1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <asm/types.h>
50 #include <linux/namei.h>
52 #include <linux/module.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/selinux.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
72 extern struct list_head audit_filter_list
[];
74 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
75 * for saving names from getname(). */
76 #define AUDIT_NAMES 20
78 /* Indicates that audit should log the full pathname. */
79 #define AUDIT_NAME_FULL -1
81 /* number of audit rules */
84 /* determines whether we collect data for signals sent */
87 /* When fs/namei.c:getname() is called, we store the pointer in name and
88 * we don't let putname() free it (instead we free all of the saved
89 * pointers at syscall exit time).
91 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
94 int name_len
; /* number of name's characters to log */
95 unsigned name_put
; /* call __putname() for this name */
105 struct audit_aux_data
{
106 struct audit_aux_data
*next
;
110 #define AUDIT_AUX_IPCPERM 0
112 /* Number of target pids per aux struct. */
113 #define AUDIT_AUX_PIDS 16
115 struct audit_aux_data_mq_open
{
116 struct audit_aux_data d
;
122 struct audit_aux_data_mq_sendrecv
{
123 struct audit_aux_data d
;
126 unsigned int msg_prio
;
127 struct timespec abs_timeout
;
130 struct audit_aux_data_mq_notify
{
131 struct audit_aux_data d
;
133 struct sigevent notification
;
136 struct audit_aux_data_mq_getsetattr
{
137 struct audit_aux_data d
;
139 struct mq_attr mqstat
;
142 struct audit_aux_data_ipcctl
{
143 struct audit_aux_data d
;
145 unsigned long qbytes
;
152 struct audit_aux_data_execve
{
153 struct audit_aux_data d
;
156 struct mm_struct
*mm
;
159 struct audit_aux_data_socketcall
{
160 struct audit_aux_data d
;
162 unsigned long args
[0];
165 struct audit_aux_data_sockaddr
{
166 struct audit_aux_data d
;
171 struct audit_aux_data_fd_pair
{
172 struct audit_aux_data d
;
176 struct audit_aux_data_path
{
177 struct audit_aux_data d
;
178 struct dentry
*dentry
;
179 struct vfsmount
*mnt
;
182 struct audit_aux_data_pids
{
183 struct audit_aux_data d
;
184 pid_t target_pid
[AUDIT_AUX_PIDS
];
185 u32 target_sid
[AUDIT_AUX_PIDS
];
189 /* The per-task audit context. */
190 struct audit_context
{
191 int dummy
; /* must be the first element */
192 int in_syscall
; /* 1 if task is in a syscall */
193 enum audit_state state
;
194 unsigned int serial
; /* serial number for record */
195 struct timespec ctime
; /* time of syscall entry */
196 uid_t loginuid
; /* login uid (identity) */
197 int major
; /* syscall number */
198 unsigned long argv
[4]; /* syscall arguments */
199 int return_valid
; /* return code is valid */
200 long return_code
;/* syscall return code */
201 int auditable
; /* 1 if record should be written */
203 struct audit_names names
[AUDIT_NAMES
];
204 char * filterkey
; /* key for rule that triggered record */
206 struct vfsmount
* pwdmnt
;
207 struct audit_context
*previous
; /* For nested syscalls */
208 struct audit_aux_data
*aux
;
209 struct audit_aux_data
*aux_pids
;
211 /* Save things to print about task_struct */
213 uid_t uid
, euid
, suid
, fsuid
;
214 gid_t gid
, egid
, sgid
, fsgid
;
215 unsigned long personality
;
227 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
228 static inline int open_arg(int flags
, int mask
)
230 int n
= ACC_MODE(flags
);
231 if (flags
& (O_TRUNC
| O_CREAT
))
232 n
|= AUDIT_PERM_WRITE
;
236 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
238 unsigned n
= ctx
->major
;
239 switch (audit_classify_syscall(ctx
->arch
, n
)) {
241 if ((mask
& AUDIT_PERM_WRITE
) &&
242 audit_match_class(AUDIT_CLASS_WRITE
, n
))
244 if ((mask
& AUDIT_PERM_READ
) &&
245 audit_match_class(AUDIT_CLASS_READ
, n
))
247 if ((mask
& AUDIT_PERM_ATTR
) &&
248 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
251 case 1: /* 32bit on biarch */
252 if ((mask
& AUDIT_PERM_WRITE
) &&
253 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
255 if ((mask
& AUDIT_PERM_READ
) &&
256 audit_match_class(AUDIT_CLASS_READ_32
, n
))
258 if ((mask
& AUDIT_PERM_ATTR
) &&
259 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
263 return mask
& ACC_MODE(ctx
->argv
[1]);
265 return mask
& ACC_MODE(ctx
->argv
[2]);
266 case 4: /* socketcall */
267 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
269 return mask
& AUDIT_PERM_EXEC
;
275 /* Determine if any context name data matches a rule's watch data */
276 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
278 static int audit_filter_rules(struct task_struct
*tsk
,
279 struct audit_krule
*rule
,
280 struct audit_context
*ctx
,
281 struct audit_names
*name
,
282 enum audit_state
*state
)
284 int i
, j
, need_sid
= 1;
287 for (i
= 0; i
< rule
->field_count
; i
++) {
288 struct audit_field
*f
= &rule
->fields
[i
];
293 result
= audit_comparator(tsk
->pid
, f
->op
, f
->val
);
298 ctx
->ppid
= sys_getppid();
299 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
303 result
= audit_comparator(tsk
->uid
, f
->op
, f
->val
);
306 result
= audit_comparator(tsk
->euid
, f
->op
, f
->val
);
309 result
= audit_comparator(tsk
->suid
, f
->op
, f
->val
);
312 result
= audit_comparator(tsk
->fsuid
, f
->op
, f
->val
);
315 result
= audit_comparator(tsk
->gid
, f
->op
, f
->val
);
318 result
= audit_comparator(tsk
->egid
, f
->op
, f
->val
);
321 result
= audit_comparator(tsk
->sgid
, f
->op
, f
->val
);
324 result
= audit_comparator(tsk
->fsgid
, f
->op
, f
->val
);
327 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
331 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
335 if (ctx
&& ctx
->return_valid
)
336 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
339 if (ctx
&& ctx
->return_valid
) {
341 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
343 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
348 result
= audit_comparator(MAJOR(name
->dev
),
351 for (j
= 0; j
< ctx
->name_count
; j
++) {
352 if (audit_comparator(MAJOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
361 result
= audit_comparator(MINOR(name
->dev
),
364 for (j
= 0; j
< ctx
->name_count
; j
++) {
365 if (audit_comparator(MINOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
374 result
= (name
->ino
== f
->val
);
376 for (j
= 0; j
< ctx
->name_count
; j
++) {
377 if (audit_comparator(ctx
->names
[j
].ino
, f
->op
, f
->val
)) {
385 if (name
&& rule
->watch
->ino
!= (unsigned long)-1)
386 result
= (name
->dev
== rule
->watch
->dev
&&
387 name
->ino
== rule
->watch
->ino
);
392 result
= audit_comparator(ctx
->loginuid
, f
->op
, f
->val
);
394 case AUDIT_SUBJ_USER
:
395 case AUDIT_SUBJ_ROLE
:
396 case AUDIT_SUBJ_TYPE
:
399 /* NOTE: this may return negative values indicating
400 a temporary error. We simply treat this as a
401 match for now to avoid losing information that
402 may be wanted. An error message will also be
406 selinux_get_task_sid(tsk
, &sid
);
409 result
= selinux_audit_rule_match(sid
, f
->type
,
418 case AUDIT_OBJ_LEV_LOW
:
419 case AUDIT_OBJ_LEV_HIGH
:
420 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
423 /* Find files that match */
425 result
= selinux_audit_rule_match(
426 name
->osid
, f
->type
, f
->op
,
429 for (j
= 0; j
< ctx
->name_count
; j
++) {
430 if (selinux_audit_rule_match(
439 /* Find ipc objects that match */
441 struct audit_aux_data
*aux
;
442 for (aux
= ctx
->aux
; aux
;
444 if (aux
->type
== AUDIT_IPC
) {
445 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
446 if (selinux_audit_rule_match(axi
->osid
, f
->type
, f
->op
, f
->se_rule
, ctx
)) {
460 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
462 case AUDIT_FILTERKEY
:
463 /* ignore this field for filtering */
467 result
= audit_match_perm(ctx
, f
->val
);
475 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
476 switch (rule
->action
) {
477 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
478 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
483 /* At process creation time, we can determine if system-call auditing is
484 * completely disabled for this task. Since we only have the task
485 * structure at this point, we can only check uid and gid.
487 static enum audit_state
audit_filter_task(struct task_struct
*tsk
)
489 struct audit_entry
*e
;
490 enum audit_state state
;
493 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
494 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
, &state
)) {
500 return AUDIT_BUILD_CONTEXT
;
503 /* At syscall entry and exit time, this filter is called if the
504 * audit_state is not low enough that auditing cannot take place, but is
505 * also not high enough that we already know we have to write an audit
506 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
508 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
509 struct audit_context
*ctx
,
510 struct list_head
*list
)
512 struct audit_entry
*e
;
513 enum audit_state state
;
515 if (audit_pid
&& tsk
->tgid
== audit_pid
)
516 return AUDIT_DISABLED
;
519 if (!list_empty(list
)) {
520 int word
= AUDIT_WORD(ctx
->major
);
521 int bit
= AUDIT_BIT(ctx
->major
);
523 list_for_each_entry_rcu(e
, list
, list
) {
524 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
525 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
533 return AUDIT_BUILD_CONTEXT
;
536 /* At syscall exit time, this filter is called if any audit_names[] have been
537 * collected during syscall processing. We only check rules in sublists at hash
538 * buckets applicable to the inode numbers in audit_names[].
539 * Regarding audit_state, same rules apply as for audit_filter_syscall().
541 enum audit_state
audit_filter_inodes(struct task_struct
*tsk
,
542 struct audit_context
*ctx
)
545 struct audit_entry
*e
;
546 enum audit_state state
;
548 if (audit_pid
&& tsk
->tgid
== audit_pid
)
549 return AUDIT_DISABLED
;
552 for (i
= 0; i
< ctx
->name_count
; i
++) {
553 int word
= AUDIT_WORD(ctx
->major
);
554 int bit
= AUDIT_BIT(ctx
->major
);
555 struct audit_names
*n
= &ctx
->names
[i
];
556 int h
= audit_hash_ino((u32
)n
->ino
);
557 struct list_head
*list
= &audit_inode_hash
[h
];
559 if (list_empty(list
))
562 list_for_each_entry_rcu(e
, list
, list
) {
563 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
564 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
)) {
571 return AUDIT_BUILD_CONTEXT
;
574 void audit_set_auditable(struct audit_context
*ctx
)
579 static inline struct audit_context
*audit_get_context(struct task_struct
*tsk
,
583 struct audit_context
*context
= tsk
->audit_context
;
585 if (likely(!context
))
587 context
->return_valid
= return_valid
;
588 context
->return_code
= return_code
;
590 if (context
->in_syscall
&& !context
->dummy
&& !context
->auditable
) {
591 enum audit_state state
;
593 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
594 if (state
== AUDIT_RECORD_CONTEXT
) {
595 context
->auditable
= 1;
599 state
= audit_filter_inodes(tsk
, context
);
600 if (state
== AUDIT_RECORD_CONTEXT
)
601 context
->auditable
= 1;
607 tsk
->audit_context
= NULL
;
611 static inline void audit_free_names(struct audit_context
*context
)
616 if (context
->auditable
617 ||context
->put_count
+ context
->ino_count
!= context
->name_count
) {
618 printk(KERN_ERR
"%s:%d(:%d): major=%d in_syscall=%d"
619 " name_count=%d put_count=%d"
620 " ino_count=%d [NOT freeing]\n",
622 context
->serial
, context
->major
, context
->in_syscall
,
623 context
->name_count
, context
->put_count
,
625 for (i
= 0; i
< context
->name_count
; i
++) {
626 printk(KERN_ERR
"names[%d] = %p = %s\n", i
,
627 context
->names
[i
].name
,
628 context
->names
[i
].name
?: "(null)");
635 context
->put_count
= 0;
636 context
->ino_count
= 0;
639 for (i
= 0; i
< context
->name_count
; i
++) {
640 if (context
->names
[i
].name
&& context
->names
[i
].name_put
)
641 __putname(context
->names
[i
].name
);
643 context
->name_count
= 0;
647 mntput(context
->pwdmnt
);
649 context
->pwdmnt
= NULL
;
652 static inline void audit_free_aux(struct audit_context
*context
)
654 struct audit_aux_data
*aux
;
656 while ((aux
= context
->aux
)) {
657 if (aux
->type
== AUDIT_AVC_PATH
) {
658 struct audit_aux_data_path
*axi
= (void *)aux
;
663 context
->aux
= aux
->next
;
666 while ((aux
= context
->aux_pids
)) {
667 context
->aux_pids
= aux
->next
;
672 static inline void audit_zero_context(struct audit_context
*context
,
673 enum audit_state state
)
675 uid_t loginuid
= context
->loginuid
;
677 memset(context
, 0, sizeof(*context
));
678 context
->state
= state
;
679 context
->loginuid
= loginuid
;
682 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
684 struct audit_context
*context
;
686 if (!(context
= kmalloc(sizeof(*context
), GFP_KERNEL
)))
688 audit_zero_context(context
, state
);
693 * audit_alloc - allocate an audit context block for a task
696 * Filter on the task information and allocate a per-task audit context
697 * if necessary. Doing so turns on system call auditing for the
698 * specified task. This is called from copy_process, so no lock is
701 int audit_alloc(struct task_struct
*tsk
)
703 struct audit_context
*context
;
704 enum audit_state state
;
706 if (likely(!audit_enabled
))
707 return 0; /* Return if not auditing. */
709 state
= audit_filter_task(tsk
);
710 if (likely(state
== AUDIT_DISABLED
))
713 if (!(context
= audit_alloc_context(state
))) {
714 audit_log_lost("out of memory in audit_alloc");
718 /* Preserve login uid */
719 context
->loginuid
= -1;
720 if (current
->audit_context
)
721 context
->loginuid
= current
->audit_context
->loginuid
;
723 tsk
->audit_context
= context
;
724 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
728 static inline void audit_free_context(struct audit_context
*context
)
730 struct audit_context
*previous
;
734 previous
= context
->previous
;
735 if (previous
|| (count
&& count
< 10)) {
737 printk(KERN_ERR
"audit(:%d): major=%d name_count=%d:"
738 " freeing multiple contexts (%d)\n",
739 context
->serial
, context
->major
,
740 context
->name_count
, count
);
742 audit_free_names(context
);
743 audit_free_aux(context
);
744 kfree(context
->filterkey
);
749 printk(KERN_ERR
"audit: freed %d contexts\n", count
);
752 void audit_log_task_context(struct audit_buffer
*ab
)
759 selinux_get_task_sid(current
, &sid
);
763 error
= selinux_sid_to_string(sid
, &ctx
, &len
);
765 if (error
!= -EINVAL
)
770 audit_log_format(ab
, " subj=%s", ctx
);
775 audit_panic("error in audit_log_task_context");
779 EXPORT_SYMBOL(audit_log_task_context
);
781 static void audit_log_task_info(struct audit_buffer
*ab
, struct task_struct
*tsk
)
783 char name
[sizeof(tsk
->comm
)];
784 struct mm_struct
*mm
= tsk
->mm
;
785 struct vm_area_struct
*vma
;
789 get_task_comm(name
, tsk
);
790 audit_log_format(ab
, " comm=");
791 audit_log_untrustedstring(ab
, name
);
794 down_read(&mm
->mmap_sem
);
797 if ((vma
->vm_flags
& VM_EXECUTABLE
) &&
799 audit_log_d_path(ab
, "exe=",
800 vma
->vm_file
->f_path
.dentry
,
801 vma
->vm_file
->f_path
.mnt
);
806 up_read(&mm
->mmap_sem
);
808 audit_log_task_context(ab
);
811 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
814 struct audit_buffer
*ab
;
819 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
823 if (selinux_sid_to_string(sid
, &s
, &len
)) {
824 audit_log_format(ab
, "opid=%d obj=(none)", pid
);
827 audit_log_format(ab
, "opid=%d obj=%s", pid
, s
);
834 static void audit_log_execve_info(struct audit_buffer
*ab
,
835 struct audit_aux_data_execve
*axi
)
839 const char __user
*p
= (const char __user
*)axi
->mm
->arg_start
;
842 if (axi
->mm
!= current
->mm
)
843 return; /* execve failed, no additional info */
845 for (i
= 0; i
< axi
->argc
; i
++, p
+= len
) {
846 len
= strnlen_user(p
, MAX_ARG_STRLEN
);
848 * We just created this mm, if we can't find the strings
849 * we just copied into it something is _very_ wrong. Similar
850 * for strings that are too long, we should not have created
853 if (!len
|| len
> MAX_ARG_STRLEN
) {
855 send_sig(SIGKILL
, current
, 0);
858 buf
= kmalloc(len
, GFP_KERNEL
);
860 audit_panic("out of memory for argv string\n");
864 ret
= copy_from_user(buf
, p
, len
);
866 * There is no reason for this copy to be short. We just
867 * copied them here, and the mm hasn't been exposed to user-
872 send_sig(SIGKILL
, current
, 0);
875 audit_log_format(ab
, "a%d=", i
);
876 audit_log_untrustedstring(ab
, buf
);
877 audit_log_format(ab
, "\n");
883 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
885 int i
, call_panic
= 0;
886 struct audit_buffer
*ab
;
887 struct audit_aux_data
*aux
;
891 context
->pid
= tsk
->pid
;
893 context
->ppid
= sys_getppid();
894 context
->uid
= tsk
->uid
;
895 context
->gid
= tsk
->gid
;
896 context
->euid
= tsk
->euid
;
897 context
->suid
= tsk
->suid
;
898 context
->fsuid
= tsk
->fsuid
;
899 context
->egid
= tsk
->egid
;
900 context
->sgid
= tsk
->sgid
;
901 context
->fsgid
= tsk
->fsgid
;
902 context
->personality
= tsk
->personality
;
904 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
906 return; /* audit_panic has been called */
907 audit_log_format(ab
, "arch=%x syscall=%d",
908 context
->arch
, context
->major
);
909 if (context
->personality
!= PER_LINUX
)
910 audit_log_format(ab
, " per=%lx", context
->personality
);
911 if (context
->return_valid
)
912 audit_log_format(ab
, " success=%s exit=%ld",
913 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
914 context
->return_code
);
916 mutex_lock(&tty_mutex
);
917 read_lock(&tasklist_lock
);
918 if (tsk
->signal
&& tsk
->signal
->tty
&& tsk
->signal
->tty
->name
)
919 tty
= tsk
->signal
->tty
->name
;
922 read_unlock(&tasklist_lock
);
924 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
925 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
926 " euid=%u suid=%u fsuid=%u"
927 " egid=%u sgid=%u fsgid=%u tty=%s",
938 context
->euid
, context
->suid
, context
->fsuid
,
939 context
->egid
, context
->sgid
, context
->fsgid
, tty
);
941 mutex_unlock(&tty_mutex
);
943 audit_log_task_info(ab
, tsk
);
944 if (context
->filterkey
) {
945 audit_log_format(ab
, " key=");
946 audit_log_untrustedstring(ab
, context
->filterkey
);
948 audit_log_format(ab
, " key=(null)");
951 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
953 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
955 continue; /* audit_panic has been called */
958 case AUDIT_MQ_OPEN
: {
959 struct audit_aux_data_mq_open
*axi
= (void *)aux
;
961 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
962 "mq_msgsize=%ld mq_curmsgs=%ld",
963 axi
->oflag
, axi
->mode
, axi
->attr
.mq_flags
,
964 axi
->attr
.mq_maxmsg
, axi
->attr
.mq_msgsize
,
965 axi
->attr
.mq_curmsgs
);
968 case AUDIT_MQ_SENDRECV
: {
969 struct audit_aux_data_mq_sendrecv
*axi
= (void *)aux
;
971 "mqdes=%d msg_len=%zd msg_prio=%u "
972 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
973 axi
->mqdes
, axi
->msg_len
, axi
->msg_prio
,
974 axi
->abs_timeout
.tv_sec
, axi
->abs_timeout
.tv_nsec
);
977 case AUDIT_MQ_NOTIFY
: {
978 struct audit_aux_data_mq_notify
*axi
= (void *)aux
;
980 "mqdes=%d sigev_signo=%d",
982 axi
->notification
.sigev_signo
);
985 case AUDIT_MQ_GETSETATTR
: {
986 struct audit_aux_data_mq_getsetattr
*axi
= (void *)aux
;
988 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
991 axi
->mqstat
.mq_flags
, axi
->mqstat
.mq_maxmsg
,
992 axi
->mqstat
.mq_msgsize
, axi
->mqstat
.mq_curmsgs
);
996 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
998 "ouid=%u ogid=%u mode=%x",
999 axi
->uid
, axi
->gid
, axi
->mode
);
1000 if (axi
->osid
!= 0) {
1003 if (selinux_sid_to_string(
1004 axi
->osid
, &ctx
, &len
)) {
1005 audit_log_format(ab
, " osid=%u",
1009 audit_log_format(ab
, " obj=%s", ctx
);
1014 case AUDIT_IPC_SET_PERM
: {
1015 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
1016 audit_log_format(ab
,
1017 "qbytes=%lx ouid=%u ogid=%u mode=%x",
1018 axi
->qbytes
, axi
->uid
, axi
->gid
, axi
->mode
);
1021 case AUDIT_EXECVE
: {
1022 struct audit_aux_data_execve
*axi
= (void *)aux
;
1023 audit_log_execve_info(ab
, axi
);
1026 case AUDIT_SOCKETCALL
: {
1028 struct audit_aux_data_socketcall
*axs
= (void *)aux
;
1029 audit_log_format(ab
, "nargs=%d", axs
->nargs
);
1030 for (i
=0; i
<axs
->nargs
; i
++)
1031 audit_log_format(ab
, " a%d=%lx", i
, axs
->args
[i
]);
1034 case AUDIT_SOCKADDR
: {
1035 struct audit_aux_data_sockaddr
*axs
= (void *)aux
;
1037 audit_log_format(ab
, "saddr=");
1038 audit_log_hex(ab
, axs
->a
, axs
->len
);
1041 case AUDIT_AVC_PATH
: {
1042 struct audit_aux_data_path
*axi
= (void *)aux
;
1043 audit_log_d_path(ab
, "path=", axi
->dentry
, axi
->mnt
);
1046 case AUDIT_FD_PAIR
: {
1047 struct audit_aux_data_fd_pair
*axs
= (void *)aux
;
1048 audit_log_format(ab
, "fd0=%d fd1=%d", axs
->fd
[0], axs
->fd
[1]);
1055 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1056 struct audit_aux_data_pids
*axs
= (void *)aux
;
1059 for (i
= 0; i
< axs
->pid_count
; i
++)
1060 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1061 axs
->target_sid
[i
]))
1065 if (context
->target_pid
&&
1066 audit_log_pid_context(context
, context
->target_pid
,
1067 context
->target_sid
))
1070 if (context
->pwd
&& context
->pwdmnt
) {
1071 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1073 audit_log_d_path(ab
, "cwd=", context
->pwd
, context
->pwdmnt
);
1077 for (i
= 0; i
< context
->name_count
; i
++) {
1078 struct audit_names
*n
= &context
->names
[i
];
1080 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1082 continue; /* audit_panic has been called */
1084 audit_log_format(ab
, "item=%d", i
);
1087 switch(n
->name_len
) {
1088 case AUDIT_NAME_FULL
:
1089 /* log the full path */
1090 audit_log_format(ab
, " name=");
1091 audit_log_untrustedstring(ab
, n
->name
);
1094 /* name was specified as a relative path and the
1095 * directory component is the cwd */
1096 audit_log_d_path(ab
, " name=", context
->pwd
,
1100 /* log the name's directory component */
1101 audit_log_format(ab
, " name=");
1102 audit_log_n_untrustedstring(ab
, n
->name_len
,
1106 audit_log_format(ab
, " name=(null)");
1108 if (n
->ino
!= (unsigned long)-1) {
1109 audit_log_format(ab
, " inode=%lu"
1110 " dev=%02x:%02x mode=%#o"
1111 " ouid=%u ogid=%u rdev=%02x:%02x",
1124 if (selinux_sid_to_string(
1125 n
->osid
, &ctx
, &len
)) {
1126 audit_log_format(ab
, " osid=%u", n
->osid
);
1129 audit_log_format(ab
, " obj=%s", ctx
);
1136 audit_panic("error converting sid to string");
1140 * audit_free - free a per-task audit context
1141 * @tsk: task whose audit context block to free
1143 * Called from copy_process and do_exit
1145 void audit_free(struct task_struct
*tsk
)
1147 struct audit_context
*context
;
1149 context
= audit_get_context(tsk
, 0, 0);
1150 if (likely(!context
))
1153 /* Check for system calls that do not go through the exit
1154 * function (e.g., exit_group), then free context block.
1155 * We use GFP_ATOMIC here because we might be doing this
1156 * in the context of the idle thread */
1157 /* that can happen only if we are called from do_exit() */
1158 if (context
->in_syscall
&& context
->auditable
)
1159 audit_log_exit(context
, tsk
);
1161 audit_free_context(context
);
1165 * audit_syscall_entry - fill in an audit record at syscall entry
1166 * @tsk: task being audited
1167 * @arch: architecture type
1168 * @major: major syscall type (function)
1169 * @a1: additional syscall register 1
1170 * @a2: additional syscall register 2
1171 * @a3: additional syscall register 3
1172 * @a4: additional syscall register 4
1174 * Fill in audit context at syscall entry. This only happens if the
1175 * audit context was created when the task was created and the state or
1176 * filters demand the audit context be built. If the state from the
1177 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1178 * then the record will be written at syscall exit time (otherwise, it
1179 * will only be written if another part of the kernel requests that it
1182 void audit_syscall_entry(int arch
, int major
,
1183 unsigned long a1
, unsigned long a2
,
1184 unsigned long a3
, unsigned long a4
)
1186 struct task_struct
*tsk
= current
;
1187 struct audit_context
*context
= tsk
->audit_context
;
1188 enum audit_state state
;
1193 * This happens only on certain architectures that make system
1194 * calls in kernel_thread via the entry.S interface, instead of
1195 * with direct calls. (If you are porting to a new
1196 * architecture, hitting this condition can indicate that you
1197 * got the _exit/_leave calls backward in entry.S.)
1201 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1203 * This also happens with vm86 emulation in a non-nested manner
1204 * (entries without exits), so this case must be caught.
1206 if (context
->in_syscall
) {
1207 struct audit_context
*newctx
;
1211 "audit(:%d) pid=%d in syscall=%d;"
1212 " entering syscall=%d\n",
1213 context
->serial
, tsk
->pid
, context
->major
, major
);
1215 newctx
= audit_alloc_context(context
->state
);
1217 newctx
->previous
= context
;
1219 tsk
->audit_context
= newctx
;
1221 /* If we can't alloc a new context, the best we
1222 * can do is to leak memory (any pending putname
1223 * will be lost). The only other alternative is
1224 * to abandon auditing. */
1225 audit_zero_context(context
, context
->state
);
1228 BUG_ON(context
->in_syscall
|| context
->name_count
);
1233 context
->arch
= arch
;
1234 context
->major
= major
;
1235 context
->argv
[0] = a1
;
1236 context
->argv
[1] = a2
;
1237 context
->argv
[2] = a3
;
1238 context
->argv
[3] = a4
;
1240 state
= context
->state
;
1241 context
->dummy
= !audit_n_rules
;
1242 if (!context
->dummy
&& (state
== AUDIT_SETUP_CONTEXT
|| state
== AUDIT_BUILD_CONTEXT
))
1243 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1244 if (likely(state
== AUDIT_DISABLED
))
1247 context
->serial
= 0;
1248 context
->ctime
= CURRENT_TIME
;
1249 context
->in_syscall
= 1;
1250 context
->auditable
= !!(state
== AUDIT_RECORD_CONTEXT
);
1255 * audit_syscall_exit - deallocate audit context after a system call
1256 * @tsk: task being audited
1257 * @valid: success/failure flag
1258 * @return_code: syscall return value
1260 * Tear down after system call. If the audit context has been marked as
1261 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1262 * filtering, or because some other part of the kernel write an audit
1263 * message), then write out the syscall information. In call cases,
1264 * free the names stored from getname().
1266 void audit_syscall_exit(int valid
, long return_code
)
1268 struct task_struct
*tsk
= current
;
1269 struct audit_context
*context
;
1271 context
= audit_get_context(tsk
, valid
, return_code
);
1273 if (likely(!context
))
1276 if (context
->in_syscall
&& context
->auditable
)
1277 audit_log_exit(context
, tsk
);
1279 context
->in_syscall
= 0;
1280 context
->auditable
= 0;
1282 if (context
->previous
) {
1283 struct audit_context
*new_context
= context
->previous
;
1284 context
->previous
= NULL
;
1285 audit_free_context(context
);
1286 tsk
->audit_context
= new_context
;
1288 audit_free_names(context
);
1289 audit_free_aux(context
);
1290 context
->aux
= NULL
;
1291 context
->aux_pids
= NULL
;
1292 context
->target_pid
= 0;
1293 context
->target_sid
= 0;
1294 kfree(context
->filterkey
);
1295 context
->filterkey
= NULL
;
1296 tsk
->audit_context
= context
;
1301 * audit_getname - add a name to the list
1302 * @name: name to add
1304 * Add a name to the list of audit names for this context.
1305 * Called from fs/namei.c:getname().
1307 void __audit_getname(const char *name
)
1309 struct audit_context
*context
= current
->audit_context
;
1311 if (IS_ERR(name
) || !name
)
1314 if (!context
->in_syscall
) {
1315 #if AUDIT_DEBUG == 2
1316 printk(KERN_ERR
"%s:%d(:%d): ignoring getname(%p)\n",
1317 __FILE__
, __LINE__
, context
->serial
, name
);
1322 BUG_ON(context
->name_count
>= AUDIT_NAMES
);
1323 context
->names
[context
->name_count
].name
= name
;
1324 context
->names
[context
->name_count
].name_len
= AUDIT_NAME_FULL
;
1325 context
->names
[context
->name_count
].name_put
= 1;
1326 context
->names
[context
->name_count
].ino
= (unsigned long)-1;
1327 context
->names
[context
->name_count
].osid
= 0;
1328 ++context
->name_count
;
1329 if (!context
->pwd
) {
1330 read_lock(¤t
->fs
->lock
);
1331 context
->pwd
= dget(current
->fs
->pwd
);
1332 context
->pwdmnt
= mntget(current
->fs
->pwdmnt
);
1333 read_unlock(¤t
->fs
->lock
);
1338 /* audit_putname - intercept a putname request
1339 * @name: name to intercept and delay for putname
1341 * If we have stored the name from getname in the audit context,
1342 * then we delay the putname until syscall exit.
1343 * Called from include/linux/fs.h:putname().
1345 void audit_putname(const char *name
)
1347 struct audit_context
*context
= current
->audit_context
;
1350 if (!context
->in_syscall
) {
1351 #if AUDIT_DEBUG == 2
1352 printk(KERN_ERR
"%s:%d(:%d): __putname(%p)\n",
1353 __FILE__
, __LINE__
, context
->serial
, name
);
1354 if (context
->name_count
) {
1356 for (i
= 0; i
< context
->name_count
; i
++)
1357 printk(KERN_ERR
"name[%d] = %p = %s\n", i
,
1358 context
->names
[i
].name
,
1359 context
->names
[i
].name
?: "(null)");
1366 ++context
->put_count
;
1367 if (context
->put_count
> context
->name_count
) {
1368 printk(KERN_ERR
"%s:%d(:%d): major=%d"
1369 " in_syscall=%d putname(%p) name_count=%d"
1372 context
->serial
, context
->major
,
1373 context
->in_syscall
, name
, context
->name_count
,
1374 context
->put_count
);
1381 static int audit_inc_name_count(struct audit_context
*context
,
1382 const struct inode
*inode
)
1384 if (context
->name_count
>= AUDIT_NAMES
) {
1386 printk(KERN_DEBUG
"name_count maxed, losing inode data: "
1387 "dev=%02x:%02x, inode=%lu",
1388 MAJOR(inode
->i_sb
->s_dev
),
1389 MINOR(inode
->i_sb
->s_dev
),
1393 printk(KERN_DEBUG
"name_count maxed, losing inode data");
1396 context
->name_count
++;
1398 context
->ino_count
++;
1403 /* Copy inode data into an audit_names. */
1404 static void audit_copy_inode(struct audit_names
*name
, const struct inode
*inode
)
1406 name
->ino
= inode
->i_ino
;
1407 name
->dev
= inode
->i_sb
->s_dev
;
1408 name
->mode
= inode
->i_mode
;
1409 name
->uid
= inode
->i_uid
;
1410 name
->gid
= inode
->i_gid
;
1411 name
->rdev
= inode
->i_rdev
;
1412 selinux_get_inode_sid(inode
, &name
->osid
);
1416 * audit_inode - store the inode and device from a lookup
1417 * @name: name being audited
1418 * @inode: inode being audited
1420 * Called from fs/namei.c:path_lookup().
1422 void __audit_inode(const char *name
, const struct inode
*inode
)
1425 struct audit_context
*context
= current
->audit_context
;
1427 if (!context
->in_syscall
)
1429 if (context
->name_count
1430 && context
->names
[context
->name_count
-1].name
1431 && context
->names
[context
->name_count
-1].name
== name
)
1432 idx
= context
->name_count
- 1;
1433 else if (context
->name_count
> 1
1434 && context
->names
[context
->name_count
-2].name
1435 && context
->names
[context
->name_count
-2].name
== name
)
1436 idx
= context
->name_count
- 2;
1438 /* FIXME: how much do we care about inodes that have no
1439 * associated name? */
1440 if (audit_inc_name_count(context
, inode
))
1442 idx
= context
->name_count
- 1;
1443 context
->names
[idx
].name
= NULL
;
1445 audit_copy_inode(&context
->names
[idx
], inode
);
1449 * audit_inode_child - collect inode info for created/removed objects
1450 * @dname: inode's dentry name
1451 * @inode: inode being audited
1452 * @parent: inode of dentry parent
1454 * For syscalls that create or remove filesystem objects, audit_inode
1455 * can only collect information for the filesystem object's parent.
1456 * This call updates the audit context with the child's information.
1457 * Syscalls that create a new filesystem object must be hooked after
1458 * the object is created. Syscalls that remove a filesystem object
1459 * must be hooked prior, in order to capture the target inode during
1460 * unsuccessful attempts.
1462 void __audit_inode_child(const char *dname
, const struct inode
*inode
,
1463 const struct inode
*parent
)
1466 struct audit_context
*context
= current
->audit_context
;
1467 const char *found_parent
= NULL
, *found_child
= NULL
;
1470 if (!context
->in_syscall
)
1473 /* determine matching parent */
1477 /* parent is more likely, look for it first */
1478 for (idx
= 0; idx
< context
->name_count
; idx
++) {
1479 struct audit_names
*n
= &context
->names
[idx
];
1484 if (n
->ino
== parent
->i_ino
&&
1485 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
1486 n
->name_len
= dirlen
; /* update parent data in place */
1487 found_parent
= n
->name
;
1492 /* no matching parent, look for matching child */
1493 for (idx
= 0; idx
< context
->name_count
; idx
++) {
1494 struct audit_names
*n
= &context
->names
[idx
];
1499 /* strcmp() is the more likely scenario */
1500 if (!strcmp(dname
, n
->name
) ||
1501 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
1503 audit_copy_inode(n
, inode
);
1505 n
->ino
= (unsigned long)-1;
1506 found_child
= n
->name
;
1512 if (!found_parent
) {
1513 if (audit_inc_name_count(context
, parent
))
1515 idx
= context
->name_count
- 1;
1516 context
->names
[idx
].name
= NULL
;
1517 audit_copy_inode(&context
->names
[idx
], parent
);
1521 if (audit_inc_name_count(context
, inode
))
1523 idx
= context
->name_count
- 1;
1525 /* Re-use the name belonging to the slot for a matching parent
1526 * directory. All names for this context are relinquished in
1527 * audit_free_names() */
1529 context
->names
[idx
].name
= found_parent
;
1530 context
->names
[idx
].name_len
= AUDIT_NAME_FULL
;
1531 /* don't call __putname() */
1532 context
->names
[idx
].name_put
= 0;
1534 context
->names
[idx
].name
= NULL
;
1538 audit_copy_inode(&context
->names
[idx
], inode
);
1540 context
->names
[idx
].ino
= (unsigned long)-1;
1545 * auditsc_get_stamp - get local copies of audit_context values
1546 * @ctx: audit_context for the task
1547 * @t: timespec to store time recorded in the audit_context
1548 * @serial: serial value that is recorded in the audit_context
1550 * Also sets the context as auditable.
1552 void auditsc_get_stamp(struct audit_context
*ctx
,
1553 struct timespec
*t
, unsigned int *serial
)
1556 ctx
->serial
= audit_serial();
1557 t
->tv_sec
= ctx
->ctime
.tv_sec
;
1558 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
1559 *serial
= ctx
->serial
;
1564 * audit_set_loginuid - set a task's audit_context loginuid
1565 * @task: task whose audit context is being modified
1566 * @loginuid: loginuid value
1570 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1572 int audit_set_loginuid(struct task_struct
*task
, uid_t loginuid
)
1574 struct audit_context
*context
= task
->audit_context
;
1577 /* Only log if audit is enabled */
1578 if (context
->in_syscall
) {
1579 struct audit_buffer
*ab
;
1581 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
1583 audit_log_format(ab
, "login pid=%d uid=%u "
1584 "old auid=%u new auid=%u",
1585 task
->pid
, task
->uid
,
1586 context
->loginuid
, loginuid
);
1590 context
->loginuid
= loginuid
;
1596 * audit_get_loginuid - get the loginuid for an audit_context
1597 * @ctx: the audit_context
1599 * Returns the context's loginuid or -1 if @ctx is NULL.
1601 uid_t
audit_get_loginuid(struct audit_context
*ctx
)
1603 return ctx
? ctx
->loginuid
: -1;
1606 EXPORT_SYMBOL(audit_get_loginuid
);
1609 * __audit_mq_open - record audit data for a POSIX MQ open
1612 * @u_attr: queue attributes
1614 * Returns 0 for success or NULL context or < 0 on error.
1616 int __audit_mq_open(int oflag
, mode_t mode
, struct mq_attr __user
*u_attr
)
1618 struct audit_aux_data_mq_open
*ax
;
1619 struct audit_context
*context
= current
->audit_context
;
1624 if (likely(!context
))
1627 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1631 if (u_attr
!= NULL
) {
1632 if (copy_from_user(&ax
->attr
, u_attr
, sizeof(ax
->attr
))) {
1637 memset(&ax
->attr
, 0, sizeof(ax
->attr
));
1642 ax
->d
.type
= AUDIT_MQ_OPEN
;
1643 ax
->d
.next
= context
->aux
;
1644 context
->aux
= (void *)ax
;
1649 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1650 * @mqdes: MQ descriptor
1651 * @msg_len: Message length
1652 * @msg_prio: Message priority
1653 * @u_abs_timeout: Message timeout in absolute time
1655 * Returns 0 for success or NULL context or < 0 on error.
1657 int __audit_mq_timedsend(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
1658 const struct timespec __user
*u_abs_timeout
)
1660 struct audit_aux_data_mq_sendrecv
*ax
;
1661 struct audit_context
*context
= current
->audit_context
;
1666 if (likely(!context
))
1669 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1673 if (u_abs_timeout
!= NULL
) {
1674 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
1679 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
1682 ax
->msg_len
= msg_len
;
1683 ax
->msg_prio
= msg_prio
;
1685 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
1686 ax
->d
.next
= context
->aux
;
1687 context
->aux
= (void *)ax
;
1692 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1693 * @mqdes: MQ descriptor
1694 * @msg_len: Message length
1695 * @u_msg_prio: Message priority
1696 * @u_abs_timeout: Message timeout in absolute time
1698 * Returns 0 for success or NULL context or < 0 on error.
1700 int __audit_mq_timedreceive(mqd_t mqdes
, size_t msg_len
,
1701 unsigned int __user
*u_msg_prio
,
1702 const struct timespec __user
*u_abs_timeout
)
1704 struct audit_aux_data_mq_sendrecv
*ax
;
1705 struct audit_context
*context
= current
->audit_context
;
1710 if (likely(!context
))
1713 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1717 if (u_msg_prio
!= NULL
) {
1718 if (get_user(ax
->msg_prio
, u_msg_prio
)) {
1725 if (u_abs_timeout
!= NULL
) {
1726 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
1731 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
1734 ax
->msg_len
= msg_len
;
1736 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
1737 ax
->d
.next
= context
->aux
;
1738 context
->aux
= (void *)ax
;
1743 * __audit_mq_notify - record audit data for a POSIX MQ notify
1744 * @mqdes: MQ descriptor
1745 * @u_notification: Notification event
1747 * Returns 0 for success or NULL context or < 0 on error.
1750 int __audit_mq_notify(mqd_t mqdes
, const struct sigevent __user
*u_notification
)
1752 struct audit_aux_data_mq_notify
*ax
;
1753 struct audit_context
*context
= current
->audit_context
;
1758 if (likely(!context
))
1761 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1765 if (u_notification
!= NULL
) {
1766 if (copy_from_user(&ax
->notification
, u_notification
, sizeof(ax
->notification
))) {
1771 memset(&ax
->notification
, 0, sizeof(ax
->notification
));
1775 ax
->d
.type
= AUDIT_MQ_NOTIFY
;
1776 ax
->d
.next
= context
->aux
;
1777 context
->aux
= (void *)ax
;
1782 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
1783 * @mqdes: MQ descriptor
1786 * Returns 0 for success or NULL context or < 0 on error.
1788 int __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
1790 struct audit_aux_data_mq_getsetattr
*ax
;
1791 struct audit_context
*context
= current
->audit_context
;
1796 if (likely(!context
))
1799 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1804 ax
->mqstat
= *mqstat
;
1806 ax
->d
.type
= AUDIT_MQ_GETSETATTR
;
1807 ax
->d
.next
= context
->aux
;
1808 context
->aux
= (void *)ax
;
1813 * audit_ipc_obj - record audit data for ipc object
1814 * @ipcp: ipc permissions
1816 * Returns 0 for success or NULL context or < 0 on error.
1818 int __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
1820 struct audit_aux_data_ipcctl
*ax
;
1821 struct audit_context
*context
= current
->audit_context
;
1823 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1827 ax
->uid
= ipcp
->uid
;
1828 ax
->gid
= ipcp
->gid
;
1829 ax
->mode
= ipcp
->mode
;
1830 selinux_get_ipc_sid(ipcp
, &ax
->osid
);
1832 ax
->d
.type
= AUDIT_IPC
;
1833 ax
->d
.next
= context
->aux
;
1834 context
->aux
= (void *)ax
;
1839 * audit_ipc_set_perm - record audit data for new ipc permissions
1840 * @qbytes: msgq bytes
1841 * @uid: msgq user id
1842 * @gid: msgq group id
1843 * @mode: msgq mode (permissions)
1845 * Returns 0 for success or NULL context or < 0 on error.
1847 int __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, mode_t mode
)
1849 struct audit_aux_data_ipcctl
*ax
;
1850 struct audit_context
*context
= current
->audit_context
;
1852 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1856 ax
->qbytes
= qbytes
;
1861 ax
->d
.type
= AUDIT_IPC_SET_PERM
;
1862 ax
->d
.next
= context
->aux
;
1863 context
->aux
= (void *)ax
;
1867 int audit_argv_kb
= 32;
1869 int audit_bprm(struct linux_binprm
*bprm
)
1871 struct audit_aux_data_execve
*ax
;
1872 struct audit_context
*context
= current
->audit_context
;
1874 if (likely(!audit_enabled
|| !context
|| context
->dummy
))
1878 * Even though the stack code doesn't limit the arg+env size any more,
1879 * the audit code requires that _all_ arguments be logged in a single
1880 * netlink skb. Hence cap it :-(
1882 if (bprm
->argv_len
> (audit_argv_kb
<< 10))
1885 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
1889 ax
->argc
= bprm
->argc
;
1890 ax
->envc
= bprm
->envc
;
1892 ax
->d
.type
= AUDIT_EXECVE
;
1893 ax
->d
.next
= context
->aux
;
1894 context
->aux
= (void *)ax
;
1900 * audit_socketcall - record audit data for sys_socketcall
1901 * @nargs: number of args
1904 * Returns 0 for success or NULL context or < 0 on error.
1906 int audit_socketcall(int nargs
, unsigned long *args
)
1908 struct audit_aux_data_socketcall
*ax
;
1909 struct audit_context
*context
= current
->audit_context
;
1911 if (likely(!context
|| context
->dummy
))
1914 ax
= kmalloc(sizeof(*ax
) + nargs
* sizeof(unsigned long), GFP_KERNEL
);
1919 memcpy(ax
->args
, args
, nargs
* sizeof(unsigned long));
1921 ax
->d
.type
= AUDIT_SOCKETCALL
;
1922 ax
->d
.next
= context
->aux
;
1923 context
->aux
= (void *)ax
;
1928 * __audit_fd_pair - record audit data for pipe and socketpair
1929 * @fd1: the first file descriptor
1930 * @fd2: the second file descriptor
1932 * Returns 0 for success or NULL context or < 0 on error.
1934 int __audit_fd_pair(int fd1
, int fd2
)
1936 struct audit_context
*context
= current
->audit_context
;
1937 struct audit_aux_data_fd_pair
*ax
;
1939 if (likely(!context
)) {
1943 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
1951 ax
->d
.type
= AUDIT_FD_PAIR
;
1952 ax
->d
.next
= context
->aux
;
1953 context
->aux
= (void *)ax
;
1958 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
1959 * @len: data length in user space
1960 * @a: data address in kernel space
1962 * Returns 0 for success or NULL context or < 0 on error.
1964 int audit_sockaddr(int len
, void *a
)
1966 struct audit_aux_data_sockaddr
*ax
;
1967 struct audit_context
*context
= current
->audit_context
;
1969 if (likely(!context
|| context
->dummy
))
1972 ax
= kmalloc(sizeof(*ax
) + len
, GFP_KERNEL
);
1977 memcpy(ax
->a
, a
, len
);
1979 ax
->d
.type
= AUDIT_SOCKADDR
;
1980 ax
->d
.next
= context
->aux
;
1981 context
->aux
= (void *)ax
;
1985 void __audit_ptrace(struct task_struct
*t
)
1987 struct audit_context
*context
= current
->audit_context
;
1989 context
->target_pid
= t
->pid
;
1990 selinux_get_task_sid(t
, &context
->target_sid
);
1994 * audit_avc_path - record the granting or denial of permissions
1995 * @dentry: dentry to record
1996 * @mnt: mnt to record
1998 * Returns 0 for success or NULL context or < 0 on error.
2000 * Called from security/selinux/avc.c::avc_audit()
2002 int audit_avc_path(struct dentry
*dentry
, struct vfsmount
*mnt
)
2004 struct audit_aux_data_path
*ax
;
2005 struct audit_context
*context
= current
->audit_context
;
2007 if (likely(!context
))
2010 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2014 ax
->dentry
= dget(dentry
);
2015 ax
->mnt
= mntget(mnt
);
2017 ax
->d
.type
= AUDIT_AVC_PATH
;
2018 ax
->d
.next
= context
->aux
;
2019 context
->aux
= (void *)ax
;
2024 * audit_signal_info - record signal info for shutting down audit subsystem
2025 * @sig: signal value
2026 * @t: task being signaled
2028 * If the audit subsystem is being terminated, record the task (pid)
2029 * and uid that is doing that.
2031 int __audit_signal_info(int sig
, struct task_struct
*t
)
2033 struct audit_aux_data_pids
*axp
;
2034 struct task_struct
*tsk
= current
;
2035 struct audit_context
*ctx
= tsk
->audit_context
;
2036 extern pid_t audit_sig_pid
;
2037 extern uid_t audit_sig_uid
;
2038 extern u32 audit_sig_sid
;
2040 if (audit_pid
&& t
->tgid
== audit_pid
&&
2041 (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
)) {
2042 audit_sig_pid
= tsk
->pid
;
2044 audit_sig_uid
= ctx
->loginuid
;
2046 audit_sig_uid
= tsk
->uid
;
2047 selinux_get_task_sid(tsk
, &audit_sig_sid
);
2050 if (!audit_signals
) /* audit_context checked in wrapper */
2053 /* optimize the common case by putting first signal recipient directly
2054 * in audit_context */
2055 if (!ctx
->target_pid
) {
2056 ctx
->target_pid
= t
->tgid
;
2057 selinux_get_task_sid(t
, &ctx
->target_sid
);
2061 axp
= (void *)ctx
->aux_pids
;
2062 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2063 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2067 axp
->d
.type
= AUDIT_OBJ_PID
;
2068 axp
->d
.next
= ctx
->aux_pids
;
2069 ctx
->aux_pids
= (void *)axp
;
2071 BUG_ON(axp
->pid_count
> AUDIT_AUX_PIDS
);
2073 axp
->target_pid
[axp
->pid_count
] = t
->tgid
;
2074 selinux_get_task_sid(t
, &axp
->target_sid
[axp
->pid_count
]);
2081 * audit_core_dumps - record information about processes that end abnormally
2082 * @signr: signal value
2084 * If a process ends with a core dump, something fishy is going on and we
2085 * should record the event for investigation.
2087 void audit_core_dumps(long signr
)
2089 struct audit_buffer
*ab
;
2095 if (signr
== SIGQUIT
) /* don't care for those */
2098 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2099 audit_log_format(ab
, "auid=%u uid=%u gid=%u",
2100 audit_get_loginuid(current
->audit_context
),
2101 current
->uid
, current
->gid
);
2102 selinux_get_task_sid(current
, &sid
);
2107 if (selinux_sid_to_string(sid
, &ctx
, &len
))
2108 audit_log_format(ab
, " ssid=%u", sid
);
2110 audit_log_format(ab
, " subj=%s", ctx
);
2113 audit_log_format(ab
, " pid=%d comm=", current
->pid
);
2114 audit_log_untrustedstring(ab
, current
->comm
);
2115 audit_log_format(ab
, " sig=%ld", signr
);