Merged release21-maint changes.
[python/dscho.git] / Include / object.h
blob18bc34f31526493164059aa270669d3e37516e93
1 #ifndef Py_OBJECT_H
2 #define Py_OBJECT_H
3 #ifdef __cplusplus
4 extern "C" {
5 #endif
8 /* Object and type object interface */
11 Objects are structures allocated on the heap. Special rules apply to
12 the use of objects to ensure they are properly garbage-collected.
13 Objects are never allocated statically or on the stack; they must be
14 accessed through special macros and functions only. (Type objects are
15 exceptions to the first rule; the standard types are represented by
16 statically initialized type objects.)
18 An object has a 'reference count' that is increased or decreased when a
19 pointer to the object is copied or deleted; when the reference count
20 reaches zero there are no references to the object left and it can be
21 removed from the heap.
23 An object has a 'type' that determines what it represents and what kind
24 of data it contains. An object's type is fixed when it is created.
25 Types themselves are represented as objects; an object contains a
26 pointer to the corresponding type object. The type itself has a type
27 pointer pointing to the object representing the type 'type', which
28 contains a pointer to itself!).
30 Objects do not float around in memory; once allocated an object keeps
31 the same size and address. Objects that must hold variable-size data
32 can contain pointers to variable-size parts of the object. Not all
33 objects of the same type have the same size; but the size cannot change
34 after allocation. (These restrictions are made so a reference to an
35 object can be simply a pointer -- moving an object would require
36 updating all the pointers, and changing an object's size would require
37 moving it if there was another object right next to it.)
39 Objects are always accessed through pointers of the type 'PyObject *'.
40 The type 'PyObject' is a structure that only contains the reference count
41 and the type pointer. The actual memory allocated for an object
42 contains other data that can only be accessed after casting the pointer
43 to a pointer to a longer structure type. This longer type must start
44 with the reference count and type fields; the macro PyObject_HEAD should be
45 used for this (to accommodate for future changes). The implementation
46 of a particular object type can cast the object pointer to the proper
47 type and back.
49 A standard interface exists for objects that contain an array of items
50 whose size is determined when the object is allocated.
53 #ifdef Py_DEBUG
55 /* Turn on heavy reference debugging */
56 #define Py_TRACE_REFS
58 /* Turn on reference counting */
59 #define Py_REF_DEBUG
61 #endif /* Py_DEBUG */
63 #ifdef Py_TRACE_REFS
64 #define PyObject_HEAD \
65 struct _object *_ob_next, *_ob_prev; \
66 int ob_refcnt; \
67 struct _typeobject *ob_type;
68 #define PyObject_HEAD_INIT(type) 0, 0, 1, type,
69 #else /* !Py_TRACE_REFS */
70 #define PyObject_HEAD \
71 int ob_refcnt; \
72 struct _typeobject *ob_type;
73 #define PyObject_HEAD_INIT(type) 1, type,
74 #endif /* !Py_TRACE_REFS */
76 #define PyObject_VAR_HEAD \
77 PyObject_HEAD \
78 int ob_size; /* Number of items in variable part */
80 typedef struct _object {
81 PyObject_HEAD
82 } PyObject;
84 typedef struct {
85 PyObject_VAR_HEAD
86 } PyVarObject;
90 Type objects contain a string containing the type name (to help somewhat
91 in debugging), the allocation parameters (see newobj() and newvarobj()),
92 and methods for accessing objects of the type. Methods are optional,a
93 nil pointer meaning that particular kind of access is not available for
94 this type. The Py_DECREF() macro uses the tp_dealloc method without
95 checking for a nil pointer; it should always be implemented except if
96 the implementation can guarantee that the reference count will never
97 reach zero (e.g., for type objects).
99 NB: the methods for certain type groups are now contained in separate
100 method blocks.
103 typedef PyObject * (*unaryfunc)(PyObject *);
104 typedef PyObject * (*binaryfunc)(PyObject *, PyObject *);
105 typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *);
106 typedef int (*inquiry)(PyObject *);
107 typedef int (*coercion)(PyObject **, PyObject **);
108 typedef PyObject *(*intargfunc)(PyObject *, int);
109 typedef PyObject *(*intintargfunc)(PyObject *, int, int);
110 typedef int(*intobjargproc)(PyObject *, int, PyObject *);
111 typedef int(*intintobjargproc)(PyObject *, int, int, PyObject *);
112 typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *);
113 typedef int (*getreadbufferproc)(PyObject *, int, void **);
114 typedef int (*getwritebufferproc)(PyObject *, int, void **);
115 typedef int (*getsegcountproc)(PyObject *, int *);
116 typedef int (*getcharbufferproc)(PyObject *, int, const char **);
117 typedef int (*objobjproc)(PyObject *, PyObject *);
118 typedef int (*visitproc)(PyObject *, void *);
119 typedef int (*traverseproc)(PyObject *, visitproc, void *);
121 typedef struct {
122 /* For numbers without flag bit Py_TPFLAGS_CHECKTYPES set, all
123 arguments are guaranteed to be of the object's type (modulo
124 coercion hacks that is -- i.e. if the type's coercion function
125 returns other types, then these are allowed as well). Numbers that
126 have the Py_TPFLAGS_CHECKTYPES flag bit set should check *both*
127 arguments for proper type and implement the necessary conversions
128 in the slot functions themselves. */
130 binaryfunc nb_add;
131 binaryfunc nb_subtract;
132 binaryfunc nb_multiply;
133 binaryfunc nb_divide;
134 binaryfunc nb_remainder;
135 binaryfunc nb_divmod;
136 ternaryfunc nb_power;
137 unaryfunc nb_negative;
138 unaryfunc nb_positive;
139 unaryfunc nb_absolute;
140 inquiry nb_nonzero;
141 unaryfunc nb_invert;
142 binaryfunc nb_lshift;
143 binaryfunc nb_rshift;
144 binaryfunc nb_and;
145 binaryfunc nb_xor;
146 binaryfunc nb_or;
147 coercion nb_coerce;
148 unaryfunc nb_int;
149 unaryfunc nb_long;
150 unaryfunc nb_float;
151 unaryfunc nb_oct;
152 unaryfunc nb_hex;
153 binaryfunc nb_inplace_add;
154 binaryfunc nb_inplace_subtract;
155 binaryfunc nb_inplace_multiply;
156 binaryfunc nb_inplace_divide;
157 binaryfunc nb_inplace_remainder;
158 ternaryfunc nb_inplace_power;
159 binaryfunc nb_inplace_lshift;
160 binaryfunc nb_inplace_rshift;
161 binaryfunc nb_inplace_and;
162 binaryfunc nb_inplace_xor;
163 binaryfunc nb_inplace_or;
165 /* The following require the Py_TPFLAGS_HAVE_CLASS flag */
166 binaryfunc nb_floor_divide;
167 binaryfunc nb_true_divide;
168 binaryfunc nb_inplace_floor_divide;
169 binaryfunc nb_inplace_true_divide;
170 } PyNumberMethods;
172 typedef struct {
173 inquiry sq_length;
174 binaryfunc sq_concat;
175 intargfunc sq_repeat;
176 intargfunc sq_item;
177 intintargfunc sq_slice;
178 intobjargproc sq_ass_item;
179 intintobjargproc sq_ass_slice;
180 objobjproc sq_contains;
181 binaryfunc sq_inplace_concat;
182 intargfunc sq_inplace_repeat;
183 } PySequenceMethods;
185 typedef struct {
186 inquiry mp_length;
187 binaryfunc mp_subscript;
188 objobjargproc mp_ass_subscript;
189 } PyMappingMethods;
191 typedef struct {
192 getreadbufferproc bf_getreadbuffer;
193 getwritebufferproc bf_getwritebuffer;
194 getsegcountproc bf_getsegcount;
195 getcharbufferproc bf_getcharbuffer;
196 } PyBufferProcs;
199 typedef void (*destructor)(PyObject *);
200 typedef int (*printfunc)(PyObject *, FILE *, int);
201 typedef PyObject *(*getattrfunc)(PyObject *, char *);
202 typedef PyObject *(*getattrofunc)(PyObject *, PyObject *);
203 typedef int (*setattrfunc)(PyObject *, char *, PyObject *);
204 typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *);
205 typedef int (*cmpfunc)(PyObject *, PyObject *);
206 typedef PyObject *(*reprfunc)(PyObject *);
207 typedef long (*hashfunc)(PyObject *);
208 typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int);
209 typedef PyObject *(*getiterfunc) (PyObject *);
210 typedef PyObject *(*iternextfunc) (PyObject *);
211 typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *);
212 typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *);
213 typedef int (*initproc)(PyObject *, PyObject *, PyObject *);
214 typedef PyObject *(*newfunc)(struct _typeobject *, PyObject *, PyObject *);
215 typedef PyObject *(*allocfunc)(struct _typeobject *, int);
217 typedef struct _typeobject {
218 PyObject_VAR_HEAD
219 char *tp_name; /* For printing */
220 int tp_basicsize, tp_itemsize; /* For allocation */
222 /* Methods to implement standard operations */
224 destructor tp_dealloc;
225 printfunc tp_print;
226 getattrfunc tp_getattr;
227 setattrfunc tp_setattr;
228 cmpfunc tp_compare;
229 reprfunc tp_repr;
231 /* Method suites for standard classes */
233 PyNumberMethods *tp_as_number;
234 PySequenceMethods *tp_as_sequence;
235 PyMappingMethods *tp_as_mapping;
237 /* More standard operations (here for binary compatibility) */
239 hashfunc tp_hash;
240 ternaryfunc tp_call;
241 reprfunc tp_str;
242 getattrofunc tp_getattro;
243 setattrofunc tp_setattro;
245 /* Functions to access object as input/output buffer */
246 PyBufferProcs *tp_as_buffer;
248 /* Flags to define presence of optional/expanded features */
249 long tp_flags;
251 char *tp_doc; /* Documentation string */
253 /* call function for all accessible objects */
254 traverseproc tp_traverse;
256 /* delete references to contained objects */
257 inquiry tp_clear;
259 /* rich comparisons */
260 richcmpfunc tp_richcompare;
262 /* weak reference enabler */
263 long tp_weaklistoffset;
265 /* Iterators */
266 getiterfunc tp_iter;
267 iternextfunc tp_iternext;
269 /* Attribute descriptor and subclassing stuff */
270 struct PyMethodDef *tp_methods;
271 struct memberlist *tp_members;
272 struct getsetlist *tp_getset;
273 struct _typeobject *tp_base;
274 PyObject *tp_dict;
275 descrgetfunc tp_descr_get;
276 descrsetfunc tp_descr_set;
277 long tp_dictoffset;
278 initproc tp_init;
279 allocfunc tp_alloc;
280 newfunc tp_new;
281 destructor tp_free; /* Low-level free-memory routine */
282 PyObject *tp_bases;
283 PyObject *tp_mro; /* method resolution order */
284 PyObject *tp_defined;
286 #ifdef COUNT_ALLOCS
287 /* these must be last and never explicitly initialized */
288 int tp_allocs;
289 int tp_frees;
290 int tp_maxalloc;
291 struct _typeobject *tp_next;
292 #endif
293 } PyTypeObject;
296 /* Generic type check */
297 extern DL_IMPORT(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *);
298 #define PyObject_TypeCheck(ob, tp) \
299 ((ob)->ob_type == (tp) || PyType_IsSubtype((ob)->ob_type, (tp)))
301 extern DL_IMPORT(PyTypeObject) PyType_Type; /* Metatype */
302 extern DL_IMPORT(PyTypeObject) PyBaseObject_Type; /* Most base object type */
304 #define PyType_Check(op) PyObject_TypeCheck(op, &PyType_Type)
306 extern DL_IMPORT(int) PyType_Ready(PyTypeObject *);
307 extern DL_IMPORT(PyObject *) PyType_GenericAlloc(PyTypeObject *, int);
308 extern DL_IMPORT(PyObject *) PyType_GenericNew(PyTypeObject *,
309 PyObject *, PyObject *);
310 extern DL_IMPORT(PyObject *) _PyType_Lookup(PyTypeObject *, PyObject *);
312 /* Generic operations on objects */
313 extern DL_IMPORT(int) PyObject_Print(PyObject *, FILE *, int);
314 extern DL_IMPORT(void) _PyObject_Dump(PyObject *);
315 extern DL_IMPORT(PyObject *) PyObject_Repr(PyObject *);
316 extern DL_IMPORT(PyObject *) PyObject_Str(PyObject *);
317 extern DL_IMPORT(PyObject *) PyObject_Unicode(PyObject *);
318 extern DL_IMPORT(int) PyObject_Compare(PyObject *, PyObject *);
319 extern DL_IMPORT(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int);
320 extern DL_IMPORT(int) PyObject_RichCompareBool(PyObject *, PyObject *, int);
321 extern DL_IMPORT(PyObject *) PyObject_GetAttrString(PyObject *, char *);
322 extern DL_IMPORT(int) PyObject_SetAttrString(PyObject *, char *, PyObject *);
323 extern DL_IMPORT(int) PyObject_HasAttrString(PyObject *, char *);
324 extern DL_IMPORT(PyObject *) PyObject_GetAttr(PyObject *, PyObject *);
325 extern DL_IMPORT(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *);
326 extern DL_IMPORT(int) PyObject_HasAttr(PyObject *, PyObject *);
327 extern DL_IMPORT(PyObject **) _PyObject_GetDictPtr(PyObject *);
328 extern DL_IMPORT(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *);
329 extern DL_IMPORT(int) PyObject_GenericSetAttr(PyObject *,
330 PyObject *, PyObject *);
331 extern DL_IMPORT(long) PyObject_Hash(PyObject *);
332 extern DL_IMPORT(int) PyObject_IsTrue(PyObject *);
333 extern DL_IMPORT(int) PyObject_Not(PyObject *);
334 extern DL_IMPORT(int) PyCallable_Check(PyObject *);
335 extern DL_IMPORT(int) PyNumber_Coerce(PyObject **, PyObject **);
336 extern DL_IMPORT(int) PyNumber_CoerceEx(PyObject **, PyObject **);
338 extern DL_IMPORT(void) (*PyObject_ClearWeakRefs)(PyObject *);
340 /* Helpers for printing recursive container types */
341 extern DL_IMPORT(int) Py_ReprEnter(PyObject *);
342 extern DL_IMPORT(void) Py_ReprLeave(PyObject *);
344 /* Helpers for hash functions */
345 extern DL_IMPORT(long) _Py_HashDouble(double);
346 extern DL_IMPORT(long) _Py_HashPointer(void*);
348 /* Helper for passing objects to printf and the like */
349 #define PyObject_REPR(obj) PyString_AS_STRING(PyObject_Repr(obj))
351 /* Flag bits for printing: */
352 #define Py_PRINT_RAW 1 /* No string quotes etc. */
356 Type flags (tp_flags)
358 These flags are used to extend the type structure in a backwards-compatible
359 fashion. Extensions can use the flags to indicate (and test) when a given
360 type structure contains a new feature. The Python core will use these when
361 introducing new functionality between major revisions (to avoid mid-version
362 changes in the PYTHON_API_VERSION).
364 Arbitration of the flag bit positions will need to be coordinated among
365 all extension writers who publically release their extensions (this will
366 be fewer than you might expect!)..
368 Python 1.5.2 introduced the bf_getcharbuffer slot into PyBufferProcs.
370 Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value.
372 Code can use PyType_HasFeature(type_ob, flag_value) to test whether the
373 given type object has a specified feature.
377 /* PyBufferProcs contains bf_getcharbuffer */
378 #define Py_TPFLAGS_HAVE_GETCHARBUFFER (1L<<0)
380 /* PySequenceMethods contains sq_contains */
381 #define Py_TPFLAGS_HAVE_SEQUENCE_IN (1L<<1)
383 /* Objects which participate in garbage collection (see objimp.h) */
384 #ifdef WITH_CYCLE_GC
385 #define Py_TPFLAGS_GC (1L<<2)
386 #else
387 #define Py_TPFLAGS_GC 0
388 #endif
390 /* PySequenceMethods and PyNumberMethods contain in-place operators */
391 #define Py_TPFLAGS_HAVE_INPLACEOPS (1L<<3)
393 /* PyNumberMethods do their own coercion */
394 #define Py_TPFLAGS_CHECKTYPES (1L<<4)
396 /* tp_richcompare is defined */
397 #define Py_TPFLAGS_HAVE_RICHCOMPARE (1L<<5)
399 /* Objects which are weakly referencable if their tp_weaklistoffset is >0 */
400 #define Py_TPFLAGS_HAVE_WEAKREFS (1L<<6)
402 /* tp_iter is defined */
403 #define Py_TPFLAGS_HAVE_ITER (1L<<7)
405 /* New members introduced by Python 2.2 exist */
406 #define Py_TPFLAGS_HAVE_CLASS (1L<<8)
408 /* Set if the type object is dynamically allocated */
409 #define Py_TPFLAGS_HEAPTYPE (1L<<9)
411 /* Set if the type allows subclassing */
412 #define Py_TPFLAGS_BASETYPE (1L<<10)
414 /* Set if the type's __dict__ may change */
415 #define Py_TPFLAGS_DYNAMICTYPE (1L<<11)
417 /* Set if the type is 'ready' -- fully initialized */
418 #define Py_TPFLAGS_READY (1L<<12)
420 /* Set while the type is being 'readied', to prevent recursive ready calls */
421 #define Py_TPFLAGS_READYING (1L<<13)
423 #define Py_TPFLAGS_DEFAULT ( \
424 Py_TPFLAGS_HAVE_GETCHARBUFFER | \
425 Py_TPFLAGS_HAVE_SEQUENCE_IN | \
426 Py_TPFLAGS_HAVE_INPLACEOPS | \
427 Py_TPFLAGS_HAVE_RICHCOMPARE | \
428 Py_TPFLAGS_HAVE_WEAKREFS | \
429 Py_TPFLAGS_HAVE_ITER | \
430 Py_TPFLAGS_HAVE_CLASS | \
433 #define PyType_HasFeature(t,f) (((t)->tp_flags & (f)) != 0)
437 The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement
438 reference counts. Py_DECREF calls the object's deallocator function; for
439 objects that don't contain references to other objects or heap memory
440 this can be the standard function free(). Both macros can be used
441 wherever a void expression is allowed. The argument shouldn't be a
442 NIL pointer. The macro _Py_NewReference(op) is used only to initialize
443 reference counts to 1; it is defined here for convenience.
445 We assume that the reference count field can never overflow; this can
446 be proven when the size of the field is the same as the pointer size
447 but even with a 16-bit reference count field it is pretty unlikely so
448 we ignore the possibility. (If you are paranoid, make it a long.)
450 Type objects should never be deallocated; the type pointer in an object
451 is not considered to be a reference to the type object, to save
452 complications in the deallocation function. (This is actually a
453 decision that's up to the implementer of each new type so if you want,
454 you can count such references to the type object.)
456 *** WARNING*** The Py_DECREF macro must have a side-effect-free argument
457 since it may evaluate its argument multiple times. (The alternative
458 would be to mace it a proper function or assign it to a global temporary
459 variable first, both of which are slower; and in a multi-threaded
460 environment the global variable trick is not safe.)
463 #ifdef Py_TRACE_REFS
464 #ifndef Py_REF_DEBUG
465 #define Py_REF_DEBUG
466 #endif
467 #endif
469 #ifdef Py_TRACE_REFS
470 extern DL_IMPORT(void) _Py_Dealloc(PyObject *);
471 extern DL_IMPORT(void) _Py_NewReference(PyObject *);
472 extern DL_IMPORT(void) _Py_ForgetReference(PyObject *);
473 extern DL_IMPORT(void) _Py_PrintReferences(FILE *);
474 extern DL_IMPORT(void) _Py_ResetReferences(void);
475 #endif
477 #ifndef Py_TRACE_REFS
478 #ifdef COUNT_ALLOCS
479 #define _Py_Dealloc(op) ((op)->ob_type->tp_frees++, (*(op)->ob_type->tp_dealloc)((PyObject *)(op)))
480 #define _Py_ForgetReference(op) ((op)->ob_type->tp_frees++)
481 #else /* !COUNT_ALLOCS */
482 #define _Py_Dealloc(op) (*(op)->ob_type->tp_dealloc)((PyObject *)(op))
483 #define _Py_ForgetReference(op) /*empty*/
484 #endif /* !COUNT_ALLOCS */
485 #endif /* !Py_TRACE_REFS */
487 #ifdef COUNT_ALLOCS
488 extern DL_IMPORT(void) inc_count(PyTypeObject *);
489 #endif
491 #ifdef Py_REF_DEBUG
493 extern DL_IMPORT(long) _Py_RefTotal;
495 #ifndef Py_TRACE_REFS
496 #ifdef COUNT_ALLOCS
497 #define _Py_NewReference(op) (inc_count((op)->ob_type), _Py_RefTotal++, (op)->ob_refcnt = 1)
498 #else
499 #define _Py_NewReference(op) (_Py_RefTotal++, (op)->ob_refcnt = 1)
500 #endif
501 #endif /* !Py_TRACE_REFS */
503 #define Py_INCREF(op) (_Py_RefTotal++, (op)->ob_refcnt++)
504 /* under Py_REF_DEBUG: also log negative ref counts after Py_DECREF() !! */
505 #define Py_DECREF(op) \
506 if (--_Py_RefTotal, 0 < (--((op)->ob_refcnt))) ; \
507 else if (0 == (op)->ob_refcnt) _Py_Dealloc( (PyObject*)(op)); \
508 else (void)fprintf( stderr, "%s:%i negative ref count %i\n", \
509 __FILE__, __LINE__, (op)->ob_refcnt)
510 #else /* !Py_REF_DEBUG */
512 #ifdef COUNT_ALLOCS
513 #define _Py_NewReference(op) (inc_count((op)->ob_type), (op)->ob_refcnt = 1)
514 #else
515 #define _Py_NewReference(op) ((op)->ob_refcnt = 1)
516 #endif
518 #define Py_INCREF(op) ((op)->ob_refcnt++)
519 #define Py_DECREF(op) \
520 if (--(op)->ob_refcnt != 0) \
522 else \
523 _Py_Dealloc((PyObject *)(op))
524 #endif /* !Py_REF_DEBUG */
526 /* Macros to use in case the object pointer may be NULL: */
528 #define Py_XINCREF(op) if ((op) == NULL) ; else Py_INCREF(op)
529 #define Py_XDECREF(op) if ((op) == NULL) ; else Py_DECREF(op)
532 _Py_NoneStruct is an object of undefined type which can be used in contexts
533 where NULL (nil) is not suitable (since NULL often means 'error').
535 Don't forget to apply Py_INCREF() when returning this value!!!
538 extern DL_IMPORT(PyObject) _Py_NoneStruct; /* Don't use this directly */
540 #define Py_None (&_Py_NoneStruct)
543 Py_NotImplemented is a singleton used to signal that an operation is
544 not implemented for a given type combination.
547 extern DL_IMPORT(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */
549 #define Py_NotImplemented (&_Py_NotImplementedStruct)
551 /* Rich comparison opcodes */
552 #define Py_LT 0
553 #define Py_LE 1
554 #define Py_EQ 2
555 #define Py_NE 3
556 #define Py_GT 4
557 #define Py_GE 5
560 A common programming style in Python requires the forward declaration
561 of static, initialized structures, e.g. for a type object that is used
562 by the functions whose address must be used in the initializer.
563 Some compilers (notably SCO ODT 3.0, I seem to remember early AIX as
564 well) botch this if you use the static keyword for both declarations
565 (they allocate two objects, and use the first, uninitialized one until
566 the second declaration is encountered). Therefore, the forward
567 declaration should use the 'forwardstatic' keyword. This expands to
568 static on most systems, but to extern on a few. The actual storage
569 and name will still be static because the second declaration is
570 static, so no linker visible symbols will be generated. (Standard C
571 compilers take offense to the extern forward declaration of a static
572 object, so I can't just put extern in all cases. :-( )
575 #ifdef BAD_STATIC_FORWARD
576 #define staticforward extern
577 #define statichere static
578 #else /* !BAD_STATIC_FORWARD */
579 #define staticforward static
580 #define statichere static
581 #endif /* !BAD_STATIC_FORWARD */
585 More conventions
586 ================
588 Argument Checking
589 -----------------
591 Functions that take objects as arguments normally don't check for nil
592 arguments, but they do check the type of the argument, and return an
593 error if the function doesn't apply to the type.
595 Failure Modes
596 -------------
598 Functions may fail for a variety of reasons, including running out of
599 memory. This is communicated to the caller in two ways: an error string
600 is set (see errors.h), and the function result differs: functions that
601 normally return a pointer return NULL for failure, functions returning
602 an integer return -1 (which could be a legal return value too!), and
603 other functions return 0 for success and -1 for failure.
604 Callers should always check for errors before using the result.
606 Reference Counts
607 ----------------
609 It takes a while to get used to the proper usage of reference counts.
611 Functions that create an object set the reference count to 1; such new
612 objects must be stored somewhere or destroyed again with Py_DECREF().
613 Functions that 'store' objects such as PyTuple_SetItem() and
614 PyDict_SetItemString()
615 don't increment the reference count of the object, since the most
616 frequent use is to store a fresh object. Functions that 'retrieve'
617 objects such as PyTuple_GetItem() and PyDict_GetItemString() also
618 don't increment
619 the reference count, since most frequently the object is only looked at
620 quickly. Thus, to retrieve an object and store it again, the caller
621 must call Py_INCREF() explicitly.
623 NOTE: functions that 'consume' a reference count like
624 PyList_SetItemString() even consume the reference if the object wasn't
625 stored, to simplify error handling.
627 It seems attractive to make other functions that take an object as
628 argument consume a reference count; however this may quickly get
629 confusing (even the current practice is already confusing). Consider
630 it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at
631 times.
635 trashcan
636 CT 2k0130
637 non-recursively destroy nested objects
639 CT 2k0223
640 redefinition for better locality and less overhead.
642 Objects that want to be recursion safe need to use
643 the macro's
644 Py_TRASHCAN_SAFE_BEGIN(name)
646 Py_TRASHCAN_SAFE_END(name)
647 surrounding their actual deallocation code.
649 It would be nice to do this using the thread state.
650 Also, we could do an exact stack measure then.
651 Unfortunately, deallocations also take place when
652 the thread state is undefined.
654 CT 2k0422 complete rewrite.
655 There is no need to allocate new objects.
656 Everything is done vialob_refcnt and ob_type now.
657 Adding support for free-threading should be easy, too.
660 #define PyTrash_UNWIND_LEVEL 50
662 #define Py_TRASHCAN_SAFE_BEGIN(op) \
664 ++_PyTrash_delete_nesting; \
665 if (_PyTrash_delete_nesting < PyTrash_UNWIND_LEVEL) { \
667 #define Py_TRASHCAN_SAFE_END(op) \
668 ;} \
669 else \
670 _PyTrash_deposit_object((PyObject*)op);\
671 --_PyTrash_delete_nesting; \
672 if (_PyTrash_delete_later && _PyTrash_delete_nesting <= 0) \
673 _PyTrash_destroy_chain(); \
676 extern DL_IMPORT(void) _PyTrash_deposit_object(PyObject*);
677 extern DL_IMPORT(void) _PyTrash_destroy_chain(void);
679 extern DL_IMPORT(int) _PyTrash_delete_nesting;
680 extern DL_IMPORT(PyObject *) _PyTrash_delete_later;
682 /* swap the "xx" to check the speed loss */
684 #define xxPy_TRASHCAN_SAFE_BEGIN(op)
685 #define xxPy_TRASHCAN_SAFE_END(op) ;
687 #ifdef __cplusplus
689 #endif
690 #endif /* !Py_OBJECT_H */