_make_boundary(): Fix for SF bug #745478, broken boundary calculation
[python/dscho.git] / Doc / lib / libmpz.tex
blob236666822c5edc59226ea02d13105152f9ac3776
1 \section{\module{mpz} ---
2 GNU arbitrary magnitude integers}
4 \declaremodule{builtin}{mpz}
5 \modulesynopsis{Interface to the GNU MP library for arbitrary
6 precision arithmetic.}
9 \deprecated{2.2}{See the references at the end of this section for
10 information about packages which provide similar
11 functionality. This module will be removed in Python
12 2.3.}
15 This is an optional module. It is only available when Python is
16 configured to include it, which requires that the GNU MP software is
17 installed.
18 \index{MP, GNU library}
19 \index{arbitrary precision integers}
20 \index{integer!arbitrary precision}
22 This module implements the interface to part of the GNU MP library,
23 which defines arbitrary precision integer and rational number
24 arithmetic routines. Only the interfaces to the \emph{integer}
25 (\function{mpz_*()}) routines are provided. If not stated
26 otherwise, the description in the GNU MP documentation can be applied.
28 Support for rational numbers\index{rational numbers} can be
29 implemented in Python. For an example, see the
30 \module{Rat}\withsubitem{(demo module)}{\ttindex{Rat}} module, provided as
31 \file{Demos/classes/Rat.py} in the Python source distribution.
33 In general, \dfn{mpz}-numbers can be used just like other standard
34 Python numbers, e.g., you can use the built-in operators like \code{+},
35 \code{*}, etc., as well as the standard built-in functions like
36 \function{abs()}, \function{int()}, \ldots, \function{divmod()},
37 \function{pow()}. \strong{Please note:} the \emph{bitwise-xor}
38 operation has been implemented as a bunch of \emph{and}s,
39 \emph{invert}s and \emph{or}s, because the library lacks an
40 \cfunction{mpz_xor()} function, and I didn't need one.
42 You create an mpz-number by calling the function \function{mpz()} (see
43 below for an exact description). An mpz-number is printed like this:
44 \code{mpz(\var{value})}.
47 \begin{funcdesc}{mpz}{value}
48 Create a new mpz-number. \var{value} can be an integer, a long,
49 another mpz-number, or even a string. If it is a string, it is
50 interpreted as an array of radix-256 digits, least significant digit
51 first, resulting in a positive number. See also the \method{binary()}
52 method, described below.
53 \end{funcdesc}
55 \begin{datadesc}{MPZType}
56 The type of the objects returned by \function{mpz()} and most other
57 functions in this module.
58 \end{datadesc}
61 A number of \emph{extra} functions are defined in this module. Non
62 mpz-arguments are converted to mpz-values first, and the functions
63 return mpz-numbers.
65 \begin{funcdesc}{powm}{base, exponent, modulus}
66 Return \code{pow(\var{base}, \var{exponent}) \%{} \var{modulus}}. If
67 \code{\var{exponent} == 0}, return \code{mpz(1)}. In contrast to the
68 \C{} library function, this version can handle negative exponents.
69 \end{funcdesc}
71 \begin{funcdesc}{gcd}{op1, op2}
72 Return the greatest common divisor of \var{op1} and \var{op2}.
73 \end{funcdesc}
75 \begin{funcdesc}{gcdext}{a, b}
76 Return a tuple \code{(\var{g}, \var{s}, \var{t})}, such that
77 \code{\var{a}*\var{s} + \var{b}*\var{t} == \var{g} == gcd(\var{a}, \var{b})}.
78 \end{funcdesc}
80 \begin{funcdesc}{sqrt}{op}
81 Return the square root of \var{op}. The result is rounded towards zero.
82 \end{funcdesc}
84 \begin{funcdesc}{sqrtrem}{op}
85 Return a tuple \code{(\var{root}, \var{remainder})}, such that
86 \code{\var{root}*\var{root} + \var{remainder} == \var{op}}.
87 \end{funcdesc}
89 \begin{funcdesc}{divm}{numerator, denominator, modulus}
90 Returns a number \var{q} such that
91 \code{\var{q} * \var{denominator} \%{} \var{modulus} ==
92 \var{numerator}}. One could also implement this function in Python,
93 using \function{gcdext()}.
94 \end{funcdesc}
96 An mpz-number has one method:
98 \begin{methoddesc}[mpz]{binary}{}
99 Convert this mpz-number to a binary string, where the number has been
100 stored as an array of radix-256 digits, least significant digit first.
102 The mpz-number must have a value greater than or equal to zero,
103 otherwise \exception{ValueError} will be raised.
104 \end{methoddesc}
107 \begin{seealso}
108 \seetitle[http://gmpy.sourceforge.net/]{General Multiprecision Python}{
109 This project is building new numeric types to allow
110 arbitrary-precision arithmetic in Python. Their first
111 efforts are also based on the GNU MP library.}
113 \seetitle[http://www.egenix.com/files/python/mxNumber.html]{mxNumber
114 --- Extended Numeric Types for Python}{Another wrapper
115 around the GNU MP library, including a port of that
116 library to Windows.}
117 \end{seealso}