;
425 /* The chunks are held in the reasm queue sorted by TSN.
426 * Walk through the queue sequentially and look for a sequence of
427 * fragmented chunks that complete a datagram.
428 * 'first_frag' and next_tsn are reset when we find a chunk which
429 * is the first fragment of a datagram. Once these 2 fields are set
430 * we expect to find the remaining middle fragments and the last
431 * fragment in order. If not, first_frag is reset to NULL and we
432 * start the next pass when we find another first fragment.
434 * There is a potential to do partial delivery if user sets
435 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
436 * to see if can do PD.
438 skb_queue_walk(&ulpq->reasm, pos) {
439 cevent = sctp_skb2event(pos);
440 ctsn = cevent->tsn;
442 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
443 case SCTP_DATA_FIRST_FRAG:
444 /* If this "FIRST_FRAG" is the first
445 * element in the queue, then count it towards
446 * possible PD.
448 if (pos == ulpq->reasm.next) {
449 pd_first = pos;
450 pd_last = pos;
451 pd_len = pos->len;
452 } else {
453 pd_first = NULL;
454 pd_last = NULL;
455 pd_len = 0;
458 first_frag = pos;
459 next_tsn = ctsn + 1;
460 break;
462 case SCTP_DATA_MIDDLE_FRAG:
463 if ((first_frag) && (ctsn == next_tsn)) {
464 next_tsn++;
465 if (pd_first) {
466 pd_last = pos;
467 pd_len += pos->len;
469 } else
470 first_frag = NULL;
471 break;
473 case SCTP_DATA_LAST_FRAG:
474 if (first_frag && (ctsn == next_tsn))
475 goto found;
476 else
477 first_frag = NULL;
478 break;
482 asoc = ulpq->asoc;
483 if (pd_first) {
484 /* Make sure we can enter partial deliver.
485 * We can trigger partial delivery only if framgent
486 * interleave is set, or the socket is not already
487 * in partial delivery.
489 if (!sctp_sk(asoc->base.sk)->frag_interleave &&
490 atomic_read(&sctp_sk(asoc->base.sk)->pd_mode))
491 goto done;
493 cevent = sctp_skb2event(pd_first);
494 pd_point = sctp_sk(asoc->base.sk)->pd_point;
495 if (pd_point && pd_point <= pd_len) {
496 retval = sctp_make_reassembled_event(&ulpq->reasm,
497 pd_first,
498 pd_last);
499 if (retval)
500 sctp_ulpq_set_pd(ulpq);
503 done:
504 return retval;
505 found:
506 retval = sctp_make_reassembled_event(&ulpq->reasm, first_frag, pos);
507 if (retval)
508 retval->msg_flags |= MSG_EOR;
509 goto done;
512 /* Retrieve the next set of fragments of a partial message. */
513 static inline struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
515 struct sk_buff *pos, *last_frag, *first_frag;
516 struct sctp_ulpevent *cevent;
517 __u32 ctsn, next_tsn;
518 int is_last;
519 struct sctp_ulpevent *retval;
521 /* The chunks are held in the reasm queue sorted by TSN.
522 * Walk through the queue sequentially and look for the first
523 * sequence of fragmented chunks.
526 if (skb_queue_empty(&ulpq->reasm))
527 return NULL;
529 last_frag = first_frag = NULL;
530 retval = NULL;
531 next_tsn = 0;
532 is_last = 0;
534 skb_queue_walk(&ulpq->reasm, pos) {
535 cevent = sctp_skb2event(pos);
536 ctsn = cevent->tsn;
538 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
539 case SCTP_DATA_MIDDLE_FRAG:
540 if (!first_frag) {
541 first_frag = pos;
542 next_tsn = ctsn + 1;
543 last_frag = pos;
544 } else if (next_tsn == ctsn)
545 next_tsn++;
546 else
547 goto done;
548 break;
549 case SCTP_DATA_LAST_FRAG:
550 if (!first_frag)
551 first_frag = pos;
552 else if (ctsn != next_tsn)
553 goto done;
554 last_frag = pos;
555 is_last = 1;
556 goto done;
557 default:
558 return NULL;
562 /* We have the reassembled event. There is no need to look
563 * further.
565 done:
566 retval = sctp_make_reassembled_event(&ulpq->reasm, first_frag, last_frag);
567 if (retval && is_last)
568 retval->msg_flags |= MSG_EOR;
570 return retval;
574 /* Helper function to reassemble chunks. Hold chunks on the reasm queue that
575 * need reassembling.
577 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
578 struct sctp_ulpevent *event)
580 struct sctp_ulpevent *retval = NULL;
582 /* Check if this is part of a fragmented message. */
583 if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) {
584 event->msg_flags |= MSG_EOR;
585 return event;
588 sctp_ulpq_store_reasm(ulpq, event);
589 if (!ulpq->pd_mode)
590 retval = sctp_ulpq_retrieve_reassembled(ulpq);
591 else {
592 __u32 ctsn, ctsnap;
594 /* Do not even bother unless this is the next tsn to
595 * be delivered.
597 ctsn = event->tsn;
598 ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
599 if (TSN_lte(ctsn, ctsnap))
600 retval = sctp_ulpq_retrieve_partial(ulpq);
603 return retval;
606 /* Retrieve the first part (sequential fragments) for partial delivery. */
607 static inline struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
609 struct sk_buff *pos, *last_frag, *first_frag;
610 struct sctp_ulpevent *cevent;
611 __u32 ctsn, next_tsn;
612 struct sctp_ulpevent *retval;
614 /* The chunks are held in the reasm queue sorted by TSN.
615 * Walk through the queue sequentially and look for a sequence of
616 * fragmented chunks that start a datagram.
619 if (skb_queue_empty(&ulpq->reasm))
620 return NULL;
622 last_frag = first_frag = NULL;
623 retval = NULL;
624 next_tsn = 0;
626 skb_queue_walk(&ulpq->reasm, pos) {
627 cevent = sctp_skb2event(pos);
628 ctsn = cevent->tsn;
630 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
631 case SCTP_DATA_FIRST_FRAG:
632 if (!first_frag) {
633 first_frag = pos;
634 next_tsn = ctsn + 1;
635 last_frag = pos;
636 } else
637 goto done;
638 break;
640 case SCTP_DATA_MIDDLE_FRAG:
641 if (!first_frag)
642 return NULL;
643 if (ctsn == next_tsn) {
644 next_tsn++;
645 last_frag = pos;
646 } else
647 goto done;
648 break;
649 default:
650 return NULL;
654 /* We have the reassembled event. There is no need to look
655 * further.
657 done:
658 retval = sctp_make_reassembled_event(&ulpq->reasm, first_frag, last_frag);
659 return retval;
663 * Flush out stale fragments from the reassembly queue when processing
664 * a Forward TSN.
666 * RFC 3758, Section 3.6
668 * After receiving and processing a FORWARD TSN, the data receiver MUST
669 * take cautions in updating its re-assembly queue. The receiver MUST
670 * remove any partially reassembled message, which is still missing one
671 * or more TSNs earlier than or equal to the new cumulative TSN point.
672 * In the event that the receiver has invoked the partial delivery API,
673 * a notification SHOULD also be generated to inform the upper layer API
674 * that the message being partially delivered will NOT be completed.
676 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn)
678 struct sk_buff *pos, *tmp;
679 struct sctp_ulpevent *event;
680 __u32 tsn;
682 if (skb_queue_empty(&ulpq->reasm))
683 return;
685 skb_queue_walk_safe(&ulpq->reasm, pos, tmp) {
686 event = sctp_skb2event(pos);
687 tsn = event->tsn;
689 /* Since the entire message must be abandoned by the
690 * sender (item A3 in Section 3.5, RFC 3758), we can
691 * free all fragments on the list that are less then
692 * or equal to ctsn_point
694 if (TSN_lte(tsn, fwd_tsn)) {
695 __skb_unlink(pos, &ulpq->reasm);
696 sctp_ulpevent_free(event);
697 } else
698 break;
702 /* Helper function to gather skbs that have possibly become
703 * ordered by an an incoming chunk.
705 static inline void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
706 struct sctp_ulpevent *event)
708 struct sk_buff_head *event_list;
709 struct sk_buff *pos, *tmp;
710 struct sctp_ulpevent *cevent;
711 struct sctp_stream *in;
712 __u16 sid, csid;
713 __u16 ssn, cssn;
715 sid = event->stream;
716 ssn = event->ssn;
717 in = &ulpq->asoc->ssnmap->in;
719 event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev;
721 /* We are holding the chunks by stream, by SSN. */
722 sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
723 cevent = (struct sctp_ulpevent *) pos->cb;
724 csid = cevent->stream;
725 cssn = cevent->ssn;
727 /* Have we gone too far? */
728 if (csid > sid)
729 break;
731 /* Have we not gone far enough? */
732 if (csid < sid)
733 continue;
735 if (cssn != sctp_ssn_peek(in, sid))
736 break;
738 /* Found it, so mark in the ssnmap. */
739 sctp_ssn_next(in, sid);
741 __skb_unlink(pos, &ulpq->lobby);
743 /* Attach all gathered skbs to the event. */
744 __skb_queue_tail(event_list, pos);
748 /* Helper function to store chunks needing ordering. */
749 static inline void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
750 struct sctp_ulpevent *event)
752 struct sk_buff *pos;
753 struct sctp_ulpevent *cevent;
754 __u16 sid, csid;
755 __u16 ssn, cssn;
757 pos = skb_peek_tail(&ulpq->lobby);
758 if (!pos) {
759 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
760 return;
763 sid = event->stream;
764 ssn = event->ssn;
766 cevent = (struct sctp_ulpevent *) pos->cb;
767 csid = cevent->stream;
768 cssn = cevent->ssn;
769 if (sid > csid) {
770 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
771 return;
774 if ((sid == csid) && SSN_lt(cssn, ssn)) {
775 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
776 return;
779 /* Find the right place in this list. We store them by
780 * stream ID and then by SSN.
782 skb_queue_walk(&ulpq->lobby, pos) {
783 cevent = (struct sctp_ulpevent *) pos->cb;
784 csid = cevent->stream;
785 cssn = cevent->ssn;
787 if (csid > sid)
788 break;
789 if (csid == sid && SSN_lt(ssn, cssn))
790 break;
794 /* Insert before pos. */
795 __skb_insert(sctp_event2skb(event), pos->prev, pos, &ulpq->lobby);
799 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
800 struct sctp_ulpevent *event)
802 __u16 sid, ssn;
803 struct sctp_stream *in;
805 /* Check if this message needs ordering. */
806 if (SCTP_DATA_UNORDERED & event->msg_flags)
807 return event;
809 /* Note: The stream ID must be verified before this routine. */
810 sid = event->stream;
811 ssn = event->ssn;
812 in = &ulpq->asoc->ssnmap->in;
814 /* Is this the expected SSN for this stream ID? */
815 if (ssn != sctp_ssn_peek(in, sid)) {
816 /* We've received something out of order, so find where it
817 * needs to be placed. We order by stream and then by SSN.
819 sctp_ulpq_store_ordered(ulpq, event);
820 return NULL;
823 /* Mark that the next chunk has been found. */
824 sctp_ssn_next(in, sid);
826 /* Go find any other chunks that were waiting for
827 * ordering.
829 sctp_ulpq_retrieve_ordered(ulpq, event);
831 return event;
834 /* Helper function to gather skbs that have possibly become
835 * ordered by forward tsn skipping their dependencies.
837 static inline void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid)
839 struct sk_buff *pos, *tmp;
840 struct sctp_ulpevent *cevent;
841 struct sctp_ulpevent *event;
842 struct sctp_stream *in;
843 struct sk_buff_head temp;
844 __u16 csid, cssn;
846 in = &ulpq->asoc->ssnmap->in;
848 /* We are holding the chunks by stream, by SSN. */
849 skb_queue_head_init(&temp);
850 event = NULL;
851 sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
852 cevent = (struct sctp_ulpevent *) pos->cb;
853 csid = cevent->stream;
854 cssn = cevent->ssn;
856 /* Have we gone too far? */
857 if (csid > sid)
858 break;
860 /* Have we not gone far enough? */
861 if (csid < sid)
862 continue;
864 /* see if this ssn has been marked by skipping */
865 if (!SSN_lt(cssn, sctp_ssn_peek(in, csid)))
866 break;
868 __skb_unlink(pos, &ulpq->lobby);
869 if (!event)
870 /* Create a temporary list to collect chunks on. */
871 event = sctp_skb2event(pos);
873 /* Attach all gathered skbs to the event. */
874 __skb_queue_tail(&temp, pos);
877 /* Send event to the ULP. 'event' is the sctp_ulpevent for
878 * very first SKB on the 'temp' list.
880 if (event) {
881 /* see if we have more ordered that we can deliver */
882 sctp_ulpq_retrieve_ordered(ulpq, event);
883 sctp_ulpq_tail_event(ulpq, event);
887 /* Skip over an SSN. This is used during the processing of
888 * Forwared TSN chunk to skip over the abandoned ordered data
890 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
892 struct sctp_stream *in;
894 /* Note: The stream ID must be verified before this routine. */
895 in = &ulpq->asoc->ssnmap->in;
897 /* Is this an old SSN? If so ignore. */
898 if (SSN_lt(ssn, sctp_ssn_peek(in, sid)))
899 return;
901 /* Mark that we are no longer expecting this SSN or lower. */
902 sctp_ssn_skip(in, sid, ssn);
904 /* Go find any other chunks that were waiting for
905 * ordering and deliver them if needed.
907 sctp_ulpq_reap_ordered(ulpq, sid);
908 return;
911 /* Renege 'needed' bytes from the ordering queue. */
912 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
914 __u16 freed = 0;
915 __u32 tsn;
916 struct sk_buff *skb;
917 struct sctp_ulpevent *event;
918 struct sctp_tsnmap *tsnmap;
920 tsnmap = &ulpq->asoc->peer.tsn_map;
922 while ((skb = __skb_dequeue_tail(&ulpq->lobby)) != NULL) {
923 freed += skb_headlen(skb);
924 event = sctp_skb2event(skb);
925 tsn = event->tsn;
927 sctp_ulpevent_free(event);
928 sctp_tsnmap_renege(tsnmap, tsn);
929 if (freed >= needed)
930 return freed;
933 return freed;
936 /* Renege 'needed' bytes from the reassembly queue. */
937 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
939 __u16 freed = 0;
940 __u32 tsn;
941 struct sk_buff *skb;
942 struct sctp_ulpevent *event;
943 struct sctp_tsnmap *tsnmap;
945 tsnmap = &ulpq->asoc->peer.tsn_map;
947 /* Walk backwards through the list, reneges the newest tsns. */
948 while ((skb = __skb_dequeue_tail(&ulpq->reasm)) != NULL) {
949 freed += skb_headlen(skb);
950 event = sctp_skb2event(skb);
951 tsn = event->tsn;
953 sctp_ulpevent_free(event);
954 sctp_tsnmap_renege(tsnmap, tsn);
955 if (freed >= needed)
956 return freed;
959 return freed;
962 /* Partial deliver the first message as there is pressure on rwnd. */
963 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq,
964 struct sctp_chunk *chunk,
965 gfp_t gfp)
967 struct sctp_ulpevent *event;
968 struct sctp_association *asoc;
969 struct sctp_sock *sp;
971 asoc = ulpq->asoc;
972 sp = sctp_sk(asoc->base.sk);
974 /* If the association is already in Partial Delivery mode
975 * we have noting to do.
977 if (ulpq->pd_mode)
978 return;
980 /* If the user enabled fragment interleave socket option,
981 * multiple associations can enter partial delivery.
982 * Otherwise, we can only enter partial delivery if the
983 * socket is not in partial deliver mode.
985 if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) {
986 /* Is partial delivery possible? */
987 event = sctp_ulpq_retrieve_first(ulpq);
988 /* Send event to the ULP. */
989 if (event) {
990 sctp_ulpq_tail_event(ulpq, event);
991 sctp_ulpq_set_pd(ulpq);
992 return;
997 /* Renege some packets to make room for an incoming chunk. */
998 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
999 gfp_t gfp)
1001 struct sctp_association *asoc;
1002 __u16 needed, freed;
1004 asoc = ulpq->asoc;
1006 if (chunk) {
1007 needed = ntohs(chunk->chunk_hdr->length);
1008 needed -= sizeof(sctp_data_chunk_t);
1009 } else
1010 needed = SCTP_DEFAULT_MAXWINDOW;
1012 freed = 0;
1014 if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
1015 freed = sctp_ulpq_renege_order(ulpq, needed);
1016 if (freed < needed) {
1017 freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
1020 /* If able to free enough room, accept this chunk. */
1021 if (chunk && (freed >= needed)) {
1022 __u32 tsn;
1023 tsn = ntohl(chunk->subh.data_hdr->tsn);
1024 sctp_tsnmap_mark(&asoc->peer.tsn_map, tsn);
1025 sctp_ulpq_tail_data(ulpq, chunk, gfp);
1027 sctp_ulpq_partial_delivery(ulpq, chunk, gfp);
1030 return;
1035 /* Notify the application if an association is aborted and in
1036 * partial delivery mode. Send up any pending received messages.
1038 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp)
1040 struct sctp_ulpevent *ev = NULL;
1041 struct sock *sk;
1043 if (!ulpq->pd_mode)
1044 return;
1046 sk = ulpq->asoc->base.sk;
1047 if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT,
1048 &sctp_sk(sk)->subscribe))
1049 ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
1050 SCTP_PARTIAL_DELIVERY_ABORTED,
1051 gfp);
1052 if (ev)
1053 __skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
1055 /* If there is data waiting, send it up the socket now. */
1056 if (sctp_ulpq_clear_pd(ulpq) || ev)
1057 sk->sk_data_ready(sk, 0);