2 /* Generic object operations; and implementation of None (NoObject) */
5 #include "frameobject.h"
12 Py_ssize_t _Py_RefTotal
;
18 Py_ssize_t total
= _Py_RefTotal
;
19 /* ignore the references to the dummy object of the dicts and sets
20 because they are not reliable and not useful (now that the
21 hash table code is well-tested) */
24 total
-= o
->ob_refcnt
;
27 total
-= o
->ob_refcnt
;
30 #endif /* Py_REF_DEBUG */
32 int Py_DivisionWarningFlag
;
33 int Py_Py3kWarningFlag
;
35 /* Object allocation routines used by NEWOBJ and NEWVAROBJ macros.
36 These are used by the individual routines for object creation.
37 Do not call them otherwise, they do not initialize the object! */
40 /* Head of circular doubly-linked list of all objects. These are linked
41 * together via the _ob_prev and _ob_next members of a PyObject, which
42 * exist only in a Py_TRACE_REFS build.
44 static PyObject refchain
= {&refchain
, &refchain
};
46 /* Insert op at the front of the list of all objects. If force is true,
47 * op is added even if _ob_prev and _ob_next are non-NULL already. If
48 * force is false amd _ob_prev or _ob_next are non-NULL, do nothing.
49 * force should be true if and only if op points to freshly allocated,
50 * uninitialized memory, or you've unlinked op from the list and are
51 * relinking it into the front.
52 * Note that objects are normally added to the list via _Py_NewReference,
53 * which is called by PyObject_Init. Not all objects are initialized that
54 * way, though; exceptions include statically allocated type objects, and
55 * statically allocated singletons (like Py_True and Py_None).
58 _Py_AddToAllObjects(PyObject
*op
, int force
)
62 /* If it's initialized memory, op must be in or out of
63 * the list unambiguously.
65 assert((op
->_ob_prev
== NULL
) == (op
->_ob_next
== NULL
));
68 if (force
|| op
->_ob_prev
== NULL
) {
69 op
->_ob_next
= refchain
._ob_next
;
70 op
->_ob_prev
= &refchain
;
71 refchain
._ob_next
->_ob_prev
= op
;
72 refchain
._ob_next
= op
;
75 #endif /* Py_TRACE_REFS */
78 static PyTypeObject
*type_list
;
79 /* All types are added to type_list, at least when
80 they get one object created. That makes them
81 immortal, which unfortunately contributes to
82 garbage itself. If unlist_types_without_objects
83 is set, they will be removed from the type_list
84 once the last object is deallocated. */
85 static int unlist_types_without_objects
;
86 extern Py_ssize_t tuple_zero_allocs
, fast_tuple_allocs
;
87 extern Py_ssize_t quick_int_allocs
, quick_neg_int_allocs
;
88 extern Py_ssize_t null_strings
, one_strings
;
94 for (tp
= type_list
; tp
; tp
= tp
->tp_next
)
95 fprintf(f
, "%s alloc'd: %" PY_FORMAT_SIZE_T
"d, "
96 "freed: %" PY_FORMAT_SIZE_T
"d, "
97 "max in use: %" PY_FORMAT_SIZE_T
"d\n",
98 tp
->tp_name
, tp
->tp_allocs
, tp
->tp_frees
,
100 fprintf(f
, "fast tuple allocs: %" PY_FORMAT_SIZE_T
"d, "
101 "empty: %" PY_FORMAT_SIZE_T
"d\n",
102 fast_tuple_allocs
, tuple_zero_allocs
);
103 fprintf(f
, "fast int allocs: pos: %" PY_FORMAT_SIZE_T
"d, "
104 "neg: %" PY_FORMAT_SIZE_T
"d\n",
105 quick_int_allocs
, quick_neg_int_allocs
);
106 fprintf(f
, "null strings: %" PY_FORMAT_SIZE_T
"d, "
107 "1-strings: %" PY_FORMAT_SIZE_T
"d\n",
108 null_strings
, one_strings
);
118 result
= PyList_New(0);
121 for (tp
= type_list
; tp
; tp
= tp
->tp_next
) {
122 v
= Py_BuildValue("(snnn)", tp
->tp_name
, tp
->tp_allocs
,
123 tp
->tp_frees
, tp
->tp_maxalloc
);
128 if (PyList_Append(result
, v
) < 0) {
139 inc_count(PyTypeObject
*tp
)
141 if (tp
->tp_next
== NULL
&& tp
->tp_prev
== NULL
) {
142 /* first time; insert in linked list */
143 if (tp
->tp_next
!= NULL
) /* sanity check */
144 Py_FatalError("XXX inc_count sanity check");
146 type_list
->tp_prev
= tp
;
147 tp
->tp_next
= type_list
;
148 /* Note that as of Python 2.2, heap-allocated type objects
149 * can go away, but this code requires that they stay alive
150 * until program exit. That's why we're careful with
151 * refcounts here. type_list gets a new reference to tp,
152 * while ownership of the reference type_list used to hold
153 * (if any) was transferred to tp->tp_next in the line above.
154 * tp is thus effectively immortal after this.
159 /* Also insert in the doubly-linked list of all objects,
160 * if not already there.
162 _Py_AddToAllObjects((PyObject
*)tp
, 0);
166 if (tp
->tp_allocs
- tp
->tp_frees
> tp
->tp_maxalloc
)
167 tp
->tp_maxalloc
= tp
->tp_allocs
- tp
->tp_frees
;
170 void dec_count(PyTypeObject
*tp
)
173 if (unlist_types_without_objects
&&
174 tp
->tp_allocs
== tp
->tp_frees
) {
175 /* unlink the type from type_list */
177 tp
->tp_prev
->tp_next
= tp
->tp_next
;
179 type_list
= tp
->tp_next
;
181 tp
->tp_next
->tp_prev
= tp
->tp_prev
;
182 tp
->tp_next
= tp
->tp_prev
= NULL
;
190 /* Log a fatal error; doesn't return. */
192 _Py_NegativeRefcount(const char *fname
, int lineno
, PyObject
*op
)
196 PyOS_snprintf(buf
, sizeof(buf
),
197 "%s:%i object at %p has negative ref count "
198 "%" PY_FORMAT_SIZE_T
"d",
199 fname
, lineno
, op
, op
->ob_refcnt
);
203 #endif /* Py_REF_DEBUG */
206 Py_IncRef(PyObject
*o
)
212 Py_DecRef(PyObject
*o
)
218 PyObject_Init(PyObject
*op
, PyTypeObject
*tp
)
221 return PyErr_NoMemory();
222 /* Any changes should be reflected in PyObject_INIT (objimpl.h) */
224 _Py_NewReference(op
);
229 PyObject_InitVar(PyVarObject
*op
, PyTypeObject
*tp
, Py_ssize_t size
)
232 return (PyVarObject
*) PyErr_NoMemory();
233 /* Any changes should be reflected in PyObject_INIT_VAR */
236 _Py_NewReference((PyObject
*)op
);
241 _PyObject_New(PyTypeObject
*tp
)
244 op
= (PyObject
*) PyObject_MALLOC(_PyObject_SIZE(tp
));
246 return PyErr_NoMemory();
247 return PyObject_INIT(op
, tp
);
251 _PyObject_NewVar(PyTypeObject
*tp
, Py_ssize_t nitems
)
254 const size_t size
= _PyObject_VAR_SIZE(tp
, nitems
);
255 op
= (PyVarObject
*) PyObject_MALLOC(size
);
257 return (PyVarObject
*)PyErr_NoMemory();
258 return PyObject_INIT_VAR(op
, tp
, nitems
);
261 /* for binary compatibility with 2.2 */
264 _PyObject_Del(PyObject
*op
)
269 /* Implementation of PyObject_Print with recursion checking */
271 internal_print(PyObject
*op
, FILE *fp
, int flags
, int nesting
)
275 PyErr_SetString(PyExc_RuntimeError
, "print recursion");
278 if (PyErr_CheckSignals())
280 #ifdef USE_STACKCHECK
281 if (PyOS_CheckStack()) {
282 PyErr_SetString(PyExc_MemoryError
, "stack overflow");
286 clearerr(fp
); /* Clear any previous error condition */
288 Py_BEGIN_ALLOW_THREADS
289 fprintf(fp
, "<nil>");
293 if (op
->ob_refcnt
<= 0)
294 /* XXX(twouters) cast refcount to long until %zd is
295 universally available */
296 Py_BEGIN_ALLOW_THREADS
297 fprintf(fp
, "<refcnt %ld at %p>",
298 (long)op
->ob_refcnt
, op
);
300 else if (Py_TYPE(op
)->tp_print
== NULL
) {
302 if (flags
& Py_PRINT_RAW
)
303 s
= PyObject_Str(op
);
305 s
= PyObject_Repr(op
);
309 ret
= internal_print(s
, fp
, Py_PRINT_RAW
,
315 ret
= (*Py_TYPE(op
)->tp_print
)(op
, fp
, flags
);
319 PyErr_SetFromErrno(PyExc_IOError
);
328 PyObject_Print(PyObject
*op
, FILE *fp
, int flags
)
330 return internal_print(op
, fp
, flags
, 0);
334 /* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */
335 void _PyObject_Dump(PyObject
* op
)
338 fprintf(stderr
, "NULL\n");
341 PyGILState_STATE gil
;
343 fprintf(stderr
, "object : ");
345 gil
= PyGILState_Ensure();
347 (void)PyObject_Print(op
, stderr
, 0);
349 PyGILState_Release(gil
);
351 /* XXX(twouters) cast refcount to long until %zd is
352 universally available */
357 Py_TYPE(op
)==NULL
? "NULL" : Py_TYPE(op
)->tp_name
,
364 PyObject_Repr(PyObject
*v
)
366 if (PyErr_CheckSignals())
368 #ifdef USE_STACKCHECK
369 if (PyOS_CheckStack()) {
370 PyErr_SetString(PyExc_MemoryError
, "stack overflow");
375 return PyString_FromString("<NULL>");
376 else if (Py_TYPE(v
)->tp_repr
== NULL
)
377 return PyString_FromFormat("<%s object at %p>",
378 Py_TYPE(v
)->tp_name
, v
);
381 res
= (*Py_TYPE(v
)->tp_repr
)(v
);
384 #ifdef Py_USING_UNICODE
385 if (PyUnicode_Check(res
)) {
387 str
= PyUnicode_AsEncodedString(res
, NULL
, NULL
);
395 if (!PyString_Check(res
)) {
396 PyErr_Format(PyExc_TypeError
,
397 "__repr__ returned non-string (type %.200s)",
398 Py_TYPE(res
)->tp_name
);
407 _PyObject_Str(PyObject
*v
)
412 return PyString_FromString("<NULL>");
413 if (PyString_CheckExact(v
)) {
417 #ifdef Py_USING_UNICODE
418 if (PyUnicode_CheckExact(v
)) {
423 if (Py_TYPE(v
)->tp_str
== NULL
)
424 return PyObject_Repr(v
);
426 /* It is possible for a type to have a tp_str representation that loops
428 if (Py_EnterRecursiveCall(" while getting the str of an object"))
430 res
= (*Py_TYPE(v
)->tp_str
)(v
);
431 Py_LeaveRecursiveCall();
434 type_ok
= PyString_Check(res
);
435 #ifdef Py_USING_UNICODE
436 type_ok
= type_ok
|| PyUnicode_Check(res
);
439 PyErr_Format(PyExc_TypeError
,
440 "__str__ returned non-string (type %.200s)",
441 Py_TYPE(res
)->tp_name
);
449 PyObject_Str(PyObject
*v
)
451 PyObject
*res
= _PyObject_Str(v
);
454 #ifdef Py_USING_UNICODE
455 if (PyUnicode_Check(res
)) {
457 str
= PyUnicode_AsEncodedString(res
, NULL
, NULL
);
465 assert(PyString_Check(res
));
469 #ifdef Py_USING_UNICODE
471 PyObject_Unicode(PyObject
*v
)
476 int unicode_method_found
= 0;
477 static PyObject
*unicodestr
;
480 res
= PyString_FromString("<NULL>");
483 str
= PyUnicode_FromEncodedObject(res
, NULL
, "strict");
486 } else if (PyUnicode_CheckExact(v
)) {
491 if (PyInstance_Check(v
)) {
492 /* We're an instance of a classic class */
493 /* Try __unicode__ from the instance -- alas we have no type */
494 func
= PyObject_GetAttr(v
, unicodestr
);
496 unicode_method_found
= 1;
497 res
= PyObject_CallFunctionObjArgs(func
, NULL
);
505 /* Not a classic class instance, try __unicode__. */
506 func
= _PyObject_LookupSpecial(v
, "__unicode__", &unicodestr
);
508 unicode_method_found
= 1;
509 res
= PyObject_CallFunctionObjArgs(func
, NULL
);
512 else if (PyErr_Occurred())
516 /* Didn't find __unicode__ */
517 if (!unicode_method_found
) {
518 if (PyUnicode_Check(v
)) {
519 /* For a Unicode subtype that's didn't overwrite __unicode__,
520 return a true Unicode object with the same data. */
521 return PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(v
),
522 PyUnicode_GET_SIZE(v
));
524 if (PyString_CheckExact(v
)) {
529 if (Py_TYPE(v
)->tp_str
!= NULL
)
530 res
= (*Py_TYPE(v
)->tp_str
)(v
);
532 res
= PyObject_Repr(v
);
538 if (!PyUnicode_Check(res
)) {
539 str
= PyUnicode_FromEncodedObject(res
, NULL
, "strict");
548 /* Helper to warn about deprecated tp_compare return values. Return:
553 (This function cannot return 2.)
556 adjust_tp_compare(int c
)
558 if (PyErr_Occurred()) {
559 if (c
!= -1 && c
!= -2) {
560 PyObject
*t
, *v
, *tb
;
561 PyErr_Fetch(&t
, &v
, &tb
);
562 if (PyErr_Warn(PyExc_RuntimeWarning
,
563 "tp_compare didn't return -1 or -2 "
564 "for exception") < 0) {
570 PyErr_Restore(t
, v
, tb
);
574 else if (c
< -1 || c
> 1) {
575 if (PyErr_Warn(PyExc_RuntimeWarning
,
576 "tp_compare didn't return -1, 0 or 1") < 0)
579 return c
< -1 ? -1 : 1;
582 assert(c
>= -1 && c
<= 1);
588 /* Macro to get the tp_richcompare field of a type if defined */
589 #define RICHCOMPARE(t) (PyType_HasFeature((t), Py_TPFLAGS_HAVE_RICHCOMPARE) \
590 ? (t)->tp_richcompare : NULL)
592 /* Map rich comparison operators to their swapped version, e.g. LT --> GT */
593 int _Py_SwappedOp
[] = {Py_GT
, Py_GE
, Py_EQ
, Py_NE
, Py_LT
, Py_LE
};
595 /* Try a genuine rich comparison, returning an object. Return:
597 NotImplemented if this particular rich comparison is not implemented or
599 some object not equal to NotImplemented if it is implemented
600 (this latter object may not be a Boolean).
603 try_rich_compare(PyObject
*v
, PyObject
*w
, int op
)
608 if (v
->ob_type
!= w
->ob_type
&&
609 PyType_IsSubtype(w
->ob_type
, v
->ob_type
) &&
610 (f
= RICHCOMPARE(w
->ob_type
)) != NULL
) {
611 res
= (*f
)(w
, v
, _Py_SwappedOp
[op
]);
612 if (res
!= Py_NotImplemented
)
616 if ((f
= RICHCOMPARE(v
->ob_type
)) != NULL
) {
617 res
= (*f
)(v
, w
, op
);
618 if (res
!= Py_NotImplemented
)
622 if ((f
= RICHCOMPARE(w
->ob_type
)) != NULL
) {
623 return (*f
)(w
, v
, _Py_SwappedOp
[op
]);
625 res
= Py_NotImplemented
;
630 /* Try a genuine rich comparison, returning an int. Return:
631 -1 for exception (including the case where try_rich_compare() returns an
632 object that's not a Boolean);
633 0 if the outcome is false;
634 1 if the outcome is true;
635 2 if this particular rich comparison is not implemented or undefined.
638 try_rich_compare_bool(PyObject
*v
, PyObject
*w
, int op
)
643 if (RICHCOMPARE(v
->ob_type
) == NULL
&& RICHCOMPARE(w
->ob_type
) == NULL
)
644 return 2; /* Shortcut, avoid INCREF+DECREF */
645 res
= try_rich_compare(v
, w
, op
);
648 if (res
== Py_NotImplemented
) {
652 ok
= PyObject_IsTrue(res
);
657 /* Try rich comparisons to determine a 3-way comparison. Return:
662 2 if this particular rich comparison is not implemented or undefined.
665 try_rich_to_3way_compare(PyObject
*v
, PyObject
*w
)
667 static struct { int op
; int outcome
; } tries
[3] = {
668 /* Try this operator, and if it is true, use this outcome: */
675 if (RICHCOMPARE(v
->ob_type
) == NULL
&& RICHCOMPARE(w
->ob_type
) == NULL
)
676 return 2; /* Shortcut */
678 for (i
= 0; i
< 3; i
++) {
679 switch (try_rich_compare_bool(v
, w
, tries
[i
].op
)) {
683 return tries
[i
].outcome
;
690 /* Try a 3-way comparison, returning an int. Return:
695 2 if this particular 3-way comparison is not implemented or undefined.
698 try_3way_compare(PyObject
*v
, PyObject
*w
)
703 /* Comparisons involving instances are given to instance_compare,
704 which has the same return conventions as this function. */
706 f
= v
->ob_type
->tp_compare
;
707 if (PyInstance_Check(v
))
709 if (PyInstance_Check(w
))
710 return (*w
->ob_type
->tp_compare
)(v
, w
);
712 /* If both have the same (non-NULL) tp_compare, use it. */
713 if (f
!= NULL
&& f
== w
->ob_type
->tp_compare
) {
715 return adjust_tp_compare(c
);
718 /* If either tp_compare is _PyObject_SlotCompare, that's safe. */
719 if (f
== _PyObject_SlotCompare
||
720 w
->ob_type
->tp_compare
== _PyObject_SlotCompare
)
721 return _PyObject_SlotCompare(v
, w
);
723 /* If we're here, v and w,
724 a) are not instances;
725 b) have different types or a type without tp_compare; and
726 c) don't have a user-defined tp_compare.
727 tp_compare implementations in C assume that both arguments
728 have their type, so we give up if the coercion fails or if
729 it yields types which are still incompatible (which can
730 happen with a user-defined nb_coerce).
732 c
= PyNumber_CoerceEx(&v
, &w
);
737 f
= v
->ob_type
->tp_compare
;
738 if (f
!= NULL
&& f
== w
->ob_type
->tp_compare
) {
742 return adjust_tp_compare(c
);
745 /* No comparison defined */
751 /* Final fallback 3-way comparison, returning an int. Return:
752 -2 if an error occurred;
758 default_3way_compare(PyObject
*v
, PyObject
*w
)
761 const char *vname
, *wname
;
763 if (v
->ob_type
== w
->ob_type
) {
764 /* When comparing these pointers, they must be cast to
765 * integer types (i.e. Py_uintptr_t, our spelling of C9X's
766 * uintptr_t). ANSI specifies that pointer compares other
767 * than == and != to non-related structures are undefined.
769 Py_uintptr_t vv
= (Py_uintptr_t
)v
;
770 Py_uintptr_t ww
= (Py_uintptr_t
)w
;
771 return (vv
< ww
) ? -1 : (vv
> ww
) ? 1 : 0;
774 /* None is smaller than anything */
780 /* different type: compare type names; numbers are smaller */
781 if (PyNumber_Check(v
))
784 vname
= v
->ob_type
->tp_name
;
785 if (PyNumber_Check(w
))
788 wname
= w
->ob_type
->tp_name
;
789 c
= strcmp(vname
, wname
);
794 /* Same type name, or (more likely) incomparable numeric types */
795 return ((Py_uintptr_t
)(v
->ob_type
) < (
796 Py_uintptr_t
)(w
->ob_type
)) ? -1 : 1;
799 /* Do a 3-way comparison, by hook or by crook. Return:
800 -2 for an exception (but see below);
804 BUT: if the object implements a tp_compare function, it returns
805 whatever this function returns (whether with an exception or not).
808 do_cmp(PyObject
*v
, PyObject
*w
)
813 if (v
->ob_type
== w
->ob_type
814 && (f
= v
->ob_type
->tp_compare
) != NULL
) {
816 if (PyInstance_Check(v
)) {
817 /* Instance tp_compare has a different signature.
818 But if it returns undefined we fall through. */
821 /* Else fall through to try_rich_to_3way_compare() */
824 return adjust_tp_compare(c
);
826 /* We only get here if one of the following is true:
827 a) v and w have different types
828 b) v and w have the same type, which doesn't have tp_compare
829 c) v and w are instances, and either __cmp__ is not defined or
830 __cmp__ returns NotImplemented
832 c
= try_rich_to_3way_compare(v
, w
);
835 c
= try_3way_compare(v
, w
);
838 return default_3way_compare(v
, w
);
841 /* Compare v to w. Return
842 -1 if v < w or exception (PyErr_Occurred() true in latter case).
845 XXX The docs (C API manual) say the return value is undefined in case
849 PyObject_Compare(PyObject
*v
, PyObject
*w
)
853 if (v
== NULL
|| w
== NULL
) {
854 PyErr_BadInternalCall();
859 if (Py_EnterRecursiveCall(" in cmp"))
861 result
= do_cmp(v
, w
);
862 Py_LeaveRecursiveCall();
863 return result
< 0 ? -1 : result
;
866 /* Return (new reference to) Py_True or Py_False. */
868 convert_3way_to_object(int op
, int c
)
872 case Py_LT
: c
= c
< 0; break;
873 case Py_LE
: c
= c
<= 0; break;
874 case Py_EQ
: c
= c
== 0; break;
875 case Py_NE
: c
= c
!= 0; break;
876 case Py_GT
: c
= c
> 0; break;
877 case Py_GE
: c
= c
>= 0; break;
879 result
= c
? Py_True
: Py_False
;
884 /* We want a rich comparison but don't have one. Try a 3-way cmp instead.
888 Py_False if not (v op w)
891 try_3way_to_rich_compare(PyObject
*v
, PyObject
*w
, int op
)
895 c
= try_3way_compare(v
, w
);
898 /* Py3K warning if types are not equal and comparison isn't == or != */
899 if (Py_Py3kWarningFlag
&&
900 v
->ob_type
!= w
->ob_type
&& op
!= Py_EQ
&& op
!= Py_NE
&&
901 PyErr_WarnEx(PyExc_DeprecationWarning
,
902 "comparing unequal types not supported "
907 c
= default_3way_compare(v
, w
);
911 return convert_3way_to_object(op
, c
);
914 /* Do rich comparison on v and w. Return
916 Else a new reference to an object other than Py_NotImplemented, usually(?):
918 Py_False if not (v op w)
921 do_richcmp(PyObject
*v
, PyObject
*w
, int op
)
925 res
= try_rich_compare(v
, w
, op
);
926 if (res
!= Py_NotImplemented
)
930 return try_3way_to_rich_compare(v
, w
, op
);
935 some object not equal to NotImplemented if it is implemented
936 (this latter object may not be a Boolean).
939 PyObject_RichCompare(PyObject
*v
, PyObject
*w
, int op
)
943 assert(Py_LT
<= op
&& op
<= Py_GE
);
944 if (Py_EnterRecursiveCall(" in cmp"))
947 /* If the types are equal, and not old-style instances, try to
948 get out cheap (don't bother with coercions etc.). */
949 if (v
->ob_type
== w
->ob_type
&& !PyInstance_Check(v
)) {
951 richcmpfunc frich
= RICHCOMPARE(v
->ob_type
);
952 /* If the type has richcmp, try it first. try_rich_compare
953 tries it two-sided, which is not needed since we've a
956 res
= (*frich
)(v
, w
, op
);
957 if (res
!= Py_NotImplemented
)
961 /* No richcmp, or this particular richmp not implemented.
963 fcmp
= v
->ob_type
->tp_compare
;
965 int c
= (*fcmp
)(v
, w
);
966 c
= adjust_tp_compare(c
);
971 res
= convert_3way_to_object(op
, c
);
976 /* Fast path not taken, or couldn't deliver a useful result. */
977 res
= do_richcmp(v
, w
, op
);
979 Py_LeaveRecursiveCall();
983 /* Return -1 if error; 1 if v op w; 0 if not (v op w). */
985 PyObject_RichCompareBool(PyObject
*v
, PyObject
*w
, int op
)
990 /* Quick result when objects are the same.
991 Guarantees that identity implies equality. */
995 else if (op
== Py_NE
)
999 res
= PyObject_RichCompare(v
, w
, op
);
1002 if (PyBool_Check(res
))
1003 ok
= (res
== Py_True
);
1005 ok
= PyObject_IsTrue(res
);
1010 /* Set of hash utility functions to help maintaining the invariant that
1011 if a==b then hash(a)==hash(b)
1013 All the utility functions (_Py_Hash*()) return "-1" to signify an error.
1017 _Py_HashDouble(double v
)
1019 double intpart
, fractpart
;
1022 long x
; /* the final hash value */
1023 /* This is designed so that Python numbers of different types
1024 * that compare equal hash to the same value; otherwise comparisons
1025 * of mapping keys will turn out weird.
1028 if (!Py_IS_FINITE(v
)) {
1029 if (Py_IS_INFINITY(v
))
1030 return v
< 0 ? -271828 : 314159;
1034 fractpart
= modf(v
, &intpart
);
1035 if (fractpart
== 0.0) {
1036 /* This must return the same hash as an equal int or long. */
1037 if (intpart
> LONG_MAX
/2 || -intpart
> LONG_MAX
/2) {
1038 /* Convert to long and use its hash. */
1039 PyObject
*plong
; /* converted to Python long */
1040 plong
= PyLong_FromDouble(v
);
1043 x
= PyObject_Hash(plong
);
1047 /* Fits in a C long == a Python int, so is its own hash. */
1053 /* The fractional part is non-zero, so we don't have to worry about
1054 * making this match the hash of some other type.
1055 * Use frexp to get at the bits in the double.
1056 * Since the VAX D double format has 56 mantissa bits, which is the
1057 * most of any double format in use, each of these parts may have as
1058 * many as (but no more than) 56 significant bits.
1059 * So, assuming sizeof(long) >= 4, each part can be broken into two
1060 * longs; frexp and multiplication are used to do that.
1061 * Also, since the Cray double format has 15 exponent bits, which is
1062 * the most of any double format in use, shifting the exponent field
1063 * left by 15 won't overflow a long (again assuming sizeof(long) >= 4).
1065 v
= frexp(v
, &expo
);
1066 v
*= 2147483648.0; /* 2**31 */
1067 hipart
= (long)v
; /* take the top 32 bits */
1068 v
= (v
- (double)hipart
) * 2147483648.0; /* get the next 32 bits */
1069 x
= hipart
+ (long)v
+ (expo
<< 15);
1076 _Py_HashPointer(void *p
)
1079 size_t y
= (size_t)p
;
1080 /* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid
1081 excessive hash collisions for dicts and sets */
1082 y
= (y
>> 4) | (y
<< (8 * SIZEOF_VOID_P
- 4));
1090 PyObject_HashNotImplemented(PyObject
*self
)
1092 PyErr_Format(PyExc_TypeError
, "unhashable type: '%.200s'",
1093 self
->ob_type
->tp_name
);
1098 PyObject_Hash(PyObject
*v
)
1100 PyTypeObject
*tp
= v
->ob_type
;
1101 if (tp
->tp_hash
!= NULL
)
1102 return (*tp
->tp_hash
)(v
);
1103 /* To keep to the general practice that inheriting
1104 * solely from object in C code should work without
1105 * an explicit call to PyType_Ready, we implicitly call
1106 * PyType_Ready here and then check the tp_hash slot again
1108 if (tp
->tp_dict
== NULL
) {
1109 if (PyType_Ready(tp
) < 0)
1111 if (tp
->tp_hash
!= NULL
)
1112 return (*tp
->tp_hash
)(v
);
1114 if (tp
->tp_compare
== NULL
&& RICHCOMPARE(tp
) == NULL
) {
1115 return _Py_HashPointer(v
); /* Use address as hash value */
1117 /* If there's a cmp but no hash defined, the object can't be hashed */
1118 return PyObject_HashNotImplemented(v
);
1122 PyObject_GetAttrString(PyObject
*v
, const char *name
)
1126 if (Py_TYPE(v
)->tp_getattr
!= NULL
)
1127 return (*Py_TYPE(v
)->tp_getattr
)(v
, (char*)name
);
1128 w
= PyString_InternFromString(name
);
1131 res
= PyObject_GetAttr(v
, w
);
1137 PyObject_HasAttrString(PyObject
*v
, const char *name
)
1139 PyObject
*res
= PyObject_GetAttrString(v
, name
);
1149 PyObject_SetAttrString(PyObject
*v
, const char *name
, PyObject
*w
)
1154 if (Py_TYPE(v
)->tp_setattr
!= NULL
)
1155 return (*Py_TYPE(v
)->tp_setattr
)(v
, (char*)name
, w
);
1156 s
= PyString_InternFromString(name
);
1159 res
= PyObject_SetAttr(v
, s
, w
);
1165 PyObject_GetAttr(PyObject
*v
, PyObject
*name
)
1167 PyTypeObject
*tp
= Py_TYPE(v
);
1169 if (!PyString_Check(name
)) {
1170 #ifdef Py_USING_UNICODE
1171 /* The Unicode to string conversion is done here because the
1172 existing tp_getattro slots expect a string object as name
1173 and we wouldn't want to break those. */
1174 if (PyUnicode_Check(name
)) {
1175 name
= _PyUnicode_AsDefaultEncodedString(name
, NULL
);
1182 PyErr_Format(PyExc_TypeError
,
1183 "attribute name must be string, not '%.200s'",
1184 Py_TYPE(name
)->tp_name
);
1188 if (tp
->tp_getattro
!= NULL
)
1189 return (*tp
->tp_getattro
)(v
, name
);
1190 if (tp
->tp_getattr
!= NULL
)
1191 return (*tp
->tp_getattr
)(v
, PyString_AS_STRING(name
));
1192 PyErr_Format(PyExc_AttributeError
,
1193 "'%.50s' object has no attribute '%.400s'",
1194 tp
->tp_name
, PyString_AS_STRING(name
));
1199 PyObject_HasAttr(PyObject
*v
, PyObject
*name
)
1201 PyObject
*res
= PyObject_GetAttr(v
, name
);
1211 PyObject_SetAttr(PyObject
*v
, PyObject
*name
, PyObject
*value
)
1213 PyTypeObject
*tp
= Py_TYPE(v
);
1216 if (!PyString_Check(name
)){
1217 #ifdef Py_USING_UNICODE
1218 /* The Unicode to string conversion is done here because the
1219 existing tp_setattro slots expect a string object as name
1220 and we wouldn't want to break those. */
1221 if (PyUnicode_Check(name
)) {
1222 name
= PyUnicode_AsEncodedString(name
, NULL
, NULL
);
1229 PyErr_Format(PyExc_TypeError
,
1230 "attribute name must be string, not '%.200s'",
1231 Py_TYPE(name
)->tp_name
);
1238 PyString_InternInPlace(&name
);
1239 if (tp
->tp_setattro
!= NULL
) {
1240 err
= (*tp
->tp_setattro
)(v
, name
, value
);
1244 if (tp
->tp_setattr
!= NULL
) {
1245 err
= (*tp
->tp_setattr
)(v
, PyString_AS_STRING(name
), value
);
1250 if (tp
->tp_getattr
== NULL
&& tp
->tp_getattro
== NULL
)
1251 PyErr_Format(PyExc_TypeError
,
1252 "'%.100s' object has no attributes "
1255 value
==NULL
? "del" : "assign to",
1256 PyString_AS_STRING(name
));
1258 PyErr_Format(PyExc_TypeError
,
1259 "'%.100s' object has only read-only attributes "
1262 value
==NULL
? "del" : "assign to",
1263 PyString_AS_STRING(name
));
1267 /* Helper to get a pointer to an object's __dict__ slot, if any */
1270 _PyObject_GetDictPtr(PyObject
*obj
)
1272 Py_ssize_t dictoffset
;
1273 PyTypeObject
*tp
= Py_TYPE(obj
);
1275 if (!(tp
->tp_flags
& Py_TPFLAGS_HAVE_CLASS
))
1277 dictoffset
= tp
->tp_dictoffset
;
1278 if (dictoffset
== 0)
1280 if (dictoffset
< 0) {
1284 tsize
= ((PyVarObject
*)obj
)->ob_size
;
1287 size
= _PyObject_VAR_SIZE(tp
, tsize
);
1289 dictoffset
+= (long)size
;
1290 assert(dictoffset
> 0);
1291 assert(dictoffset
% SIZEOF_VOID_P
== 0);
1293 return (PyObject
**) ((char *)obj
+ dictoffset
);
1297 PyObject_SelfIter(PyObject
*obj
)
1303 /* Helper used when the __next__ method is removed from a type:
1304 tp_iternext is never NULL and can be safely called without checking
1309 _PyObject_NextNotImplemented(PyObject
*self
)
1311 PyErr_Format(PyExc_TypeError
,
1312 "'%.200s' object is not iterable",
1313 Py_TYPE(self
)->tp_name
);
1317 /* Generic GetAttr functions - put these in your tp_[gs]etattro slot */
1320 PyObject_GenericGetAttr(PyObject
*obj
, PyObject
*name
)
1322 PyTypeObject
*tp
= Py_TYPE(obj
);
1323 PyObject
*descr
= NULL
;
1324 PyObject
*res
= NULL
;
1326 Py_ssize_t dictoffset
;
1329 if (!PyString_Check(name
)){
1330 #ifdef Py_USING_UNICODE
1331 /* The Unicode to string conversion is done here because the
1332 existing tp_setattro slots expect a string object as name
1333 and we wouldn't want to break those. */
1334 if (PyUnicode_Check(name
)) {
1335 name
= PyUnicode_AsEncodedString(name
, NULL
, NULL
);
1342 PyErr_Format(PyExc_TypeError
,
1343 "attribute name must be string, not '%.200s'",
1344 Py_TYPE(name
)->tp_name
);
1351 if (tp
->tp_dict
== NULL
) {
1352 if (PyType_Ready(tp
) < 0)
1356 #if 0 /* XXX this is not quite _PyType_Lookup anymore */
1357 /* Inline _PyType_Lookup */
1360 PyObject
*mro
, *base
, *dict
;
1362 /* Look in tp_dict of types in MRO */
1364 assert(mro
!= NULL
);
1365 assert(PyTuple_Check(mro
));
1366 n
= PyTuple_GET_SIZE(mro
);
1367 for (i
= 0; i
< n
; i
++) {
1368 base
= PyTuple_GET_ITEM(mro
, i
);
1369 if (PyClass_Check(base
))
1370 dict
= ((PyClassObject
*)base
)->cl_dict
;
1372 assert(PyType_Check(base
));
1373 dict
= ((PyTypeObject
*)base
)->tp_dict
;
1375 assert(dict
&& PyDict_Check(dict
));
1376 descr
= PyDict_GetItem(dict
, name
);
1382 descr
= _PyType_Lookup(tp
, name
);
1388 if (descr
!= NULL
&&
1389 PyType_HasFeature(descr
->ob_type
, Py_TPFLAGS_HAVE_CLASS
)) {
1390 f
= descr
->ob_type
->tp_descr_get
;
1391 if (f
!= NULL
&& PyDescr_IsData(descr
)) {
1392 res
= f(descr
, obj
, (PyObject
*)obj
->ob_type
);
1398 /* Inline _PyObject_GetDictPtr */
1399 dictoffset
= tp
->tp_dictoffset
;
1400 if (dictoffset
!= 0) {
1402 if (dictoffset
< 0) {
1406 tsize
= ((PyVarObject
*)obj
)->ob_size
;
1409 size
= _PyObject_VAR_SIZE(tp
, tsize
);
1411 dictoffset
+= (long)size
;
1412 assert(dictoffset
> 0);
1413 assert(dictoffset
% SIZEOF_VOID_P
== 0);
1415 dictptr
= (PyObject
**) ((char *)obj
+ dictoffset
);
1419 res
= PyDict_GetItem(dict
, name
);
1431 res
= f(descr
, obj
, (PyObject
*)Py_TYPE(obj
));
1436 if (descr
!= NULL
) {
1438 /* descr was already increfed above */
1442 PyErr_Format(PyExc_AttributeError
,
1443 "'%.50s' object has no attribute '%.400s'",
1444 tp
->tp_name
, PyString_AS_STRING(name
));
1451 PyObject_GenericSetAttr(PyObject
*obj
, PyObject
*name
, PyObject
*value
)
1453 PyTypeObject
*tp
= Py_TYPE(obj
);
1459 if (!PyString_Check(name
)){
1460 #ifdef Py_USING_UNICODE
1461 /* The Unicode to string conversion is done here because the
1462 existing tp_setattro slots expect a string object as name
1463 and we wouldn't want to break those. */
1464 if (PyUnicode_Check(name
)) {
1465 name
= PyUnicode_AsEncodedString(name
, NULL
, NULL
);
1472 PyErr_Format(PyExc_TypeError
,
1473 "attribute name must be string, not '%.200s'",
1474 Py_TYPE(name
)->tp_name
);
1481 if (tp
->tp_dict
== NULL
) {
1482 if (PyType_Ready(tp
) < 0)
1486 descr
= _PyType_Lookup(tp
, name
);
1488 if (descr
!= NULL
&&
1489 PyType_HasFeature(descr
->ob_type
, Py_TPFLAGS_HAVE_CLASS
)) {
1490 f
= descr
->ob_type
->tp_descr_set
;
1491 if (f
!= NULL
&& PyDescr_IsData(descr
)) {
1492 res
= f(descr
, obj
, value
);
1497 dictptr
= _PyObject_GetDictPtr(obj
);
1498 if (dictptr
!= NULL
) {
1499 PyObject
*dict
= *dictptr
;
1500 if (dict
== NULL
&& value
!= NULL
) {
1501 dict
= PyDict_New();
1509 res
= PyDict_DelItem(dict
, name
);
1511 res
= PyDict_SetItem(dict
, name
, value
);
1512 if (res
< 0 && PyErr_ExceptionMatches(PyExc_KeyError
))
1513 PyErr_SetObject(PyExc_AttributeError
, name
);
1520 res
= f(descr
, obj
, value
);
1524 if (descr
== NULL
) {
1525 PyErr_Format(PyExc_AttributeError
,
1526 "'%.100s' object has no attribute '%.200s'",
1527 tp
->tp_name
, PyString_AS_STRING(name
));
1531 PyErr_Format(PyExc_AttributeError
,
1532 "'%.50s' object attribute '%.400s' is read-only",
1533 tp
->tp_name
, PyString_AS_STRING(name
));
1539 /* Test a value used as condition, e.g., in a for or if statement.
1540 Return -1 if an error occurred */
1543 PyObject_IsTrue(PyObject
*v
)
1552 else if (v
->ob_type
->tp_as_number
!= NULL
&&
1553 v
->ob_type
->tp_as_number
->nb_nonzero
!= NULL
)
1554 res
= (*v
->ob_type
->tp_as_number
->nb_nonzero
)(v
);
1555 else if (v
->ob_type
->tp_as_mapping
!= NULL
&&
1556 v
->ob_type
->tp_as_mapping
->mp_length
!= NULL
)
1557 res
= (*v
->ob_type
->tp_as_mapping
->mp_length
)(v
);
1558 else if (v
->ob_type
->tp_as_sequence
!= NULL
&&
1559 v
->ob_type
->tp_as_sequence
->sq_length
!= NULL
)
1560 res
= (*v
->ob_type
->tp_as_sequence
->sq_length
)(v
);
1563 /* if it is negative, it should be either -1 or -2 */
1564 return (res
> 0) ? 1 : Py_SAFE_DOWNCAST(res
, Py_ssize_t
, int);
1567 /* equivalent of 'not v'
1568 Return -1 if an error occurred */
1571 PyObject_Not(PyObject
*v
)
1574 res
= PyObject_IsTrue(v
);
1580 /* Coerce two numeric types to the "larger" one.
1581 Increment the reference count on each argument.
1583 -1 if an error occurred;
1584 0 if the coercion succeeded (and then the reference counts are increased);
1585 1 if no coercion is possible (and no error is raised).
1588 PyNumber_CoerceEx(PyObject
**pv
, PyObject
**pw
)
1590 register PyObject
*v
= *pv
;
1591 register PyObject
*w
= *pw
;
1594 /* Shortcut only for old-style types */
1595 if (v
->ob_type
== w
->ob_type
&&
1596 !PyType_HasFeature(v
->ob_type
, Py_TPFLAGS_CHECKTYPES
))
1602 if (v
->ob_type
->tp_as_number
&& v
->ob_type
->tp_as_number
->nb_coerce
) {
1603 res
= (*v
->ob_type
->tp_as_number
->nb_coerce
)(pv
, pw
);
1607 if (w
->ob_type
->tp_as_number
&& w
->ob_type
->tp_as_number
->nb_coerce
) {
1608 res
= (*w
->ob_type
->tp_as_number
->nb_coerce
)(pw
, pv
);
1615 /* Coerce two numeric types to the "larger" one.
1616 Increment the reference count on each argument.
1617 Return -1 and raise an exception if no coercion is possible
1618 (and then no reference count is incremented).
1621 PyNumber_Coerce(PyObject
**pv
, PyObject
**pw
)
1623 int err
= PyNumber_CoerceEx(pv
, pw
);
1626 PyErr_SetString(PyExc_TypeError
, "number coercion failed");
1631 /* Test whether an object can be called */
1634 PyCallable_Check(PyObject
*x
)
1638 if (PyInstance_Check(x
)) {
1639 PyObject
*call
= PyObject_GetAttrString(x
, "__call__");
1644 /* Could test recursively but don't, for fear of endless
1645 recursion if some joker sets self.__call__ = self */
1650 return x
->ob_type
->tp_call
!= NULL
;
1654 /* ------------------------- PyObject_Dir() helpers ------------------------- */
1656 /* Helper for PyObject_Dir.
1657 Merge the __dict__ of aclass into dict, and recursively also all
1658 the __dict__s of aclass's base classes. The order of merging isn't
1659 defined, as it's expected that only the final set of dict keys is
1661 Return 0 on success, -1 on error.
1665 merge_class_dict(PyObject
* dict
, PyObject
* aclass
)
1667 PyObject
*classdict
;
1670 assert(PyDict_Check(dict
));
1673 /* Merge in the type's dict (if any). */
1674 classdict
= PyObject_GetAttrString(aclass
, "__dict__");
1675 if (classdict
== NULL
)
1678 int status
= PyDict_Update(dict
, classdict
);
1679 Py_DECREF(classdict
);
1684 /* Recursively merge in the base types' (if any) dicts. */
1685 bases
= PyObject_GetAttrString(aclass
, "__bases__");
1689 /* We have no guarantee that bases is a real tuple */
1691 n
= PySequence_Size(bases
); /* This better be right */
1695 for (i
= 0; i
< n
; i
++) {
1697 PyObject
*base
= PySequence_GetItem(bases
, i
);
1702 status
= merge_class_dict(dict
, base
);
1715 /* Helper for PyObject_Dir.
1716 If obj has an attr named attrname that's a list, merge its string
1717 elements into keys of dict.
1718 Return 0 on success, -1 on error. Errors due to not finding the attr,
1719 or the attr not being a list, are suppressed.
1723 merge_list_attr(PyObject
* dict
, PyObject
* obj
, const char *attrname
)
1728 assert(PyDict_Check(dict
));
1732 list
= PyObject_GetAttrString(obj
, attrname
);
1736 else if (PyList_Check(list
)) {
1738 for (i
= 0; i
< PyList_GET_SIZE(list
); ++i
) {
1739 PyObject
*item
= PyList_GET_ITEM(list
, i
);
1740 if (PyString_Check(item
)) {
1741 result
= PyDict_SetItem(dict
, item
, Py_None
);
1746 if (Py_Py3kWarningFlag
&&
1747 (strcmp(attrname
, "__members__") == 0 ||
1748 strcmp(attrname
, "__methods__") == 0)) {
1749 if (PyErr_WarnEx(PyExc_DeprecationWarning
,
1750 "__members__ and __methods__ not "
1751 "supported in 3.x", 1) < 0) {
1762 /* Helper for PyObject_Dir without arguments: returns the local scope. */
1767 PyObject
*locals
= PyEval_GetLocals();
1769 if (locals
== NULL
) {
1770 PyErr_SetString(PyExc_SystemError
, "frame does not exist");
1774 names
= PyMapping_Keys(locals
);
1777 if (!PyList_Check(names
)) {
1778 PyErr_Format(PyExc_TypeError
,
1779 "dir(): expected keys() of locals to be a list, "
1780 "not '%.200s'", Py_TYPE(names
)->tp_name
);
1784 /* the locals don't need to be DECREF'd */
1788 /* Helper for PyObject_Dir of type objects: returns __dict__ and __bases__.
1789 We deliberately don't suck up its __class__, as methods belonging to the
1790 metaclass would probably be more confusing than helpful.
1793 _specialized_dir_type(PyObject
*obj
)
1795 PyObject
*result
= NULL
;
1796 PyObject
*dict
= PyDict_New();
1798 if (dict
!= NULL
&& merge_class_dict(dict
, obj
) == 0)
1799 result
= PyDict_Keys(dict
);
1805 /* Helper for PyObject_Dir of module objects: returns the module's __dict__. */
1807 _specialized_dir_module(PyObject
*obj
)
1809 PyObject
*result
= NULL
;
1810 PyObject
*dict
= PyObject_GetAttrString(obj
, "__dict__");
1813 if (PyDict_Check(dict
))
1814 result
= PyDict_Keys(dict
);
1816 char *name
= PyModule_GetName(obj
);
1818 PyErr_Format(PyExc_TypeError
,
1819 "%.200s.__dict__ is not a dictionary",
1828 /* Helper for PyObject_Dir of generic objects: returns __dict__, __class__,
1829 and recursively up the __class__.__bases__ chain.
1832 _generic_dir(PyObject
*obj
)
1834 PyObject
*result
= NULL
;
1835 PyObject
*dict
= NULL
;
1836 PyObject
*itsclass
= NULL
;
1838 /* Get __dict__ (which may or may not be a real dict...) */
1839 dict
= PyObject_GetAttrString(obj
, "__dict__");
1842 dict
= PyDict_New();
1844 else if (!PyDict_Check(dict
)) {
1846 dict
= PyDict_New();
1849 /* Copy __dict__ to avoid mutating it. */
1850 PyObject
*temp
= PyDict_Copy(dict
);
1858 /* Merge in __members__ and __methods__ (if any).
1859 * This is removed in Python 3000. */
1860 if (merge_list_attr(dict
, obj
, "__members__") < 0)
1862 if (merge_list_attr(dict
, obj
, "__methods__") < 0)
1865 /* Merge in attrs reachable from its class. */
1866 itsclass
= PyObject_GetAttrString(obj
, "__class__");
1867 if (itsclass
== NULL
)
1868 /* XXX(tomer): Perhaps fall back to obj->ob_type if no
1869 __class__ exists? */
1872 if (merge_class_dict(dict
, itsclass
) != 0)
1876 result
= PyDict_Keys(dict
);
1879 Py_XDECREF(itsclass
);
1884 /* Helper for PyObject_Dir: object introspection.
1885 This calls one of the above specialized versions if no __dir__ method
1888 _dir_object(PyObject
*obj
)
1890 PyObject
*result
= NULL
;
1891 PyObject
*dirfunc
= PyObject_GetAttrString((PyObject
*)obj
->ob_type
,
1895 if (dirfunc
== NULL
) {
1896 /* use default implementation */
1898 if (PyModule_Check(obj
))
1899 result
= _specialized_dir_module(obj
);
1900 else if (PyType_Check(obj
) || PyClass_Check(obj
))
1901 result
= _specialized_dir_type(obj
);
1903 result
= _generic_dir(obj
);
1907 result
= PyObject_CallFunctionObjArgs(dirfunc
, obj
, NULL
);
1912 /* result must be a list */
1913 /* XXX(gbrandl): could also check if all items are strings */
1914 if (!PyList_Check(result
)) {
1915 PyErr_Format(PyExc_TypeError
,
1916 "__dir__() must return a list, not %.200s",
1917 Py_TYPE(result
)->tp_name
);
1926 /* Implementation of dir() -- if obj is NULL, returns the names in the current
1927 (local) scope. Otherwise, performs introspection of the object: returns a
1928 sorted list of attribute names (supposedly) accessible from the object
1931 PyObject_Dir(PyObject
*obj
)
1936 /* no object -- introspect the locals */
1937 result
= _dir_locals();
1939 /* object -- introspect the object */
1940 result
= _dir_object(obj
);
1942 assert(result
== NULL
|| PyList_Check(result
));
1944 if (result
!= NULL
&& PyList_Sort(result
) != 0) {
1945 /* sorting the list failed */
1954 NoObject is usable as a non-NULL undefined value, used by the macro None.
1955 There is (and should be!) no way to create other objects of this type,
1956 so there is exactly one (which is indestructible, by the way).
1957 (XXX This type and the type of NotImplemented below should be unified.)
1962 none_repr(PyObject
*op
)
1964 return PyString_FromString("None");
1969 none_dealloc(PyObject
* ignore
)
1971 /* This should never get called, but we also don't want to SEGV if
1972 * we accidentally decref None out of existence.
1974 Py_FatalError("deallocating None");
1978 static PyTypeObject PyNone_Type
= {
1979 PyVarObject_HEAD_INIT(&PyType_Type
, 0)
1983 none_dealloc
, /*tp_dealloc*/ /*never called*/
1988 none_repr
, /*tp_repr*/
1990 0, /*tp_as_sequence*/
1991 0, /*tp_as_mapping*/
1992 (hashfunc
)_Py_HashPointer
, /*tp_hash */
1995 PyObject _Py_NoneStruct
= {
1996 _PyObject_EXTRA_INIT
2000 /* NotImplemented is an object that can be used to signal that an
2001 operation is not implemented for the given type combination. */
2004 NotImplemented_repr(PyObject
*op
)
2006 return PyString_FromString("NotImplemented");
2009 static PyTypeObject PyNotImplemented_Type
= {
2010 PyVarObject_HEAD_INIT(&PyType_Type
, 0)
2011 "NotImplementedType",
2014 none_dealloc
, /*tp_dealloc*/ /*never called*/
2019 NotImplemented_repr
, /*tp_repr*/
2021 0, /*tp_as_sequence*/
2022 0, /*tp_as_mapping*/
2026 PyObject _Py_NotImplementedStruct
= {
2027 _PyObject_EXTRA_INIT
2028 1, &PyNotImplemented_Type
2032 _Py_ReadyTypes(void)
2034 if (PyType_Ready(&PyType_Type
) < 0)
2035 Py_FatalError("Can't initialize type type");
2037 if (PyType_Ready(&_PyWeakref_RefType
) < 0)
2038 Py_FatalError("Can't initialize weakref type");
2040 if (PyType_Ready(&_PyWeakref_CallableProxyType
) < 0)
2041 Py_FatalError("Can't initialize callable weakref proxy type");
2043 if (PyType_Ready(&_PyWeakref_ProxyType
) < 0)
2044 Py_FatalError("Can't initialize weakref proxy type");
2046 if (PyType_Ready(&PyBool_Type
) < 0)
2047 Py_FatalError("Can't initialize bool type");
2049 if (PyType_Ready(&PyString_Type
) < 0)
2050 Py_FatalError("Can't initialize str type");
2052 if (PyType_Ready(&PyByteArray_Type
) < 0)
2053 Py_FatalError("Can't initialize bytearray type");
2055 if (PyType_Ready(&PyList_Type
) < 0)
2056 Py_FatalError("Can't initialize list type");
2058 if (PyType_Ready(&PyNone_Type
) < 0)
2059 Py_FatalError("Can't initialize None type");
2061 if (PyType_Ready(&PyNotImplemented_Type
) < 0)
2062 Py_FatalError("Can't initialize NotImplemented type");
2064 if (PyType_Ready(&PyTraceBack_Type
) < 0)
2065 Py_FatalError("Can't initialize traceback type");
2067 if (PyType_Ready(&PySuper_Type
) < 0)
2068 Py_FatalError("Can't initialize super type");
2070 if (PyType_Ready(&PyBaseObject_Type
) < 0)
2071 Py_FatalError("Can't initialize object type");
2073 if (PyType_Ready(&PyRange_Type
) < 0)
2074 Py_FatalError("Can't initialize xrange type");
2076 if (PyType_Ready(&PyDict_Type
) < 0)
2077 Py_FatalError("Can't initialize dict type");
2079 if (PyType_Ready(&PySet_Type
) < 0)
2080 Py_FatalError("Can't initialize set type");
2082 if (PyType_Ready(&PyUnicode_Type
) < 0)
2083 Py_FatalError("Can't initialize unicode type");
2085 if (PyType_Ready(&PySlice_Type
) < 0)
2086 Py_FatalError("Can't initialize slice type");
2088 if (PyType_Ready(&PyStaticMethod_Type
) < 0)
2089 Py_FatalError("Can't initialize static method type");
2091 #ifndef WITHOUT_COMPLEX
2092 if (PyType_Ready(&PyComplex_Type
) < 0)
2093 Py_FatalError("Can't initialize complex type");
2096 if (PyType_Ready(&PyFloat_Type
) < 0)
2097 Py_FatalError("Can't initialize float type");
2099 if (PyType_Ready(&PyBuffer_Type
) < 0)
2100 Py_FatalError("Can't initialize buffer type");
2102 if (PyType_Ready(&PyLong_Type
) < 0)
2103 Py_FatalError("Can't initialize long type");
2105 if (PyType_Ready(&PyInt_Type
) < 0)
2106 Py_FatalError("Can't initialize int type");
2108 if (PyType_Ready(&PyFrozenSet_Type
) < 0)
2109 Py_FatalError("Can't initialize frozenset type");
2111 if (PyType_Ready(&PyProperty_Type
) < 0)
2112 Py_FatalError("Can't initialize property type");
2114 if (PyType_Ready(&PyMemoryView_Type
) < 0)
2115 Py_FatalError("Can't initialize memoryview type");
2117 if (PyType_Ready(&PyTuple_Type
) < 0)
2118 Py_FatalError("Can't initialize tuple type");
2120 if (PyType_Ready(&PyEnum_Type
) < 0)
2121 Py_FatalError("Can't initialize enumerate type");
2123 if (PyType_Ready(&PyReversed_Type
) < 0)
2124 Py_FatalError("Can't initialize reversed type");
2126 if (PyType_Ready(&PyCode_Type
) < 0)
2127 Py_FatalError("Can't initialize code type");
2129 if (PyType_Ready(&PyFrame_Type
) < 0)
2130 Py_FatalError("Can't initialize frame type");
2132 if (PyType_Ready(&PyCFunction_Type
) < 0)
2133 Py_FatalError("Can't initialize builtin function type");
2135 if (PyType_Ready(&PyMethod_Type
) < 0)
2136 Py_FatalError("Can't initialize method type");
2138 if (PyType_Ready(&PyFunction_Type
) < 0)
2139 Py_FatalError("Can't initialize function type");
2141 if (PyType_Ready(&PyClass_Type
) < 0)
2142 Py_FatalError("Can't initialize class type");
2144 if (PyType_Ready(&PyDictProxy_Type
) < 0)
2145 Py_FatalError("Can't initialize dict proxy type");
2147 if (PyType_Ready(&PyGen_Type
) < 0)
2148 Py_FatalError("Can't initialize generator type");
2150 if (PyType_Ready(&PyGetSetDescr_Type
) < 0)
2151 Py_FatalError("Can't initialize get-set descriptor type");
2153 if (PyType_Ready(&PyWrapperDescr_Type
) < 0)
2154 Py_FatalError("Can't initialize wrapper type");
2156 if (PyType_Ready(&PyInstance_Type
) < 0)
2157 Py_FatalError("Can't initialize instance type");
2159 if (PyType_Ready(&PyEllipsis_Type
) < 0)
2160 Py_FatalError("Can't initialize ellipsis type");
2162 if (PyType_Ready(&PyMemberDescr_Type
) < 0)
2163 Py_FatalError("Can't initialize member descriptor type");
2165 if (PyType_Ready(&PyFile_Type
) < 0)
2166 Py_FatalError("Can't initialize file type");
2170 #ifdef Py_TRACE_REFS
2173 _Py_NewReference(PyObject
*op
)
2177 _Py_AddToAllObjects(op
, 1);
2178 _Py_INC_TPALLOCS(op
);
2182 _Py_ForgetReference(register PyObject
*op
)
2184 #ifdef SLOW_UNREF_CHECK
2185 register PyObject
*p
;
2187 if (op
->ob_refcnt
< 0)
2188 Py_FatalError("UNREF negative refcnt");
2189 if (op
== &refchain
||
2190 op
->_ob_prev
->_ob_next
!= op
|| op
->_ob_next
->_ob_prev
!= op
)
2191 Py_FatalError("UNREF invalid object");
2192 #ifdef SLOW_UNREF_CHECK
2193 for (p
= refchain
._ob_next
; p
!= &refchain
; p
= p
->_ob_next
) {
2197 if (p
== &refchain
) /* Not found */
2198 Py_FatalError("UNREF unknown object");
2200 op
->_ob_next
->_ob_prev
= op
->_ob_prev
;
2201 op
->_ob_prev
->_ob_next
= op
->_ob_next
;
2202 op
->_ob_next
= op
->_ob_prev
= NULL
;
2203 _Py_INC_TPFREES(op
);
2207 _Py_Dealloc(PyObject
*op
)
2209 destructor dealloc
= Py_TYPE(op
)->tp_dealloc
;
2210 _Py_ForgetReference(op
);
2214 /* Print all live objects. Because PyObject_Print is called, the
2215 * interpreter must be in a healthy state.
2218 _Py_PrintReferences(FILE *fp
)
2221 fprintf(fp
, "Remaining objects:\n");
2222 for (op
= refchain
._ob_next
; op
!= &refchain
; op
= op
->_ob_next
) {
2223 fprintf(fp
, "%p [%" PY_FORMAT_SIZE_T
"d] ", op
, op
->ob_refcnt
);
2224 if (PyObject_Print(op
, fp
, 0) != 0)
2230 /* Print the addresses of all live objects. Unlike _Py_PrintReferences, this
2231 * doesn't make any calls to the Python C API, so is always safe to call.
2234 _Py_PrintReferenceAddresses(FILE *fp
)
2237 fprintf(fp
, "Remaining object addresses:\n");
2238 for (op
= refchain
._ob_next
; op
!= &refchain
; op
= op
->_ob_next
)
2239 fprintf(fp
, "%p [%" PY_FORMAT_SIZE_T
"d] %s\n", op
,
2240 op
->ob_refcnt
, Py_TYPE(op
)->tp_name
);
2244 _Py_GetObjects(PyObject
*self
, PyObject
*args
)
2250 if (!PyArg_ParseTuple(args
, "i|O", &n
, &t
))
2252 op
= refchain
._ob_next
;
2253 res
= PyList_New(0);
2256 for (i
= 0; (n
== 0 || i
< n
) && op
!= &refchain
; i
++) {
2257 while (op
== self
|| op
== args
|| op
== res
|| op
== t
||
2258 (t
!= NULL
&& Py_TYPE(op
) != (PyTypeObject
*) t
)) {
2260 if (op
== &refchain
)
2263 if (PyList_Append(res
, op
) < 0) {
2275 /* Hack to force loading of capsule.o */
2276 PyTypeObject
*_Py_capsule_hack
= &PyCapsule_Type
;
2279 /* Hack to force loading of cobject.o */
2280 PyTypeObject
*_Py_cobject_hack
= &PyCObject_Type
;
2283 /* Hack to force loading of abstract.o */
2284 Py_ssize_t (*_Py_abstract_hack
)(PyObject
*) = PyObject_Size
;
2287 /* Python's malloc wrappers (see pymem.h) */
2290 PyMem_Malloc(size_t nbytes
)
2292 return PyMem_MALLOC(nbytes
);
2296 PyMem_Realloc(void *p
, size_t nbytes
)
2298 return PyMem_REALLOC(p
, nbytes
);
2308 /* These methods are used to control infinite recursion in repr, str, print,
2309 etc. Container objects that may recursively contain themselves,
2310 e.g. builtin dictionaries and lists, should used Py_ReprEnter() and
2311 Py_ReprLeave() to avoid infinite recursion.
2313 Py_ReprEnter() returns 0 the first time it is called for a particular
2314 object and 1 every time thereafter. It returns -1 if an exception
2315 occurred. Py_ReprLeave() has no return value.
2317 See dictobject.c and listobject.c for examples of use.
2320 #define KEY "Py_Repr"
2323 Py_ReprEnter(PyObject
*obj
)
2329 dict
= PyThreadState_GetDict();
2332 list
= PyDict_GetItemString(dict
, KEY
);
2334 list
= PyList_New(0);
2337 if (PyDict_SetItemString(dict
, KEY
, list
) < 0)
2341 i
= PyList_GET_SIZE(list
);
2343 if (PyList_GET_ITEM(list
, i
) == obj
)
2346 PyList_Append(list
, obj
);
2351 Py_ReprLeave(PyObject
*obj
)
2357 dict
= PyThreadState_GetDict();
2360 list
= PyDict_GetItemString(dict
, KEY
);
2361 if (list
== NULL
|| !PyList_Check(list
))
2363 i
= PyList_GET_SIZE(list
);
2364 /* Count backwards because we always expect obj to be list[-1] */
2366 if (PyList_GET_ITEM(list
, i
) == obj
) {
2367 PyList_SetSlice(list
, i
, i
+ 1, NULL
);
2373 /* Trashcan support. */
2375 /* Current call-stack depth of tp_dealloc calls. */
2376 int _PyTrash_delete_nesting
= 0;
2378 /* List of objects that still need to be cleaned up, singly linked via their
2379 * gc headers' gc_prev pointers.
2381 PyObject
*_PyTrash_delete_later
= NULL
;
2383 /* Add op to the _PyTrash_delete_later list. Called when the current
2384 * call-stack depth gets large. op must be a currently untracked gc'ed
2385 * object, with refcount 0. Py_DECREF must already have been called on it.
2388 _PyTrash_deposit_object(PyObject
*op
)
2390 assert(PyObject_IS_GC(op
));
2391 assert(_Py_AS_GC(op
)->gc
.gc_refs
== _PyGC_REFS_UNTRACKED
);
2392 assert(op
->ob_refcnt
== 0);
2393 _Py_AS_GC(op
)->gc
.gc_prev
= (PyGC_Head
*)_PyTrash_delete_later
;
2394 _PyTrash_delete_later
= op
;
2397 /* Dealloccate all the objects in the _PyTrash_delete_later list. Called when
2398 * the call-stack unwinds again.
2401 _PyTrash_destroy_chain(void)
2403 while (_PyTrash_delete_later
) {
2404 PyObject
*op
= _PyTrash_delete_later
;
2405 destructor dealloc
= Py_TYPE(op
)->tp_dealloc
;
2407 _PyTrash_delete_later
=
2408 (PyObject
*) _Py_AS_GC(op
)->gc
.gc_prev
;
2410 /* Call the deallocator directly. This used to try to
2411 * fool Py_DECREF into calling it indirectly, but
2412 * Py_DECREF was already called on this object, and in
2413 * assorted non-release builds calling Py_DECREF again ends
2414 * up distorting allocation statistics.
2416 assert(op
->ob_refcnt
== 0);
2417 ++_PyTrash_delete_nesting
;
2419 --_PyTrash_delete_nesting
;