3 csv.py - read/write/investigate CSV files
7 from _csv
import Error
, __version__
, writer
, reader
, register_dialect
, \
8 unregister_dialect
, get_dialect
, list_dialects
, \
9 QUOTE_MINIMAL
, QUOTE_ALL
, QUOTE_NONNUMERIC
, QUOTE_NONE
, \
13 from cStringIO
import StringIO
15 from StringIO
import StringIO
17 __all__
= [ "QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE",
18 "Error", "Dialect", "excel", "excel_tab", "reader", "writer",
19 "register_dialect", "get_dialect", "list_dialects", "Sniffer",
20 "unregister_dialect", "__version__", "DictReader", "DictWriter" ]
30 skipinitialspace
= None
35 if self
.__class
__ != Dialect
:
37 errors
= self
._validate
()
39 raise Error
, "Dialect did not validate: %s" % ", ".join(errors
)
44 errors
.append("can't directly instantiate Dialect class")
46 if self
.delimiter
is None:
47 errors
.append("delimiter character not set")
48 elif (not isinstance(self
.delimiter
, str) or
49 len(self
.delimiter
) > 1):
50 errors
.append("delimiter must be one-character string")
52 if self
.quotechar
is None:
53 if self
.quoting
!= QUOTE_NONE
:
54 errors
.append("quotechar not set")
55 elif (not isinstance(self
.quotechar
, str) or
56 len(self
.quotechar
) > 1):
57 errors
.append("quotechar must be one-character string")
59 if self
.lineterminator
is None:
60 errors
.append("lineterminator not set")
61 elif not isinstance(self
.lineterminator
, str):
62 errors
.append("lineterminator must be a string")
64 if self
.doublequote
not in (True, False):
65 errors
.append("doublequote parameter must be True or False")
67 if self
.skipinitialspace
not in (True, False):
68 errors
.append("skipinitialspace parameter must be True or False")
70 if self
.quoting
is None:
71 errors
.append("quoting parameter not set")
73 if self
.quoting
is QUOTE_NONE
:
74 if (not isinstance(self
.escapechar
, (unicode, str)) or
75 len(self
.escapechar
) > 1):
76 errors
.append("escapechar must be a one-character string or unicode object")
84 skipinitialspace
= False
85 lineterminator
= '\r\n'
86 quoting
= QUOTE_MINIMAL
87 register_dialect("excel", excel
)
89 class excel_tab(excel
):
91 register_dialect("excel-tab", excel_tab
)
95 def __init__(self
, f
, fieldnames
, restkey
=None, restval
=None,
96 dialect
="excel", *args
):
97 self
.fieldnames
= fieldnames
# list of keys for the dict
98 self
.restkey
= restkey
# key to catch long rows
99 self
.restval
= restval
# default value for short rows
100 self
.reader
= reader(f
, dialect
, *args
)
106 row
= self
.reader
.next()
107 # unlike the basic reader, we prefer not to return blanks,
108 # because we will typically wind up with a dict full of None
111 row
= self
.reader
.next()
112 d
= dict(zip(self
.fieldnames
, row
))
113 lf
= len(self
.fieldnames
)
116 d
[self
.restkey
] = row
[lf
:]
118 for key
in self
.fieldnames
[lr
:]:
119 d
[key
] = self
.restval
124 def __init__(self
, f
, fieldnames
, restval
="", extrasaction
="raise",
125 dialect
="excel", *args
):
126 self
.fieldnames
= fieldnames
# list of keys for the dict
127 self
.restval
= restval
# for writing short dicts
128 if extrasaction
.lower() not in ("raise", "ignore"):
130 ("extrasaction (%s) must be 'raise' or 'ignore'" %
132 self
.extrasaction
= extrasaction
133 self
.writer
= writer(f
, dialect
, *args
)
135 def _dict_to_list(self
, rowdict
):
136 if self
.extrasaction
== "raise":
137 for k
in rowdict
.keys():
138 if k
not in self
.fieldnames
:
139 raise ValueError, "dict contains fields not in fieldnames"
140 return [rowdict
.get(key
, self
.restval
) for key
in self
.fieldnames
]
142 def writerow(self
, rowdict
):
143 return self
.writer
.writerow(self
._dict
_to
_list
(rowdict
))
145 def writerows(self
, rowdicts
):
147 for rowdict
in rowdicts
:
148 rows
.append(self
._dict
_to
_list
(rowdict
))
149 return self
.writer
.writerows(rows
)
151 # Guard Sniffer's type checking against builds that exclude complex()
159 "Sniffs" the format of a CSV file (i.e. delimiter, quotechar)
160 Returns a Dialect object.
163 # in case there is more than one possible delimiter
164 self
.preferred
= [',', '\t', ';', ' ', ':']
167 def sniff(self
, sample
, delimiters
=None):
169 Returns a dialect (or None) corresponding to the sample
172 quotechar
, delimiter
, skipinitialspace
= \
173 self
._guess
_quote
_and
_delimiter
(sample
, delimiters
)
174 if delimiter
is None:
175 delimiter
, skipinitialspace
= self
._guess
_delimiter
(sample
,
178 class dialect(Dialect
):
180 lineterminator
= '\r\n'
181 quoting
= QUOTE_MINIMAL
185 dialect
.delimiter
= delimiter
186 # _csv.reader won't accept a quotechar of ''
187 dialect
.quotechar
= quotechar
or '"'
188 dialect
.skipinitialspace
= skipinitialspace
193 def _guess_quote_and_delimiter(self
, data
, delimiters
):
195 Looks for text enclosed between two identical quotes
196 (the probable quotechar) which are preceded and followed
197 by the same character (the probable delimiter).
200 The quote with the most wins, same with the delimiter.
201 If there is no quotechar the delimiter can't be determined
206 for restr
in ('(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
207 '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)', # ".*?",
208 '(?P<delim>>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)', # ,".*?"
209 '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space)
210 regexp
= re
.compile(restr
, re
.S | re
.M
)
211 matches
= regexp
.findall(data
)
216 return ('', None, 0) # (quotechar, delimiter, skipinitialspace)
222 n
= regexp
.groupindex
['quote'] - 1
225 quotes
[key
] = quotes
.get(key
, 0) + 1
227 n
= regexp
.groupindex
['delim'] - 1
231 if key
and (delimiters
is None or key
in delimiters
):
232 delims
[key
] = delims
.get(key
, 0) + 1
234 n
= regexp
.groupindex
['space'] - 1
240 quotechar
= reduce(lambda a
, b
, quotes
= quotes
:
241 (quotes
[a
] > quotes
[b
]) and a
or b
, quotes
.keys())
244 delim
= reduce(lambda a
, b
, delims
= delims
:
245 (delims
[a
] > delims
[b
]) and a
or b
, delims
.keys())
246 skipinitialspace
= delims
[delim
] == spaces
247 if delim
== '\n': # most likely a file with a single column
250 # there is *no* delimiter, it's a single column of quoted data
254 return (quotechar
, delim
, skipinitialspace
)
257 def _guess_delimiter(self
, data
, delimiters
):
259 The delimiter /should/ occur the same number of times on
260 each row. However, due to malformed data, it may not. We don't want
261 an all or nothing approach, so we allow for small variations in this
263 1) build a table of the frequency of each character on every line.
264 2) build a table of freqencies of this frequency (meta-frequency?),
265 e.g. 'x occurred 5 times in 10 rows, 6 times in 1000 rows,
267 3) use the mode of the meta-frequency to determine the /expected/
268 frequency for that character
269 4) find out how often the character actually meets that goal
270 5) the character that best meets its goal is the delimiter
271 For performance reasons, the data is evaluated in chunks, so it can
272 try and evaluate the smallest portion of the data possible, evaluating
273 additional chunks as necessary.
276 data
= filter(None, data
.split('\n'))
278 ascii
= [chr(c
) for c
in range(127)] # 7-bit ASCII
280 # build frequency tables
281 chunkLength
= min(10, len(data
))
286 start
, end
= 0, min(chunkLength
, len(data
))
287 while start
< len(data
):
289 for line
in data
[start
:end
]:
291 metaFrequency
= charFrequency
.get(char
, {})
292 # must count even if frequency is 0
293 freq
= line
.strip().count(char
)
295 metaFrequency
[freq
] = metaFrequency
.get(freq
, 0) + 1
296 charFrequency
[char
] = metaFrequency
298 for char
in charFrequency
.keys():
299 items
= charFrequency
[char
].items()
300 if len(items
) == 1 and items
[0][0] == 0:
302 # get the mode of the frequencies
304 modes
[char
] = reduce(lambda a
, b
: a
[1] > b
[1] and a
or b
,
306 # adjust the mode - subtract the sum of all
308 items
.remove(modes
[char
])
309 modes
[char
] = (modes
[char
][0], modes
[char
][1]
310 - reduce(lambda a
, b
: (0, a
[1] + b
[1]),
313 modes
[char
] = items
[0]
315 # build a list of possible delimiters
316 modeList
= modes
.items()
317 total
= float(chunkLength
* iteration
)
318 # (rows of consistent data) / (number of rows) = 100%
320 # minimum consistency threshold
322 while len(delims
) == 0 and consistency
>= threshold
:
323 for k
, v
in modeList
:
324 if v
[0] > 0 and v
[1] > 0:
325 if ((v
[1]/total
) >= consistency
and
326 (delimiters
is None or k
in delimiters
)):
331 delim
= delims
.keys()[0]
332 skipinitialspace
= (data
[0].count(delim
) ==
333 data
[0].count("%c " % delim
))
334 return (delim
, skipinitialspace
)
336 # analyze another chunkLength lines
343 # if there's more than one, fall back to a 'preferred' list
345 for d
in self
.preferred
:
346 if d
in delims
.keys():
347 skipinitialspace
= (data
[0].count(d
) ==
348 data
[0].count("%c " % d
))
349 return (d
, skipinitialspace
)
351 # finally, just return the first damn character in the list
352 delim
= delims
.keys()[0]
353 skipinitialspace
= (data
[0].count(delim
) ==
354 data
[0].count("%c " % delim
))
355 return (delim
, skipinitialspace
)
358 def has_header(self
, sample
):
359 # Creates a dictionary of types of data in each column. If any
360 # column is of a single type (say, integers), *except* for the first
361 # row, then the first row is presumed to be labels. If the type
362 # can't be determined, it is assumed to be a string in which case
363 # the length of the string is the determining factor: if all of the
364 # rows except for the first are the same length, it's a header.
365 # Finally, a 'vote' is taken at the end for each column, adding or
366 # subtracting from the likelihood of the first row being a header.
368 rdr
= reader(StringIO(sample
), self
.sniff(sample
))
370 header
= rdr
.next() # assume first row is header
372 columns
= len(header
)
374 for i
in range(columns
): columnTypes
[i
] = None
378 # arbitrary number of rows to check, to keep it sane
383 if len(row
) != columns
:
384 continue # skip rows that have irregular number of columns
386 for col
in columnTypes
.keys():
388 for thisType
in [int, long, float, complex]:
392 except (ValueError, OverflowError):
395 # fallback to length of string
396 thisType
= len(row
[col
])
398 # treat longs as ints
402 if thisType
!= columnTypes
[col
]:
403 if columnTypes
[col
] is None: # add new column type
404 columnTypes
[col
] = thisType
406 # type is inconsistent, remove column from
410 # finally, compare results against first row and "vote"
411 # on whether it's a header
413 for col
, colType
in columnTypes
.items():
414 if type(colType
) == type(0): # it's a length
415 if len(header
[col
]) != colType
:
419 else: # attempt typecast
422 except (ValueError, TypeError):