3 /* This module provides an interface to NIST's Secure Hash Algorithm */
5 /* See below for information about the original code this module was
6 based upon. Additional work performed by:
8 Andrew Kuchling (amk1@bigfoot.com)
9 Greg Stein (gstein@lyra.org)
17 /* Endianness testing and definitions */
18 #define TestEndianness(variable) {int i=1; variable=PCT_BIG_ENDIAN;\
19 if (*((char*)&i)==1) variable=PCT_LITTLE_ENDIAN;}
21 #define PCT_LITTLE_ENDIAN 1
22 #define PCT_BIG_ENDIAN 0
24 /* Some useful types */
26 typedef unsigned char SHA_BYTE
;
29 typedef unsigned int SHA_INT32
; /* 32-bit integer */
31 /* not defined. compilation will die. */
34 /* The SHA block size and message digest sizes, in bytes */
36 #define SHA_BLOCKSIZE 64
37 #define SHA_DIGESTSIZE 20
39 /* The structure for storing SHS info */
43 SHA_INT32 digest
[5]; /* Message digest */
44 SHA_INT32 count_lo
, count_hi
; /* 64-bit bit count */
45 SHA_BYTE data
[SHA_BLOCKSIZE
]; /* SHA data buffer */
47 int local
; /* unprocessed amount in data */
50 /* When run on a little-endian CPU we need to perform byte reversal on an
51 array of longwords. */
53 static void longReverse(SHA_INT32
*buffer
, int byteCount
, int Endianness
)
57 if ( Endianness
== PCT_BIG_ENDIAN
)
60 byteCount
/= sizeof(*buffer
);
63 value
= ( ( value
& 0xFF00FF00L
) >> 8 ) | \
64 ( ( value
& 0x00FF00FFL
) << 8 );
65 *buffer
++ = ( value
<< 16 ) | ( value
>> 16 );
69 static void SHAcopy(SHAobject
*src
, SHAobject
*dest
)
71 dest
->Endianness
= src
->Endianness
;
72 dest
->local
= src
->local
;
73 dest
->count_lo
= src
->count_lo
;
74 dest
->count_hi
= src
->count_hi
;
75 memcpy(dest
->digest
, src
->digest
, sizeof(src
->digest
));
76 memcpy(dest
->data
, src
->data
, sizeof(src
->data
));
80 /* ------------------------------------------------------------------------
82 * This code for the SHA algorithm was noted as public domain. The original
83 * headers are pasted below.
85 * Several changes have been made to make it more compatible with the
86 * Python environment and desired interface.
90 /* NIST Secure Hash Algorithm */
91 /* heavily modified by Uwe Hollerbach <uh@alumni.caltech edu> */
92 /* from Peter C. Gutmann's implementation as found in */
93 /* Applied Cryptography by Bruce Schneier */
94 /* Further modifications to include the "UNRAVEL" stuff, below */
96 /* This code is in the public domain */
98 /* UNRAVEL should be fastest & biggest */
99 /* UNROLL_LOOPS should be just as big, but slightly slower */
100 /* both undefined should be smallest and slowest */
103 /* #define UNROLL_LOOPS */
105 /* The SHA f()-functions. The f1 and f3 functions can be optimized to
106 save one boolean operation each - thanks to Rich Schroeppel,
107 rcs@cs.arizona.edu for discovering this */
109 /*#define f1(x,y,z) ((x & y) | (~x & z)) // Rounds 0-19 */
110 #define f1(x,y,z) (z ^ (x & (y ^ z))) /* Rounds 0-19 */
111 #define f2(x,y,z) (x ^ y ^ z) /* Rounds 20-39 */
112 /*#define f3(x,y,z) ((x & y) | (x & z) | (y & z)) // Rounds 40-59 */
113 #define f3(x,y,z) ((x & y) | (z & (x | y))) /* Rounds 40-59 */
114 #define f4(x,y,z) (x ^ y ^ z) /* Rounds 60-79 */
118 #define CONST1 0x5a827999L /* Rounds 0-19 */
119 #define CONST2 0x6ed9eba1L /* Rounds 20-39 */
120 #define CONST3 0x8f1bbcdcL /* Rounds 40-59 */
121 #define CONST4 0xca62c1d6L /* Rounds 60-79 */
125 #define R32(x,n) ((x << n) | (x >> (32 - n)))
127 /* the generic case, for when the overall rotation is not unraveled */
130 T = R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n; \
131 E = D; D = C; C = R32(B,30); B = A; A = T
133 /* specific cases, for when the overall rotation is unraveled */
136 T = R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n; B = R32(B,30)
139 E = R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n; A = R32(A,30)
142 D = R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n; T = R32(T,30)
145 C = R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n; E = R32(E,30)
148 B = R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n; D = R32(D,30)
151 A = R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n; C = R32(C,30)
153 /* do SHA transformation */
156 sha_transform(SHAobject
*sha_info
)
159 SHA_INT32 T
, A
, B
, C
, D
, E
, W
[80], *WP
;
161 memcpy(W
, sha_info
->data
, sizeof(sha_info
->data
));
162 longReverse(W
, (int)sizeof(sha_info
->data
), sha_info
->Endianness
);
164 for (i
= 16; i
< 80; ++i
) {
165 W
[i
] = W
[i
-3] ^ W
[i
-8] ^ W
[i
-14] ^ W
[i
-16];
167 /* extra rotation fix */
170 A
= sha_info
->digest
[0];
171 B
= sha_info
->digest
[1];
172 C
= sha_info
->digest
[2];
173 D
= sha_info
->digest
[3];
174 E
= sha_info
->digest
[4];
177 FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1);
178 FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1);
179 FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2);
180 FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2);
181 FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3);
182 FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3);
183 FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4);
184 FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4);
185 sha_info
->digest
[0] += E
;
186 sha_info
->digest
[1] += T
;
187 sha_info
->digest
[2] += A
;
188 sha_info
->digest
[3] += B
;
189 sha_info
->digest
[4] += C
;
192 FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
193 FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
194 FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
195 FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
196 FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
197 FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
198 FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
199 FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
200 #else /* !UNROLL_LOOPS */
201 for (i
= 0; i
< 20; ++i
) { FG(1); }
202 for (i
= 20; i
< 40; ++i
) { FG(2); }
203 for (i
= 40; i
< 60; ++i
) { FG(3); }
204 for (i
= 60; i
< 80; ++i
) { FG(4); }
205 #endif /* !UNROLL_LOOPS */
206 sha_info
->digest
[0] += A
;
207 sha_info
->digest
[1] += B
;
208 sha_info
->digest
[2] += C
;
209 sha_info
->digest
[3] += D
;
210 sha_info
->digest
[4] += E
;
211 #endif /* !UNRAVEL */
214 /* initialize the SHA digest */
217 sha_init(SHAobject
*sha_info
)
219 TestEndianness(sha_info
->Endianness
)
221 sha_info
->digest
[0] = 0x67452301L
;
222 sha_info
->digest
[1] = 0xefcdab89L
;
223 sha_info
->digest
[2] = 0x98badcfeL
;
224 sha_info
->digest
[3] = 0x10325476L
;
225 sha_info
->digest
[4] = 0xc3d2e1f0L
;
226 sha_info
->count_lo
= 0L;
227 sha_info
->count_hi
= 0L;
231 /* update the SHA digest */
234 sha_update(SHAobject
*sha_info
, SHA_BYTE
*buffer
, int count
)
239 clo
= sha_info
->count_lo
+ ((SHA_INT32
) count
<< 3);
240 if (clo
< sha_info
->count_lo
) {
241 ++sha_info
->count_hi
;
243 sha_info
->count_lo
= clo
;
244 sha_info
->count_hi
+= (SHA_INT32
) count
>> 29;
245 if (sha_info
->local
) {
246 i
= SHA_BLOCKSIZE
- sha_info
->local
;
250 memcpy(((SHA_BYTE
*) sha_info
->data
) + sha_info
->local
, buffer
, i
);
253 sha_info
->local
+= i
;
254 if (sha_info
->local
== SHA_BLOCKSIZE
) {
255 sha_transform(sha_info
);
261 while (count
>= SHA_BLOCKSIZE
) {
262 memcpy(sha_info
->data
, buffer
, SHA_BLOCKSIZE
);
263 buffer
+= SHA_BLOCKSIZE
;
264 count
-= SHA_BLOCKSIZE
;
265 sha_transform(sha_info
);
267 memcpy(sha_info
->data
, buffer
, count
);
268 sha_info
->local
= count
;
271 /* finish computing the SHA digest */
274 sha_final(unsigned char digest
[20], SHAobject
*sha_info
)
277 SHA_INT32 lo_bit_count
, hi_bit_count
;
279 lo_bit_count
= sha_info
->count_lo
;
280 hi_bit_count
= sha_info
->count_hi
;
281 count
= (int) ((lo_bit_count
>> 3) & 0x3f);
282 ((SHA_BYTE
*) sha_info
->data
)[count
++] = 0x80;
283 if (count
> SHA_BLOCKSIZE
- 8) {
284 memset(((SHA_BYTE
*) sha_info
->data
) + count
, 0,
285 SHA_BLOCKSIZE
- count
);
286 sha_transform(sha_info
);
287 memset((SHA_BYTE
*) sha_info
->data
, 0, SHA_BLOCKSIZE
- 8);
290 memset(((SHA_BYTE
*) sha_info
->data
) + count
, 0,
291 SHA_BLOCKSIZE
- 8 - count
);
294 /* GJS: note that we add the hi/lo in big-endian. sha_transform will
295 swap these values into host-order. */
296 sha_info
->data
[56] = (hi_bit_count
>> 24) & 0xff;
297 sha_info
->data
[57] = (hi_bit_count
>> 16) & 0xff;
298 sha_info
->data
[58] = (hi_bit_count
>> 8) & 0xff;
299 sha_info
->data
[59] = (hi_bit_count
>> 0) & 0xff;
300 sha_info
->data
[60] = (lo_bit_count
>> 24) & 0xff;
301 sha_info
->data
[61] = (lo_bit_count
>> 16) & 0xff;
302 sha_info
->data
[62] = (lo_bit_count
>> 8) & 0xff;
303 sha_info
->data
[63] = (lo_bit_count
>> 0) & 0xff;
304 sha_transform(sha_info
);
305 digest
[ 0] = (unsigned char) ((sha_info
->digest
[0] >> 24) & 0xff);
306 digest
[ 1] = (unsigned char) ((sha_info
->digest
[0] >> 16) & 0xff);
307 digest
[ 2] = (unsigned char) ((sha_info
->digest
[0] >> 8) & 0xff);
308 digest
[ 3] = (unsigned char) ((sha_info
->digest
[0] ) & 0xff);
309 digest
[ 4] = (unsigned char) ((sha_info
->digest
[1] >> 24) & 0xff);
310 digest
[ 5] = (unsigned char) ((sha_info
->digest
[1] >> 16) & 0xff);
311 digest
[ 6] = (unsigned char) ((sha_info
->digest
[1] >> 8) & 0xff);
312 digest
[ 7] = (unsigned char) ((sha_info
->digest
[1] ) & 0xff);
313 digest
[ 8] = (unsigned char) ((sha_info
->digest
[2] >> 24) & 0xff);
314 digest
[ 9] = (unsigned char) ((sha_info
->digest
[2] >> 16) & 0xff);
315 digest
[10] = (unsigned char) ((sha_info
->digest
[2] >> 8) & 0xff);
316 digest
[11] = (unsigned char) ((sha_info
->digest
[2] ) & 0xff);
317 digest
[12] = (unsigned char) ((sha_info
->digest
[3] >> 24) & 0xff);
318 digest
[13] = (unsigned char) ((sha_info
->digest
[3] >> 16) & 0xff);
319 digest
[14] = (unsigned char) ((sha_info
->digest
[3] >> 8) & 0xff);
320 digest
[15] = (unsigned char) ((sha_info
->digest
[3] ) & 0xff);
321 digest
[16] = (unsigned char) ((sha_info
->digest
[4] >> 24) & 0xff);
322 digest
[17] = (unsigned char) ((sha_info
->digest
[4] >> 16) & 0xff);
323 digest
[18] = (unsigned char) ((sha_info
->digest
[4] >> 8) & 0xff);
324 digest
[19] = (unsigned char) ((sha_info
->digest
[4] ) & 0xff);
328 * End of copied SHA code.
330 * ------------------------------------------------------------------------
333 staticforward PyTypeObject SHAtype
;
339 return (SHAobject
*)PyObject_New(SHAobject
, &SHAtype
);
342 /* Internal methods for a hashing object */
345 SHA_dealloc(PyObject
*ptr
)
351 /* External methods for a hashing object */
353 static char SHA_copy__doc__
[] =
354 "Return a copy of the hashing object.";
357 SHA_copy(SHAobject
*self
, PyObject
*args
)
361 if (!PyArg_ParseTuple(args
, ":copy")) {
364 if ( (newobj
= newSHAobject())==NULL
)
367 SHAcopy(self
, newobj
);
368 return (PyObject
*)newobj
;
371 static char SHA_digest__doc__
[] =
372 "Return the digest value as a string of binary data.";
375 SHA_digest(SHAobject
*self
, PyObject
*args
)
377 unsigned char digest
[SHA_DIGESTSIZE
];
380 if (!PyArg_ParseTuple(args
, ":digest"))
383 SHAcopy(self
, &temp
);
384 sha_final(digest
, &temp
);
385 return PyString_FromStringAndSize((const char *)digest
, sizeof(digest
));
388 static char SHA_hexdigest__doc__
[] =
389 "Return the digest value as a string of hexadecimal digits.";
392 SHA_hexdigest(SHAobject
*self
, PyObject
*args
)
394 unsigned char digest
[SHA_DIGESTSIZE
];
400 if (!PyArg_ParseTuple(args
, ":hexdigest"))
403 /* Get the raw (binary) digest value */
404 SHAcopy(self
, &temp
);
405 sha_final(digest
, &temp
);
407 /* Create a new string */
408 retval
= PyString_FromStringAndSize(NULL
, sizeof(digest
) * 2);
411 hex_digest
= PyString_AsString(retval
);
417 /* Make hex version of the digest */
418 for(i
=j
=0; i
<sizeof(digest
); i
++) {
420 c
= (digest
[i
] >> 4) & 0xf;
421 c
= (c
>9) ? c
+'a'-10 : c
+ '0';
423 c
= (digest
[i
] & 0xf);
424 c
= (c
>9) ? c
+'a'-10 : c
+ '0';
430 static char SHA_update__doc__
[] =
431 "Update this hashing object's state with the provided string.";
434 SHA_update(SHAobject
*self
, PyObject
*args
)
439 if (!PyArg_ParseTuple(args
, "s#:update", &cp
, &len
))
442 sha_update(self
, cp
, len
);
448 static PyMethodDef SHA_methods
[] = {
449 {"copy", (PyCFunction
)SHA_copy
, METH_VARARGS
, SHA_copy__doc__
},
450 {"digest", (PyCFunction
)SHA_digest
, METH_VARARGS
, SHA_digest__doc__
},
451 {"hexdigest", (PyCFunction
)SHA_hexdigest
, METH_VARARGS
, SHA_hexdigest__doc__
},
452 {"update", (PyCFunction
)SHA_update
, METH_VARARGS
, SHA_update__doc__
},
453 {NULL
, NULL
} /* sentinel */
457 SHA_getattr(PyObject
*self
, char *name
)
459 if (strcmp(name
, "blocksize")==0)
460 return PyInt_FromLong(1);
461 if (strcmp(name
, "digestsize")==0)
462 return PyInt_FromLong(20);
464 return Py_FindMethod(SHA_methods
, self
, name
);
467 static PyTypeObject SHAtype
= {
468 PyObject_HEAD_INIT(NULL
)
471 sizeof(SHAobject
), /*tp_size*/
474 SHA_dealloc
, /*tp_dealloc*/
476 SHA_getattr
, /*tp_getattr*/
480 /* The single module-level function: new() */
482 static char SHA_new__doc__
[] =
483 "Return a new SHA hashing object. An optional string "
484 "argument may be provided; if present, this string will be "
485 " automatically hashed.";
488 SHA_new(PyObject
*self
, PyObject
*args
, PyObject
*kwdict
)
490 static char *kwlist
[] = {"string", NULL
};
492 unsigned char *cp
= NULL
;
495 if (!PyArg_ParseTupleAndKeywords(args
, kwdict
, "|s#:new", kwlist
,
500 if ((new = newSHAobject()) == NULL
)
505 if (PyErr_Occurred()) {
510 sha_update(new, cp
, len
);
512 return (PyObject
*)new;
516 /* List of functions exported by this module */
518 static struct PyMethodDef SHA_functions
[] = {
519 {"new", (PyCFunction
)SHA_new
, METH_VARARGS
|METH_KEYWORDS
, SHA_new__doc__
},
520 {"sha", (PyCFunction
)SHA_new
, METH_VARARGS
|METH_KEYWORDS
, SHA_new__doc__
},
521 {NULL
, NULL
} /* Sentinel */
525 /* Initialize this module. */
527 #define insint(n,v) { PyObject *o=PyInt_FromLong(v); \
528 if (o!=NULL) PyDict_SetItemString(d,n,o); \
536 SHAtype
.ob_type
= &PyType_Type
;
537 m
= Py_InitModule("sha", SHA_functions
);
539 /* Add some symbolic constants to the module */
540 d
= PyModule_GetDict(m
);
541 insint("blocksize", 1); /* For future use, in case some hash
542 functions require an integral number of
544 insint("digestsize", 20);