Updated for 2.1b2 distribution.
[python/dscho.git] / Include / object.h
blob80669da7d946c2823d065082b35115366df5c6d3
1 #ifndef Py_OBJECT_H
2 #define Py_OBJECT_H
3 #ifdef __cplusplus
4 extern "C" {
5 #endif
8 /* Object and type object interface */
11 Objects are structures allocated on the heap. Special rules apply to
12 the use of objects to ensure they are properly garbage-collected.
13 Objects are never allocated statically or on the stack; they must be
14 accessed through special macros and functions only. (Type objects are
15 exceptions to the first rule; the standard types are represented by
16 statically initialized type objects.)
18 An object has a 'reference count' that is increased or decreased when a
19 pointer to the object is copied or deleted; when the reference count
20 reaches zero there are no references to the object left and it can be
21 removed from the heap.
23 An object has a 'type' that determines what it represents and what kind
24 of data it contains. An object's type is fixed when it is created.
25 Types themselves are represented as objects; an object contains a
26 pointer to the corresponding type object. The type itself has a type
27 pointer pointing to the object representing the type 'type', which
28 contains a pointer to itself!).
30 Objects do not float around in memory; once allocated an object keeps
31 the same size and address. Objects that must hold variable-size data
32 can contain pointers to variable-size parts of the object. Not all
33 objects of the same type have the same size; but the size cannot change
34 after allocation. (These restrictions are made so a reference to an
35 object can be simply a pointer -- moving an object would require
36 updating all the pointers, and changing an object's size would require
37 moving it if there was another object right next to it.)
39 Objects are always accessed through pointers of the type 'PyObject *'.
40 The type 'PyObject' is a structure that only contains the reference count
41 and the type pointer. The actual memory allocated for an object
42 contains other data that can only be accessed after casting the pointer
43 to a pointer to a longer structure type. This longer type must start
44 with the reference count and type fields; the macro PyObject_HEAD should be
45 used for this (to accommodate for future changes). The implementation
46 of a particular object type can cast the object pointer to the proper
47 type and back.
49 A standard interface exists for objects that contain an array of items
50 whose size is determined when the object is allocated.
53 #ifdef Py_DEBUG
55 /* Turn on heavy reference debugging */
56 #define Py_TRACE_REFS
58 /* Turn on reference counting */
59 #define Py_REF_DEBUG
61 #endif /* Py_DEBUG */
63 #ifdef Py_TRACE_REFS
64 #define PyObject_HEAD \
65 struct _object *_ob_next, *_ob_prev; \
66 int ob_refcnt; \
67 struct _typeobject *ob_type;
68 #define PyObject_HEAD_INIT(type) 0, 0, 1, type,
69 #else /* !Py_TRACE_REFS */
70 #define PyObject_HEAD \
71 int ob_refcnt; \
72 struct _typeobject *ob_type;
73 #define PyObject_HEAD_INIT(type) 1, type,
74 #endif /* !Py_TRACE_REFS */
76 #define PyObject_VAR_HEAD \
77 PyObject_HEAD \
78 int ob_size; /* Number of items in variable part */
80 typedef struct _object {
81 PyObject_HEAD
82 } PyObject;
84 typedef struct {
85 PyObject_VAR_HEAD
86 } PyVarObject;
90 Type objects contain a string containing the type name (to help somewhat
91 in debugging), the allocation parameters (see newobj() and newvarobj()),
92 and methods for accessing objects of the type. Methods are optional,a
93 nil pointer meaning that particular kind of access is not available for
94 this type. The Py_DECREF() macro uses the tp_dealloc method without
95 checking for a nil pointer; it should always be implemented except if
96 the implementation can guarantee that the reference count will never
97 reach zero (e.g., for type objects).
99 NB: the methods for certain type groups are now contained in separate
100 method blocks.
103 typedef PyObject * (*unaryfunc)(PyObject *);
104 typedef PyObject * (*binaryfunc)(PyObject *, PyObject *);
105 typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *);
106 typedef int (*inquiry)(PyObject *);
107 typedef int (*coercion)(PyObject **, PyObject **);
108 typedef PyObject *(*intargfunc)(PyObject *, int);
109 typedef PyObject *(*intintargfunc)(PyObject *, int, int);
110 typedef int(*intobjargproc)(PyObject *, int, PyObject *);
111 typedef int(*intintobjargproc)(PyObject *, int, int, PyObject *);
112 typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *);
113 typedef int (*getreadbufferproc)(PyObject *, int, void **);
114 typedef int (*getwritebufferproc)(PyObject *, int, void **);
115 typedef int (*getsegcountproc)(PyObject *, int *);
116 typedef int (*getcharbufferproc)(PyObject *, int, const char **);
117 typedef int (*objobjproc)(PyObject *, PyObject *);
118 typedef int (*visitproc)(PyObject *, void *);
119 typedef int (*traverseproc)(PyObject *, visitproc, void *);
121 typedef struct {
122 /* For numbers without flag bit Py_TPFLAGS_CHECKTYPES set, all
123 arguments are guaranteed to be of the object's type (modulo
124 coercion hacks that is -- i.e. if the type's coercion function
125 returns other types, then these are allowed as well). Numbers that
126 have the Py_TPFLAGS_CHECKTYPES flag bit set should check *both*
127 arguments for proper type and implement the necessary conversions
128 in the slot functions themselves. */
130 binaryfunc nb_add;
131 binaryfunc nb_subtract;
132 binaryfunc nb_multiply;
133 binaryfunc nb_divide;
134 binaryfunc nb_remainder;
135 binaryfunc nb_divmod;
136 ternaryfunc nb_power;
137 unaryfunc nb_negative;
138 unaryfunc nb_positive;
139 unaryfunc nb_absolute;
140 inquiry nb_nonzero;
141 unaryfunc nb_invert;
142 binaryfunc nb_lshift;
143 binaryfunc nb_rshift;
144 binaryfunc nb_and;
145 binaryfunc nb_xor;
146 binaryfunc nb_or;
147 coercion nb_coerce;
148 unaryfunc nb_int;
149 unaryfunc nb_long;
150 unaryfunc nb_float;
151 unaryfunc nb_oct;
152 unaryfunc nb_hex;
153 binaryfunc nb_inplace_add;
154 binaryfunc nb_inplace_subtract;
155 binaryfunc nb_inplace_multiply;
156 binaryfunc nb_inplace_divide;
157 binaryfunc nb_inplace_remainder;
158 ternaryfunc nb_inplace_power;
159 binaryfunc nb_inplace_lshift;
160 binaryfunc nb_inplace_rshift;
161 binaryfunc nb_inplace_and;
162 binaryfunc nb_inplace_xor;
163 binaryfunc nb_inplace_or;
164 } PyNumberMethods;
166 typedef struct {
167 inquiry sq_length;
168 binaryfunc sq_concat;
169 intargfunc sq_repeat;
170 intargfunc sq_item;
171 intintargfunc sq_slice;
172 intobjargproc sq_ass_item;
173 intintobjargproc sq_ass_slice;
174 objobjproc sq_contains;
175 binaryfunc sq_inplace_concat;
176 intargfunc sq_inplace_repeat;
177 } PySequenceMethods;
179 typedef struct {
180 inquiry mp_length;
181 binaryfunc mp_subscript;
182 objobjargproc mp_ass_subscript;
183 } PyMappingMethods;
185 typedef struct {
186 getreadbufferproc bf_getreadbuffer;
187 getwritebufferproc bf_getwritebuffer;
188 getsegcountproc bf_getsegcount;
189 getcharbufferproc bf_getcharbuffer;
190 } PyBufferProcs;
193 typedef void (*destructor)(PyObject *);
194 typedef int (*printfunc)(PyObject *, FILE *, int);
195 typedef PyObject *(*getattrfunc)(PyObject *, char *);
196 typedef PyObject *(*getattrofunc)(PyObject *, PyObject *);
197 typedef int (*setattrfunc)(PyObject *, char *, PyObject *);
198 typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *);
199 typedef int (*cmpfunc)(PyObject *, PyObject *);
200 typedef PyObject *(*reprfunc)(PyObject *);
201 typedef long (*hashfunc)(PyObject *);
202 typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int);
204 typedef struct _typeobject {
205 PyObject_VAR_HEAD
206 char *tp_name; /* For printing */
207 int tp_basicsize, tp_itemsize; /* For allocation */
209 /* Methods to implement standard operations */
211 destructor tp_dealloc;
212 printfunc tp_print;
213 getattrfunc tp_getattr;
214 setattrfunc tp_setattr;
215 cmpfunc tp_compare;
216 reprfunc tp_repr;
218 /* Method suites for standard classes */
220 PyNumberMethods *tp_as_number;
221 PySequenceMethods *tp_as_sequence;
222 PyMappingMethods *tp_as_mapping;
224 /* More standard operations (here for binary compatibility) */
226 hashfunc tp_hash;
227 ternaryfunc tp_call;
228 reprfunc tp_str;
229 getattrofunc tp_getattro;
230 setattrofunc tp_setattro;
232 /* Functions to access object as input/output buffer */
233 PyBufferProcs *tp_as_buffer;
235 /* Flags to define presence of optional/expanded features */
236 long tp_flags;
238 char *tp_doc; /* Documentation string */
240 /* call function for all accessible objects */
241 traverseproc tp_traverse;
243 /* delete references to contained objects */
244 inquiry tp_clear;
246 /* rich comparisons */
247 richcmpfunc tp_richcompare;
249 /* weak reference enabler */
250 long tp_weaklistoffset;
252 #ifdef COUNT_ALLOCS
253 /* these must be last */
254 int tp_alloc;
255 int tp_free;
256 int tp_maxalloc;
257 struct _typeobject *tp_next;
258 #endif
259 } PyTypeObject;
261 extern DL_IMPORT(PyTypeObject) PyType_Type; /* The type of type objects */
263 #define PyType_Check(op) ((op)->ob_type == &PyType_Type)
265 /* Generic operations on objects */
266 extern DL_IMPORT(int) PyObject_Print(PyObject *, FILE *, int);
267 extern DL_IMPORT(void) _PyObject_Dump(PyObject *);
268 extern DL_IMPORT(PyObject *) PyObject_Repr(PyObject *);
269 extern DL_IMPORT(PyObject *) PyObject_Str(PyObject *);
270 extern DL_IMPORT(PyObject *) PyObject_Unicode(PyObject *);
271 extern DL_IMPORT(int) PyObject_Compare(PyObject *, PyObject *);
272 extern DL_IMPORT(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int);
273 extern DL_IMPORT(int) PyObject_RichCompareBool(PyObject *, PyObject *, int);
274 extern DL_IMPORT(PyObject *) PyObject_GetAttrString(PyObject *, char *);
275 extern DL_IMPORT(int) PyObject_SetAttrString(PyObject *, char *, PyObject *);
276 extern DL_IMPORT(int) PyObject_HasAttrString(PyObject *, char *);
277 extern DL_IMPORT(PyObject *) PyObject_GetAttr(PyObject *, PyObject *);
278 extern DL_IMPORT(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *);
279 extern DL_IMPORT(int) PyObject_HasAttr(PyObject *, PyObject *);
280 extern DL_IMPORT(long) PyObject_Hash(PyObject *);
281 extern DL_IMPORT(int) PyObject_IsTrue(PyObject *);
282 extern DL_IMPORT(int) PyObject_Not(PyObject *);
283 extern DL_IMPORT(int) PyCallable_Check(PyObject *);
284 extern DL_IMPORT(int) PyNumber_Coerce(PyObject **, PyObject **);
285 extern DL_IMPORT(int) PyNumber_CoerceEx(PyObject **, PyObject **);
287 extern DL_IMPORT(void) (*PyObject_ClearWeakRefs)(PyObject *);
289 /* Helpers for printing recursive container types */
290 extern DL_IMPORT(int) Py_ReprEnter(PyObject *);
291 extern DL_IMPORT(void) Py_ReprLeave(PyObject *);
293 /* Helpers for hash functions */
294 extern DL_IMPORT(long) _Py_HashDouble(double);
295 extern DL_IMPORT(long) _Py_HashPointer(void*);
297 /* Helper for passing objects to printf and the like */
298 #define PyObject_REPR(obj) PyString_AS_STRING(PyObject_Repr(obj))
300 /* Flag bits for printing: */
301 #define Py_PRINT_RAW 1 /* No string quotes etc. */
305 Type flags (tp_flags)
307 These flags are used to extend the type structure in a backwards-compatible
308 fashion. Extensions can use the flags to indicate (and test) when a given
309 type structure contains a new feature. The Python core will use these when
310 introducing new functionality between major revisions (to avoid mid-version
311 changes in the PYTHON_API_VERSION).
313 Arbitration of the flag bit positions will need to be coordinated among
314 all extension writers who publically release their extensions (this will
315 be fewer than you might expect!)..
317 Python 1.5.2 introduced the bf_getcharbuffer slot into PyBufferProcs.
319 Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value.
321 Code can use PyType_HasFeature(type_ob, flag_value) to test whether the
322 given type object has a specified feature.
326 /* PyBufferProcs contains bf_getcharbuffer */
327 #define Py_TPFLAGS_HAVE_GETCHARBUFFER (1L<<0)
329 /* PySequenceMethods contains sq_contains */
330 #define Py_TPFLAGS_HAVE_SEQUENCE_IN (1L<<1)
332 /* Objects which participate in garbage collection (see objimp.h) */
333 #ifdef WITH_CYCLE_GC
334 #define Py_TPFLAGS_GC (1L<<2)
335 #else
336 #define Py_TPFLAGS_GC 0
337 #endif
339 /* PySequenceMethods and PyNumberMethods contain in-place operators */
340 #define Py_TPFLAGS_HAVE_INPLACEOPS (1L<<3)
342 /* PyNumberMethods do their own coercion */
343 #define Py_TPFLAGS_CHECKTYPES (1L<<4)
345 #define Py_TPFLAGS_HAVE_RICHCOMPARE (1L<<5)
347 /* Objects which are weakly referencable if their tp_weaklistoffset is >0 */
348 /* XXX Should this have the same value as Py_TPFLAGS_HAVE_RICHCOMPARE?
349 * These both indicate a feature that appeared in the same alpha release.
351 #define Py_TPFLAGS_HAVE_WEAKREFS (1L<<6)
353 #define Py_TPFLAGS_DEFAULT ( \
354 Py_TPFLAGS_HAVE_GETCHARBUFFER | \
355 Py_TPFLAGS_HAVE_SEQUENCE_IN | \
356 Py_TPFLAGS_HAVE_INPLACEOPS | \
357 Py_TPFLAGS_HAVE_RICHCOMPARE | \
358 Py_TPFLAGS_HAVE_WEAKREFS | \
361 #define PyType_HasFeature(t,f) (((t)->tp_flags & (f)) != 0)
365 The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement
366 reference counts. Py_DECREF calls the object's deallocator function; for
367 objects that don't contain references to other objects or heap memory
368 this can be the standard function free(). Both macros can be used
369 wherever a void expression is allowed. The argument shouldn't be a
370 NIL pointer. The macro _Py_NewReference(op) is used only to initialize
371 reference counts to 1; it is defined here for convenience.
373 We assume that the reference count field can never overflow; this can
374 be proven when the size of the field is the same as the pointer size
375 but even with a 16-bit reference count field it is pretty unlikely so
376 we ignore the possibility. (If you are paranoid, make it a long.)
378 Type objects should never be deallocated; the type pointer in an object
379 is not considered to be a reference to the type object, to save
380 complications in the deallocation function. (This is actually a
381 decision that's up to the implementer of each new type so if you want,
382 you can count such references to the type object.)
384 *** WARNING*** The Py_DECREF macro must have a side-effect-free argument
385 since it may evaluate its argument multiple times. (The alternative
386 would be to mace it a proper function or assign it to a global temporary
387 variable first, both of which are slower; and in a multi-threaded
388 environment the global variable trick is not safe.)
391 #ifdef Py_TRACE_REFS
392 #ifndef Py_REF_DEBUG
393 #define Py_REF_DEBUG
394 #endif
395 #endif
397 #ifdef Py_TRACE_REFS
398 extern DL_IMPORT(void) _Py_Dealloc(PyObject *);
399 extern DL_IMPORT(void) _Py_NewReference(PyObject *);
400 extern DL_IMPORT(void) _Py_ForgetReference(PyObject *);
401 extern DL_IMPORT(void) _Py_PrintReferences(FILE *);
402 extern DL_IMPORT(void) _Py_ResetReferences(void);
403 #endif
405 #ifndef Py_TRACE_REFS
406 #ifdef COUNT_ALLOCS
407 #define _Py_Dealloc(op) ((op)->ob_type->tp_free++, (*(op)->ob_type->tp_dealloc)((PyObject *)(op)))
408 #define _Py_ForgetReference(op) ((op)->ob_type->tp_free++)
409 #else /* !COUNT_ALLOCS */
410 #define _Py_Dealloc(op) (*(op)->ob_type->tp_dealloc)((PyObject *)(op))
411 #define _Py_ForgetReference(op) /*empty*/
412 #endif /* !COUNT_ALLOCS */
413 #endif /* !Py_TRACE_REFS */
415 #ifdef COUNT_ALLOCS
416 extern DL_IMPORT(void) inc_count(PyTypeObject *);
417 #endif
419 #ifdef Py_REF_DEBUG
421 extern DL_IMPORT(long) _Py_RefTotal;
423 #ifndef Py_TRACE_REFS
424 #ifdef COUNT_ALLOCS
425 #define _Py_NewReference(op) (inc_count((op)->ob_type), _Py_RefTotal++, (op)->ob_refcnt = 1)
426 #else
427 #define _Py_NewReference(op) (_Py_RefTotal++, (op)->ob_refcnt = 1)
428 #endif
429 #endif /* !Py_TRACE_REFS */
431 #define Py_INCREF(op) (_Py_RefTotal++, (op)->ob_refcnt++)
432 #define Py_DECREF(op) \
433 if (--_Py_RefTotal, (--((op)->ob_refcnt) != 0)) \
435 else \
436 _Py_Dealloc((PyObject *)(op))
437 #else /* !Py_REF_DEBUG */
439 #ifdef COUNT_ALLOCS
440 #define _Py_NewReference(op) (inc_count((op)->ob_type), (op)->ob_refcnt = 1)
441 #else
442 #define _Py_NewReference(op) ((op)->ob_refcnt = 1)
443 #endif
445 #define Py_INCREF(op) ((op)->ob_refcnt++)
446 #define Py_DECREF(op) \
447 if (--(op)->ob_refcnt != 0) \
449 else \
450 _Py_Dealloc((PyObject *)(op))
451 #endif /* !Py_REF_DEBUG */
453 /* Macros to use in case the object pointer may be NULL: */
455 #define Py_XINCREF(op) if ((op) == NULL) ; else Py_INCREF(op)
456 #define Py_XDECREF(op) if ((op) == NULL) ; else Py_DECREF(op)
459 _Py_NoneStruct is an object of undefined type which can be used in contexts
460 where NULL (nil) is not suitable (since NULL often means 'error').
462 Don't forget to apply Py_INCREF() when returning this value!!!
465 extern DL_IMPORT(PyObject) _Py_NoneStruct; /* Don't use this directly */
467 #define Py_None (&_Py_NoneStruct)
470 Py_NotImplemented is a singleton used to signal that an operation is
471 not implemented for a given type combination.
474 extern DL_IMPORT(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */
476 #define Py_NotImplemented (&_Py_NotImplementedStruct)
478 /* Rich comparison opcodes */
479 #define Py_LT 0
480 #define Py_LE 1
481 #define Py_EQ 2
482 #define Py_NE 3
483 #define Py_GT 4
484 #define Py_GE 5
487 A common programming style in Python requires the forward declaration
488 of static, initialized structures, e.g. for a type object that is used
489 by the functions whose address must be used in the initializer.
490 Some compilers (notably SCO ODT 3.0, I seem to remember early AIX as
491 well) botch this if you use the static keyword for both declarations
492 (they allocate two objects, and use the first, uninitialized one until
493 the second declaration is encountered). Therefore, the forward
494 declaration should use the 'forwardstatic' keyword. This expands to
495 static on most systems, but to extern on a few. The actual storage
496 and name will still be static because the second declaration is
497 static, so no linker visible symbols will be generated. (Standard C
498 compilers take offense to the extern forward declaration of a static
499 object, so I can't just put extern in all cases. :-( )
502 #ifdef BAD_STATIC_FORWARD
503 #define staticforward extern
504 #define statichere static
505 #else /* !BAD_STATIC_FORWARD */
506 #define staticforward static
507 #define statichere static
508 #endif /* !BAD_STATIC_FORWARD */
512 More conventions
513 ================
515 Argument Checking
516 -----------------
518 Functions that take objects as arguments normally don't check for nil
519 arguments, but they do check the type of the argument, and return an
520 error if the function doesn't apply to the type.
522 Failure Modes
523 -------------
525 Functions may fail for a variety of reasons, including running out of
526 memory. This is communicated to the caller in two ways: an error string
527 is set (see errors.h), and the function result differs: functions that
528 normally return a pointer return NULL for failure, functions returning
529 an integer return -1 (which could be a legal return value too!), and
530 other functions return 0 for success and -1 for failure.
531 Callers should always check for errors before using the result.
533 Reference Counts
534 ----------------
536 It takes a while to get used to the proper usage of reference counts.
538 Functions that create an object set the reference count to 1; such new
539 objects must be stored somewhere or destroyed again with Py_DECREF().
540 Functions that 'store' objects such as PyTuple_SetItem() and
541 PyDict_SetItemString()
542 don't increment the reference count of the object, since the most
543 frequent use is to store a fresh object. Functions that 'retrieve'
544 objects such as PyTuple_GetItem() and PyDict_GetItemString() also
545 don't increment
546 the reference count, since most frequently the object is only looked at
547 quickly. Thus, to retrieve an object and store it again, the caller
548 must call Py_INCREF() explicitly.
550 NOTE: functions that 'consume' a reference count like
551 PyList_SetItemString() even consume the reference if the object wasn't
552 stored, to simplify error handling.
554 It seems attractive to make other functions that take an object as
555 argument consume a reference count; however this may quickly get
556 confusing (even the current practice is already confusing). Consider
557 it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at
558 times.
562 trashcan
563 CT 2k0130
564 non-recursively destroy nested objects
566 CT 2k0223
567 redefinition for better locality and less overhead.
569 Objects that want to be recursion safe need to use
570 the macro's
571 Py_TRASHCAN_SAFE_BEGIN(name)
573 Py_TRASHCAN_SAFE_END(name)
574 surrounding their actual deallocation code.
576 It would be nice to do this using the thread state.
577 Also, we could do an exact stack measure then.
578 Unfortunately, deallocations also take place when
579 the thread state is undefined.
581 CT 2k0422 complete rewrite.
582 There is no need to allocate new objects.
583 Everything is done vialob_refcnt and ob_type now.
584 Adding support for free-threading should be easy, too.
587 #define PyTrash_UNWIND_LEVEL 50
589 #define Py_TRASHCAN_SAFE_BEGIN(op) \
591 ++_PyTrash_delete_nesting; \
592 if (_PyTrash_delete_nesting < PyTrash_UNWIND_LEVEL) { \
594 #define Py_TRASHCAN_SAFE_END(op) \
595 ;} \
596 else \
597 _PyTrash_deposit_object((PyObject*)op);\
598 --_PyTrash_delete_nesting; \
599 if (_PyTrash_delete_later && _PyTrash_delete_nesting <= 0) \
600 _PyTrash_destroy_chain(); \
603 extern DL_IMPORT(void) _PyTrash_deposit_object(PyObject*);
604 extern DL_IMPORT(void) _PyTrash_destroy_chain(void);
606 extern DL_IMPORT(int) _PyTrash_delete_nesting;
607 extern DL_IMPORT(PyObject *) _PyTrash_delete_later;
609 /* swap the "xx" to check the speed loss */
611 #define xxPy_TRASHCAN_SAFE_BEGIN(op)
612 #define xxPy_TRASHCAN_SAFE_END(op) ;
614 #ifdef __cplusplus
616 #endif
617 #endif /* !Py_OBJECT_H */