2 /* Dictionary object implementation using a hash table */
6 typedef PyDictEntry dictentry
;
7 typedef PyDictObject dictobject
;
9 /* Define this out if you don't want conversion statistics on exit. */
10 #undef SHOW_CONVERSION_COUNTS
12 /* See large comment block below. This must be >= 1. */
13 #define PERTURB_SHIFT 5
16 Major subtleties ahead: Most hash schemes depend on having a "good" hash
17 function, in the sense of simulating randomness. Python doesn't: its most
18 important hash functions (for strings and ints) are very regular in common
21 >>> map(hash, (0, 1, 2, 3))
23 >>> map(hash, ("namea", "nameb", "namec", "named"))
24 [-1658398457, -1658398460, -1658398459, -1658398462]
27 This isn't necessarily bad! To the contrary, in a table of size 2**i, taking
28 the low-order i bits as the initial table index is extremely fast, and there
29 are no collisions at all for dicts indexed by a contiguous range of ints.
30 The same is approximately true when keys are "consecutive" strings. So this
31 gives better-than-random behavior in common cases, and that's very desirable.
33 OTOH, when collisions occur, the tendency to fill contiguous slices of the
34 hash table makes a good collision resolution strategy crucial. Taking only
35 the last i bits of the hash code is also vulnerable: for example, consider
36 [i << 16 for i in range(20000)] as a set of keys. Since ints are their own
37 hash codes, and this fits in a dict of size 2**15, the last 15 bits of every
38 hash code are all 0: they *all* map to the same table index.
40 But catering to unusual cases should not slow the usual ones, so we just take
41 the last i bits anyway. It's up to collision resolution to do the rest. If
42 we *usually* find the key we're looking for on the first try (and, it turns
43 out, we usually do -- the table load factor is kept under 2/3, so the odds
44 are solidly in our favor), then it makes best sense to keep the initial index
45 computation dirt cheap.
47 The first half of collision resolution is to visit table indices via this
50 j = ((5*j) + 1) mod 2**i
52 For any initial j in range(2**i), repeating that 2**i times generates each
53 int in range(2**i) exactly once (see any text on random-number generation for
54 proof). By itself, this doesn't help much: like linear probing (setting
55 j += 1, or j -= 1, on each loop trip), it scans the table entries in a fixed
56 order. This would be bad, except that's not the only thing we do, and it's
57 actually *good* in the common cases where hash keys are consecutive. In an
58 example that's really too small to make this entirely clear, for a table of
59 size 2**3 the order of indices is:
61 0 -> 1 -> 6 -> 7 -> 4 -> 5 -> 2 -> 3 -> 0 [and here it's repeating]
63 If two things come in at index 5, the first place we look after is index 2,
64 not 6, so if another comes in at index 6 the collision at 5 didn't hurt it.
65 Linear probing is deadly in this case because there the fixed probe order
66 is the *same* as the order consecutive keys are likely to arrive. But it's
67 extremely unlikely hash codes will follow a 5*j+1 recurrence by accident,
68 and certain that consecutive hash codes do not.
70 The other half of the strategy is to get the other bits of the hash code
71 into play. This is done by initializing a (unsigned) vrbl "perturb" to the
72 full hash code, and changing the recurrence to:
74 j = (5*j) + 1 + perturb;
75 perturb >>= PERTURB_SHIFT;
76 use j % 2**i as the next table index;
78 Now the probe sequence depends (eventually) on every bit in the hash code,
79 and the pseudo-scrambling property of recurring on 5*j+1 is more valuable,
80 because it quickly magnifies small differences in the bits that didn't affect
81 the initial index. Note that because perturb is unsigned, if the recurrence
82 is executed often enough perturb eventually becomes and remains 0. At that
83 point (very rarely reached) the recurrence is on (just) 5*j+1 again, and
84 that's certain to find an empty slot eventually (since it generates every int
85 in range(2**i), and we make sure there's always at least one empty slot).
87 Selecting a good value for PERTURB_SHIFT is a balancing act. You want it
88 small so that the high bits of the hash code continue to affect the probe
89 sequence across iterations; but you want it large so that in really bad cases
90 the high-order hash bits have an effect on early iterations. 5 was "the
91 best" in minimizing total collisions across experiments Tim Peters ran (on
92 both normal and pathological cases), but 4 and 6 weren't significantly worse.
94 Historical: Reimer Behrends contributed the idea of using a polynomial-based
95 approach, using repeated multiplication by x in GF(2**n) where an irreducible
96 polynomial for each table size was chosen such that x was a primitive root.
97 Christian Tismer later extended that to use division by x instead, as an
98 efficient way to get the high bits of the hash code into play. This scheme
99 also gave excellent collision statistics, but was more expensive: two
100 if-tests were required inside the loop; computing "the next" index took about
101 the same number of operations but without as much potential parallelism
102 (e.g., computing 5*j can go on at the same time as computing 1+perturb in the
103 above, and then shifting perturb can be done while the table index is being
104 masked); and the dictobject struct required a member to hold the table's
105 polynomial. In Tim's experiments the current scheme ran faster, produced
106 equally good collision statistics, needed less code & used less memory.
109 /* Object used as dummy key to fill deleted entries */
110 static PyObject
*dummy
; /* Initialized by first call to newdictobject() */
112 /* forward declarations */
114 lookdict_string(dictobject
*mp
, PyObject
*key
, long hash
);
116 #ifdef SHOW_CONVERSION_COUNTS
117 static long created
= 0L;
118 static long converted
= 0L;
123 fprintf(stderr
, "created %ld string dicts\n", created
);
124 fprintf(stderr
, "converted %ld to normal dicts\n", converted
);
125 fprintf(stderr
, "%.2f%% conversion rate\n", (100.0*converted
)/created
);
129 /* Initialization macros.
130 There are two ways to create a dict: PyDict_New() is the main C API
131 function, and the tp_new slot maps to dict_new(). In the latter case we
132 can save a little time over what PyDict_New does because it's guaranteed
133 that the PyDictObject struct is already zeroed out.
134 Everyone except dict_new() should use EMPTY_TO_MINSIZE (unless they have
135 an excellent reason not to).
138 #define INIT_NONZERO_DICT_SLOTS(mp) do { \
139 (mp)->ma_table = (mp)->ma_smalltable; \
140 (mp)->ma_mask = PyDict_MINSIZE - 1; \
143 #define EMPTY_TO_MINSIZE(mp) do { \
144 memset((mp)->ma_smalltable, 0, sizeof((mp)->ma_smalltable)); \
145 (mp)->ma_used = (mp)->ma_fill = 0; \
146 INIT_NONZERO_DICT_SLOTS(mp); \
152 register dictobject
*mp
;
153 if (dummy
== NULL
) { /* Auto-initialize dummy */
154 dummy
= PyString_FromString("<dummy key>");
157 #ifdef SHOW_CONVERSION_COUNTS
158 Py_AtExit(show_counts
);
161 mp
= PyObject_GC_New(dictobject
, &PyDict_Type
);
164 EMPTY_TO_MINSIZE(mp
);
165 mp
->ma_lookup
= lookdict_string
;
166 #ifdef SHOW_CONVERSION_COUNTS
169 _PyObject_GC_TRACK(mp
);
170 return (PyObject
*)mp
;
174 The basic lookup function used by all operations.
175 This is based on Algorithm D from Knuth Vol. 3, Sec. 6.4.
176 Open addressing is preferred over chaining since the link overhead for
177 chaining would be substantial (100% with typical malloc overhead).
179 The initial probe index is computed as hash mod the table size. Subsequent
180 probe indices are computed as explained earlier.
182 All arithmetic on hash should ignore overflow.
184 (The details in this version are due to Tim Peters, building on many past
185 contributions by Reimer Behrends, Jyrki Alakuijala, Vladimir Marangozov and
188 This function must never return NULL; failures are indicated by returning
189 a dictentry* for which the me_value field is NULL. Exceptions are never
190 reported by this function, and outstanding exceptions are maintained.
194 lookdict(dictobject
*mp
, PyObject
*key
, register long hash
)
197 register unsigned int perturb
;
198 register dictentry
*freeslot
;
199 register unsigned int mask
= mp
->ma_mask
;
200 dictentry
*ep0
= mp
->ma_table
;
201 register dictentry
*ep
;
202 register int restore_error
;
203 register int checked_error
;
205 PyObject
*err_type
, *err_value
, *err_tb
;
210 if (ep
->me_key
== NULL
|| ep
->me_key
== key
)
213 restore_error
= checked_error
= 0;
214 if (ep
->me_key
== dummy
)
217 if (ep
->me_hash
== hash
) {
218 /* error can't have been checked yet */
220 if (PyErr_Occurred()) {
222 PyErr_Fetch(&err_type
, &err_value
, &err_tb
);
224 startkey
= ep
->me_key
;
225 cmp
= PyObject_RichCompareBool(startkey
, key
, Py_EQ
);
228 if (ep0
== mp
->ma_table
&& ep
->me_key
== startkey
) {
233 /* The compare did major nasty stuff to the
235 * XXX A clever adversary could prevent this
236 * XXX from terminating.
238 ep
= lookdict(mp
, key
, hash
);
245 /* In the loop, me_key == dummy is by far (factor of 100s) the
246 least likely outcome, so test for that last. */
247 for (perturb
= hash
; ; perturb
>>= PERTURB_SHIFT
) {
248 i
= (i
<< 2) + i
+ perturb
+ 1;
250 if (ep
->me_key
== NULL
) {
251 if (freeslot
!= NULL
)
255 if (ep
->me_key
== key
)
257 if (ep
->me_hash
== hash
&& ep
->me_key
!= dummy
) {
258 if (!checked_error
) {
260 if (PyErr_Occurred()) {
262 PyErr_Fetch(&err_type
, &err_value
,
266 startkey
= ep
->me_key
;
267 cmp
= PyObject_RichCompareBool(startkey
, key
, Py_EQ
);
270 if (ep0
== mp
->ma_table
&& ep
->me_key
== startkey
) {
275 /* The compare did major nasty stuff to the
277 * XXX A clever adversary could prevent this
278 * XXX from terminating.
280 ep
= lookdict(mp
, key
, hash
);
284 else if (ep
->me_key
== dummy
&& freeslot
== NULL
)
290 PyErr_Restore(err_type
, err_value
, err_tb
);
295 * Hacked up version of lookdict which can assume keys are always strings;
296 * this assumption allows testing for errors during PyObject_Compare() to
297 * be dropped; string-string comparisons never raise exceptions. This also
298 * means we don't need to go through PyObject_Compare(); we can always use
299 * _PyString_Eq directly.
301 * This is valuable because the general-case error handling in lookdict() is
302 * expensive, and dicts with pure-string keys are very common.
305 lookdict_string(dictobject
*mp
, PyObject
*key
, register long hash
)
308 register unsigned int perturb
;
309 register dictentry
*freeslot
;
310 register unsigned int mask
= mp
->ma_mask
;
311 dictentry
*ep0
= mp
->ma_table
;
312 register dictentry
*ep
;
314 /* Make sure this function doesn't have to handle non-string keys,
315 including subclasses of str; e.g., one reason to subclass
316 strings is to override __eq__, and for speed we don't cater to
318 if (!PyString_CheckExact(key
)) {
319 #ifdef SHOW_CONVERSION_COUNTS
322 mp
->ma_lookup
= lookdict
;
323 return lookdict(mp
, key
, hash
);
327 if (ep
->me_key
== NULL
|| ep
->me_key
== key
)
329 if (ep
->me_key
== dummy
)
332 if (ep
->me_hash
== hash
333 && _PyString_Eq(ep
->me_key
, key
)) {
339 /* In the loop, me_key == dummy is by far (factor of 100s) the
340 least likely outcome, so test for that last. */
341 for (perturb
= hash
; ; perturb
>>= PERTURB_SHIFT
) {
342 i
= (i
<< 2) + i
+ perturb
+ 1;
344 if (ep
->me_key
== NULL
)
345 return freeslot
== NULL
? ep
: freeslot
;
346 if (ep
->me_key
== key
347 || (ep
->me_hash
== hash
348 && ep
->me_key
!= dummy
349 && _PyString_Eq(ep
->me_key
, key
)))
351 if (ep
->me_key
== dummy
&& freeslot
== NULL
)
357 Internal routine to insert a new item into the table.
358 Used both by the internal resize routine and by the public insert routine.
359 Eats a reference to key and one to value.
362 insertdict(register dictobject
*mp
, PyObject
*key
, long hash
, PyObject
*value
)
365 register dictentry
*ep
;
366 typedef PyDictEntry
*(*lookupfunc
)(PyDictObject
*, PyObject
*, long);
368 assert(mp
->ma_lookup
!= NULL
);
369 ep
= mp
->ma_lookup(mp
, key
, hash
);
370 if (ep
->me_value
!= NULL
) {
371 old_value
= ep
->me_value
;
372 ep
->me_value
= value
;
373 Py_DECREF(old_value
); /* which **CAN** re-enter */
377 if (ep
->me_key
== NULL
)
380 Py_DECREF(ep
->me_key
);
383 ep
->me_value
= value
;
389 Restructure the table by allocating a new table and reinserting all
390 items again. When entries have been deleted, the new table may
391 actually be smaller than the old one.
394 dictresize(dictobject
*mp
, int minused
)
397 dictentry
*oldtable
, *newtable
, *ep
;
399 int is_oldtable_malloced
;
400 dictentry small_copy
[PyDict_MINSIZE
];
402 assert(minused
>= 0);
404 /* Find the smallest table size > minused. */
405 for (newsize
= PyDict_MINSIZE
;
406 newsize
<= minused
&& newsize
> 0;
414 /* Get space for a new table. */
415 oldtable
= mp
->ma_table
;
416 assert(oldtable
!= NULL
);
417 is_oldtable_malloced
= oldtable
!= mp
->ma_smalltable
;
419 if (newsize
== PyDict_MINSIZE
) {
420 /* A large table is shrinking, or we can't get any smaller. */
421 newtable
= mp
->ma_smalltable
;
422 if (newtable
== oldtable
) {
423 if (mp
->ma_fill
== mp
->ma_used
) {
424 /* No dummies, so no point doing anything. */
427 /* We're not going to resize it, but rebuild the
428 table anyway to purge old dummy entries.
429 Subtle: This is *necessary* if fill==size,
430 as lookdict needs at least one virgin slot to
431 terminate failing searches. If fill < size, it's
432 merely desirable, as dummies slow searches. */
433 assert(mp
->ma_fill
> mp
->ma_used
);
434 memcpy(small_copy
, oldtable
, sizeof(small_copy
));
435 oldtable
= small_copy
;
439 newtable
= PyMem_NEW(dictentry
, newsize
);
440 if (newtable
== NULL
) {
446 /* Make the dict empty, using the new table. */
447 assert(newtable
!= oldtable
);
448 mp
->ma_table
= newtable
;
449 mp
->ma_mask
= newsize
- 1;
450 memset(newtable
, 0, sizeof(dictentry
) * newsize
);
455 /* Copy the data over; this is refcount-neutral for active entries;
456 dummy entries aren't copied over, of course */
457 for (ep
= oldtable
; i
> 0; ep
++) {
458 if (ep
->me_value
!= NULL
) { /* active entry */
460 insertdict(mp
, ep
->me_key
, ep
->me_hash
, ep
->me_value
);
462 else if (ep
->me_key
!= NULL
) { /* dummy entry */
464 assert(ep
->me_key
== dummy
);
465 Py_DECREF(ep
->me_key
);
467 /* else key == value == NULL: nothing to do */
470 if (is_oldtable_malloced
)
476 PyDict_GetItem(PyObject
*op
, PyObject
*key
)
479 dictobject
*mp
= (dictobject
*)op
;
480 if (!PyDict_Check(op
)) {
484 if (!PyString_CheckExact(key
) ||
485 (hash
= ((PyStringObject
*) key
)->ob_shash
) == -1)
488 hash
= PyObject_Hash(key
);
494 return (mp
->ma_lookup
)(mp
, key
, hash
)->me_value
;
497 /* CAUTION: PyDict_SetItem() must guarantee that it won't resize the
498 * dictionary if it is merely replacing the value for an existing key.
499 * This is means that it's safe to loop over a dictionary with
500 * PyDict_Next() and occasionally replace a value -- but you can't
501 * insert new keys or remove them.
504 PyDict_SetItem(register PyObject
*op
, PyObject
*key
, PyObject
*value
)
506 register dictobject
*mp
;
510 if (!PyDict_Check(op
)) {
511 PyErr_BadInternalCall();
514 mp
= (dictobject
*)op
;
516 if (PyString_CheckExact(key
)) {
517 #ifdef INTERN_STRINGS
518 if (((PyStringObject
*)key
)->ob_sinterned
!= NULL
) {
519 key
= ((PyStringObject
*)key
)->ob_sinterned
;
520 hash
= ((PyStringObject
*)key
)->ob_shash
;
525 hash
= ((PyStringObject
*)key
)->ob_shash
;
527 hash
= PyObject_Hash(key
);
533 hash
= PyObject_Hash(key
);
537 assert(mp
->ma_fill
<= mp
->ma_mask
); /* at least one empty slot */
538 n_used
= mp
->ma_used
;
541 insertdict(mp
, key
, hash
, value
);
542 /* If we added a key, we can safely resize. Otherwise skip this!
543 * If fill >= 2/3 size, adjust size. Normally, this doubles the
544 * size, but it's also possible for the dict to shrink (if ma_fill is
545 * much larger than ma_used, meaning a lot of dict keys have been
548 if (mp
->ma_used
> n_used
&& mp
->ma_fill
*3 >= (mp
->ma_mask
+1)*2) {
549 if (dictresize(mp
, mp
->ma_used
*2) != 0)
556 PyDict_DelItem(PyObject
*op
, PyObject
*key
)
558 register dictobject
*mp
;
560 register dictentry
*ep
;
561 PyObject
*old_value
, *old_key
;
563 if (!PyDict_Check(op
)) {
564 PyErr_BadInternalCall();
568 if (!PyString_CheckExact(key
) ||
569 (hash
= ((PyStringObject
*) key
)->ob_shash
) == -1)
572 hash
= PyObject_Hash(key
);
576 mp
= (dictobject
*)op
;
577 ep
= (mp
->ma_lookup
)(mp
, key
, hash
);
578 if (ep
->me_value
== NULL
) {
579 PyErr_SetObject(PyExc_KeyError
, key
);
582 old_key
= ep
->me_key
;
585 old_value
= ep
->me_value
;
588 Py_DECREF(old_value
);
594 PyDict_Clear(PyObject
*op
)
597 dictentry
*ep
, *table
;
598 int table_is_malloced
;
600 dictentry small_copy
[PyDict_MINSIZE
];
605 if (!PyDict_Check(op
))
607 mp
= (dictobject
*)op
;
613 table
= mp
->ma_table
;
614 assert(table
!= NULL
);
615 table_is_malloced
= table
!= mp
->ma_smalltable
;
617 /* This is delicate. During the process of clearing the dict,
618 * decrefs can cause the dict to mutate. To avoid fatal confusion
619 * (voice of experience), we have to make the dict empty before
620 * clearing the slots, and never refer to anything via mp->xxx while
624 if (table_is_malloced
)
625 EMPTY_TO_MINSIZE(mp
);
628 /* It's a small table with something that needs to be cleared.
629 * Afraid the only safe way is to copy the dict entries into
630 * another small table first.
632 memcpy(small_copy
, table
, sizeof(small_copy
));
634 EMPTY_TO_MINSIZE(mp
);
636 /* else it's a small table that's already empty */
638 /* Now we can finally clear things. If C had refcounts, we could
639 * assert that the refcount on table is 1 now, i.e. that this function
640 * has unique access to it, so decref side-effects can't alter it.
642 for (ep
= table
; fill
> 0; ++ep
) {
649 Py_DECREF(ep
->me_key
);
650 Py_XDECREF(ep
->me_value
);
654 assert(ep
->me_value
== NULL
);
658 if (table_is_malloced
)
662 /* CAUTION: In general, it isn't safe to use PyDict_Next in a loop that
663 * mutates the dict. One exception: it is safe if the loop merely changes
664 * the values associated with the keys (but doesn't insert new keys or
665 * delete keys), via PyDict_SetItem().
668 PyDict_Next(PyObject
*op
, int *ppos
, PyObject
**pkey
, PyObject
**pvalue
)
671 register dictobject
*mp
;
672 if (!PyDict_Check(op
))
674 mp
= (dictobject
*)op
;
678 while (i
<= mp
->ma_mask
&& mp
->ma_table
[i
].me_value
== NULL
)
684 *pkey
= mp
->ma_table
[i
].me_key
;
686 *pvalue
= mp
->ma_table
[i
].me_value
;
693 dict_dealloc(register dictobject
*mp
)
695 register dictentry
*ep
;
696 int fill
= mp
->ma_fill
;
697 Py_TRASHCAN_SAFE_BEGIN(mp
)
698 _PyObject_GC_UNTRACK(mp
);
699 for (ep
= mp
->ma_table
; fill
> 0; ep
++) {
702 Py_DECREF(ep
->me_key
);
703 Py_XDECREF(ep
->me_value
);
706 if (mp
->ma_table
!= mp
->ma_smalltable
)
707 PyMem_DEL(mp
->ma_table
);
708 mp
->ob_type
->tp_free((PyObject
*)mp
);
709 Py_TRASHCAN_SAFE_END(mp
)
713 dict_print(register dictobject
*mp
, register FILE *fp
, register int flags
)
718 i
= Py_ReprEnter((PyObject
*)mp
);
722 fprintf(fp
, "{...}");
728 for (i
= 0; i
<= mp
->ma_mask
; i
++) {
729 dictentry
*ep
= mp
->ma_table
+ i
;
730 PyObject
*pvalue
= ep
->me_value
;
731 if (pvalue
!= NULL
) {
732 /* Prevent PyObject_Repr from deleting value during
737 if (PyObject_Print((PyObject
*)ep
->me_key
, fp
, 0)!=0) {
739 Py_ReprLeave((PyObject
*)mp
);
743 if (PyObject_Print(pvalue
, fp
, 0) != 0) {
745 Py_ReprLeave((PyObject
*)mp
);
752 Py_ReprLeave((PyObject
*)mp
);
757 dict_repr(dictobject
*mp
)
760 PyObject
*s
, *temp
, *colon
= NULL
;
761 PyObject
*pieces
= NULL
, *result
= NULL
;
762 PyObject
*key
, *value
;
764 i
= Py_ReprEnter((PyObject
*)mp
);
766 return i
> 0 ? PyString_FromString("{...}") : NULL
;
769 if (mp
->ma_used
== 0) {
770 result
= PyString_FromString("{}");
774 pieces
= PyList_New(0);
778 colon
= PyString_FromString(": ");
782 /* Do repr() on each key+value pair, and insert ": " between them.
783 Note that repr may mutate the dict. */
785 while (PyDict_Next((PyObject
*)mp
, &i
, &key
, &value
)) {
787 /* Prevent repr from deleting value during key format. */
789 s
= PyObject_Repr(key
);
790 PyString_Concat(&s
, colon
);
791 PyString_ConcatAndDel(&s
, PyObject_Repr(value
));
795 status
= PyList_Append(pieces
, s
);
796 Py_DECREF(s
); /* append created a new ref */
801 /* Add "{}" decorations to the first and last items. */
802 assert(PyList_GET_SIZE(pieces
) > 0);
803 s
= PyString_FromString("{");
806 temp
= PyList_GET_ITEM(pieces
, 0);
807 PyString_ConcatAndDel(&s
, temp
);
808 PyList_SET_ITEM(pieces
, 0, s
);
812 s
= PyString_FromString("}");
815 temp
= PyList_GET_ITEM(pieces
, PyList_GET_SIZE(pieces
) - 1);
816 PyString_ConcatAndDel(&temp
, s
);
817 PyList_SET_ITEM(pieces
, PyList_GET_SIZE(pieces
) - 1, temp
);
821 /* Paste them all together with ", " between. */
822 s
= PyString_FromString(", ");
825 result
= _PyString_Join(s
, pieces
);
831 Py_ReprLeave((PyObject
*)mp
);
836 dict_length(dictobject
*mp
)
842 dict_subscript(dictobject
*mp
, register PyObject
*key
)
846 assert(mp
->ma_table
!= NULL
);
848 if (!PyString_CheckExact(key
) ||
849 (hash
= ((PyStringObject
*) key
)->ob_shash
) == -1)
852 hash
= PyObject_Hash(key
);
856 v
= (mp
->ma_lookup
)(mp
, key
, hash
) -> me_value
;
858 PyErr_SetObject(PyExc_KeyError
, key
);
865 dict_ass_sub(dictobject
*mp
, PyObject
*v
, PyObject
*w
)
868 return PyDict_DelItem((PyObject
*)mp
, v
);
870 return PyDict_SetItem((PyObject
*)mp
, v
, w
);
873 static PyMappingMethods dict_as_mapping
= {
874 (inquiry
)dict_length
, /*mp_length*/
875 (binaryfunc
)dict_subscript
, /*mp_subscript*/
876 (objobjargproc
)dict_ass_sub
, /*mp_ass_subscript*/
880 dict_keys(register dictobject
*mp
)
882 register PyObject
*v
;
883 register int i
, j
, n
;
890 if (n
!= mp
->ma_used
) {
891 /* Durnit. The allocations caused the dict to resize.
892 * Just start over, this shouldn't normally happen.
897 for (i
= 0, j
= 0; i
<= mp
->ma_mask
; i
++) {
898 if (mp
->ma_table
[i
].me_value
!= NULL
) {
899 PyObject
*key
= mp
->ma_table
[i
].me_key
;
901 PyList_SET_ITEM(v
, j
, key
);
909 dict_values(register dictobject
*mp
)
911 register PyObject
*v
;
912 register int i
, j
, n
;
919 if (n
!= mp
->ma_used
) {
920 /* Durnit. The allocations caused the dict to resize.
921 * Just start over, this shouldn't normally happen.
926 for (i
= 0, j
= 0; i
<= mp
->ma_mask
; i
++) {
927 if (mp
->ma_table
[i
].me_value
!= NULL
) {
928 PyObject
*value
= mp
->ma_table
[i
].me_value
;
930 PyList_SET_ITEM(v
, j
, value
);
938 dict_items(register dictobject
*mp
)
940 register PyObject
*v
;
941 register int i
, j
, n
;
942 PyObject
*item
, *key
, *value
;
944 /* Preallocate the list of tuples, to avoid allocations during
945 * the loop over the items, which could trigger GC, which
946 * could resize the dict. :-(
953 for (i
= 0; i
< n
; i
++) {
954 item
= PyTuple_New(2);
959 PyList_SET_ITEM(v
, i
, item
);
961 if (n
!= mp
->ma_used
) {
962 /* Durnit. The allocations caused the dict to resize.
963 * Just start over, this shouldn't normally happen.
968 /* Nothing we do below makes any function calls. */
969 for (i
= 0, j
= 0; i
<= mp
->ma_mask
; i
++) {
970 if (mp
->ma_table
[i
].me_value
!= NULL
) {
971 key
= mp
->ma_table
[i
].me_key
;
972 value
= mp
->ma_table
[i
].me_value
;
973 item
= PyList_GET_ITEM(v
, j
);
975 PyTuple_SET_ITEM(item
, 0, key
);
977 PyTuple_SET_ITEM(item
, 1, value
);
986 dict_update(PyObject
*mp
, PyObject
*other
)
988 if (PyDict_Update(mp
, other
) < 0)
994 /* Update unconditionally replaces existing items.
995 Merge has a 3rd argument 'override'; if set, it acts like Update,
996 otherwise it leaves existing items unchanged.
998 PyDict_{Update,Merge} update/merge from a mapping object.
1000 PyDict_MergeFromSeq2 updates/merges from any iterable object
1001 producing iterable objects of length 2.
1005 PyDict_MergeFromSeq2(PyObject
*d
, PyObject
*seq2
, int override
)
1007 PyObject
*it
; /* iter(seq2) */
1008 int i
; /* index into seq2 of current element */
1009 PyObject
*item
; /* seq2[i] */
1010 PyObject
*fast
; /* item as a 2-tuple or 2-list */
1013 assert(PyDict_Check(d
));
1014 assert(seq2
!= NULL
);
1016 it
= PyObject_GetIter(seq2
);
1020 for (i
= 0; ; ++i
) {
1021 PyObject
*key
, *value
;
1025 item
= PyIter_Next(it
);
1027 if (PyErr_Occurred())
1032 /* Convert item to sequence, and verify length 2. */
1033 fast
= PySequence_Fast(item
, "");
1035 if (PyErr_ExceptionMatches(PyExc_TypeError
))
1036 PyErr_Format(PyExc_TypeError
,
1037 "cannot convert dictionary update "
1038 "sequence element #%d to a sequence",
1042 n
= PySequence_Fast_GET_SIZE(fast
);
1044 PyErr_Format(PyExc_ValueError
,
1045 "dictionary update sequence element #%d "
1046 "has length %d; 2 is required",
1051 /* Update/merge with this (key, value) pair. */
1052 key
= PySequence_Fast_GET_ITEM(fast
, 0);
1053 value
= PySequence_Fast_GET_ITEM(fast
, 1);
1054 if (override
|| PyDict_GetItem(d
, key
) == NULL
) {
1055 int status
= PyDict_SetItem(d
, key
, value
);
1075 PyDict_Update(PyObject
*a
, PyObject
*b
)
1077 return PyDict_Merge(a
, b
, 1);
1081 PyDict_Merge(PyObject
*a
, PyObject
*b
, int override
)
1083 register PyDictObject
*mp
, *other
;
1087 /* We accept for the argument either a concrete dictionary object,
1088 * or an abstract "mapping" object. For the former, we can do
1089 * things quite efficiently. For the latter, we only require that
1090 * PyMapping_Keys() and PyObject_GetItem() be supported.
1092 if (a
== NULL
|| !PyDict_Check(a
) || b
== NULL
) {
1093 PyErr_BadInternalCall();
1096 mp
= (dictobject
*)a
;
1097 if (PyDict_Check(b
)) {
1098 other
= (dictobject
*)b
;
1099 if (other
== mp
|| other
->ma_used
== 0)
1100 /* a.update(a) or a.update({}); nothing to do */
1102 /* Do one big resize at the start, rather than
1103 * incrementally resizing as we insert new items. Expect
1104 * that there will be no (or few) overlapping keys.
1106 if ((mp
->ma_fill
+ other
->ma_used
)*3 >= (mp
->ma_mask
+1)*2) {
1107 if (dictresize(mp
, (mp
->ma_used
+ other
->ma_used
)*3/2) != 0)
1110 for (i
= 0; i
<= other
->ma_mask
; i
++) {
1111 entry
= &other
->ma_table
[i
];
1112 if (entry
->me_value
!= NULL
&&
1114 PyDict_GetItem(a
, entry
->me_key
) == NULL
)) {
1115 Py_INCREF(entry
->me_key
);
1116 Py_INCREF(entry
->me_value
);
1117 insertdict(mp
, entry
->me_key
, entry
->me_hash
,
1123 /* Do it the generic, slower way */
1124 PyObject
*keys
= PyMapping_Keys(b
);
1126 PyObject
*key
, *value
;
1130 /* Docstring says this is equivalent to E.keys() so
1131 * if E doesn't have a .keys() method we want
1132 * AttributeError to percolate up. Might as well
1133 * do the same for any other error.
1137 iter
= PyObject_GetIter(keys
);
1142 for (key
= PyIter_Next(iter
); key
; key
= PyIter_Next(iter
)) {
1143 if (!override
&& PyDict_GetItem(a
, key
) != NULL
) {
1147 value
= PyObject_GetItem(b
, key
);
1148 if (value
== NULL
) {
1153 status
= PyDict_SetItem(a
, key
, value
);
1162 if (PyErr_Occurred())
1163 /* Iterator completed, via error */
1170 dict_copy(register dictobject
*mp
)
1172 return PyDict_Copy((PyObject
*)mp
);
1176 PyDict_Copy(PyObject
*o
)
1178 register dictobject
*mp
;
1183 if (o
== NULL
|| !PyDict_Check(o
)) {
1184 PyErr_BadInternalCall();
1187 mp
= (dictobject
*)o
;
1188 copy
= (dictobject
*)PyDict_New();
1191 if (mp
->ma_used
> 0) {
1192 if (dictresize(copy
, mp
->ma_used
*3/2) != 0)
1194 for (i
= 0; i
<= mp
->ma_mask
; i
++) {
1195 entry
= &mp
->ma_table
[i
];
1196 if (entry
->me_value
!= NULL
) {
1197 Py_INCREF(entry
->me_key
);
1198 Py_INCREF(entry
->me_value
);
1199 insertdict(copy
, entry
->me_key
, entry
->me_hash
,
1204 return (PyObject
*)copy
;
1208 PyDict_Size(PyObject
*mp
)
1210 if (mp
== NULL
|| !PyDict_Check(mp
)) {
1211 PyErr_BadInternalCall();
1214 return ((dictobject
*)mp
)->ma_used
;
1218 PyDict_Keys(PyObject
*mp
)
1220 if (mp
== NULL
|| !PyDict_Check(mp
)) {
1221 PyErr_BadInternalCall();
1224 return dict_keys((dictobject
*)mp
);
1228 PyDict_Values(PyObject
*mp
)
1230 if (mp
== NULL
|| !PyDict_Check(mp
)) {
1231 PyErr_BadInternalCall();
1234 return dict_values((dictobject
*)mp
);
1238 PyDict_Items(PyObject
*mp
)
1240 if (mp
== NULL
|| !PyDict_Check(mp
)) {
1241 PyErr_BadInternalCall();
1244 return dict_items((dictobject
*)mp
);
1247 /* Subroutine which returns the smallest key in a for which b's value
1248 is different or absent. The value is returned too, through the
1249 pval argument. Both are NULL if no key in a is found for which b's status
1250 differs. The refcounts on (and only on) non-NULL *pval and function return
1251 values must be decremented by the caller (characterize() increments them
1252 to ensure that mutating comparison and PyDict_GetItem calls can't delete
1253 them before the caller is done looking at them). */
1256 characterize(dictobject
*a
, dictobject
*b
, PyObject
**pval
)
1258 PyObject
*akey
= NULL
; /* smallest key in a s.t. a[akey] != b[akey] */
1259 PyObject
*aval
= NULL
; /* a[akey] */
1262 for (i
= 0; i
<= a
->ma_mask
; i
++) {
1263 PyObject
*thiskey
, *thisaval
, *thisbval
;
1264 if (a
->ma_table
[i
].me_value
== NULL
)
1266 thiskey
= a
->ma_table
[i
].me_key
;
1267 Py_INCREF(thiskey
); /* keep alive across compares */
1269 cmp
= PyObject_RichCompareBool(akey
, thiskey
, Py_LT
);
1276 a
->ma_table
[i
].me_value
== NULL
)
1278 /* Not the *smallest* a key; or maybe it is
1279 * but the compare shrunk the dict so we can't
1280 * find its associated value anymore; or
1281 * maybe it is but the compare deleted the
1289 /* Compare a[thiskey] to b[thiskey]; cmp <- true iff equal. */
1290 thisaval
= a
->ma_table
[i
].me_value
;
1292 Py_INCREF(thisaval
); /* keep alive */
1293 thisbval
= PyDict_GetItem((PyObject
*)b
, thiskey
);
1294 if (thisbval
== NULL
)
1297 /* both dicts have thiskey: same values? */
1298 cmp
= PyObject_RichCompareBool(
1299 thisaval
, thisbval
, Py_EQ
);
1302 Py_DECREF(thisaval
);
1315 Py_DECREF(thisaval
);
1329 dict_compare(dictobject
*a
, dictobject
*b
)
1331 PyObject
*adiff
, *bdiff
, *aval
, *bval
;
1334 /* Compare lengths first */
1335 if (a
->ma_used
< b
->ma_used
)
1336 return -1; /* a is shorter */
1337 else if (a
->ma_used
> b
->ma_used
)
1338 return 1; /* b is shorter */
1340 /* Same length -- check all keys */
1341 bdiff
= bval
= NULL
;
1342 adiff
= characterize(a
, b
, &aval
);
1343 if (adiff
== NULL
) {
1345 /* Either an error, or a is a subset with the same length so
1348 res
= PyErr_Occurred() ? -1 : 0;
1351 bdiff
= characterize(b
, a
, &bval
);
1352 if (bdiff
== NULL
&& PyErr_Occurred()) {
1359 /* bdiff == NULL "should be" impossible now, but perhaps
1360 * the last comparison done by the characterize() on a had
1361 * the side effect of making the dicts equal!
1363 res
= PyObject_Compare(adiff
, bdiff
);
1365 if (res
== 0 && bval
!= NULL
)
1366 res
= PyObject_Compare(aval
, bval
);
1376 /* Return 1 if dicts equal, 0 if not, -1 if error.
1377 * Gets out as soon as any difference is detected.
1378 * Uses only Py_EQ comparison.
1381 dict_equal(dictobject
*a
, dictobject
*b
)
1385 if (a
->ma_used
!= b
->ma_used
)
1386 /* can't be equal if # of entries differ */
1389 /* Same # of entries -- check all of 'em. Exit early on any diff. */
1390 for (i
= 0; i
<= a
->ma_mask
; i
++) {
1391 PyObject
*aval
= a
->ma_table
[i
].me_value
;
1395 PyObject
*key
= a
->ma_table
[i
].me_key
;
1396 /* temporarily bump aval's refcount to ensure it stays
1397 alive until we're done with it */
1399 bval
= PyDict_GetItem((PyObject
*)b
, key
);
1404 cmp
= PyObject_RichCompareBool(aval
, bval
, Py_EQ
);
1406 if (cmp
<= 0) /* error or not equal */
1414 dict_richcompare(PyObject
*v
, PyObject
*w
, int op
)
1419 if (!PyDict_Check(v
) || !PyDict_Check(w
)) {
1420 res
= Py_NotImplemented
;
1422 else if (op
== Py_EQ
|| op
== Py_NE
) {
1423 cmp
= dict_equal((dictobject
*)v
, (dictobject
*)w
);
1426 res
= (cmp
== (op
== Py_EQ
)) ? Py_True
: Py_False
;
1429 res
= Py_NotImplemented
;
1435 dict_has_key(register dictobject
*mp
, PyObject
*key
)
1440 if (!PyString_CheckExact(key
) ||
1441 (hash
= ((PyStringObject
*) key
)->ob_shash
) == -1)
1444 hash
= PyObject_Hash(key
);
1448 ok
= (mp
->ma_lookup
)(mp
, key
, hash
)->me_value
!= NULL
;
1449 return PyInt_FromLong(ok
);
1453 dict_get(register dictobject
*mp
, PyObject
*args
)
1456 PyObject
*failobj
= Py_None
;
1457 PyObject
*val
= NULL
;
1460 if (!PyArg_ParseTuple(args
, "O|O:get", &key
, &failobj
))
1464 if (!PyString_CheckExact(key
) ||
1465 (hash
= ((PyStringObject
*) key
)->ob_shash
) == -1)
1468 hash
= PyObject_Hash(key
);
1472 val
= (mp
->ma_lookup
)(mp
, key
, hash
)->me_value
;
1482 dict_setdefault(register dictobject
*mp
, PyObject
*args
)
1485 PyObject
*failobj
= Py_None
;
1486 PyObject
*val
= NULL
;
1489 if (!PyArg_ParseTuple(args
, "O|O:setdefault", &key
, &failobj
))
1493 if (!PyString_CheckExact(key
) ||
1494 (hash
= ((PyStringObject
*) key
)->ob_shash
) == -1)
1497 hash
= PyObject_Hash(key
);
1501 val
= (mp
->ma_lookup
)(mp
, key
, hash
)->me_value
;
1504 if (PyDict_SetItem((PyObject
*)mp
, key
, failobj
))
1513 dict_clear(register dictobject
*mp
)
1515 PyDict_Clear((PyObject
*)mp
);
1521 dict_popitem(dictobject
*mp
)
1527 /* Allocate the result tuple before checking the size. Believe it
1528 * or not, this allocation could trigger a garbage collection which
1529 * could empty the dict, so if we checked the size first and that
1530 * happened, the result would be an infinite loop (searching for an
1531 * entry that no longer exists). Note that the usual popitem()
1532 * idiom is "while d: k, v = d.popitem()". so needing to throw the
1533 * tuple away if the dict *is* empty isn't a significant
1534 * inefficiency -- possible, but unlikely in practice.
1536 res
= PyTuple_New(2);
1539 if (mp
->ma_used
== 0) {
1541 PyErr_SetString(PyExc_KeyError
,
1542 "popitem(): dictionary is empty");
1545 /* Set ep to "the first" dict entry with a value. We abuse the hash
1546 * field of slot 0 to hold a search finger:
1547 * If slot 0 has a value, use slot 0.
1548 * Else slot 0 is being used to hold a search finger,
1549 * and we use its hash value as the first index to look.
1551 ep
= &mp
->ma_table
[0];
1552 if (ep
->me_value
== NULL
) {
1553 i
= (int)ep
->me_hash
;
1554 /* The hash field may be a real hash value, or it may be a
1555 * legit search finger, or it may be a once-legit search
1556 * finger that's out of bounds now because it wrapped around
1557 * or the table shrunk -- simply make sure it's in bounds now.
1559 if (i
> mp
->ma_mask
|| i
< 1)
1560 i
= 1; /* skip slot 0 */
1561 while ((ep
= &mp
->ma_table
[i
])->me_value
== NULL
) {
1563 if (i
> mp
->ma_mask
)
1567 PyTuple_SET_ITEM(res
, 0, ep
->me_key
);
1568 PyTuple_SET_ITEM(res
, 1, ep
->me_value
);
1571 ep
->me_value
= NULL
;
1573 assert(mp
->ma_table
[0].me_value
== NULL
);
1574 mp
->ma_table
[0].me_hash
= i
+ 1; /* next place to start */
1579 dict_traverse(PyObject
*op
, visitproc visit
, void *arg
)
1585 while (PyDict_Next(op
, &i
, &pk
, &pv
)) {
1586 err
= visit(pk
, arg
);
1589 err
= visit(pv
, arg
);
1597 dict_tp_clear(PyObject
*op
)
1604 staticforward PyObject
*dictiter_new(dictobject
*, binaryfunc
);
1607 select_key(PyObject
*key
, PyObject
*value
)
1614 select_value(PyObject
*key
, PyObject
*value
)
1621 select_item(PyObject
*key
, PyObject
*value
)
1623 PyObject
*res
= PyTuple_New(2);
1628 PyTuple_SET_ITEM(res
, 0, key
);
1629 PyTuple_SET_ITEM(res
, 1, value
);
1635 dict_iterkeys(dictobject
*dict
)
1637 return dictiter_new(dict
, select_key
);
1641 dict_itervalues(dictobject
*dict
)
1643 return dictiter_new(dict
, select_value
);
1647 dict_iteritems(dictobject
*dict
)
1649 return dictiter_new(dict
, select_item
);
1653 static char has_key__doc__
[] =
1654 "D.has_key(k) -> 1 if D has a key k, else 0";
1656 static char get__doc__
[] =
1657 "D.get(k[,d]) -> D[k] if D.has_key(k), else d. d defaults to None.";
1659 static char setdefault_doc__
[] =
1660 "D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if not D.has_key(k)";
1662 static char popitem__doc__
[] =
1663 "D.popitem() -> (k, v), remove and return some (key, value) pair as a\n\
1664 2-tuple; but raise KeyError if D is empty";
1666 static char keys__doc__
[] =
1667 "D.keys() -> list of D's keys";
1669 static char items__doc__
[] =
1670 "D.items() -> list of D's (key, value) pairs, as 2-tuples";
1672 static char values__doc__
[] =
1673 "D.values() -> list of D's values";
1675 static char update__doc__
[] =
1676 "D.update(E) -> None. Update D from E: for k in E.keys(): D[k] = E[k]";
1678 static char clear__doc__
[] =
1679 "D.clear() -> None. Remove all items from D.";
1681 static char copy__doc__
[] =
1682 "D.copy() -> a shallow copy of D";
1684 static char iterkeys__doc__
[] =
1685 "D.iterkeys() -> an iterator over the keys of D";
1687 static char itervalues__doc__
[] =
1688 "D.itervalues() -> an iterator over the values of D";
1690 static char iteritems__doc__
[] =
1691 "D.iteritems() -> an iterator over the (key, value) items of D";
1693 static PyMethodDef mapp_methods
[] = {
1694 {"has_key", (PyCFunction
)dict_has_key
, METH_O
,
1696 {"get", (PyCFunction
)dict_get
, METH_VARARGS
,
1698 {"setdefault", (PyCFunction
)dict_setdefault
, METH_VARARGS
,
1700 {"popitem", (PyCFunction
)dict_popitem
, METH_NOARGS
,
1702 {"keys", (PyCFunction
)dict_keys
, METH_NOARGS
,
1704 {"items", (PyCFunction
)dict_items
, METH_NOARGS
,
1706 {"values", (PyCFunction
)dict_values
, METH_NOARGS
,
1708 {"update", (PyCFunction
)dict_update
, METH_O
,
1710 {"clear", (PyCFunction
)dict_clear
, METH_NOARGS
,
1712 {"copy", (PyCFunction
)dict_copy
, METH_NOARGS
,
1714 {"iterkeys", (PyCFunction
)dict_iterkeys
, METH_NOARGS
,
1716 {"itervalues", (PyCFunction
)dict_itervalues
, METH_NOARGS
,
1718 {"iteritems", (PyCFunction
)dict_iteritems
, METH_NOARGS
,
1720 {NULL
, NULL
} /* sentinel */
1724 dict_contains(dictobject
*mp
, PyObject
*key
)
1729 if (!PyString_CheckExact(key
) ||
1730 (hash
= ((PyStringObject
*) key
)->ob_shash
) == -1)
1733 hash
= PyObject_Hash(key
);
1737 return (mp
->ma_lookup
)(mp
, key
, hash
)->me_value
!= NULL
;
1740 /* Hack to implement "key in dict" */
1741 static PySequenceMethods dict_as_sequence
= {
1747 0, /* sq_ass_item */
1748 0, /* sq_ass_slice */
1749 (objobjproc
)dict_contains
, /* sq_contains */
1750 0, /* sq_inplace_concat */
1751 0, /* sq_inplace_repeat */
1755 dict_new(PyTypeObject
*type
, PyObject
*args
, PyObject
*kwds
)
1759 assert(type
!= NULL
&& type
->tp_alloc
!= NULL
);
1760 self
= type
->tp_alloc(type
, 0);
1762 PyDictObject
*d
= (PyDictObject
*)self
;
1763 /* It's guaranteed that tp->alloc zeroed out the struct. */
1764 assert(d
->ma_table
== NULL
&& d
->ma_fill
== 0 && d
->ma_used
== 0);
1765 INIT_NONZERO_DICT_SLOTS(d
);
1766 d
->ma_lookup
= lookdict_string
;
1767 #ifdef SHOW_CONVERSION_COUNTS
1775 dict_init(PyObject
*self
, PyObject
*args
, PyObject
*kwds
)
1777 PyObject
*arg
= NULL
;
1778 static char *kwlist
[] = {"items", 0};
1781 if (!PyArg_ParseTupleAndKeywords(args
, kwds
, "|O:dict",
1785 else if (arg
!= NULL
) {
1786 if (PyObject_HasAttrString(arg
, "keys"))
1787 result
= PyDict_Merge(self
, arg
, 1);
1789 result
= PyDict_MergeFromSeq2(self
, arg
, 1);
1795 dict_nohash(PyObject
*self
)
1797 PyErr_SetString(PyExc_TypeError
, "dict objects are unhashable");
1802 dict_iter(dictobject
*dict
)
1804 return dictiter_new(dict
, select_key
);
1807 static char dictionary_doc
[] =
1808 "dict() -> new empty dictionary.\n"
1809 "dict(mapping) -> new dictionary initialized from a mapping object's\n"
1810 " (key, value) pairs.\n"
1811 "dict(seq) -> new dictionary initialized as if via:\n"
1813 " for k, v in seq:\n"
1816 PyTypeObject PyDict_Type
= {
1817 PyObject_HEAD_INIT(&PyType_Type
)
1822 (destructor
)dict_dealloc
, /* tp_dealloc */
1823 (printfunc
)dict_print
, /* tp_print */
1826 (cmpfunc
)dict_compare
, /* tp_compare */
1827 (reprfunc
)dict_repr
, /* tp_repr */
1828 0, /* tp_as_number */
1829 &dict_as_sequence
, /* tp_as_sequence */
1830 &dict_as_mapping
, /* tp_as_mapping */
1831 dict_nohash
, /* tp_hash */
1834 PyObject_GenericGetAttr
, /* tp_getattro */
1835 0, /* tp_setattro */
1836 0, /* tp_as_buffer */
1837 Py_TPFLAGS_DEFAULT
| Py_TPFLAGS_HAVE_GC
|
1838 Py_TPFLAGS_BASETYPE
, /* tp_flags */
1839 dictionary_doc
, /* tp_doc */
1840 (traverseproc
)dict_traverse
, /* tp_traverse */
1841 (inquiry
)dict_tp_clear
, /* tp_clear */
1842 dict_richcompare
, /* tp_richcompare */
1843 0, /* tp_weaklistoffset */
1844 (getiterfunc
)dict_iter
, /* tp_iter */
1845 0, /* tp_iternext */
1846 mapp_methods
, /* tp_methods */
1851 0, /* tp_descr_get */
1852 0, /* tp_descr_set */
1853 0, /* tp_dictoffset */
1854 (initproc
)dict_init
, /* tp_init */
1855 PyType_GenericAlloc
, /* tp_alloc */
1856 dict_new
, /* tp_new */
1857 _PyObject_GC_Del
, /* tp_free */
1860 /* For backward compatibility with old dictionary interface */
1863 PyDict_GetItemString(PyObject
*v
, char *key
)
1866 kv
= PyString_FromString(key
);
1869 rv
= PyDict_GetItem(v
, kv
);
1875 PyDict_SetItemString(PyObject
*v
, char *key
, PyObject
*item
)
1879 kv
= PyString_FromString(key
);
1882 PyString_InternInPlace(&kv
); /* XXX Should we really? */
1883 err
= PyDict_SetItem(v
, kv
, item
);
1889 PyDict_DelItemString(PyObject
*v
, char *key
)
1893 kv
= PyString_FromString(key
);
1896 err
= PyDict_DelItem(v
, kv
);
1901 /* Dictionary iterator type */
1903 extern PyTypeObject PyDictIter_Type
; /* Forward */
1907 dictobject
*di_dict
;
1910 binaryfunc di_select
;
1914 dictiter_new(dictobject
*dict
, binaryfunc select
)
1917 di
= PyObject_NEW(dictiterobject
, &PyDictIter_Type
);
1922 di
->di_used
= dict
->ma_used
;
1924 di
->di_select
= select
;
1925 return (PyObject
*)di
;
1929 dictiter_dealloc(dictiterobject
*di
)
1931 Py_DECREF(di
->di_dict
);
1936 dictiter_next(dictiterobject
*di
, PyObject
*args
)
1938 PyObject
*key
, *value
;
1940 if (di
->di_used
!= di
->di_dict
->ma_used
) {
1941 PyErr_SetString(PyExc_RuntimeError
,
1942 "dictionary changed size during iteration");
1945 if (PyDict_Next((PyObject
*)(di
->di_dict
), &di
->di_pos
, &key
, &value
)) {
1946 return (*di
->di_select
)(key
, value
);
1948 PyErr_SetObject(PyExc_StopIteration
, Py_None
);
1953 dictiter_getiter(PyObject
*it
)
1959 static PyMethodDef dictiter_methods
[] = {
1960 {"next", (PyCFunction
)dictiter_next
, METH_VARARGS
,
1961 "it.next() -- get the next value, or raise StopIteration"},
1962 {NULL
, NULL
} /* sentinel */
1965 static PyObject
*dictiter_iternext(dictiterobject
*di
)
1967 PyObject
*key
, *value
;
1969 if (di
->di_used
!= di
->di_dict
->ma_used
) {
1970 PyErr_SetString(PyExc_RuntimeError
,
1971 "dictionary changed size during iteration");
1974 if (PyDict_Next((PyObject
*)(di
->di_dict
), &di
->di_pos
, &key
, &value
)) {
1975 return (*di
->di_select
)(key
, value
);
1980 PyTypeObject PyDictIter_Type
= {
1981 PyObject_HEAD_INIT(&PyType_Type
)
1983 "dictionary-iterator", /* tp_name */
1984 sizeof(dictiterobject
), /* tp_basicsize */
1985 0, /* tp_itemsize */
1987 (destructor
)dictiter_dealloc
, /* tp_dealloc */
1993 0, /* tp_as_number */
1994 0, /* tp_as_sequence */
1995 0, /* tp_as_mapping */
1999 PyObject_GenericGetAttr
, /* tp_getattro */
2000 0, /* tp_setattro */
2001 0, /* tp_as_buffer */
2002 Py_TPFLAGS_DEFAULT
, /* tp_flags */
2004 0, /* tp_traverse */
2006 0, /* tp_richcompare */
2007 0, /* tp_weaklistoffset */
2008 (getiterfunc
)dictiter_getiter
, /* tp_iter */
2009 (iternextfunc
)dictiter_iternext
, /* tp_iternext */
2010 dictiter_methods
, /* tp_methods */
2015 0, /* tp_descr_get */
2016 0, /* tp_descr_set */