Move setting of ioready 'wait' earlier in call chain, to
[python/dscho.git] / Objects / listobject.c
blob79403ccd55679ee125746a2f34dbf9a9a54d47c6
1 /* List object implementation */
3 #include "Python.h"
5 #ifdef STDC_HEADERS
6 #include <stddef.h>
7 #else
8 #include <sys/types.h> /* For size_t */
9 #endif
11 static int
12 roundupsize(int n)
14 unsigned int nbits = 0;
15 unsigned int n2 = (unsigned int)n >> 5;
17 /* Round up:
18 * If n < 256, to a multiple of 8.
19 * If n < 2048, to a multiple of 64.
20 * If n < 16384, to a multiple of 512.
21 * If n < 131072, to a multiple of 4096.
22 * If n < 1048576, to a multiple of 32768.
23 * If n < 8388608, to a multiple of 262144.
24 * If n < 67108864, to a multiple of 2097152.
25 * If n < 536870912, to a multiple of 16777216.
26 * ...
27 * If n < 2**(5+3*i), to a multiple of 2**(3*i).
29 * This over-allocates proportional to the list size, making room
30 * for additional growth. The over-allocation is mild, but is
31 * enough to give linear-time amortized behavior over a long
32 * sequence of appends() in the presence of a poorly-performing
33 * system realloc() (which is a reality, e.g., across all flavors
34 * of Windows, with Win9x behavior being particularly bad -- and
35 * we've still got address space fragmentation problems on Win9x
36 * even with this scheme, although it requires much longer lists to
37 * provoke them than it used to).
39 do {
40 n2 >>= 3;
41 nbits += 3;
42 } while (n2);
43 return ((n >> nbits) + 1) << nbits;
46 #define NRESIZE(var, type, nitems) \
47 do { \
48 size_t _new_size = roundupsize(nitems); \
49 if (_new_size <= ((~(size_t)0) / sizeof(type))) \
50 PyMem_RESIZE(var, type, _new_size); \
51 else \
52 var = NULL; \
53 } while (0)
55 PyObject *
56 PyList_New(int size)
58 PyListObject *op;
59 size_t nbytes;
60 if (size < 0) {
61 PyErr_BadInternalCall();
62 return NULL;
64 nbytes = size * sizeof(PyObject *);
65 /* Check for overflow */
66 if (nbytes / sizeof(PyObject *) != (size_t)size) {
67 return PyErr_NoMemory();
69 op = PyObject_GC_New(PyListObject, &PyList_Type);
70 if (op == NULL) {
71 return NULL;
73 if (size <= 0) {
74 op->ob_item = NULL;
76 else {
77 op->ob_item = (PyObject **) PyMem_MALLOC(nbytes);
78 if (op->ob_item == NULL) {
79 return PyErr_NoMemory();
81 memset(op->ob_item, 0, sizeof(*op->ob_item) * size);
83 op->ob_size = size;
84 _PyObject_GC_TRACK(op);
85 return (PyObject *) op;
88 int
89 PyList_Size(PyObject *op)
91 if (!PyList_Check(op)) {
92 PyErr_BadInternalCall();
93 return -1;
95 else
96 return ((PyListObject *)op) -> ob_size;
99 static PyObject *indexerr;
101 PyObject *
102 PyList_GetItem(PyObject *op, int i)
104 if (!PyList_Check(op)) {
105 PyErr_BadInternalCall();
106 return NULL;
108 if (i < 0 || i >= ((PyListObject *)op) -> ob_size) {
109 if (indexerr == NULL)
110 indexerr = PyString_FromString(
111 "list index out of range");
112 PyErr_SetObject(PyExc_IndexError, indexerr);
113 return NULL;
115 return ((PyListObject *)op) -> ob_item[i];
119 PyList_SetItem(register PyObject *op, register int i,
120 register PyObject *newitem)
122 register PyObject *olditem;
123 register PyObject **p;
124 if (!PyList_Check(op)) {
125 Py_XDECREF(newitem);
126 PyErr_BadInternalCall();
127 return -1;
129 if (i < 0 || i >= ((PyListObject *)op) -> ob_size) {
130 Py_XDECREF(newitem);
131 PyErr_SetString(PyExc_IndexError,
132 "list assignment index out of range");
133 return -1;
135 p = ((PyListObject *)op) -> ob_item + i;
136 olditem = *p;
137 *p = newitem;
138 Py_XDECREF(olditem);
139 return 0;
142 static int
143 ins1(PyListObject *self, int where, PyObject *v)
145 int i;
146 PyObject **items;
147 if (v == NULL) {
148 PyErr_BadInternalCall();
149 return -1;
151 if (self->ob_size == INT_MAX) {
152 PyErr_SetString(PyExc_OverflowError,
153 "cannot add more objects to list");
154 return -1;
156 items = self->ob_item;
157 NRESIZE(items, PyObject *, self->ob_size+1);
158 if (items == NULL) {
159 PyErr_NoMemory();
160 return -1;
162 if (where < 0)
163 where = 0;
164 if (where > self->ob_size)
165 where = self->ob_size;
166 for (i = self->ob_size; --i >= where; )
167 items[i+1] = items[i];
168 Py_INCREF(v);
169 items[where] = v;
170 self->ob_item = items;
171 self->ob_size++;
172 return 0;
176 PyList_Insert(PyObject *op, int where, PyObject *newitem)
178 if (!PyList_Check(op)) {
179 PyErr_BadInternalCall();
180 return -1;
182 return ins1((PyListObject *)op, where, newitem);
186 PyList_Append(PyObject *op, PyObject *newitem)
188 if (!PyList_Check(op)) {
189 PyErr_BadInternalCall();
190 return -1;
192 return ins1((PyListObject *)op,
193 (int) ((PyListObject *)op)->ob_size, newitem);
196 /* Methods */
198 static void
199 list_dealloc(PyListObject *op)
201 int i;
202 PyObject_GC_UnTrack(op);
203 Py_TRASHCAN_SAFE_BEGIN(op)
204 if (op->ob_item != NULL) {
205 /* Do it backwards, for Christian Tismer.
206 There's a simple test case where somehow this reduces
207 thrashing when a *very* large list is created and
208 immediately deleted. */
209 i = op->ob_size;
210 while (--i >= 0) {
211 Py_XDECREF(op->ob_item[i]);
213 PyMem_FREE(op->ob_item);
215 op->ob_type->tp_free((PyObject *)op);
216 Py_TRASHCAN_SAFE_END(op)
219 static int
220 list_print(PyListObject *op, FILE *fp, int flags)
222 int i;
224 i = Py_ReprEnter((PyObject*)op);
225 if (i != 0) {
226 if (i < 0)
227 return i;
228 fprintf(fp, "[...]");
229 return 0;
231 fprintf(fp, "[");
232 for (i = 0; i < op->ob_size; i++) {
233 if (i > 0)
234 fprintf(fp, ", ");
235 if (PyObject_Print(op->ob_item[i], fp, 0) != 0) {
236 Py_ReprLeave((PyObject *)op);
237 return -1;
240 fprintf(fp, "]");
241 Py_ReprLeave((PyObject *)op);
242 return 0;
245 static PyObject *
246 list_repr(PyListObject *v)
248 int i;
249 PyObject *s, *temp;
250 PyObject *pieces = NULL, *result = NULL;
252 i = Py_ReprEnter((PyObject*)v);
253 if (i != 0) {
254 return i > 0 ? PyString_FromString("[...]") : NULL;
257 if (v->ob_size == 0) {
258 result = PyString_FromString("[]");
259 goto Done;
262 pieces = PyList_New(0);
263 if (pieces == NULL)
264 goto Done;
266 /* Do repr() on each element. Note that this may mutate the list,
267 so must refetch the list size on each iteration. */
268 for (i = 0; i < v->ob_size; ++i) {
269 int status;
270 s = PyObject_Repr(v->ob_item[i]);
271 if (s == NULL)
272 goto Done;
273 status = PyList_Append(pieces, s);
274 Py_DECREF(s); /* append created a new ref */
275 if (status < 0)
276 goto Done;
279 /* Add "[]" decorations to the first and last items. */
280 assert(PyList_GET_SIZE(pieces) > 0);
281 s = PyString_FromString("[");
282 if (s == NULL)
283 goto Done;
284 temp = PyList_GET_ITEM(pieces, 0);
285 PyString_ConcatAndDel(&s, temp);
286 PyList_SET_ITEM(pieces, 0, s);
287 if (s == NULL)
288 goto Done;
290 s = PyString_FromString("]");
291 if (s == NULL)
292 goto Done;
293 temp = PyList_GET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1);
294 PyString_ConcatAndDel(&temp, s);
295 PyList_SET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1, temp);
296 if (temp == NULL)
297 goto Done;
299 /* Paste them all together with ", " between. */
300 s = PyString_FromString(", ");
301 if (s == NULL)
302 goto Done;
303 result = _PyString_Join(s, pieces);
304 Py_DECREF(s);
306 Done:
307 Py_XDECREF(pieces);
308 Py_ReprLeave((PyObject *)v);
309 return result;
312 static int
313 list_length(PyListObject *a)
315 return a->ob_size;
320 static int
321 list_contains(PyListObject *a, PyObject *el)
323 int i, cmp;
325 for (i = 0, cmp = 0 ; cmp == 0 && i < a->ob_size; ++i)
326 cmp = PyObject_RichCompareBool(el, PyList_GET_ITEM(a, i),
327 Py_EQ);
328 return cmp;
332 static PyObject *
333 list_item(PyListObject *a, int i)
335 if (i < 0 || i >= a->ob_size) {
336 if (indexerr == NULL)
337 indexerr = PyString_FromString(
338 "list index out of range");
339 PyErr_SetObject(PyExc_IndexError, indexerr);
340 return NULL;
342 Py_INCREF(a->ob_item[i]);
343 return a->ob_item[i];
346 static PyObject *
347 list_slice(PyListObject *a, int ilow, int ihigh)
349 PyListObject *np;
350 int i;
351 if (ilow < 0)
352 ilow = 0;
353 else if (ilow > a->ob_size)
354 ilow = a->ob_size;
355 if (ihigh < ilow)
356 ihigh = ilow;
357 else if (ihigh > a->ob_size)
358 ihigh = a->ob_size;
359 np = (PyListObject *) PyList_New(ihigh - ilow);
360 if (np == NULL)
361 return NULL;
362 for (i = ilow; i < ihigh; i++) {
363 PyObject *v = a->ob_item[i];
364 Py_INCREF(v);
365 np->ob_item[i - ilow] = v;
367 return (PyObject *)np;
370 PyObject *
371 PyList_GetSlice(PyObject *a, int ilow, int ihigh)
373 if (!PyList_Check(a)) {
374 PyErr_BadInternalCall();
375 return NULL;
377 return list_slice((PyListObject *)a, ilow, ihigh);
380 static PyObject *
381 list_concat(PyListObject *a, PyObject *bb)
383 int size;
384 int i;
385 PyListObject *np;
386 if (!PyList_Check(bb)) {
387 PyErr_Format(PyExc_TypeError,
388 "can only concatenate list (not \"%.200s\") to list",
389 bb->ob_type->tp_name);
390 return NULL;
392 #define b ((PyListObject *)bb)
393 size = a->ob_size + b->ob_size;
394 if (size < 0)
395 return PyErr_NoMemory();
396 np = (PyListObject *) PyList_New(size);
397 if (np == NULL) {
398 return NULL;
400 for (i = 0; i < a->ob_size; i++) {
401 PyObject *v = a->ob_item[i];
402 Py_INCREF(v);
403 np->ob_item[i] = v;
405 for (i = 0; i < b->ob_size; i++) {
406 PyObject *v = b->ob_item[i];
407 Py_INCREF(v);
408 np->ob_item[i + a->ob_size] = v;
410 return (PyObject *)np;
411 #undef b
414 static PyObject *
415 list_repeat(PyListObject *a, int n)
417 int i, j;
418 int size;
419 PyListObject *np;
420 PyObject **p;
421 if (n < 0)
422 n = 0;
423 size = a->ob_size * n;
424 if (n && size/n != a->ob_size)
425 return PyErr_NoMemory();
426 np = (PyListObject *) PyList_New(size);
427 if (np == NULL)
428 return NULL;
429 p = np->ob_item;
430 for (i = 0; i < n; i++) {
431 for (j = 0; j < a->ob_size; j++) {
432 *p = a->ob_item[j];
433 Py_INCREF(*p);
434 p++;
437 return (PyObject *) np;
440 static int
441 list_ass_slice(PyListObject *a, int ilow, int ihigh, PyObject *v)
443 /* Because [X]DECREF can recursively invoke list operations on
444 this list, we must postpone all [X]DECREF activity until
445 after the list is back in its canonical shape. Therefore
446 we must allocate an additional array, 'recycle', into which
447 we temporarily copy the items that are deleted from the
448 list. :-( */
449 PyObject **recycle, **p;
450 PyObject **item;
451 PyObject *v_as_SF = NULL; /* PySequence_Fast(v) */
452 int n; /* Size of replacement list */
453 int d; /* Change in size */
454 int k; /* Loop index */
455 #define b ((PyListObject *)v)
456 if (v == NULL)
457 n = 0;
458 else {
459 char msg[256];
460 PyOS_snprintf(msg, sizeof(msg),
461 "must assign sequence"
462 " (not \"%.200s\") to slice",
463 v->ob_type->tp_name);
464 v_as_SF = PySequence_Fast(v, msg);
465 if(v_as_SF == NULL)
466 return -1;
467 n = PySequence_Fast_GET_SIZE(v_as_SF);
469 if (a == b) {
470 /* Special case "a[i:j] = a" -- copy b first */
471 int ret;
472 v = list_slice(b, 0, n);
473 ret = list_ass_slice(a, ilow, ihigh, v);
474 Py_DECREF(v);
475 return ret;
478 if (ilow < 0)
479 ilow = 0;
480 else if (ilow > a->ob_size)
481 ilow = a->ob_size;
482 if (ihigh < ilow)
483 ihigh = ilow;
484 else if (ihigh > a->ob_size)
485 ihigh = a->ob_size;
486 item = a->ob_item;
487 d = n - (ihigh-ilow);
488 if (ihigh > ilow)
489 p = recycle = PyMem_NEW(PyObject *, (ihigh-ilow));
490 else
491 p = recycle = NULL;
492 if (d <= 0) { /* Delete -d items; recycle ihigh-ilow items */
493 for (k = ilow; k < ihigh; k++)
494 *p++ = item[k];
495 if (d < 0) {
496 for (/*k = ihigh*/; k < a->ob_size; k++)
497 item[k+d] = item[k];
498 a->ob_size += d;
499 NRESIZE(item, PyObject *, a->ob_size); /* Can't fail */
500 a->ob_item = item;
503 else { /* Insert d items; recycle ihigh-ilow items */
504 NRESIZE(item, PyObject *, a->ob_size + d);
505 if (item == NULL) {
506 if (recycle != NULL)
507 PyMem_DEL(recycle);
508 PyErr_NoMemory();
509 return -1;
511 for (k = a->ob_size; --k >= ihigh; )
512 item[k+d] = item[k];
513 for (/*k = ihigh-1*/; k >= ilow; --k)
514 *p++ = item[k];
515 a->ob_item = item;
516 a->ob_size += d;
518 for (k = 0; k < n; k++, ilow++) {
519 PyObject *w = PySequence_Fast_GET_ITEM(v_as_SF, k);
520 Py_XINCREF(w);
521 item[ilow] = w;
523 if (recycle) {
524 while (--p >= recycle)
525 Py_XDECREF(*p);
526 PyMem_DEL(recycle);
528 if (a->ob_size == 0 && a->ob_item != NULL) {
529 PyMem_FREE(a->ob_item);
530 a->ob_item = NULL;
532 Py_XDECREF(v_as_SF);
533 return 0;
534 #undef b
538 PyList_SetSlice(PyObject *a, int ilow, int ihigh, PyObject *v)
540 if (!PyList_Check(a)) {
541 PyErr_BadInternalCall();
542 return -1;
544 return list_ass_slice((PyListObject *)a, ilow, ihigh, v);
547 static PyObject *
548 list_inplace_repeat(PyListObject *self, int n)
550 PyObject **items;
551 int size, i, j;
554 size = PyList_GET_SIZE(self);
555 if (size == 0) {
556 Py_INCREF(self);
557 return (PyObject *)self;
560 items = self->ob_item;
562 if (n < 1) {
563 self->ob_item = NULL;
564 self->ob_size = 0;
565 for (i = 0; i < size; i++)
566 Py_XDECREF(items[i]);
567 PyMem_DEL(items);
568 Py_INCREF(self);
569 return (PyObject *)self;
572 NRESIZE(items, PyObject*, size*n);
573 if (items == NULL) {
574 PyErr_NoMemory();
575 goto finally;
577 self->ob_item = items;
578 for (i = 1; i < n; i++) { /* Start counting at 1, not 0 */
579 for (j = 0; j < size; j++) {
580 PyObject *o = PyList_GET_ITEM(self, j);
581 Py_INCREF(o);
582 PyList_SET_ITEM(self, self->ob_size++, o);
585 Py_INCREF(self);
586 return (PyObject *)self;
587 finally:
588 return NULL;
591 static int
592 list_ass_item(PyListObject *a, int i, PyObject *v)
594 PyObject *old_value;
595 if (i < 0 || i >= a->ob_size) {
596 PyErr_SetString(PyExc_IndexError,
597 "list assignment index out of range");
598 return -1;
600 if (v == NULL)
601 return list_ass_slice(a, i, i+1, v);
602 Py_INCREF(v);
603 old_value = a->ob_item[i];
604 a->ob_item[i] = v;
605 Py_DECREF(old_value);
606 return 0;
609 static PyObject *
610 ins(PyListObject *self, int where, PyObject *v)
612 if (ins1(self, where, v) != 0)
613 return NULL;
614 Py_INCREF(Py_None);
615 return Py_None;
618 static PyObject *
619 listinsert(PyListObject *self, PyObject *args)
621 int i;
622 PyObject *v;
623 if (!PyArg_ParseTuple(args, "iO:insert", &i, &v))
624 return NULL;
625 return ins(self, i, v);
628 static PyObject *
629 listappend(PyListObject *self, PyObject *v)
631 return ins(self, (int) self->ob_size, v);
634 static int
635 listextend_internal(PyListObject *self, PyObject *b)
637 PyObject **items;
638 int selflen = PyList_GET_SIZE(self);
639 int blen;
640 register int i;
642 if (PyObject_Size(b) == 0) {
643 /* short circuit when b is empty */
644 Py_DECREF(b);
645 return 0;
648 if (self == (PyListObject*)b) {
649 /* as in list_ass_slice() we must special case the
650 * situation: a.extend(a)
652 * XXX: I think this way ought to be faster than using
653 * list_slice() the way list_ass_slice() does.
655 Py_DECREF(b);
656 b = PyList_New(selflen);
657 if (!b)
658 return -1;
659 for (i = 0; i < selflen; i++) {
660 PyObject *o = PyList_GET_ITEM(self, i);
661 Py_INCREF(o);
662 PyList_SET_ITEM(b, i, o);
666 blen = PyObject_Size(b);
668 /* resize a using idiom */
669 items = self->ob_item;
670 NRESIZE(items, PyObject*, selflen + blen);
671 if (items == NULL) {
672 PyErr_NoMemory();
673 Py_DECREF(b);
674 return -1;
677 self->ob_item = items;
679 /* populate the end of self with b's items */
680 for (i = 0; i < blen; i++) {
681 PyObject *o = PySequence_Fast_GET_ITEM(b, i);
682 Py_INCREF(o);
683 PyList_SET_ITEM(self, self->ob_size++, o);
685 Py_DECREF(b);
686 return 0;
690 static PyObject *
691 list_inplace_concat(PyListObject *self, PyObject *other)
693 other = PySequence_Fast(other, "argument to += must be iterable");
694 if (!other)
695 return NULL;
697 if (listextend_internal(self, other) < 0)
698 return NULL;
700 Py_INCREF(self);
701 return (PyObject *)self;
704 static PyObject *
705 listextend(PyListObject *self, PyObject *b)
708 b = PySequence_Fast(b, "list.extend() argument must be iterable");
709 if (!b)
710 return NULL;
712 if (listextend_internal(self, b) < 0)
713 return NULL;
715 Py_INCREF(Py_None);
716 return Py_None;
719 static PyObject *
720 listpop(PyListObject *self, PyObject *args)
722 int i = -1;
723 PyObject *v;
724 if (!PyArg_ParseTuple(args, "|i:pop", &i))
725 return NULL;
726 if (self->ob_size == 0) {
727 /* Special-case most common failure cause */
728 PyErr_SetString(PyExc_IndexError, "pop from empty list");
729 return NULL;
731 if (i < 0)
732 i += self->ob_size;
733 if (i < 0 || i >= self->ob_size) {
734 PyErr_SetString(PyExc_IndexError, "pop index out of range");
735 return NULL;
737 v = self->ob_item[i];
738 Py_INCREF(v);
739 if (list_ass_slice(self, i, i+1, (PyObject *)NULL) != 0) {
740 Py_DECREF(v);
741 return NULL;
743 return v;
746 /* Reverse a slice of a list in place, from lo up to (exclusive) hi. */
747 static void
748 reverse_slice(PyObject **lo, PyObject **hi)
750 assert(lo && hi);
752 --hi;
753 while (lo < hi) {
754 PyObject *t = *lo;
755 *lo = *hi;
756 *hi = t;
757 ++lo;
758 --hi;
762 /* Lots of code for an adaptive, stable, natural mergesort. There are many
763 * pieces to this algorithm; read listsort.txt for overviews and details.
766 /* Comparison function. Takes care of calling a user-supplied
767 * comparison function (any callable Python object), which must not be
768 * NULL (use the ISLT macro if you don't know, or call PyObject_RichCompareBool
769 * with Py_LT if you know it's NULL).
770 * Returns -1 on error, 1 if x < y, 0 if x >= y.
772 static int
773 islt(PyObject *x, PyObject *y, PyObject *compare)
775 PyObject *res;
776 PyObject *args;
777 int i;
779 assert(compare != NULL);
780 /* Call the user's comparison function and translate the 3-way
781 * result into true or false (or error).
783 args = PyTuple_New(2);
784 if (args == NULL)
785 return -1;
786 Py_INCREF(x);
787 Py_INCREF(y);
788 PyTuple_SET_ITEM(args, 0, x);
789 PyTuple_SET_ITEM(args, 1, y);
790 res = PyObject_Call(compare, args, NULL);
791 Py_DECREF(args);
792 if (res == NULL)
793 return -1;
794 if (!PyInt_Check(res)) {
795 Py_DECREF(res);
796 PyErr_SetString(PyExc_TypeError,
797 "comparison function must return int");
798 return -1;
800 i = PyInt_AsLong(res);
801 Py_DECREF(res);
802 return i < 0;
805 /* If COMPARE is NULL, calls PyObject_RichCompareBool with Py_LT, else calls
806 * islt. This avoids a layer of function call in the usual case, and
807 * sorting does many comparisons.
808 * Returns -1 on error, 1 if x < y, 0 if x >= y.
810 #define ISLT(X, Y, COMPARE) ((COMPARE) == NULL ? \
811 PyObject_RichCompareBool(X, Y, Py_LT) : \
812 islt(X, Y, COMPARE))
814 /* Compare X to Y via "<". Goto "fail" if the comparison raises an
815 error. Else "k" is set to true iff X<Y, and an "if (k)" block is
816 started. It makes more sense in context <wink>. X and Y are PyObject*s.
818 #define IFLT(X, Y) if ((k = ISLT(X, Y, compare)) < 0) goto fail; \
819 if (k)
821 /* binarysort is the best method for sorting small arrays: it does
822 few compares, but can do data movement quadratic in the number of
823 elements.
824 [lo, hi) is a contiguous slice of a list, and is sorted via
825 binary insertion. This sort is stable.
826 On entry, must have lo <= start <= hi, and that [lo, start) is already
827 sorted (pass start == lo if you don't know!).
828 If islt() complains return -1, else 0.
829 Even in case of error, the output slice will be some permutation of
830 the input (nothing is lost or duplicated).
832 static int
833 binarysort(PyObject **lo, PyObject **hi, PyObject **start, PyObject *compare)
834 /* compare -- comparison function object, or NULL for default */
836 register int k;
837 register PyObject **l, **p, **r;
838 register PyObject *pivot;
840 assert(lo <= start && start <= hi);
841 /* assert [lo, start) is sorted */
842 if (lo == start)
843 ++start;
844 for (; start < hi; ++start) {
845 /* set l to where *start belongs */
846 l = lo;
847 r = start;
848 pivot = *r;
849 /* Invariants:
850 * pivot >= all in [lo, l).
851 * pivot < all in [r, start).
852 * The second is vacuously true at the start.
854 assert(l < r);
855 do {
856 p = l + ((r - l) >> 1);
857 IFLT(pivot, *p)
858 r = p;
859 else
860 l = p+1;
861 } while (l < r);
862 assert(l == r);
863 /* The invariants still hold, so pivot >= all in [lo, l) and
864 pivot < all in [l, start), so pivot belongs at l. Note
865 that if there are elements equal to pivot, l points to the
866 first slot after them -- that's why this sort is stable.
867 Slide over to make room.
868 Caution: using memmove is much slower under MSVC 5;
869 we're not usually moving many slots. */
870 for (p = start; p > l; --p)
871 *p = *(p-1);
872 *l = pivot;
874 return 0;
876 fail:
877 return -1;
881 Return the length of the run beginning at lo, in the slice [lo, hi). lo < hi
882 is required on entry. "A run" is the longest ascending sequence, with
884 lo[0] <= lo[1] <= lo[2] <= ...
886 or the longest descending sequence, with
888 lo[0] > lo[1] > lo[2] > ...
890 Boolean *descending is set to 0 in the former case, or to 1 in the latter.
891 For its intended use in a stable mergesort, the strictness of the defn of
892 "descending" is needed so that the caller can safely reverse a descending
893 sequence without violating stability (strict > ensures there are no equal
894 elements to get out of order).
896 Returns -1 in case of error.
898 static int
899 count_run(PyObject **lo, PyObject **hi, PyObject *compare, int *descending)
901 int k;
902 int n;
904 assert(lo < hi);
905 *descending = 0;
906 ++lo;
907 if (lo == hi)
908 return 1;
910 n = 2;
911 IFLT(*lo, *(lo-1)) {
912 *descending = 1;
913 for (lo = lo+1; lo < hi; ++lo, ++n) {
914 IFLT(*lo, *(lo-1))
916 else
917 break;
920 else {
921 for (lo = lo+1; lo < hi; ++lo, ++n) {
922 IFLT(*lo, *(lo-1))
923 break;
927 return n;
928 fail:
929 return -1;
933 Locate the proper position of key in a sorted vector; if the vector contains
934 an element equal to key, return the position immediately to the left of
935 the leftmost equal element. [gallop_right() does the same except returns
936 the position to the right of the rightmost equal element (if any).]
938 "a" is a sorted vector with n elements, starting at a[0]. n must be > 0.
940 "hint" is an index at which to begin the search, 0 <= hint < n. The closer
941 hint is to the final result, the faster this runs.
943 The return value is the int k in 0..n such that
945 a[k-1] < key <= a[k]
947 pretending that *(a-1) is minus infinity and a[n] is plus infinity. IOW,
948 key belongs at index k; or, IOW, the first k elements of a should precede
949 key, and the last n-k should follow key.
951 Returns -1 on error. See listsort.txt for info on the method.
953 static int
954 gallop_left(PyObject *key, PyObject **a, int n, int hint, PyObject *compare)
956 int ofs;
957 int lastofs;
958 int k;
960 assert(key && a && n > 0 && hint >= 0 && hint < n);
962 a += hint;
963 lastofs = 0;
964 ofs = 1;
965 IFLT(*a, key) {
966 /* a[hint] < key -- gallop right, until
967 * a[hint + lastofs] < key <= a[hint + ofs]
969 const int maxofs = n - hint; /* &a[n-1] is highest */
970 while (ofs < maxofs) {
971 IFLT(a[ofs], key) {
972 lastofs = ofs;
973 ofs = (ofs << 1) + 1;
974 if (ofs <= 0) /* int overflow */
975 ofs = maxofs;
977 else /* key <= a[hint + ofs] */
978 break;
980 if (ofs > maxofs)
981 ofs = maxofs;
982 /* Translate back to offsets relative to &a[0]. */
983 lastofs += hint;
984 ofs += hint;
986 else {
987 /* key <= a[hint] -- gallop left, until
988 * a[hint - ofs] < key <= a[hint - lastofs]
990 const int maxofs = hint + 1; /* &a[0] is lowest */
991 while (ofs < maxofs) {
992 IFLT(*(a-ofs), key)
993 break;
994 /* key <= a[hint - ofs] */
995 lastofs = ofs;
996 ofs = (ofs << 1) + 1;
997 if (ofs <= 0) /* int overflow */
998 ofs = maxofs;
1000 if (ofs > maxofs)
1001 ofs = maxofs;
1002 /* Translate back to positive offsets relative to &a[0]. */
1003 k = lastofs;
1004 lastofs = hint - ofs;
1005 ofs = hint - k;
1007 a -= hint;
1009 assert(-1 <= lastofs && lastofs < ofs && ofs <= n);
1010 /* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the
1011 * right of lastofs but no farther right than ofs. Do a binary
1012 * search, with invariant a[lastofs-1] < key <= a[ofs].
1014 ++lastofs;
1015 while (lastofs < ofs) {
1016 int m = lastofs + ((ofs - lastofs) >> 1);
1018 IFLT(a[m], key)
1019 lastofs = m+1; /* a[m] < key */
1020 else
1021 ofs = m; /* key <= a[m] */
1023 assert(lastofs == ofs); /* so a[ofs-1] < key <= a[ofs] */
1024 return ofs;
1026 fail:
1027 return -1;
1031 Exactly like gallop_left(), except that if key already exists in a[0:n],
1032 finds the position immediately to the right of the rightmost equal value.
1034 The return value is the int k in 0..n such that
1036 a[k-1] <= key < a[k]
1038 or -1 if error.
1040 The code duplication is massive, but this is enough different given that
1041 we're sticking to "<" comparisons that it's much harder to follow if
1042 written as one routine with yet another "left or right?" flag.
1044 static int
1045 gallop_right(PyObject *key, PyObject **a, int n, int hint, PyObject *compare)
1047 int ofs;
1048 int lastofs;
1049 int k;
1051 assert(key && a && n > 0 && hint >= 0 && hint < n);
1053 a += hint;
1054 lastofs = 0;
1055 ofs = 1;
1056 IFLT(key, *a) {
1057 /* key < a[hint] -- gallop left, until
1058 * a[hint - ofs] <= key < a[hint - lastofs]
1060 const int maxofs = hint + 1; /* &a[0] is lowest */
1061 while (ofs < maxofs) {
1062 IFLT(key, *(a-ofs)) {
1063 lastofs = ofs;
1064 ofs = (ofs << 1) + 1;
1065 if (ofs <= 0) /* int overflow */
1066 ofs = maxofs;
1068 else /* a[hint - ofs] <= key */
1069 break;
1071 if (ofs > maxofs)
1072 ofs = maxofs;
1073 /* Translate back to positive offsets relative to &a[0]. */
1074 k = lastofs;
1075 lastofs = hint - ofs;
1076 ofs = hint - k;
1078 else {
1079 /* a[hint] <= key -- gallop right, until
1080 * a[hint + lastofs] <= key < a[hint + ofs]
1082 const int maxofs = n - hint; /* &a[n-1] is highest */
1083 while (ofs < maxofs) {
1084 IFLT(key, a[ofs])
1085 break;
1086 /* a[hint + ofs] <= key */
1087 lastofs = ofs;
1088 ofs = (ofs << 1) + 1;
1089 if (ofs <= 0) /* int overflow */
1090 ofs = maxofs;
1092 if (ofs > maxofs)
1093 ofs = maxofs;
1094 /* Translate back to offsets relative to &a[0]. */
1095 lastofs += hint;
1096 ofs += hint;
1098 a -= hint;
1100 assert(-1 <= lastofs && lastofs < ofs && ofs <= n);
1101 /* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the
1102 * right of lastofs but no farther right than ofs. Do a binary
1103 * search, with invariant a[lastofs-1] <= key < a[ofs].
1105 ++lastofs;
1106 while (lastofs < ofs) {
1107 int m = lastofs + ((ofs - lastofs) >> 1);
1109 IFLT(key, a[m])
1110 ofs = m; /* key < a[m] */
1111 else
1112 lastofs = m+1; /* a[m] <= key */
1114 assert(lastofs == ofs); /* so a[ofs-1] <= key < a[ofs] */
1115 return ofs;
1117 fail:
1118 return -1;
1121 /* The maximum number of entries in a MergeState's pending-runs stack.
1122 * This is enough to sort arrays of size up to about
1123 * 32 * phi ** MAX_MERGE_PENDING
1124 * where phi ~= 1.618. 85 is ridiculouslylarge enough, good for an array
1125 * with 2**64 elements.
1127 #define MAX_MERGE_PENDING 85
1129 /* When we get into galloping mode, we stay there until both runs win less
1130 * often than MIN_GALLOP consecutive times. See listsort.txt for more info.
1132 #define MIN_GALLOP 7
1134 /* Avoid malloc for small temp arrays. */
1135 #define MERGESTATE_TEMP_SIZE 256
1137 /* One MergeState exists on the stack per invocation of mergesort. It's just
1138 * a convenient way to pass state around among the helper functions.
1140 struct s_slice {
1141 PyObject **base;
1142 int len;
1145 typedef struct s_MergeState {
1146 /* The user-supplied comparison function. or NULL if none given. */
1147 PyObject *compare;
1149 /* This controls when we get *into* galloping mode. It's initialized
1150 * to MIN_GALLOP. merge_lo and merge_hi tend to nudge it higher for
1151 * random data, and lower for highly structured data.
1153 int min_gallop;
1155 /* 'a' is temp storage to help with merges. It contains room for
1156 * alloced entries.
1158 PyObject **a; /* may point to temparray below */
1159 int alloced;
1161 /* A stack of n pending runs yet to be merged. Run #i starts at
1162 * address base[i] and extends for len[i] elements. It's always
1163 * true (so long as the indices are in bounds) that
1165 * pending[i].base + pending[i].len == pending[i+1].base
1167 * so we could cut the storage for this, but it's a minor amount,
1168 * and keeping all the info explicit simplifies the code.
1170 int n;
1171 struct s_slice pending[MAX_MERGE_PENDING];
1173 /* 'a' points to this when possible, rather than muck with malloc. */
1174 PyObject *temparray[MERGESTATE_TEMP_SIZE];
1175 } MergeState;
1177 /* Conceptually a MergeState's constructor. */
1178 static void
1179 merge_init(MergeState *ms, PyObject *compare)
1181 assert(ms != NULL);
1182 ms->compare = compare;
1183 ms->a = ms->temparray;
1184 ms->alloced = MERGESTATE_TEMP_SIZE;
1185 ms->n = 0;
1186 ms->min_gallop = MIN_GALLOP;
1189 /* Free all the temp memory owned by the MergeState. This must be called
1190 * when you're done with a MergeState, and may be called before then if
1191 * you want to free the temp memory early.
1193 static void
1194 merge_freemem(MergeState *ms)
1196 assert(ms != NULL);
1197 if (ms->a != ms->temparray)
1198 PyMem_Free(ms->a);
1199 ms->a = ms->temparray;
1200 ms->alloced = MERGESTATE_TEMP_SIZE;
1203 /* Ensure enough temp memory for 'need' array slots is available.
1204 * Returns 0 on success and -1 if the memory can't be gotten.
1206 static int
1207 merge_getmem(MergeState *ms, int need)
1209 assert(ms != NULL);
1210 if (need <= ms->alloced)
1211 return 0;
1212 /* Don't realloc! That can cost cycles to copy the old data, but
1213 * we don't care what's in the block.
1215 merge_freemem(ms);
1216 ms->a = (PyObject **)PyMem_Malloc(need * sizeof(PyObject*));
1217 if (ms->a) {
1218 ms->alloced = need;
1219 return 0;
1221 PyErr_NoMemory();
1222 merge_freemem(ms); /* reset to sane state */
1223 return -1;
1225 #define MERGE_GETMEM(MS, NEED) ((NEED) <= (MS)->alloced ? 0 : \
1226 merge_getmem(MS, NEED))
1228 /* Merge the na elements starting at pa with the nb elements starting at pb
1229 * in a stable way, in-place. na and nb must be > 0, and pa + na == pb.
1230 * Must also have that *pb < *pa, that pa[na-1] belongs at the end of the
1231 * merge, and should have na <= nb. See listsort.txt for more info.
1232 * Return 0 if successful, -1 if error.
1234 static int
1235 merge_lo(MergeState *ms, PyObject **pa, int na, PyObject **pb, int nb)
1237 int k;
1238 PyObject *compare;
1239 PyObject **dest;
1240 int result = -1; /* guilty until proved innocent */
1241 int min_gallop = ms->min_gallop;
1243 assert(ms && pa && pb && na > 0 && nb > 0 && pa + na == pb);
1244 if (MERGE_GETMEM(ms, na) < 0)
1245 return -1;
1246 memcpy(ms->a, pa, na * sizeof(PyObject*));
1247 dest = pa;
1248 pa = ms->a;
1250 *dest++ = *pb++;
1251 --nb;
1252 if (nb == 0)
1253 goto Succeed;
1254 if (na == 1)
1255 goto CopyB;
1257 compare = ms->compare;
1258 for (;;) {
1259 int acount = 0; /* # of times A won in a row */
1260 int bcount = 0; /* # of times B won in a row */
1262 /* Do the straightforward thing until (if ever) one run
1263 * appears to win consistently.
1265 for (;;) {
1266 assert(na > 1 && nb > 0);
1267 k = ISLT(*pb, *pa, compare);
1268 if (k) {
1269 if (k < 0)
1270 goto Fail;
1271 *dest++ = *pb++;
1272 ++bcount;
1273 acount = 0;
1274 --nb;
1275 if (nb == 0)
1276 goto Succeed;
1277 if (bcount >= min_gallop)
1278 break;
1280 else {
1281 *dest++ = *pa++;
1282 ++acount;
1283 bcount = 0;
1284 --na;
1285 if (na == 1)
1286 goto CopyB;
1287 if (acount >= min_gallop)
1288 break;
1292 /* One run is winning so consistently that galloping may
1293 * be a huge win. So try that, and continue galloping until
1294 * (if ever) neither run appears to be winning consistently
1295 * anymore.
1297 ++min_gallop;
1298 do {
1299 assert(na > 1 && nb > 0);
1300 min_gallop -= min_gallop > 1;
1301 ms->min_gallop = min_gallop;
1302 k = gallop_right(*pb, pa, na, 0, compare);
1303 acount = k;
1304 if (k) {
1305 if (k < 0)
1306 goto Fail;
1307 memcpy(dest, pa, k * sizeof(PyObject *));
1308 dest += k;
1309 pa += k;
1310 na -= k;
1311 if (na == 1)
1312 goto CopyB;
1313 /* na==0 is impossible now if the comparison
1314 * function is consistent, but we can't assume
1315 * that it is.
1317 if (na == 0)
1318 goto Succeed;
1320 *dest++ = *pb++;
1321 --nb;
1322 if (nb == 0)
1323 goto Succeed;
1325 k = gallop_left(*pa, pb, nb, 0, compare);
1326 bcount = k;
1327 if (k) {
1328 if (k < 0)
1329 goto Fail;
1330 memmove(dest, pb, k * sizeof(PyObject *));
1331 dest += k;
1332 pb += k;
1333 nb -= k;
1334 if (nb == 0)
1335 goto Succeed;
1337 *dest++ = *pa++;
1338 --na;
1339 if (na == 1)
1340 goto CopyB;
1341 } while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
1342 ++min_gallop; /* penalize it for leaving galloping mode */
1343 ms->min_gallop = min_gallop;
1345 Succeed:
1346 result = 0;
1347 Fail:
1348 if (na)
1349 memcpy(dest, pa, na * sizeof(PyObject*));
1350 return result;
1351 CopyB:
1352 assert(na == 1 && nb > 0);
1353 /* The last element of pa belongs at the end of the merge. */
1354 memmove(dest, pb, nb * sizeof(PyObject *));
1355 dest[nb] = *pa;
1356 return 0;
1359 /* Merge the na elements starting at pa with the nb elements starting at pb
1360 * in a stable way, in-place. na and nb must be > 0, and pa + na == pb.
1361 * Must also have that *pb < *pa, that pa[na-1] belongs at the end of the
1362 * merge, and should have na >= nb. See listsort.txt for more info.
1363 * Return 0 if successful, -1 if error.
1365 static int
1366 merge_hi(MergeState *ms, PyObject **pa, int na, PyObject **pb, int nb)
1368 int k;
1369 PyObject *compare;
1370 PyObject **dest;
1371 int result = -1; /* guilty until proved innocent */
1372 PyObject **basea;
1373 PyObject **baseb;
1374 int min_gallop = ms->min_gallop;
1376 assert(ms && pa && pb && na > 0 && nb > 0 && pa + na == pb);
1377 if (MERGE_GETMEM(ms, nb) < 0)
1378 return -1;
1379 dest = pb + nb - 1;
1380 memcpy(ms->a, pb, nb * sizeof(PyObject*));
1381 basea = pa;
1382 baseb = ms->a;
1383 pb = ms->a + nb - 1;
1384 pa += na - 1;
1386 *dest-- = *pa--;
1387 --na;
1388 if (na == 0)
1389 goto Succeed;
1390 if (nb == 1)
1391 goto CopyA;
1393 compare = ms->compare;
1394 for (;;) {
1395 int acount = 0; /* # of times A won in a row */
1396 int bcount = 0; /* # of times B won in a row */
1398 /* Do the straightforward thing until (if ever) one run
1399 * appears to win consistently.
1401 for (;;) {
1402 assert(na > 0 && nb > 1);
1403 k = ISLT(*pb, *pa, compare);
1404 if (k) {
1405 if (k < 0)
1406 goto Fail;
1407 *dest-- = *pa--;
1408 ++acount;
1409 bcount = 0;
1410 --na;
1411 if (na == 0)
1412 goto Succeed;
1413 if (acount >= min_gallop)
1414 break;
1416 else {
1417 *dest-- = *pb--;
1418 ++bcount;
1419 acount = 0;
1420 --nb;
1421 if (nb == 1)
1422 goto CopyA;
1423 if (bcount >= min_gallop)
1424 break;
1428 /* One run is winning so consistently that galloping may
1429 * be a huge win. So try that, and continue galloping until
1430 * (if ever) neither run appears to be winning consistently
1431 * anymore.
1433 ++min_gallop;
1434 do {
1435 assert(na > 0 && nb > 1);
1436 min_gallop -= min_gallop > 1;
1437 ms->min_gallop = min_gallop;
1438 k = gallop_right(*pb, basea, na, na-1, compare);
1439 if (k < 0)
1440 goto Fail;
1441 k = na - k;
1442 acount = k;
1443 if (k) {
1444 dest -= k;
1445 pa -= k;
1446 memmove(dest+1, pa+1, k * sizeof(PyObject *));
1447 na -= k;
1448 if (na == 0)
1449 goto Succeed;
1451 *dest-- = *pb--;
1452 --nb;
1453 if (nb == 1)
1454 goto CopyA;
1456 k = gallop_left(*pa, baseb, nb, nb-1, compare);
1457 if (k < 0)
1458 goto Fail;
1459 k = nb - k;
1460 bcount = k;
1461 if (k) {
1462 dest -= k;
1463 pb -= k;
1464 memcpy(dest+1, pb+1, k * sizeof(PyObject *));
1465 nb -= k;
1466 if (nb == 1)
1467 goto CopyA;
1468 /* nb==0 is impossible now if the comparison
1469 * function is consistent, but we can't assume
1470 * that it is.
1472 if (nb == 0)
1473 goto Succeed;
1475 *dest-- = *pa--;
1476 --na;
1477 if (na == 0)
1478 goto Succeed;
1479 } while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
1480 ++min_gallop; /* penalize it for leaving galloping mode */
1481 ms->min_gallop = min_gallop;
1483 Succeed:
1484 result = 0;
1485 Fail:
1486 if (nb)
1487 memcpy(dest-(nb-1), baseb, nb * sizeof(PyObject*));
1488 return result;
1489 CopyA:
1490 assert(nb == 1 && na > 0);
1491 /* The first element of pb belongs at the front of the merge. */
1492 dest -= na;
1493 pa -= na;
1494 memmove(dest+1, pa+1, na * sizeof(PyObject *));
1495 *dest = *pb;
1496 return 0;
1499 /* Merge the two runs at stack indices i and i+1.
1500 * Returns 0 on success, -1 on error.
1502 static int
1503 merge_at(MergeState *ms, int i)
1505 PyObject **pa, **pb;
1506 int na, nb;
1507 int k;
1508 PyObject *compare;
1510 assert(ms != NULL);
1511 assert(ms->n >= 2);
1512 assert(i >= 0);
1513 assert(i == ms->n - 2 || i == ms->n - 3);
1515 pa = ms->pending[i].base;
1516 na = ms->pending[i].len;
1517 pb = ms->pending[i+1].base;
1518 nb = ms->pending[i+1].len;
1519 assert(na > 0 && nb > 0);
1520 assert(pa + na == pb);
1522 /* Record the length of the combined runs; if i is the 3rd-last
1523 * run now, also slide over the last run (which isn't involved
1524 * in this merge). The current run i+1 goes away in any case.
1526 ms->pending[i].len = na + nb;
1527 if (i == ms->n - 3)
1528 ms->pending[i+1] = ms->pending[i+2];
1529 --ms->n;
1531 /* Where does b start in a? Elements in a before that can be
1532 * ignored (already in place).
1534 compare = ms->compare;
1535 k = gallop_right(*pb, pa, na, 0, compare);
1536 if (k < 0)
1537 return -1;
1538 pa += k;
1539 na -= k;
1540 if (na == 0)
1541 return 0;
1543 /* Where does a end in b? Elements in b after that can be
1544 * ignored (already in place).
1546 nb = gallop_left(pa[na-1], pb, nb, nb-1, compare);
1547 if (nb <= 0)
1548 return nb;
1550 /* Merge what remains of the runs, using a temp array with
1551 * min(na, nb) elements.
1553 if (na <= nb)
1554 return merge_lo(ms, pa, na, pb, nb);
1555 else
1556 return merge_hi(ms, pa, na, pb, nb);
1559 /* Examine the stack of runs waiting to be merged, merging adjacent runs
1560 * until the stack invariants are re-established:
1562 * 1. len[-3] > len[-2] + len[-1]
1563 * 2. len[-2] > len[-1]
1565 * See listsort.txt for more info.
1567 * Returns 0 on success, -1 on error.
1569 static int
1570 merge_collapse(MergeState *ms)
1572 struct s_slice *p = ms->pending;
1574 assert(ms);
1575 while (ms->n > 1) {
1576 int n = ms->n - 2;
1577 if (n > 0 && p[n-1].len <= p[n].len + p[n+1].len) {
1578 if (p[n-1].len < p[n+1].len)
1579 --n;
1580 if (merge_at(ms, n) < 0)
1581 return -1;
1583 else if (p[n].len <= p[n+1].len) {
1584 if (merge_at(ms, n) < 0)
1585 return -1;
1587 else
1588 break;
1590 return 0;
1593 /* Regardless of invariants, merge all runs on the stack until only one
1594 * remains. This is used at the end of the mergesort.
1596 * Returns 0 on success, -1 on error.
1598 static int
1599 merge_force_collapse(MergeState *ms)
1601 struct s_slice *p = ms->pending;
1603 assert(ms);
1604 while (ms->n > 1) {
1605 int n = ms->n - 2;
1606 if (n > 0 && p[n-1].len < p[n+1].len)
1607 --n;
1608 if (merge_at(ms, n) < 0)
1609 return -1;
1611 return 0;
1614 /* Compute a good value for the minimum run length; natural runs shorter
1615 * than this are boosted artificially via binary insertion.
1617 * If n < 64, return n (it's too small to bother with fancy stuff).
1618 * Else if n is an exact power of 2, return 32.
1619 * Else return an int k, 32 <= k <= 64, such that n/k is close to, but
1620 * strictly less than, an exact power of 2.
1622 * See listsort.txt for more info.
1624 static int
1625 merge_compute_minrun(int n)
1627 int r = 0; /* becomes 1 if any 1 bits are shifted off */
1629 assert(n >= 0);
1630 while (n >= 64) {
1631 r |= n & 1;
1632 n >>= 1;
1634 return n + r;
1637 /* An adaptive, stable, natural mergesort. See listsort.txt.
1638 * Returns Py_None on success, NULL on error. Even in case of error, the
1639 * list will be some permutation of its input state (nothing is lost or
1640 * duplicated).
1642 static PyObject *
1643 listsort(PyListObject *self, PyObject *args)
1645 MergeState ms;
1646 PyObject **lo, **hi;
1647 int nremaining;
1648 int minrun;
1649 int saved_ob_size;
1650 PyObject **saved_ob_item;
1651 PyObject **empty_ob_item;
1652 PyObject *compare = NULL;
1653 PyObject *result = NULL; /* guilty until proved innocent */
1655 assert(self != NULL);
1656 if (args != NULL) {
1657 if (!PyArg_UnpackTuple(args, "sort", 0, 1, &compare))
1658 return NULL;
1660 if (compare == Py_None)
1661 compare = NULL;
1663 merge_init(&ms, compare);
1665 /* The list is temporarily made empty, so that mutations performed
1666 * by comparison functions can't affect the slice of memory we're
1667 * sorting (allowing mutations during sorting is a core-dump
1668 * factory, since ob_item may change).
1670 saved_ob_size = self->ob_size;
1671 saved_ob_item = self->ob_item;
1672 self->ob_size = 0;
1673 self->ob_item = empty_ob_item = PyMem_NEW(PyObject *, 0);
1675 nremaining = saved_ob_size;
1676 if (nremaining < 2)
1677 goto succeed;
1679 /* March over the array once, left to right, finding natural runs,
1680 * and extending short natural runs to minrun elements.
1682 lo = saved_ob_item;
1683 hi = lo + nremaining;
1684 minrun = merge_compute_minrun(nremaining);
1685 do {
1686 int descending;
1687 int n;
1689 /* Identify next run. */
1690 n = count_run(lo, hi, compare, &descending);
1691 if (n < 0)
1692 goto fail;
1693 if (descending)
1694 reverse_slice(lo, lo + n);
1695 /* If short, extend to min(minrun, nremaining). */
1696 if (n < minrun) {
1697 const int force = nremaining <= minrun ?
1698 nremaining : minrun;
1699 if (binarysort(lo, lo + force, lo + n, compare) < 0)
1700 goto fail;
1701 n = force;
1703 /* Push run onto pending-runs stack, and maybe merge. */
1704 assert(ms.n < MAX_MERGE_PENDING);
1705 ms.pending[ms.n].base = lo;
1706 ms.pending[ms.n].len = n;
1707 ++ms.n;
1708 if (merge_collapse(&ms) < 0)
1709 goto fail;
1710 /* Advance to find next run. */
1711 lo += n;
1712 nremaining -= n;
1713 } while (nremaining);
1714 assert(lo == hi);
1716 if (merge_force_collapse(&ms) < 0)
1717 goto fail;
1718 assert(ms.n == 1);
1719 assert(ms.pending[0].base == saved_ob_item);
1720 assert(ms.pending[0].len == saved_ob_size);
1722 succeed:
1723 result = Py_None;
1724 fail:
1725 if (self->ob_item != empty_ob_item || self->ob_size) {
1726 /* The user mucked with the list during the sort. */
1727 (void)list_ass_slice(self, 0, self->ob_size, (PyObject *)NULL);
1728 if (result != NULL) {
1729 PyErr_SetString(PyExc_ValueError,
1730 "list modified during sort");
1731 result = NULL;
1734 if (self->ob_item == empty_ob_item)
1735 PyMem_FREE(empty_ob_item);
1736 self->ob_size = saved_ob_size;
1737 self->ob_item = saved_ob_item;
1738 merge_freemem(&ms);
1739 Py_XINCREF(result);
1740 return result;
1742 #undef IFLT
1743 #undef ISLT
1746 PyList_Sort(PyObject *v)
1748 if (v == NULL || !PyList_Check(v)) {
1749 PyErr_BadInternalCall();
1750 return -1;
1752 v = listsort((PyListObject *)v, (PyObject *)NULL);
1753 if (v == NULL)
1754 return -1;
1755 Py_DECREF(v);
1756 return 0;
1759 static PyObject *
1760 listreverse(PyListObject *self)
1762 if (self->ob_size > 1)
1763 reverse_slice(self->ob_item, self->ob_item + self->ob_size);
1764 Py_INCREF(Py_None);
1765 return Py_None;
1769 PyList_Reverse(PyObject *v)
1771 PyListObject *self = (PyListObject *)v;
1773 if (v == NULL || !PyList_Check(v)) {
1774 PyErr_BadInternalCall();
1775 return -1;
1777 if (self->ob_size > 1)
1778 reverse_slice(self->ob_item, self->ob_item + self->ob_size);
1779 return 0;
1782 PyObject *
1783 PyList_AsTuple(PyObject *v)
1785 PyObject *w;
1786 PyObject **p;
1787 int n;
1788 if (v == NULL || !PyList_Check(v)) {
1789 PyErr_BadInternalCall();
1790 return NULL;
1792 n = ((PyListObject *)v)->ob_size;
1793 w = PyTuple_New(n);
1794 if (w == NULL)
1795 return NULL;
1796 p = ((PyTupleObject *)w)->ob_item;
1797 memcpy((void *)p,
1798 (void *)((PyListObject *)v)->ob_item,
1799 n*sizeof(PyObject *));
1800 while (--n >= 0) {
1801 Py_INCREF(*p);
1802 p++;
1804 return w;
1807 static PyObject *
1808 listindex(PyListObject *self, PyObject *v)
1810 int i;
1812 for (i = 0; i < self->ob_size; i++) {
1813 int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
1814 if (cmp > 0)
1815 return PyInt_FromLong((long)i);
1816 else if (cmp < 0)
1817 return NULL;
1819 PyErr_SetString(PyExc_ValueError, "list.index(x): x not in list");
1820 return NULL;
1823 static PyObject *
1824 listcount(PyListObject *self, PyObject *v)
1826 int count = 0;
1827 int i;
1829 for (i = 0; i < self->ob_size; i++) {
1830 int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
1831 if (cmp > 0)
1832 count++;
1833 else if (cmp < 0)
1834 return NULL;
1836 return PyInt_FromLong((long)count);
1839 static PyObject *
1840 listremove(PyListObject *self, PyObject *v)
1842 int i;
1844 for (i = 0; i < self->ob_size; i++) {
1845 int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
1846 if (cmp > 0) {
1847 if (list_ass_slice(self, i, i+1,
1848 (PyObject *)NULL) != 0)
1849 return NULL;
1850 Py_INCREF(Py_None);
1851 return Py_None;
1853 else if (cmp < 0)
1854 return NULL;
1856 PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list");
1857 return NULL;
1860 static int
1861 list_traverse(PyListObject *o, visitproc visit, void *arg)
1863 int i, err;
1864 PyObject *x;
1866 for (i = o->ob_size; --i >= 0; ) {
1867 x = o->ob_item[i];
1868 if (x != NULL) {
1869 err = visit(x, arg);
1870 if (err)
1871 return err;
1874 return 0;
1877 static int
1878 list_clear(PyListObject *lp)
1880 (void) PyList_SetSlice((PyObject *)lp, 0, lp->ob_size, 0);
1881 return 0;
1884 static PyObject *
1885 list_richcompare(PyObject *v, PyObject *w, int op)
1887 PyListObject *vl, *wl;
1888 int i;
1890 if (!PyList_Check(v) || !PyList_Check(w)) {
1891 Py_INCREF(Py_NotImplemented);
1892 return Py_NotImplemented;
1895 vl = (PyListObject *)v;
1896 wl = (PyListObject *)w;
1898 if (vl->ob_size != wl->ob_size && (op == Py_EQ || op == Py_NE)) {
1899 /* Shortcut: if the lengths differ, the lists differ */
1900 PyObject *res;
1901 if (op == Py_EQ)
1902 res = Py_False;
1903 else
1904 res = Py_True;
1905 Py_INCREF(res);
1906 return res;
1909 /* Search for the first index where items are different */
1910 for (i = 0; i < vl->ob_size && i < wl->ob_size; i++) {
1911 int k = PyObject_RichCompareBool(vl->ob_item[i],
1912 wl->ob_item[i], Py_EQ);
1913 if (k < 0)
1914 return NULL;
1915 if (!k)
1916 break;
1919 if (i >= vl->ob_size || i >= wl->ob_size) {
1920 /* No more items to compare -- compare sizes */
1921 int vs = vl->ob_size;
1922 int ws = wl->ob_size;
1923 int cmp;
1924 PyObject *res;
1925 switch (op) {
1926 case Py_LT: cmp = vs < ws; break;
1927 case Py_LE: cmp = vs <= ws; break;
1928 case Py_EQ: cmp = vs == ws; break;
1929 case Py_NE: cmp = vs != ws; break;
1930 case Py_GT: cmp = vs > ws; break;
1931 case Py_GE: cmp = vs >= ws; break;
1932 default: return NULL; /* cannot happen */
1934 if (cmp)
1935 res = Py_True;
1936 else
1937 res = Py_False;
1938 Py_INCREF(res);
1939 return res;
1942 /* We have an item that differs -- shortcuts for EQ/NE */
1943 if (op == Py_EQ) {
1944 Py_INCREF(Py_False);
1945 return Py_False;
1947 if (op == Py_NE) {
1948 Py_INCREF(Py_True);
1949 return Py_True;
1952 /* Compare the final item again using the proper operator */
1953 return PyObject_RichCompare(vl->ob_item[i], wl->ob_item[i], op);
1956 /* Adapted from newer code by Tim */
1957 static int
1958 list_fill(PyListObject *result, PyObject *v)
1960 PyObject *it; /* iter(v) */
1961 int n; /* guess for result list size */
1962 int i;
1964 n = result->ob_size;
1966 /* Special-case list(a_list), for speed. */
1967 if (PyList_Check(v)) {
1968 if (v == (PyObject *)result)
1969 return 0; /* source is destination, we're done */
1970 return list_ass_slice(result, 0, n, v);
1973 /* Empty previous contents */
1974 if (n != 0) {
1975 if (list_ass_slice(result, 0, n, (PyObject *)NULL) != 0)
1976 return -1;
1979 /* Get iterator. There may be some low-level efficiency to be gained
1980 * by caching the tp_iternext slot instead of using PyIter_Next()
1981 * later, but premature optimization is the root etc.
1983 it = PyObject_GetIter(v);
1984 if (it == NULL)
1985 return -1;
1987 /* Guess a result list size. */
1988 n = -1; /* unknown */
1989 if (PySequence_Check(v) &&
1990 v->ob_type->tp_as_sequence->sq_length) {
1991 n = PySequence_Size(v);
1992 if (n < 0)
1993 PyErr_Clear();
1995 if (n < 0)
1996 n = 8; /* arbitrary */
1997 NRESIZE(result->ob_item, PyObject*, n);
1998 if (result->ob_item == NULL) {
1999 PyErr_NoMemory();
2000 goto error;
2002 memset(result->ob_item, 0, sizeof(*result->ob_item) * n);
2003 result->ob_size = n;
2005 /* Run iterator to exhaustion. */
2006 for (i = 0; ; i++) {
2007 PyObject *item = PyIter_Next(it);
2008 if (item == NULL) {
2009 if (PyErr_Occurred())
2010 goto error;
2011 break;
2013 if (i < n)
2014 PyList_SET_ITEM(result, i, item); /* steals ref */
2015 else {
2016 int status = ins1(result, result->ob_size, item);
2017 Py_DECREF(item); /* append creates a new ref */
2018 if (status < 0)
2019 goto error;
2023 /* Cut back result list if initial guess was too large. */
2024 if (i < n && result != NULL) {
2025 if (list_ass_slice(result, i, n, (PyObject *)NULL) != 0)
2026 goto error;
2028 Py_DECREF(it);
2029 return 0;
2031 error:
2032 Py_DECREF(it);
2033 return -1;
2036 static int
2037 list_init(PyListObject *self, PyObject *args, PyObject *kw)
2039 PyObject *arg = NULL;
2040 static char *kwlist[] = {"sequence", 0};
2042 if (!PyArg_ParseTupleAndKeywords(args, kw, "|O:list", kwlist, &arg))
2043 return -1;
2044 if (arg != NULL)
2045 return list_fill(self, arg);
2046 if (self->ob_size > 0)
2047 return list_ass_slice(self, 0, self->ob_size, (PyObject*)NULL);
2048 return 0;
2051 static long
2052 list_nohash(PyObject *self)
2054 PyErr_SetString(PyExc_TypeError, "list objects are unhashable");
2055 return -1;
2058 PyDoc_STRVAR(append_doc,
2059 "L.append(object) -- append object to end");
2060 PyDoc_STRVAR(extend_doc,
2061 "L.extend(iterable) -- extend list by appending elements from the iterable");
2062 PyDoc_STRVAR(insert_doc,
2063 "L.insert(index, object) -- insert object before index");
2064 PyDoc_STRVAR(pop_doc,
2065 "L.pop([index]) -> item -- remove and return item at index (default last)");
2066 PyDoc_STRVAR(remove_doc,
2067 "L.remove(value) -- remove first occurrence of value");
2068 PyDoc_STRVAR(index_doc,
2069 "L.index(value) -> integer -- return index of first occurrence of value");
2070 PyDoc_STRVAR(count_doc,
2071 "L.count(value) -> integer -- return number of occurrences of value");
2072 PyDoc_STRVAR(reverse_doc,
2073 "L.reverse() -- reverse *IN PLACE*");
2074 PyDoc_STRVAR(sort_doc,
2075 "L.sort(cmpfunc=None) -- stable sort *IN PLACE*; cmpfunc(x, y) -> -1, 0, 1");
2077 static PyMethodDef list_methods[] = {
2078 {"append", (PyCFunction)listappend, METH_O, append_doc},
2079 {"insert", (PyCFunction)listinsert, METH_VARARGS, insert_doc},
2080 {"extend", (PyCFunction)listextend, METH_O, extend_doc},
2081 {"pop", (PyCFunction)listpop, METH_VARARGS, pop_doc},
2082 {"remove", (PyCFunction)listremove, METH_O, remove_doc},
2083 {"index", (PyCFunction)listindex, METH_O, index_doc},
2084 {"count", (PyCFunction)listcount, METH_O, count_doc},
2085 {"reverse", (PyCFunction)listreverse, METH_NOARGS, reverse_doc},
2086 {"sort", (PyCFunction)listsort, METH_VARARGS, sort_doc},
2087 {NULL, NULL} /* sentinel */
2090 static PySequenceMethods list_as_sequence = {
2091 (inquiry)list_length, /* sq_length */
2092 (binaryfunc)list_concat, /* sq_concat */
2093 (intargfunc)list_repeat, /* sq_repeat */
2094 (intargfunc)list_item, /* sq_item */
2095 (intintargfunc)list_slice, /* sq_slice */
2096 (intobjargproc)list_ass_item, /* sq_ass_item */
2097 (intintobjargproc)list_ass_slice, /* sq_ass_slice */
2098 (objobjproc)list_contains, /* sq_contains */
2099 (binaryfunc)list_inplace_concat, /* sq_inplace_concat */
2100 (intargfunc)list_inplace_repeat, /* sq_inplace_repeat */
2103 PyDoc_STRVAR(list_doc,
2104 "list() -> new list\n"
2105 "list(sequence) -> new list initialized from sequence's items");
2107 static PyObject *list_iter(PyObject *seq);
2109 static PyObject *
2110 list_subscript(PyListObject* self, PyObject* item)
2112 if (PyInt_Check(item)) {
2113 long i = PyInt_AS_LONG(item);
2114 if (i < 0)
2115 i += PyList_GET_SIZE(self);
2116 return list_item(self, i);
2118 else if (PyLong_Check(item)) {
2119 long i = PyLong_AsLong(item);
2120 if (i == -1 && PyErr_Occurred())
2121 return NULL;
2122 if (i < 0)
2123 i += PyList_GET_SIZE(self);
2124 return list_item(self, i);
2126 else if (PySlice_Check(item)) {
2127 int start, stop, step, slicelength, cur, i;
2128 PyObject* result;
2129 PyObject* it;
2131 if (PySlice_GetIndicesEx((PySliceObject*)item, self->ob_size,
2132 &start, &stop, &step, &slicelength) < 0) {
2133 return NULL;
2136 if (slicelength <= 0) {
2137 return PyList_New(0);
2139 else {
2140 result = PyList_New(slicelength);
2141 if (!result) return NULL;
2143 for (cur = start, i = 0; i < slicelength;
2144 cur += step, i++) {
2145 it = PyList_GET_ITEM(self, cur);
2146 Py_INCREF(it);
2147 PyList_SET_ITEM(result, i, it);
2150 return result;
2153 else {
2154 PyErr_SetString(PyExc_TypeError,
2155 "list indices must be integers");
2156 return NULL;
2160 static int
2161 list_ass_subscript(PyListObject* self, PyObject* item, PyObject* value)
2163 if (PyInt_Check(item)) {
2164 long i = PyInt_AS_LONG(item);
2165 if (i < 0)
2166 i += PyList_GET_SIZE(self);
2167 return list_ass_item(self, i, value);
2169 else if (PyLong_Check(item)) {
2170 long i = PyLong_AsLong(item);
2171 if (i == -1 && PyErr_Occurred())
2172 return -1;
2173 if (i < 0)
2174 i += PyList_GET_SIZE(self);
2175 return list_ass_item(self, i, value);
2177 else if (PySlice_Check(item)) {
2178 int start, stop, step, slicelength;
2180 if (PySlice_GetIndicesEx((PySliceObject*)item, self->ob_size,
2181 &start, &stop, &step, &slicelength) < 0) {
2182 return -1;
2185 /* treat L[slice(a,b)] = v _exactly_ like L[a:b] = v */
2186 if (step == 1 && ((PySliceObject*)item)->step == Py_None)
2187 return list_ass_slice(self, start, stop, value);
2189 if (value == NULL) {
2190 /* delete slice */
2191 PyObject **garbage, **it;
2192 int cur, i, j;
2194 if (slicelength <= 0)
2195 return 0;
2197 if (step < 0) {
2198 stop = start + 1;
2199 start = stop + step*(slicelength - 1) - 1;
2200 step = -step;
2203 garbage = (PyObject**)
2204 PyMem_MALLOC(slicelength*sizeof(PyObject*));
2206 /* drawing pictures might help
2207 understand these for loops */
2208 for (cur = start, i = 0;
2209 cur < stop;
2210 cur += step, i++) {
2211 int lim = step;
2213 garbage[i] = PyList_GET_ITEM(self, cur);
2215 if (cur + step >= self->ob_size) {
2216 lim = self->ob_size - cur - 1;
2219 for (j = 0; j < lim; j++) {
2220 PyList_SET_ITEM(self, cur + j - i,
2221 PyList_GET_ITEM(self,
2222 cur + j + 1));
2225 for (cur = start + slicelength*step + 1;
2226 cur < self->ob_size; cur++) {
2227 PyList_SET_ITEM(self, cur - slicelength,
2228 PyList_GET_ITEM(self, cur));
2230 self->ob_size -= slicelength;
2231 it = self->ob_item;
2232 NRESIZE(it, PyObject*, self->ob_size);
2233 self->ob_item = it;
2235 for (i = 0; i < slicelength; i++) {
2236 Py_DECREF(garbage[i]);
2238 PyMem_FREE(garbage);
2240 return 0;
2242 else {
2243 /* assign slice */
2244 PyObject **garbage, *ins, *seq;
2245 int cur, i;
2247 /* protect against a[::-1] = a */
2248 if (self == (PyListObject*)value) {
2249 seq = list_slice((PyListObject*)value, 0,
2250 PyList_GET_SIZE(value));
2252 else {
2253 char msg[256];
2254 PyOS_snprintf(msg, sizeof(msg),
2255 "must assign sequence (not \"%.200s\") to extended slice",
2256 value->ob_type->tp_name);
2257 seq = PySequence_Fast(value, msg);
2258 if (!seq)
2259 return -1;
2262 if (PySequence_Fast_GET_SIZE(seq) != slicelength) {
2263 PyErr_Format(PyExc_ValueError,
2264 "attempt to assign sequence of size %d to extended slice of size %d",
2265 PySequence_Fast_GET_SIZE(seq),
2266 slicelength);
2267 Py_DECREF(seq);
2268 return -1;
2271 if (!slicelength) {
2272 Py_DECREF(seq);
2273 return 0;
2276 garbage = (PyObject**)
2277 PyMem_MALLOC(slicelength*sizeof(PyObject*));
2279 for (cur = start, i = 0; i < slicelength;
2280 cur += step, i++) {
2281 garbage[i] = PyList_GET_ITEM(self, cur);
2283 ins = PySequence_Fast_GET_ITEM(seq, i);
2284 Py_INCREF(ins);
2285 PyList_SET_ITEM(self, cur, ins);
2288 for (i = 0; i < slicelength; i++) {
2289 Py_DECREF(garbage[i]);
2292 PyMem_FREE(garbage);
2293 Py_DECREF(seq);
2295 return 0;
2298 else {
2299 PyErr_SetString(PyExc_TypeError,
2300 "list indices must be integers");
2301 return -1;
2305 static PyMappingMethods list_as_mapping = {
2306 (inquiry)list_length,
2307 (binaryfunc)list_subscript,
2308 (objobjargproc)list_ass_subscript
2311 PyTypeObject PyList_Type = {
2312 PyObject_HEAD_INIT(&PyType_Type)
2314 "list",
2315 sizeof(PyListObject),
2317 (destructor)list_dealloc, /* tp_dealloc */
2318 (printfunc)list_print, /* tp_print */
2319 0, /* tp_getattr */
2320 0, /* tp_setattr */
2321 0, /* tp_compare */
2322 (reprfunc)list_repr, /* tp_repr */
2323 0, /* tp_as_number */
2324 &list_as_sequence, /* tp_as_sequence */
2325 &list_as_mapping, /* tp_as_mapping */
2326 list_nohash, /* tp_hash */
2327 0, /* tp_call */
2328 0, /* tp_str */
2329 PyObject_GenericGetAttr, /* tp_getattro */
2330 0, /* tp_setattro */
2331 0, /* tp_as_buffer */
2332 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
2333 Py_TPFLAGS_BASETYPE, /* tp_flags */
2334 list_doc, /* tp_doc */
2335 (traverseproc)list_traverse, /* tp_traverse */
2336 (inquiry)list_clear, /* tp_clear */
2337 list_richcompare, /* tp_richcompare */
2338 0, /* tp_weaklistoffset */
2339 list_iter, /* tp_iter */
2340 0, /* tp_iternext */
2341 list_methods, /* tp_methods */
2342 0, /* tp_members */
2343 0, /* tp_getset */
2344 0, /* tp_base */
2345 0, /* tp_dict */
2346 0, /* tp_descr_get */
2347 0, /* tp_descr_set */
2348 0, /* tp_dictoffset */
2349 (initproc)list_init, /* tp_init */
2350 PyType_GenericAlloc, /* tp_alloc */
2351 PyType_GenericNew, /* tp_new */
2352 PyObject_GC_Del, /* tp_free */
2356 /*********************** List Iterator **************************/
2358 typedef struct {
2359 PyObject_HEAD
2360 long it_index;
2361 PyListObject *it_seq; /* Set to NULL when iterator is exhausted */
2362 } listiterobject;
2364 PyTypeObject PyListIter_Type;
2366 static PyObject *
2367 list_iter(PyObject *seq)
2369 listiterobject *it;
2371 if (!PyList_Check(seq)) {
2372 PyErr_BadInternalCall();
2373 return NULL;
2375 it = PyObject_GC_New(listiterobject, &PyListIter_Type);
2376 if (it == NULL)
2377 return NULL;
2378 it->it_index = 0;
2379 Py_INCREF(seq);
2380 it->it_seq = (PyListObject *)seq;
2381 _PyObject_GC_TRACK(it);
2382 return (PyObject *)it;
2385 static void
2386 listiter_dealloc(listiterobject *it)
2388 _PyObject_GC_UNTRACK(it);
2389 Py_XDECREF(it->it_seq);
2390 PyObject_GC_Del(it);
2393 static int
2394 listiter_traverse(listiterobject *it, visitproc visit, void *arg)
2396 if (it->it_seq == NULL)
2397 return 0;
2398 return visit((PyObject *)it->it_seq, arg);
2402 static PyObject *
2403 listiter_getiter(PyObject *it)
2405 Py_INCREF(it);
2406 return it;
2409 static PyObject *
2410 listiter_next(listiterobject *it)
2412 PyListObject *seq;
2413 PyObject *item;
2415 assert(it != NULL);
2416 seq = it->it_seq;
2417 if (seq == NULL)
2418 return NULL;
2419 assert(PyList_Check(seq));
2421 if (it->it_index < PyList_GET_SIZE(seq)) {
2422 item = PyList_GET_ITEM(seq, it->it_index);
2423 ++it->it_index;
2424 Py_INCREF(item);
2425 return item;
2428 Py_DECREF(seq);
2429 it->it_seq = NULL;
2430 return NULL;
2433 PyTypeObject PyListIter_Type = {
2434 PyObject_HEAD_INIT(&PyType_Type)
2435 0, /* ob_size */
2436 "listiterator", /* tp_name */
2437 sizeof(listiterobject), /* tp_basicsize */
2438 0, /* tp_itemsize */
2439 /* methods */
2440 (destructor)listiter_dealloc, /* tp_dealloc */
2441 0, /* tp_print */
2442 0, /* tp_getattr */
2443 0, /* tp_setattr */
2444 0, /* tp_compare */
2445 0, /* tp_repr */
2446 0, /* tp_as_number */
2447 0, /* tp_as_sequence */
2448 0, /* tp_as_mapping */
2449 0, /* tp_hash */
2450 0, /* tp_call */
2451 0, /* tp_str */
2452 PyObject_GenericGetAttr, /* tp_getattro */
2453 0, /* tp_setattro */
2454 0, /* tp_as_buffer */
2455 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
2456 0, /* tp_doc */
2457 (traverseproc)listiter_traverse, /* tp_traverse */
2458 0, /* tp_clear */
2459 0, /* tp_richcompare */
2460 0, /* tp_weaklistoffset */
2461 (getiterfunc)listiter_getiter, /* tp_iter */
2462 (iternextfunc)listiter_next, /* tp_iternext */
2463 0, /* tp_methods */
2464 0, /* tp_members */
2465 0, /* tp_getset */
2466 0, /* tp_base */
2467 0, /* tp_dict */
2468 0, /* tp_descr_get */
2469 0, /* tp_descr_set */