Whitespace normalization.
[python/dscho.git] / Lib / test / test_generators.py
blob0a763675fd5533b177c44aec37aa8333cf5bcca7
1 tutorial_tests = """
2 Let's try a simple generator:
4 >>> def f():
5 ... yield 1
6 ... yield 2
8 >>> for i in f():
9 ... print i
12 >>> g = f()
13 >>> g.next()
15 >>> g.next()
18 "Falling off the end" stops the generator:
20 >>> g.next()
21 Traceback (most recent call last):
22 File "<stdin>", line 1, in ?
23 File "<stdin>", line 2, in g
24 StopIteration
26 "return" also stops the generator:
28 >>> def f():
29 ... yield 1
30 ... return
31 ... yield 2 # never reached
32 ...
33 >>> g = f()
34 >>> g.next()
36 >>> g.next()
37 Traceback (most recent call last):
38 File "<stdin>", line 1, in ?
39 File "<stdin>", line 3, in f
40 StopIteration
41 >>> g.next() # once stopped, can't be resumed
42 Traceback (most recent call last):
43 File "<stdin>", line 1, in ?
44 StopIteration
46 "raise StopIteration" stops the generator too:
48 >>> def f():
49 ... yield 1
50 ... raise StopIteration
51 ... yield 2 # never reached
52 ...
53 >>> g = f()
54 >>> g.next()
56 >>> g.next()
57 Traceback (most recent call last):
58 File "<stdin>", line 1, in ?
59 StopIteration
60 >>> g.next()
61 Traceback (most recent call last):
62 File "<stdin>", line 1, in ?
63 StopIteration
65 However, they are not exactly equivalent:
67 >>> def g1():
68 ... try:
69 ... return
70 ... except:
71 ... yield 1
72 ...
73 >>> list(g1())
76 >>> def g2():
77 ... try:
78 ... raise StopIteration
79 ... except:
80 ... yield 42
81 >>> print list(g2())
82 [42]
84 This may be surprising at first:
86 >>> def g3():
87 ... try:
88 ... return
89 ... finally:
90 ... yield 1
91 ...
92 >>> list(g3())
93 [1]
95 Let's create an alternate range() function implemented as a generator:
97 >>> def yrange(n):
98 ... for i in range(n):
99 ... yield i
101 >>> list(yrange(5))
102 [0, 1, 2, 3, 4]
104 Generators always return to the most recent caller:
106 >>> def creator():
107 ... r = yrange(5)
108 ... print "creator", r.next()
109 ... return r
111 >>> def caller():
112 ... r = creator()
113 ... for i in r:
114 ... print "caller", i
116 >>> caller()
117 creator 0
118 caller 1
119 caller 2
120 caller 3
121 caller 4
123 Generators can call other generators:
125 >>> def zrange(n):
126 ... for i in yrange(n):
127 ... yield i
129 >>> list(zrange(5))
130 [0, 1, 2, 3, 4]
134 # The examples from PEP 255.
136 pep_tests = """
138 Specification: Yield
140 Restriction: A generator cannot be resumed while it is actively
141 running:
143 >>> def g():
144 ... i = me.next()
145 ... yield i
146 >>> me = g()
147 >>> me.next()
148 Traceback (most recent call last):
150 File "<string>", line 2, in g
151 ValueError: generator already executing
153 Specification: Return
155 Note that return isn't always equivalent to raising StopIteration: the
156 difference lies in how enclosing try/except constructs are treated.
157 For example,
159 >>> def f1():
160 ... try:
161 ... return
162 ... except:
163 ... yield 1
164 >>> print list(f1())
167 because, as in any function, return simply exits, but
169 >>> def f2():
170 ... try:
171 ... raise StopIteration
172 ... except:
173 ... yield 42
174 >>> print list(f2())
175 [42]
177 because StopIteration is captured by a bare "except", as is any
178 exception.
180 Specification: Generators and Exception Propagation
182 >>> def f():
183 ... return 1//0
184 >>> def g():
185 ... yield f() # the zero division exception propagates
186 ... yield 42 # and we'll never get here
187 >>> k = g()
188 >>> k.next()
189 Traceback (most recent call last):
190 File "<stdin>", line 1, in ?
191 File "<stdin>", line 2, in g
192 File "<stdin>", line 2, in f
193 ZeroDivisionError: integer division or modulo by zero
194 >>> k.next() # and the generator cannot be resumed
195 Traceback (most recent call last):
196 File "<stdin>", line 1, in ?
197 StopIteration
200 Specification: Try/Except/Finally
202 >>> def f():
203 ... try:
204 ... yield 1
205 ... try:
206 ... yield 2
207 ... 1//0
208 ... yield 3 # never get here
209 ... except ZeroDivisionError:
210 ... yield 4
211 ... yield 5
212 ... raise
213 ... except:
214 ... yield 6
215 ... yield 7 # the "raise" above stops this
216 ... except:
217 ... yield 8
218 ... yield 9
219 ... try:
220 ... x = 12
221 ... finally:
222 ... yield 10
223 ... yield 11
224 >>> print list(f())
225 [1, 2, 4, 5, 8, 9, 10, 11]
228 Guido's binary tree example.
230 >>> # A binary tree class.
231 >>> class Tree:
233 ... def __init__(self, label, left=None, right=None):
234 ... self.label = label
235 ... self.left = left
236 ... self.right = right
238 ... def __repr__(self, level=0, indent=" "):
239 ... s = level*indent + repr(self.label)
240 ... if self.left:
241 ... s = s + "\\n" + self.left.__repr__(level+1, indent)
242 ... if self.right:
243 ... s = s + "\\n" + self.right.__repr__(level+1, indent)
244 ... return s
246 ... def __iter__(self):
247 ... return inorder(self)
249 >>> # Create a Tree from a list.
250 >>> def tree(list):
251 ... n = len(list)
252 ... if n == 0:
253 ... return []
254 ... i = n // 2
255 ... return Tree(list[i], tree(list[:i]), tree(list[i+1:]))
257 >>> # Show it off: create a tree.
258 >>> t = tree("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
260 >>> # A recursive generator that generates Tree labels in in-order.
261 >>> def inorder(t):
262 ... if t:
263 ... for x in inorder(t.left):
264 ... yield x
265 ... yield t.label
266 ... for x in inorder(t.right):
267 ... yield x
269 >>> # Show it off: create a tree.
270 ... t = tree("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
271 ... # Print the nodes of the tree in in-order.
272 ... for x in t:
273 ... print x,
274 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
276 >>> # A non-recursive generator.
277 >>> def inorder(node):
278 ... stack = []
279 ... while node:
280 ... while node.left:
281 ... stack.append(node)
282 ... node = node.left
283 ... yield node.label
284 ... while not node.right:
285 ... try:
286 ... node = stack.pop()
287 ... except IndexError:
288 ... return
289 ... yield node.label
290 ... node = node.right
292 >>> # Exercise the non-recursive generator.
293 >>> for x in t:
294 ... print x,
295 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
299 # Examples from Iterator-List and Python-Dev and c.l.py.
301 email_tests = """
303 The difference between yielding None and returning it.
305 >>> def g():
306 ... for i in range(3):
307 ... yield None
308 ... yield None
309 ... return
310 >>> list(g())
311 [None, None, None, None]
313 Ensure that explicitly raising StopIteration acts like any other exception
314 in try/except, not like a return.
316 >>> def g():
317 ... yield 1
318 ... try:
319 ... raise StopIteration
320 ... except:
321 ... yield 2
322 ... yield 3
323 >>> list(g())
324 [1, 2, 3]
326 Next one was posted to c.l.py.
328 >>> def gcomb(x, k):
329 ... "Generate all combinations of k elements from list x."
331 ... if k > len(x):
332 ... return
333 ... if k == 0:
334 ... yield []
335 ... else:
336 ... first, rest = x[0], x[1:]
337 ... # A combination does or doesn't contain first.
338 ... # If it does, the remainder is a k-1 comb of rest.
339 ... for c in gcomb(rest, k-1):
340 ... c.insert(0, first)
341 ... yield c
342 ... # If it doesn't contain first, it's a k comb of rest.
343 ... for c in gcomb(rest, k):
344 ... yield c
346 >>> seq = range(1, 5)
347 >>> for k in range(len(seq) + 2):
348 ... print "%d-combs of %s:" % (k, seq)
349 ... for c in gcomb(seq, k):
350 ... print " ", c
351 0-combs of [1, 2, 3, 4]:
353 1-combs of [1, 2, 3, 4]:
358 2-combs of [1, 2, 3, 4]:
359 [1, 2]
360 [1, 3]
361 [1, 4]
362 [2, 3]
363 [2, 4]
364 [3, 4]
365 3-combs of [1, 2, 3, 4]:
366 [1, 2, 3]
367 [1, 2, 4]
368 [1, 3, 4]
369 [2, 3, 4]
370 4-combs of [1, 2, 3, 4]:
371 [1, 2, 3, 4]
372 5-combs of [1, 2, 3, 4]:
374 From the Iterators list, about the types of these things.
376 >>> def g():
377 ... yield 1
379 >>> type(g)
380 <type 'function'>
381 >>> i = g()
382 >>> type(i)
383 <type 'generator'>
384 >>> [s for s in dir(i) if not s.startswith('_')]
385 ['gi_frame', 'gi_running', 'next']
386 >>> print i.next.__doc__
387 x.next() -> the next value, or raise StopIteration
388 >>> iter(i) is i
389 True
390 >>> import types
391 >>> isinstance(i, types.GeneratorType)
392 True
394 And more, added later.
396 >>> i.gi_running
398 >>> type(i.gi_frame)
399 <type 'frame'>
400 >>> i.gi_running = 42
401 Traceback (most recent call last):
403 TypeError: readonly attribute
404 >>> def g():
405 ... yield me.gi_running
406 >>> me = g()
407 >>> me.gi_running
409 >>> me.next()
411 >>> me.gi_running
414 A clever union-find implementation from c.l.py, due to David Eppstein.
415 Sent: Friday, June 29, 2001 12:16 PM
416 To: python-list@python.org
417 Subject: Re: PEP 255: Simple Generators
419 >>> class disjointSet:
420 ... def __init__(self, name):
421 ... self.name = name
422 ... self.parent = None
423 ... self.generator = self.generate()
425 ... def generate(self):
426 ... while not self.parent:
427 ... yield self
428 ... for x in self.parent.generator:
429 ... yield x
431 ... def find(self):
432 ... return self.generator.next()
434 ... def union(self, parent):
435 ... if self.parent:
436 ... raise ValueError("Sorry, I'm not a root!")
437 ... self.parent = parent
439 ... def __str__(self):
440 ... return self.name
442 >>> names = "ABCDEFGHIJKLM"
443 >>> sets = [disjointSet(name) for name in names]
444 >>> roots = sets[:]
446 >>> import random
447 >>> gen = random.WichmannHill(42)
448 >>> while 1:
449 ... for s in sets:
450 ... print "%s->%s" % (s, s.find()),
451 ... print
452 ... if len(roots) > 1:
453 ... s1 = gen.choice(roots)
454 ... roots.remove(s1)
455 ... s2 = gen.choice(roots)
456 ... s1.union(s2)
457 ... print "merged", s1, "into", s2
458 ... else:
459 ... break
460 A->A B->B C->C D->D E->E F->F G->G H->H I->I J->J K->K L->L M->M
461 merged D into G
462 A->A B->B C->C D->G E->E F->F G->G H->H I->I J->J K->K L->L M->M
463 merged C into F
464 A->A B->B C->F D->G E->E F->F G->G H->H I->I J->J K->K L->L M->M
465 merged L into A
466 A->A B->B C->F D->G E->E F->F G->G H->H I->I J->J K->K L->A M->M
467 merged H into E
468 A->A B->B C->F D->G E->E F->F G->G H->E I->I J->J K->K L->A M->M
469 merged B into E
470 A->A B->E C->F D->G E->E F->F G->G H->E I->I J->J K->K L->A M->M
471 merged J into G
472 A->A B->E C->F D->G E->E F->F G->G H->E I->I J->G K->K L->A M->M
473 merged E into G
474 A->A B->G C->F D->G E->G F->F G->G H->G I->I J->G K->K L->A M->M
475 merged M into G
476 A->A B->G C->F D->G E->G F->F G->G H->G I->I J->G K->K L->A M->G
477 merged I into K
478 A->A B->G C->F D->G E->G F->F G->G H->G I->K J->G K->K L->A M->G
479 merged K into A
480 A->A B->G C->F D->G E->G F->F G->G H->G I->A J->G K->A L->A M->G
481 merged F into A
482 A->A B->G C->A D->G E->G F->A G->G H->G I->A J->G K->A L->A M->G
483 merged A into G
484 A->G B->G C->G D->G E->G F->G G->G H->G I->G J->G K->G L->G M->G
486 # Emacs turd '
488 # Fun tests (for sufficiently warped notions of "fun").
490 fun_tests = """
492 Build up to a recursive Sieve of Eratosthenes generator.
494 >>> def firstn(g, n):
495 ... return [g.next() for i in range(n)]
497 >>> def intsfrom(i):
498 ... while 1:
499 ... yield i
500 ... i += 1
502 >>> firstn(intsfrom(5), 7)
503 [5, 6, 7, 8, 9, 10, 11]
505 >>> def exclude_multiples(n, ints):
506 ... for i in ints:
507 ... if i % n:
508 ... yield i
510 >>> firstn(exclude_multiples(3, intsfrom(1)), 6)
511 [1, 2, 4, 5, 7, 8]
513 >>> def sieve(ints):
514 ... prime = ints.next()
515 ... yield prime
516 ... not_divisible_by_prime = exclude_multiples(prime, ints)
517 ... for p in sieve(not_divisible_by_prime):
518 ... yield p
520 >>> primes = sieve(intsfrom(2))
521 >>> firstn(primes, 20)
522 [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71]
525 Another famous problem: generate all integers of the form
526 2**i * 3**j * 5**k
527 in increasing order, where i,j,k >= 0. Trickier than it may look at first!
528 Try writing it without generators, and correctly, and without generating
529 3 internal results for each result output.
531 >>> def times(n, g):
532 ... for i in g:
533 ... yield n * i
534 >>> firstn(times(10, intsfrom(1)), 10)
535 [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
537 >>> def merge(g, h):
538 ... ng = g.next()
539 ... nh = h.next()
540 ... while 1:
541 ... if ng < nh:
542 ... yield ng
543 ... ng = g.next()
544 ... elif ng > nh:
545 ... yield nh
546 ... nh = h.next()
547 ... else:
548 ... yield ng
549 ... ng = g.next()
550 ... nh = h.next()
552 The following works, but is doing a whale of a lot of redundant work --
553 it's not clear how to get the internal uses of m235 to share a single
554 generator. Note that me_times2 (etc) each need to see every element in the
555 result sequence. So this is an example where lazy lists are more natural
556 (you can look at the head of a lazy list any number of times).
558 >>> def m235():
559 ... yield 1
560 ... me_times2 = times(2, m235())
561 ... me_times3 = times(3, m235())
562 ... me_times5 = times(5, m235())
563 ... for i in merge(merge(me_times2,
564 ... me_times3),
565 ... me_times5):
566 ... yield i
568 Don't print "too many" of these -- the implementation above is extremely
569 inefficient: each call of m235() leads to 3 recursive calls, and in
570 turn each of those 3 more, and so on, and so on, until we've descended
571 enough levels to satisfy the print stmts. Very odd: when I printed 5
572 lines of results below, this managed to screw up Win98's malloc in "the
573 usual" way, i.e. the heap grew over 4Mb so Win98 started fragmenting
574 address space, and it *looked* like a very slow leak.
576 >>> result = m235()
577 >>> for i in range(3):
578 ... print firstn(result, 15)
579 [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24]
580 [25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80]
581 [81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192]
583 Heh. Here's one way to get a shared list, complete with an excruciating
584 namespace renaming trick. The *pretty* part is that the times() and merge()
585 functions can be reused as-is, because they only assume their stream
586 arguments are iterable -- a LazyList is the same as a generator to times().
588 >>> class LazyList:
589 ... def __init__(self, g):
590 ... self.sofar = []
591 ... self.fetch = g.next
593 ... def __getitem__(self, i):
594 ... sofar, fetch = self.sofar, self.fetch
595 ... while i >= len(sofar):
596 ... sofar.append(fetch())
597 ... return sofar[i]
599 >>> def m235():
600 ... yield 1
601 ... # Gack: m235 below actually refers to a LazyList.
602 ... me_times2 = times(2, m235)
603 ... me_times3 = times(3, m235)
604 ... me_times5 = times(5, m235)
605 ... for i in merge(merge(me_times2,
606 ... me_times3),
607 ... me_times5):
608 ... yield i
610 Print as many of these as you like -- *this* implementation is memory-
611 efficient.
613 >>> m235 = LazyList(m235())
614 >>> for i in range(5):
615 ... print [m235[j] for j in range(15*i, 15*(i+1))]
616 [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24]
617 [25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80]
618 [81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192]
619 [200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384]
620 [400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675]
623 Ye olde Fibonacci generator, LazyList style.
625 >>> def fibgen(a, b):
627 ... def sum(g, h):
628 ... while 1:
629 ... yield g.next() + h.next()
631 ... def tail(g):
632 ... g.next() # throw first away
633 ... for x in g:
634 ... yield x
636 ... yield a
637 ... yield b
638 ... for s in sum(iter(fib),
639 ... tail(iter(fib))):
640 ... yield s
642 >>> fib = LazyList(fibgen(1, 2))
643 >>> firstn(iter(fib), 17)
644 [1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584]
647 # syntax_tests mostly provokes SyntaxErrors. Also fiddling with #if 0
648 # hackery.
650 syntax_tests = """
652 >>> def f():
653 ... return 22
654 ... yield 1
655 Traceback (most recent call last):
657 SyntaxError: 'return' with argument inside generator (<string>, line 2)
659 >>> def f():
660 ... yield 1
661 ... return 22
662 Traceback (most recent call last):
664 SyntaxError: 'return' with argument inside generator (<string>, line 3)
666 "return None" is not the same as "return" in a generator:
668 >>> def f():
669 ... yield 1
670 ... return None
671 Traceback (most recent call last):
673 SyntaxError: 'return' with argument inside generator (<string>, line 3)
675 This one is fine:
677 >>> def f():
678 ... yield 1
679 ... return
681 >>> def f():
682 ... try:
683 ... yield 1
684 ... finally:
685 ... pass
686 Traceback (most recent call last):
688 SyntaxError: 'yield' not allowed in a 'try' block with a 'finally' clause (<string>, line 3)
690 >>> def f():
691 ... try:
692 ... try:
693 ... 1//0
694 ... except ZeroDivisionError:
695 ... yield 666 # bad because *outer* try has finally
696 ... except:
697 ... pass
698 ... finally:
699 ... pass
700 Traceback (most recent call last):
702 SyntaxError: 'yield' not allowed in a 'try' block with a 'finally' clause (<string>, line 6)
704 But this is fine:
706 >>> def f():
707 ... try:
708 ... try:
709 ... yield 12
710 ... 1//0
711 ... except ZeroDivisionError:
712 ... yield 666
713 ... except:
714 ... try:
715 ... x = 12
716 ... finally:
717 ... yield 12
718 ... except:
719 ... return
720 >>> list(f())
721 [12, 666]
723 >>> def f():
724 ... yield
725 Traceback (most recent call last):
726 SyntaxError: invalid syntax
728 >>> def f():
729 ... if 0:
730 ... yield
731 Traceback (most recent call last):
732 SyntaxError: invalid syntax
734 >>> def f():
735 ... if 0:
736 ... yield 1
737 >>> type(f())
738 <type 'generator'>
740 >>> def f():
741 ... if "":
742 ... yield None
743 >>> type(f())
744 <type 'generator'>
746 >>> def f():
747 ... return
748 ... try:
749 ... if x==4:
750 ... pass
751 ... elif 0:
752 ... try:
753 ... 1//0
754 ... except SyntaxError:
755 ... pass
756 ... else:
757 ... if 0:
758 ... while 12:
759 ... x += 1
760 ... yield 2 # don't blink
761 ... f(a, b, c, d, e)
762 ... else:
763 ... pass
764 ... except:
765 ... x = 1
766 ... return
767 >>> type(f())
768 <type 'generator'>
770 >>> def f():
771 ... if 0:
772 ... def g():
773 ... yield 1
775 >>> type(f())
776 <type 'NoneType'>
778 >>> def f():
779 ... if 0:
780 ... class C:
781 ... def __init__(self):
782 ... yield 1
783 ... def f(self):
784 ... yield 2
785 >>> type(f())
786 <type 'NoneType'>
788 >>> def f():
789 ... if 0:
790 ... return
791 ... if 0:
792 ... yield 2
793 >>> type(f())
794 <type 'generator'>
797 >>> def f():
798 ... if 0:
799 ... lambda x: x # shouldn't trigger here
800 ... return # or here
801 ... def f(i):
802 ... return 2*i # or here
803 ... if 0:
804 ... return 3 # but *this* sucks (line 8)
805 ... if 0:
806 ... yield 2 # because it's a generator
807 Traceback (most recent call last):
808 SyntaxError: 'return' with argument inside generator (<string>, line 8)
810 This one caused a crash (see SF bug 567538):
812 >>> def f():
813 ... for i in range(3):
814 ... try:
815 ... continue
816 ... finally:
817 ... yield i
819 >>> g = f()
820 >>> print g.next()
822 >>> print g.next()
824 >>> print g.next()
826 >>> print g.next()
827 Traceback (most recent call last):
828 StopIteration
831 # conjoin is a simple backtracking generator, named in honor of Icon's
832 # "conjunction" control structure. Pass a list of no-argument functions
833 # that return iterable objects. Easiest to explain by example: assume the
834 # function list [x, y, z] is passed. Then conjoin acts like:
836 # def g():
837 # values = [None] * 3
838 # for values[0] in x():
839 # for values[1] in y():
840 # for values[2] in z():
841 # yield values
843 # So some 3-lists of values *may* be generated, each time we successfully
844 # get into the innermost loop. If an iterator fails (is exhausted) before
845 # then, it "backtracks" to get the next value from the nearest enclosing
846 # iterator (the one "to the left"), and starts all over again at the next
847 # slot (pumps a fresh iterator). Of course this is most useful when the
848 # iterators have side-effects, so that which values *can* be generated at
849 # each slot depend on the values iterated at previous slots.
851 def conjoin(gs):
853 values = [None] * len(gs)
855 def gen(i, values=values):
856 if i >= len(gs):
857 yield values
858 else:
859 for values[i] in gs[i]():
860 for x in gen(i+1):
861 yield x
863 for x in gen(0):
864 yield x
866 # That works fine, but recursing a level and checking i against len(gs) for
867 # each item produced is inefficient. By doing manual loop unrolling across
868 # generator boundaries, it's possible to eliminate most of that overhead.
869 # This isn't worth the bother *in general* for generators, but conjoin() is
870 # a core building block for some CPU-intensive generator applications.
872 def conjoin(gs):
874 n = len(gs)
875 values = [None] * n
877 # Do one loop nest at time recursively, until the # of loop nests
878 # remaining is divisible by 3.
880 def gen(i, values=values):
881 if i >= n:
882 yield values
884 elif (n-i) % 3:
885 ip1 = i+1
886 for values[i] in gs[i]():
887 for x in gen(ip1):
888 yield x
890 else:
891 for x in _gen3(i):
892 yield x
894 # Do three loop nests at a time, recursing only if at least three more
895 # remain. Don't call directly: this is an internal optimization for
896 # gen's use.
898 def _gen3(i, values=values):
899 assert i < n and (n-i) % 3 == 0
900 ip1, ip2, ip3 = i+1, i+2, i+3
901 g, g1, g2 = gs[i : ip3]
903 if ip3 >= n:
904 # These are the last three, so we can yield values directly.
905 for values[i] in g():
906 for values[ip1] in g1():
907 for values[ip2] in g2():
908 yield values
910 else:
911 # At least 6 loop nests remain; peel off 3 and recurse for the
912 # rest.
913 for values[i] in g():
914 for values[ip1] in g1():
915 for values[ip2] in g2():
916 for x in _gen3(ip3):
917 yield x
919 for x in gen(0):
920 yield x
922 # And one more approach: For backtracking apps like the Knight's Tour
923 # solver below, the number of backtracking levels can be enormous (one
924 # level per square, for the Knight's Tour, so that e.g. a 100x100 board
925 # needs 10,000 levels). In such cases Python is likely to run out of
926 # stack space due to recursion. So here's a recursion-free version of
927 # conjoin too.
928 # NOTE WELL: This allows large problems to be solved with only trivial
929 # demands on stack space. Without explicitly resumable generators, this is
930 # much harder to achieve. OTOH, this is much slower (up to a factor of 2)
931 # than the fancy unrolled recursive conjoin.
933 def flat_conjoin(gs): # rename to conjoin to run tests with this instead
934 n = len(gs)
935 values = [None] * n
936 iters = [None] * n
937 _StopIteration = StopIteration # make local because caught a *lot*
938 i = 0
939 while 1:
940 # Descend.
941 try:
942 while i < n:
943 it = iters[i] = gs[i]().next
944 values[i] = it()
945 i += 1
946 except _StopIteration:
947 pass
948 else:
949 assert i == n
950 yield values
952 # Backtrack until an older iterator can be resumed.
953 i -= 1
954 while i >= 0:
955 try:
956 values[i] = iters[i]()
957 # Success! Start fresh at next level.
958 i += 1
959 break
960 except _StopIteration:
961 # Continue backtracking.
962 i -= 1
963 else:
964 assert i < 0
965 break
967 # A conjoin-based N-Queens solver.
969 class Queens:
970 def __init__(self, n):
971 self.n = n
972 rangen = range(n)
974 # Assign a unique int to each column and diagonal.
975 # columns: n of those, range(n).
976 # NW-SE diagonals: 2n-1 of these, i-j unique and invariant along
977 # each, smallest i-j is 0-(n-1) = 1-n, so add n-1 to shift to 0-
978 # based.
979 # NE-SW diagonals: 2n-1 of these, i+j unique and invariant along
980 # each, smallest i+j is 0, largest is 2n-2.
982 # For each square, compute a bit vector of the columns and
983 # diagonals it covers, and for each row compute a function that
984 # generates the possiblities for the columns in that row.
985 self.rowgenerators = []
986 for i in rangen:
987 rowuses = [(1L << j) | # column ordinal
988 (1L << (n + i-j + n-1)) | # NW-SE ordinal
989 (1L << (n + 2*n-1 + i+j)) # NE-SW ordinal
990 for j in rangen]
992 def rowgen(rowuses=rowuses):
993 for j in rangen:
994 uses = rowuses[j]
995 if uses & self.used == 0:
996 self.used |= uses
997 yield j
998 self.used &= ~uses
1000 self.rowgenerators.append(rowgen)
1002 # Generate solutions.
1003 def solve(self):
1004 self.used = 0
1005 for row2col in conjoin(self.rowgenerators):
1006 yield row2col
1008 def printsolution(self, row2col):
1009 n = self.n
1010 assert n == len(row2col)
1011 sep = "+" + "-+" * n
1012 print sep
1013 for i in range(n):
1014 squares = [" " for j in range(n)]
1015 squares[row2col[i]] = "Q"
1016 print "|" + "|".join(squares) + "|"
1017 print sep
1019 # A conjoin-based Knight's Tour solver. This is pretty sophisticated
1020 # (e.g., when used with flat_conjoin above, and passing hard=1 to the
1021 # constructor, a 200x200 Knight's Tour was found quickly -- note that we're
1022 # creating 10s of thousands of generators then!), and is lengthy.
1024 class Knights:
1025 def __init__(self, m, n, hard=0):
1026 self.m, self.n = m, n
1028 # solve() will set up succs[i] to be a list of square #i's
1029 # successors.
1030 succs = self.succs = []
1032 # Remove i0 from each of its successor's successor lists, i.e.
1033 # successors can't go back to i0 again. Return 0 if we can
1034 # detect this makes a solution impossible, else return 1.
1036 def remove_from_successors(i0, len=len):
1037 # If we remove all exits from a free square, we're dead:
1038 # even if we move to it next, we can't leave it again.
1039 # If we create a square with one exit, we must visit it next;
1040 # else somebody else will have to visit it, and since there's
1041 # only one adjacent, there won't be a way to leave it again.
1042 # Finelly, if we create more than one free square with a
1043 # single exit, we can only move to one of them next, leaving
1044 # the other one a dead end.
1045 ne0 = ne1 = 0
1046 for i in succs[i0]:
1047 s = succs[i]
1048 s.remove(i0)
1049 e = len(s)
1050 if e == 0:
1051 ne0 += 1
1052 elif e == 1:
1053 ne1 += 1
1054 return ne0 == 0 and ne1 < 2
1056 # Put i0 back in each of its successor's successor lists.
1058 def add_to_successors(i0):
1059 for i in succs[i0]:
1060 succs[i].append(i0)
1062 # Generate the first move.
1063 def first():
1064 if m < 1 or n < 1:
1065 return
1067 # Since we're looking for a cycle, it doesn't matter where we
1068 # start. Starting in a corner makes the 2nd move easy.
1069 corner = self.coords2index(0, 0)
1070 remove_from_successors(corner)
1071 self.lastij = corner
1072 yield corner
1073 add_to_successors(corner)
1075 # Generate the second moves.
1076 def second():
1077 corner = self.coords2index(0, 0)
1078 assert self.lastij == corner # i.e., we started in the corner
1079 if m < 3 or n < 3:
1080 return
1081 assert len(succs[corner]) == 2
1082 assert self.coords2index(1, 2) in succs[corner]
1083 assert self.coords2index(2, 1) in succs[corner]
1084 # Only two choices. Whichever we pick, the other must be the
1085 # square picked on move m*n, as it's the only way to get back
1086 # to (0, 0). Save its index in self.final so that moves before
1087 # the last know it must be kept free.
1088 for i, j in (1, 2), (2, 1):
1089 this = self.coords2index(i, j)
1090 final = self.coords2index(3-i, 3-j)
1091 self.final = final
1093 remove_from_successors(this)
1094 succs[final].append(corner)
1095 self.lastij = this
1096 yield this
1097 succs[final].remove(corner)
1098 add_to_successors(this)
1100 # Generate moves 3 thru m*n-1.
1101 def advance(len=len):
1102 # If some successor has only one exit, must take it.
1103 # Else favor successors with fewer exits.
1104 candidates = []
1105 for i in succs[self.lastij]:
1106 e = len(succs[i])
1107 assert e > 0, "else remove_from_successors() pruning flawed"
1108 if e == 1:
1109 candidates = [(e, i)]
1110 break
1111 candidates.append((e, i))
1112 else:
1113 candidates.sort()
1115 for e, i in candidates:
1116 if i != self.final:
1117 if remove_from_successors(i):
1118 self.lastij = i
1119 yield i
1120 add_to_successors(i)
1122 # Generate moves 3 thru m*n-1. Alternative version using a
1123 # stronger (but more expensive) heuristic to order successors.
1124 # Since the # of backtracking levels is m*n, a poor move early on
1125 # can take eons to undo. Smallest square board for which this
1126 # matters a lot is 52x52.
1127 def advance_hard(vmid=(m-1)/2.0, hmid=(n-1)/2.0, len=len):
1128 # If some successor has only one exit, must take it.
1129 # Else favor successors with fewer exits.
1130 # Break ties via max distance from board centerpoint (favor
1131 # corners and edges whenever possible).
1132 candidates = []
1133 for i in succs[self.lastij]:
1134 e = len(succs[i])
1135 assert e > 0, "else remove_from_successors() pruning flawed"
1136 if e == 1:
1137 candidates = [(e, 0, i)]
1138 break
1139 i1, j1 = self.index2coords(i)
1140 d = (i1 - vmid)**2 + (j1 - hmid)**2
1141 candidates.append((e, -d, i))
1142 else:
1143 candidates.sort()
1145 for e, d, i in candidates:
1146 if i != self.final:
1147 if remove_from_successors(i):
1148 self.lastij = i
1149 yield i
1150 add_to_successors(i)
1152 # Generate the last move.
1153 def last():
1154 assert self.final in succs[self.lastij]
1155 yield self.final
1157 if m*n < 4:
1158 self.squaregenerators = [first]
1159 else:
1160 self.squaregenerators = [first, second] + \
1161 [hard and advance_hard or advance] * (m*n - 3) + \
1162 [last]
1164 def coords2index(self, i, j):
1165 assert 0 <= i < self.m
1166 assert 0 <= j < self.n
1167 return i * self.n + j
1169 def index2coords(self, index):
1170 assert 0 <= index < self.m * self.n
1171 return divmod(index, self.n)
1173 def _init_board(self):
1174 succs = self.succs
1175 del succs[:]
1176 m, n = self.m, self.n
1177 c2i = self.coords2index
1179 offsets = [( 1, 2), ( 2, 1), ( 2, -1), ( 1, -2),
1180 (-1, -2), (-2, -1), (-2, 1), (-1, 2)]
1181 rangen = range(n)
1182 for i in range(m):
1183 for j in rangen:
1184 s = [c2i(i+io, j+jo) for io, jo in offsets
1185 if 0 <= i+io < m and
1186 0 <= j+jo < n]
1187 succs.append(s)
1189 # Generate solutions.
1190 def solve(self):
1191 self._init_board()
1192 for x in conjoin(self.squaregenerators):
1193 yield x
1195 def printsolution(self, x):
1196 m, n = self.m, self.n
1197 assert len(x) == m*n
1198 w = len(str(m*n))
1199 format = "%" + str(w) + "d"
1201 squares = [[None] * n for i in range(m)]
1202 k = 1
1203 for i in x:
1204 i1, j1 = self.index2coords(i)
1205 squares[i1][j1] = format % k
1206 k += 1
1208 sep = "+" + ("-" * w + "+") * n
1209 print sep
1210 for i in range(m):
1211 row = squares[i]
1212 print "|" + "|".join(row) + "|"
1213 print sep
1215 conjoin_tests = """
1217 Generate the 3-bit binary numbers in order. This illustrates dumbest-
1218 possible use of conjoin, just to generate the full cross-product.
1220 >>> for c in conjoin([lambda: iter((0, 1))] * 3):
1221 ... print c
1222 [0, 0, 0]
1223 [0, 0, 1]
1224 [0, 1, 0]
1225 [0, 1, 1]
1226 [1, 0, 0]
1227 [1, 0, 1]
1228 [1, 1, 0]
1229 [1, 1, 1]
1231 For efficiency in typical backtracking apps, conjoin() yields the same list
1232 object each time. So if you want to save away a full account of its
1233 generated sequence, you need to copy its results.
1235 >>> def gencopy(iterator):
1236 ... for x in iterator:
1237 ... yield x[:]
1239 >>> for n in range(10):
1240 ... all = list(gencopy(conjoin([lambda: iter((0, 1))] * n)))
1241 ... print n, len(all), all[0] == [0] * n, all[-1] == [1] * n
1242 0 1 True True
1243 1 2 True True
1244 2 4 True True
1245 3 8 True True
1246 4 16 True True
1247 5 32 True True
1248 6 64 True True
1249 7 128 True True
1250 8 256 True True
1251 9 512 True True
1253 And run an 8-queens solver.
1255 >>> q = Queens(8)
1256 >>> LIMIT = 2
1257 >>> count = 0
1258 >>> for row2col in q.solve():
1259 ... count += 1
1260 ... if count <= LIMIT:
1261 ... print "Solution", count
1262 ... q.printsolution(row2col)
1263 Solution 1
1264 +-+-+-+-+-+-+-+-+
1265 |Q| | | | | | | |
1266 +-+-+-+-+-+-+-+-+
1267 | | | | |Q| | | |
1268 +-+-+-+-+-+-+-+-+
1269 | | | | | | | |Q|
1270 +-+-+-+-+-+-+-+-+
1271 | | | | | |Q| | |
1272 +-+-+-+-+-+-+-+-+
1273 | | |Q| | | | | |
1274 +-+-+-+-+-+-+-+-+
1275 | | | | | | |Q| |
1276 +-+-+-+-+-+-+-+-+
1277 | |Q| | | | | | |
1278 +-+-+-+-+-+-+-+-+
1279 | | | |Q| | | | |
1280 +-+-+-+-+-+-+-+-+
1281 Solution 2
1282 +-+-+-+-+-+-+-+-+
1283 |Q| | | | | | | |
1284 +-+-+-+-+-+-+-+-+
1285 | | | | | |Q| | |
1286 +-+-+-+-+-+-+-+-+
1287 | | | | | | | |Q|
1288 +-+-+-+-+-+-+-+-+
1289 | | |Q| | | | | |
1290 +-+-+-+-+-+-+-+-+
1291 | | | | | | |Q| |
1292 +-+-+-+-+-+-+-+-+
1293 | | | |Q| | | | |
1294 +-+-+-+-+-+-+-+-+
1295 | |Q| | | | | | |
1296 +-+-+-+-+-+-+-+-+
1297 | | | | |Q| | | |
1298 +-+-+-+-+-+-+-+-+
1300 >>> print count, "solutions in all."
1301 92 solutions in all.
1303 And run a Knight's Tour on a 10x10 board. Note that there are about
1304 20,000 solutions even on a 6x6 board, so don't dare run this to exhaustion.
1306 >>> k = Knights(10, 10)
1307 >>> LIMIT = 2
1308 >>> count = 0
1309 >>> for x in k.solve():
1310 ... count += 1
1311 ... if count <= LIMIT:
1312 ... print "Solution", count
1313 ... k.printsolution(x)
1314 ... else:
1315 ... break
1316 Solution 1
1317 +---+---+---+---+---+---+---+---+---+---+
1318 | 1| 58| 27| 34| 3| 40| 29| 10| 5| 8|
1319 +---+---+---+---+---+---+---+---+---+---+
1320 | 26| 35| 2| 57| 28| 33| 4| 7| 30| 11|
1321 +---+---+---+---+---+---+---+---+---+---+
1322 | 59|100| 73| 36| 41| 56| 39| 32| 9| 6|
1323 +---+---+---+---+---+---+---+---+---+---+
1324 | 74| 25| 60| 55| 72| 37| 42| 49| 12| 31|
1325 +---+---+---+---+---+---+---+---+---+---+
1326 | 61| 86| 99| 76| 63| 52| 47| 38| 43| 50|
1327 +---+---+---+---+---+---+---+---+---+---+
1328 | 24| 75| 62| 85| 54| 71| 64| 51| 48| 13|
1329 +---+---+---+---+---+---+---+---+---+---+
1330 | 87| 98| 91| 80| 77| 84| 53| 46| 65| 44|
1331 +---+---+---+---+---+---+---+---+---+---+
1332 | 90| 23| 88| 95| 70| 79| 68| 83| 14| 17|
1333 +---+---+---+---+---+---+---+---+---+---+
1334 | 97| 92| 21| 78| 81| 94| 19| 16| 45| 66|
1335 +---+---+---+---+---+---+---+---+---+---+
1336 | 22| 89| 96| 93| 20| 69| 82| 67| 18| 15|
1337 +---+---+---+---+---+---+---+---+---+---+
1338 Solution 2
1339 +---+---+---+---+---+---+---+---+---+---+
1340 | 1| 58| 27| 34| 3| 40| 29| 10| 5| 8|
1341 +---+---+---+---+---+---+---+---+---+---+
1342 | 26| 35| 2| 57| 28| 33| 4| 7| 30| 11|
1343 +---+---+---+---+---+---+---+---+---+---+
1344 | 59|100| 73| 36| 41| 56| 39| 32| 9| 6|
1345 +---+---+---+---+---+---+---+---+---+---+
1346 | 74| 25| 60| 55| 72| 37| 42| 49| 12| 31|
1347 +---+---+---+---+---+---+---+---+---+---+
1348 | 61| 86| 99| 76| 63| 52| 47| 38| 43| 50|
1349 +---+---+---+---+---+---+---+---+---+---+
1350 | 24| 75| 62| 85| 54| 71| 64| 51| 48| 13|
1351 +---+---+---+---+---+---+---+---+---+---+
1352 | 87| 98| 89| 80| 77| 84| 53| 46| 65| 44|
1353 +---+---+---+---+---+---+---+---+---+---+
1354 | 90| 23| 92| 95| 70| 79| 68| 83| 14| 17|
1355 +---+---+---+---+---+---+---+---+---+---+
1356 | 97| 88| 21| 78| 81| 94| 19| 16| 45| 66|
1357 +---+---+---+---+---+---+---+---+---+---+
1358 | 22| 91| 96| 93| 20| 69| 82| 67| 18| 15|
1359 +---+---+---+---+---+---+---+---+---+---+
1362 weakref_tests = """\
1363 Generators are weakly referencable:
1365 >>> import weakref
1366 >>> def gen():
1367 ... yield 'foo!'
1369 >>> wr = weakref.ref(gen)
1370 >>> wr() is gen
1371 True
1372 >>> p = weakref.proxy(gen)
1374 Generator-iterators are weakly referencable as well:
1376 >>> gi = gen()
1377 >>> wr = weakref.ref(gi)
1378 >>> wr() is gi
1379 True
1380 >>> p = weakref.proxy(gi)
1381 >>> list(p)
1382 ['foo!']
1386 __test__ = {"tut": tutorial_tests,
1387 "pep": pep_tests,
1388 "email": email_tests,
1389 "fun": fun_tests,
1390 "syntax": syntax_tests,
1391 "conjoin": conjoin_tests,
1392 "weakref": weakref_tests,
1395 # Magic test name that regrtest.py invokes *after* importing this module.
1396 # This worms around a bootstrap problem.
1397 # Note that doctest and regrtest both look in sys.argv for a "-v" argument,
1398 # so this works as expected in both ways of running regrtest.
1399 def test_main(verbose=None):
1400 import doctest
1401 from test import test_support, test_generators
1402 if 0: # change to 1 to run forever (to check for leaks)
1403 while 1:
1404 doctest.master = None
1405 test_support.run_doctest(test_generators, verbose)
1406 print ".",
1407 else:
1408 test_support.run_doctest(test_generators, verbose)
1410 # This part isn't needed for regrtest, but for running the test directly.
1411 if __name__ == "__main__":
1412 test_main(1)