This commit was manufactured by cvs2svn to create tag 'release101'.
[python/dscho.git] / Include / object.h
blob420c7cd27b904930e2e93e593cde4be96bc08a19
1 #ifndef Py_OBJECT_H
2 #define Py_OBJECT_H
3 #ifdef __cplusplus
4 extern "C" {
5 #endif
7 /***********************************************************
8 Copyright 1991, 1992, 1993, 1994 by Stichting Mathematisch Centrum,
9 Amsterdam, The Netherlands.
11 All Rights Reserved
13 Permission to use, copy, modify, and distribute this software and its
14 documentation for any purpose and without fee is hereby granted,
15 provided that the above copyright notice appear in all copies and that
16 both that copyright notice and this permission notice appear in
17 supporting documentation, and that the names of Stichting Mathematisch
18 Centrum or CWI not be used in advertising or publicity pertaining to
19 distribution of the software without specific, written prior permission.
21 STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO
22 THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
23 FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE
24 FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
25 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
26 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
27 OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
29 ******************************************************************/
31 #ifndef DEBUG
32 #define NDEBUG
33 #endif
35 /* Object and type object interface */
38 123456789-123456789-123456789-123456789-123456789-123456789-123456789-12
40 Objects are structures allocated on the heap. Special rules apply to
41 the use of objects to ensure they are properly garbage-collected.
42 Objects are never allocated statically or on the stack; they must be
43 accessed through special macros and functions only. (Type objects are
44 exceptions to the first rule; the standard types are represented by
45 statically initialized type objects.)
47 An object has a 'reference count' that is increased or decreased when a
48 pointer to the object is copied or deleted; when the reference count
49 reaches zero there are no references to the object left and it can be
50 removed from the heap.
52 An object has a 'type' that determines what it represents and what kind
53 of data it contains. An object's type is fixed when it is created.
54 Types themselves are represented as objects; an object contains a
55 pointer to the corresponding type object. The type itself has a type
56 pointer pointing to the object representing the type 'type', which
57 contains a pointer to itself!).
59 Objects do not float around in memory; once allocated an object keeps
60 the same size and address. Objects that must hold variable-size data
61 can contain pointers to variable-size parts of the object. Not all
62 objects of the same type have the same size; but the size cannot change
63 after allocation. (These restrictions are made so a reference to an
64 object can be simply a pointer -- moving an object would require
65 updating all the pointers, and changing an object's size would require
66 moving it if there was another object right next to it.)
68 Objects are always accessed through pointers of the type 'object *'.
69 The type 'object' is a structure that only contains the reference count
70 and the type pointer. The actual memory allocated for an object
71 contains other data that can only be accessed after casting the pointer
72 to a pointer to a longer structure type. This longer type must start
73 with the reference count and type fields; the macro OB_HEAD should be
74 used for this (to accomodate for future changes). The implementation
75 of a particular object type can cast the object pointer to the proper
76 type and back.
78 A standard interface exists for objects that contain an array of items
79 whose size is determined when the object is allocated.
81 123456789-123456789-123456789-123456789-123456789-123456789-123456789-12
84 #ifndef NDEBUG
86 /* Turn on heavy reference debugging */
87 #define TRACE_REFS
89 /* Turn on reference counting */
90 #define REF_DEBUG
92 #endif /* NDEBUG */
94 #ifdef TRACE_REFS
95 #define OB_HEAD \
96 struct _object *_ob_next, *_ob_prev; \
97 int ob_refcnt; \
98 struct _typeobject *ob_type;
99 #define OB_HEAD_INIT(type) 0, 0, 1, type,
100 #else
101 #define OB_HEAD \
102 unsigned int ob_refcnt; \
103 struct _typeobject *ob_type;
104 #define OB_HEAD_INIT(type) 1, type,
105 #endif
107 #define OB_VARHEAD \
108 OB_HEAD \
109 unsigned int ob_size; /* Number of items in variable part */
111 typedef struct _object {
112 OB_HEAD
113 } object;
115 typedef struct {
116 OB_VARHEAD
117 } varobject;
121 123456789-123456789-123456789-123456789-123456789-123456789-123456789-12
123 Type objects contain a string containing the type name (to help somewhat
124 in debugging), the allocation parameters (see newobj() and newvarobj()),
125 and methods for accessing objects of the type. Methods are optional,a
126 nil pointer meaning that particular kind of access is not available for
127 this type. The DECREF() macro uses the tp_dealloc method without
128 checking for a nil pointer; it should always be implemented except if
129 the implementation can guarantee that the reference count will never
130 reach zero (e.g., for type objects).
132 NB: the methods for certain type groups are now contained in separate
133 method blocks.
136 typedef object * (*unaryfunc) PROTO((object *));
137 typedef object * (*binaryfunc) PROTO((object *, object *));
138 typedef int (*inquiry) PROTO((object *));
139 typedef int (*coercion) PROTO((object **, object **));
140 typedef object *(*intargfunc) PROTO((object *, int));
141 typedef object *(*intintargfunc) PROTO((object *, int, int));
142 typedef int(*intobjargproc) PROTO((object *, int, object *));
143 typedef int(*intintobjargproc) PROTO((object *, int, int, object *));
144 typedef int(*objobjargproc) PROTO((object *, object *, object *));
146 typedef struct {
147 binaryfunc nb_add;
148 binaryfunc nb_subtract;
149 binaryfunc nb_multiply;
150 binaryfunc nb_divide;
151 binaryfunc nb_remainder;
152 binaryfunc nb_divmod;
153 binaryfunc nb_power;
154 unaryfunc nb_negative;
155 unaryfunc nb_positive;
156 unaryfunc nb_absolute;
157 inquiry nb_nonzero;
158 unaryfunc nb_invert;
159 binaryfunc nb_lshift;
160 binaryfunc nb_rshift;
161 binaryfunc nb_and;
162 binaryfunc nb_xor;
163 binaryfunc nb_or;
164 coercion nb_coerce;
165 unaryfunc nb_int;
166 unaryfunc nb_long;
167 unaryfunc nb_float;
168 unaryfunc nb_oct;
169 unaryfunc nb_hex;
170 } number_methods;
172 typedef struct {
173 inquiry sq_length;
174 binaryfunc sq_concat;
175 intargfunc sq_repeat;
176 intargfunc sq_item;
177 intintargfunc sq_slice;
178 intobjargproc sq_ass_item;
179 intintobjargproc sq_ass_slice;
180 } sequence_methods;
182 typedef struct {
183 inquiry mp_length;
184 binaryfunc mp_subscript;
185 objobjargproc mp_ass_subscript;
186 } mapping_methods;
188 typedef void (*destructor) PROTO((object *));
189 typedef int (*printfunc) PROTO((object *, FILE *, int));
190 typedef object *(*getattrfunc) PROTO((object *, char *));
191 typedef int (*setattrfunc) PROTO((object *, char *, object *));
192 typedef int (*cmpfunc) PROTO((object *, object *));
193 typedef object *(*reprfunc) PROTO((object *));
194 typedef long (*hashfunc) PROTO((object *));
196 typedef struct _typeobject {
197 OB_VARHEAD
198 char *tp_name; /* For printing */
199 unsigned int tp_basicsize, tp_itemsize; /* For allocation */
201 /* Methods to implement standard operations */
203 destructor tp_dealloc;
204 printfunc tp_print;
205 getattrfunc tp_getattr;
206 setattrfunc tp_setattr;
207 cmpfunc tp_compare;
208 reprfunc tp_repr;
210 /* Method suites for standard classes */
212 number_methods *tp_as_number;
213 sequence_methods *tp_as_sequence;
214 mapping_methods *tp_as_mapping;
216 /* More standard operations (at end for binary compatibility) */
218 hashfunc tp_hash;
219 #ifdef COUNT_ALLOCS
220 /* these must be last */
221 int tp_alloc;
222 int tp_free;
223 int tp_maxalloc;
224 struct _typeobject *tp_next;
225 #endif
226 } typeobject;
228 extern typeobject Typetype; /* The type of type objects */
230 #define is_typeobject(op) ((op)->ob_type == &Typetype)
232 /* Generic operations on objects */
233 extern int printobject PROTO((object *, FILE *, int));
234 extern object * reprobject PROTO((object *));
235 extern object * strobject PROTO((object *));
236 extern int cmpobject PROTO((object *, object *));
237 extern object *getattr PROTO((object *, char *));
238 extern int hasattr PROTO((object *, char *));
239 extern object *getattro PROTO((object *, object *));
240 extern int setattro PROTO((object *, object *, object *));
241 extern long hashobject PROTO((object *));
243 /* Flag bits for printing: */
244 #define PRINT_RAW 1 /* No string quotes etc. */
247 123456789-123456789-123456789-123456789-123456789-123456789-123456789-12
249 The macros INCREF(op) and DECREF(op) are used to increment or decrement
250 reference counts. DECREF calls the object's deallocator function; for
251 objects that don't contain references to other objects or heap memory
252 this can be the standard function free(). Both macros can be used
253 whereever a void expression is allowed. The argument shouldn't be a
254 NIL pointer. The macro NEWREF(op) is used only to initialize reference
255 counts to 1; it is defined here for convenience.
257 We assume that the reference count field can never overflow; this can
258 be proven when the size of the field is the same as the pointer size
259 but even with a 16-bit reference count field it is pretty unlikely so
260 we ignore the possibility. (If you are paranoid, make it a long.)
262 Type objects should never be deallocated; the type pointer in an object
263 is not considered to be a reference to the type object, to save
264 complications in the deallocation function. (This is actually a
265 decision that's up to the implementer of each new type so if you want,
266 you can count such references to the type object.)
268 *** WARNING*** The DECREF macro must have a side-effect-free argument
269 since it may evaluate its argument multiple times. (The alternative
270 would be to mace it a proper function or assign it to a global temporary
271 variable first, both of which are slower; and in a multi-threaded
272 environment the global variable trick is not safe.)
275 #ifdef TRACE_REFS
276 #ifndef REF_DEBUG
277 #define REF_DEBUG
278 #endif
279 #endif
281 #ifndef TRACE_REFS
282 #ifdef COUNT_ALLOCS
283 #define DELREF(op) ((op)->ob_type->tp_free++, (*(op)->ob_type->tp_dealloc)((object *)(op)))
284 #else
285 #define DELREF(op) (*(op)->ob_type->tp_dealloc)((object *)(op))
286 #endif
287 #define UNREF(op) /*empty*/
288 #endif
290 #ifdef COUNT_ALLOCS
291 extern void inc_count PROTO((typeobject *));
292 #endif
294 #ifdef REF_DEBUG
295 extern long ref_total;
296 #ifndef TRACE_REFS
297 #ifdef COUNT_ALLOCS
298 #define NEWREF(op) (inc_count((op)->ob_type), ref_total++, (op)->ob_refcnt = 1)
299 #else
300 #define NEWREF(op) (ref_total++, (op)->ob_refcnt = 1)
301 #endif
302 #endif
303 #define INCREF(op) (ref_total++, (op)->ob_refcnt++)
304 #define DECREF(op) \
305 if (--ref_total, --(op)->ob_refcnt > 0) \
307 else \
308 DELREF(op)
309 #else
310 #ifdef COUNT_ALLOCS
311 #define NEWREF(op) (inc_count((op)->ob_type), (op)->ob_refcnt = 1)
312 #else
313 #define NEWREF(op) ((op)->ob_refcnt = 1)
314 #endif
315 #define INCREF(op) ((op)->ob_refcnt++)
316 #define DECREF(op) \
317 if (--(op)->ob_refcnt > 0) \
319 else \
320 DELREF(op)
321 #endif
323 /* Macros to use in case the object pointer may be NULL: */
325 #define XINCREF(op) if ((op) == NULL) ; else INCREF(op)
326 #define XDECREF(op) if ((op) == NULL) ; else DECREF(op)
328 /* Definition of NULL, so you don't have to include <stdio.h> */
330 #ifndef NULL
331 #define NULL 0
332 #endif
336 NoObject is an object of undefined type which can be used in contexts
337 where NULL (nil) is not suitable (since NULL often means 'error').
339 Don't forget to apply INCREF() when returning this value!!!
342 extern object NoObject; /* Don't use this directly */
344 #define None (&NoObject)
348 A common programming style in Python requires the forward declaration
349 of static, initialized structures, e.g. for a typeobject that is used
350 by the functions whose address must be used in the initializer.
351 Some compilers (notably SCO ODT 3.0, I seem to remember early AIX as
352 well) botch this if you use the static keyword for both declarations
353 (they allocate two objects, and use the first, uninitialized one until
354 the second declaration is encountered). Therefore, the forward
355 declaration should use the 'forwardstatic' keyword. This expands to
356 static on most systems, but to extern on a few. The actual storage
357 and name will still be static because the second declaration is
358 static, so no linker visible symbols will be generated. (Standard C
359 compilers take offense to the extern forward declaration of a static
360 object, so I can't just put extern in all cases. :-( )
363 #ifdef BAD_STATIC_FORWARD
364 #define staticforward extern
365 #else
366 #define staticforward static
367 #endif /* BAD_STATIC_FORWARD */
371 123456789-123456789-123456789-123456789-123456789-123456789-123456789-12
373 More conventions
374 ================
376 Argument Checking
377 -----------------
379 Functions that take objects as arguments normally don't check for nil
380 arguments, but they do check the type of the argument, and return an
381 error if the function doesn't apply to the type.
383 Failure Modes
384 -------------
386 Functions may fail for a variety of reasons, including running out of
387 memory. This is communicated to the caller in two ways: an error string
388 is set (see errors.h), and the function result differs: functions that
389 normally return a pointer return NULL for failure, functions returning
390 an integer return -1 (which could be a legal return value too!), and
391 other functions return 0 for success and -1 for failure.
392 Callers should always check for errors before using the result.
394 Reference Counts
395 ----------------
397 It takes a while to get used to the proper usage of reference counts.
399 Functions that create an object set the reference count to 1; such new
400 objects must be stored somewhere or destroyed again with DECREF().
401 Functions that 'store' objects such as settupleitem() and dictinsert()
402 don't increment the reference count of the object, since the most
403 frequent use is to store a fresh object. Functions that 'retrieve'
404 objects such as gettupleitem() and dictlookup() also don't increment
405 the reference count, since most frequently the object is only looked at
406 quickly. Thus, to retrieve an object and store it again, the caller
407 must call INCREF() explicitly.
409 NOTE: functions that 'consume' a reference count like dictinsert() even
410 consume the reference if the object wasn't stored, to simplify error
411 handling.
413 It seems attractive to make other functions that take an object as
414 argument consume a reference count; however this may quickly get
415 confusing (even the current practice is already confusing). Consider
416 it carefully, it may safe lots of calls to INCREF() and DECREF() at
417 times.
419 123456789-123456789-123456789-123456789-123456789-123456789-123456789-12
422 #ifdef __cplusplus
424 #endif
425 #endif /* !Py_OBJECT_H */