Describe force_ffmpeg.
[pyTivo/wmcbrine.git] / lrucache.py
blobca8733dee0980bf31b33ef9975f0e63437238697
1 # lrucache.py -- a simple LRU (Least-Recently-Used) cache class
3 # Copyright 2004 Evan Prodromou <evan@bad.dynu.ca>
4 # Licensed under the Academic Free License 2.1
6 # Licensed for ftputil under the revised BSD license
7 # with permission by the author, Evan Prodromou. Many
8 # thanks, Evan! :-)
10 # The original file is available at
11 # http://pypi.python.org/pypi/lrucache/0.2 .
13 # arch-tag: LRU cache main module
15 """a simple LRU (Least-Recently-Used) cache module
17 This module provides very simple LRU (Least-Recently-Used) cache
18 functionality.
20 An *in-memory cache* is useful for storing the results of an
21 'expensive' process (one that takes a lot of time or resources) for
22 later re-use. Typical examples are accessing data from the filesystem,
23 a database, or a network location. If you know you'll need to re-read
24 the data again, it can help to keep it in a cache.
26 You *can* use a Python dictionary as a cache for some purposes.
27 However, if the results you're caching are large, or you have a lot of
28 possible results, this can be impractical memory-wise.
30 An *LRU cache*, on the other hand, only keeps _some_ of the results in
31 memory, which keeps you from overusing resources. The cache is bounded
32 by a maximum size; if you try to add more values to the cache, it will
33 automatically discard the values that you haven't read or written to
34 in the longest time. In other words, the least-recently-used items are
35 discarded. [1]_
37 .. [1]: 'Discarded' here means 'removed from the cache'.
39 """
41 from __future__ import generators
42 import time
43 from heapq import heappush, heappop, heapify
45 __version__ = "0.2"
46 __all__ = ['CacheKeyError', 'LRUCache', 'DEFAULT_SIZE']
47 __docformat__ = 'reStructuredText en'
49 DEFAULT_SIZE = 16
50 """Default size of a new LRUCache object, if no 'size' argument is given."""
52 class CacheKeyError(KeyError):
53 """Error raised when cache requests fail
55 When a cache record is accessed which no longer exists (or never did),
56 this error is raised. To avoid it, you may want to check for the existence
57 of a cache record before reading or deleting it."""
58 pass
60 class LRUCache(object):
61 """Least-Recently-Used (LRU) cache.
63 Instances of this class provide a least-recently-used (LRU) cache. They
64 emulate a Python mapping type. You can use an LRU cache more or less like
65 a Python dictionary, with the exception that objects you put into the
66 cache may be discarded before you take them out.
68 Some example usage::
70 cache = LRUCache(32) # new cache
71 cache['foo'] = get_file_contents('foo') # or whatever
73 if 'foo' in cache: # if it's still in cache...
74 # use cached version
75 contents = cache['foo']
76 else:
77 # recalculate
78 contents = get_file_contents('foo')
79 # store in cache for next time
80 cache['foo'] = contents
82 print cache.size # Maximum size
84 print len(cache) # 0 <= len(cache) <= cache.size
86 cache.size = 10 # Auto-shrink on size assignment
88 for i in range(50): # note: larger than cache size
89 cache[i] = i
91 if 0 not in cache: print 'Zero was discarded.'
93 if 42 in cache:
94 del cache[42] # Manual deletion
96 for j in cache: # iterate (in LRU order)
97 print j, cache[j] # iterator produces keys, not values
98 """
100 class __Node(object):
101 """Record of a cached value. Not for public consumption."""
103 def __init__(self, key, obj, timestamp):
104 object.__init__(self)
105 self.key = key
106 self.obj = obj
107 self.atime = timestamp
108 self.mtime = self.atime
110 def __cmp__(self, other):
111 return cmp(self.atime, other.atime)
113 def __repr__(self):
114 return "<%s %s => %s (%s)>" % \
115 (self.__class__, self.key, self.obj, \
116 time.asctime(time.localtime(self.atime)))
118 def __init__(self, size=DEFAULT_SIZE):
119 # Check arguments
120 if size <= 0:
121 raise ValueError, size
122 elif type(size) is not type(0):
123 raise TypeError, size
124 object.__init__(self)
125 self.__heap = []
126 self.__dict = {}
127 self.size = size
128 """Maximum size of the cache.
129 If more than 'size' elements are added to the cache,
130 the least-recently-used ones will be discarded."""
132 def __len__(self):
133 return len(self.__heap)
135 def __contains__(self, key):
136 return self.__dict.has_key(key)
138 def __setitem__(self, key, obj):
139 if self.__dict.has_key(key):
140 node = self.__dict[key]
141 node.obj = obj
142 node.atime = time.time()
143 node.mtime = node.atime
144 heapify(self.__heap)
145 else:
146 # size may have been reset, so we loop
147 while len(self.__heap) >= self.size:
148 lru = heappop(self.__heap)
149 del self.__dict[lru.key]
150 node = self.__Node(key, obj, time.time())
151 self.__dict[key] = node
152 heappush(self.__heap, node)
154 def __getitem__(self, key):
155 if not self.__dict.has_key(key):
156 raise CacheKeyError(key)
157 else:
158 node = self.__dict[key]
159 node.atime = time.time()
160 heapify(self.__heap)
161 return node.obj
163 def __delitem__(self, key):
164 if not self.__dict.has_key(key):
165 raise CacheKeyError(key)
166 else:
167 node = self.__dict[key]
168 del self.__dict[key]
169 self.__heap.remove(node)
170 heapify(self.__heap)
171 return node.obj
173 def __iter__(self):
174 copy = self.__heap[:]
175 while len(copy) > 0:
176 node = heappop(copy)
177 yield node.key
178 raise StopIteration
180 def __setattr__(self, name, value):
181 object.__setattr__(self, name, value)
182 # automagically shrink heap on resize
183 if name == 'size':
184 while len(self.__heap) > value:
185 lru = heappop(self.__heap)
186 del self.__dict[lru.key]
188 def __repr__(self):
189 return "<%s (%d elements)>" % (str(self.__class__), len(self.__heap))
191 def mtime(self, key):
192 """Return the last modification time for the cache record with key.
193 May be useful for cache instances where the stored values can get
194 'stale', such as caching file or network resource contents."""
195 if not self.__dict.has_key(key):
196 raise CacheKeyError(key)
197 else:
198 node = self.__dict[key]
199 return node.mtime
201 if __name__ == "__main__":
202 cache = LRUCache(25)
203 print cache
204 for i in range(50):
205 cache[i] = str(i)
206 print cache
207 if 46 in cache:
208 del cache[46]
209 print cache
210 cache.size = 10
211 print cache
212 cache[46] = '46'
213 print cache
214 print len(cache)
215 for c in cache:
216 print c
217 print cache
218 print cache.mtime(46)
219 for c in cache:
220 print c