Bump version to 0.9.1.
[python/dscho.git] / Demo / classes / Complex.py
blobbfb0d95ea9d239cf5bd0c79415e96f571abe11e9
1 # Complex numbers
2 # ---------------
4 # [Now that Python has a complex data type built-in, this is not very
5 # useful, but it's still a nice example class]
7 # This module represents complex numbers as instances of the class Complex.
8 # A Complex instance z has two data attribues, z.re (the real part) and z.im
9 # (the imaginary part). In fact, z.re and z.im can have any value -- all
10 # arithmetic operators work regardless of the type of z.re and z.im (as long
11 # as they support numerical operations).
13 # The following functions exist (Complex is actually a class):
14 # Complex([re [,im]) -> creates a complex number from a real and an imaginary part
15 # IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)
16 # ToComplex(z) -> a complex number equal to z; z itself if IsComplex(z) is true
17 # if z is a tuple(re, im) it will also be converted
18 # PolarToComplex([r [,phi [,fullcircle]]]) ->
19 # the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
20 # (r and phi default to 0)
21 # exp(z) -> returns the complex exponential of z. Equivalent to pow(math.e,z).
23 # Complex numbers have the following methods:
24 # z.abs() -> absolute value of z
25 # z.radius() == z.abs()
26 # z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units
27 # z.phi([fullcircle]) == z.angle(fullcircle)
29 # These standard functions and unary operators accept complex arguments:
30 # abs(z)
31 # -z
32 # +z
33 # not z
34 # repr(z) == `z`
35 # str(z)
36 # hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero
37 # the result equals hash(z.re)
38 # Note that hex(z) and oct(z) are not defined.
40 # These conversions accept complex arguments only if their imaginary part is zero:
41 # int(z)
42 # long(z)
43 # float(z)
45 # The following operators accept two complex numbers, or one complex number
46 # and one real number (int, long or float):
47 # z1 + z2
48 # z1 - z2
49 # z1 * z2
50 # z1 / z2
51 # pow(z1, z2)
52 # cmp(z1, z2)
53 # Note that z1 % z2 and divmod(z1, z2) are not defined,
54 # nor are shift and mask operations.
56 # The standard module math does not support complex numbers.
57 # (I suppose it would be easy to implement a cmath module.)
59 # Idea:
60 # add a class Polar(r, phi) and mixed-mode arithmetic which
61 # chooses the most appropriate type for the result:
62 # Complex for +,-,cmp
63 # Polar for *,/,pow
66 import types, math
68 twopi = math.pi*2.0
69 halfpi = math.pi/2.0
71 def IsComplex(obj):
72 return hasattr(obj, 're') and hasattr(obj, 'im')
74 def ToComplex(obj):
75 if IsComplex(obj):
76 return obj
77 elif type(obj) == types.TupleType:
78 return apply(Complex, obj)
79 else:
80 return Complex(obj)
82 def PolarToComplex(r = 0, phi = 0, fullcircle = twopi):
83 phi = phi * (twopi / fullcircle)
84 return Complex(math.cos(phi)*r, math.sin(phi)*r)
86 def Re(obj):
87 if IsComplex(obj):
88 return obj.re
89 else:
90 return obj
92 def Im(obj):
93 if IsComplex(obj):
94 return obj.im
95 else:
96 return obj
98 class Complex:
100 def __init__(self, re=0, im=0):
101 if IsComplex(re):
102 im = i + Complex(0, re.im)
103 re = re.re
104 if IsComplex(im):
105 re = re - im.im
106 im = im.re
107 self.__dict__['re'] = re
108 self.__dict__['im'] = im
110 def __setattr__(self, name, value):
111 raise TypeError, 'Complex numbers are immutable'
113 def __hash__(self):
114 if not self.im: return hash(self.re)
115 mod = sys.maxint + 1L
116 return int((hash(self.re) + 2L*hash(self.im) + mod) % (2L*mod) - mod)
118 def __repr__(self):
119 if not self.im:
120 return 'Complex(%s)' % `self.re`
121 else:
122 return 'Complex(%s, %s)' % (`self.re`, `self.im`)
124 def __str__(self):
125 if not self.im:
126 return `self.re`
127 else:
128 return 'Complex(%s, %s)' % (`self.re`, `self.im`)
130 def __neg__(self):
131 return Complex(-self.re, -self.im)
133 def __pos__(self):
134 return self
136 def __abs__(self):
137 # XXX could be done differently to avoid overflow!
138 return math.sqrt(self.re*self.re + self.im*self.im)
140 def __int__(self):
141 if self.im:
142 raise ValueError, "can't convert Complex with nonzero im to int"
143 return int(self.re)
145 def __long__(self):
146 if self.im:
147 raise ValueError, "can't convert Complex with nonzero im to long"
148 return long(self.re)
150 def __float__(self):
151 if self.im:
152 raise ValueError, "can't convert Complex with nonzero im to float"
153 return float(self.re)
155 def __cmp__(self, other):
156 other = ToComplex(other)
157 return cmp((self.re, self.im), (other.re, other.im))
159 def __rcmp__(self, other):
160 other = ToComplex(other)
161 return cmp(other, self)
163 def __nonzero__(self):
164 return not (self.re == self.im == 0)
166 abs = radius = __abs__
168 def angle(self, fullcircle = twopi):
169 return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)
171 phi = angle
173 def __add__(self, other):
174 other = ToComplex(other)
175 return Complex(self.re + other.re, self.im + other.im)
177 __radd__ = __add__
179 def __sub__(self, other):
180 other = ToComplex(other)
181 return Complex(self.re - other.re, self.im - other.im)
183 def __rsub__(self, other):
184 other = ToComplex(other)
185 return other - self
187 def __mul__(self, other):
188 other = ToComplex(other)
189 return Complex(self.re*other.re - self.im*other.im,
190 self.re*other.im + self.im*other.re)
192 __rmul__ = __mul__
194 def __div__(self, other):
195 other = ToComplex(other)
196 d = float(other.re*other.re + other.im*other.im)
197 if not d: raise ZeroDivisionError, 'Complex division'
198 return Complex((self.re*other.re + self.im*other.im) / d,
199 (self.im*other.re - self.re*other.im) / d)
201 def __rdiv__(self, other):
202 other = ToComplex(other)
203 return other / self
205 def __pow__(self, n, z=None):
206 if z is not None:
207 raise TypeError, 'Complex does not support ternary pow()'
208 if IsComplex(n):
209 if n.im:
210 if self.im: raise TypeError, 'Complex to the Complex power'
211 else: return exp(math.log(self.re)*n)
212 n = n.re
213 r = pow(self.abs(), n)
214 phi = n*self.angle()
215 return Complex(math.cos(phi)*r, math.sin(phi)*r)
217 def __rpow__(self, base):
218 base = ToComplex(base)
219 return pow(base, self)
221 def exp(z):
222 r = math.exp(z.re)
223 return Complex(math.cos(z.im)*r,math.sin(z.im)*r)
226 def checkop(expr, a, b, value, fuzz = 1e-6):
227 import sys
228 print ' ', a, 'and', b,
229 try:
230 result = eval(expr)
231 except:
232 result = sys.exc_type
233 print '->', result
234 if (type(result) == type('') or type(value) == type('')):
235 ok = result == value
236 else:
237 ok = abs(result - value) <= fuzz
238 if not ok:
239 print '!!\t!!\t!! should be', value, 'diff', abs(result - value)
242 def test():
243 testsuite = {
244 'a+b': [
245 (1, 10, 11),
246 (1, Complex(0,10), Complex(1,10)),
247 (Complex(0,10), 1, Complex(1,10)),
248 (Complex(0,10), Complex(1), Complex(1,10)),
249 (Complex(1), Complex(0,10), Complex(1,10)),
251 'a-b': [
252 (1, 10, -9),
253 (1, Complex(0,10), Complex(1,-10)),
254 (Complex(0,10), 1, Complex(-1,10)),
255 (Complex(0,10), Complex(1), Complex(-1,10)),
256 (Complex(1), Complex(0,10), Complex(1,-10)),
258 'a*b': [
259 (1, 10, 10),
260 (1, Complex(0,10), Complex(0, 10)),
261 (Complex(0,10), 1, Complex(0,10)),
262 (Complex(0,10), Complex(1), Complex(0,10)),
263 (Complex(1), Complex(0,10), Complex(0,10)),
265 'a/b': [
266 (1., 10, 0.1),
267 (1, Complex(0,10), Complex(0, -0.1)),
268 (Complex(0, 10), 1, Complex(0, 10)),
269 (Complex(0, 10), Complex(1), Complex(0, 10)),
270 (Complex(1), Complex(0,10), Complex(0, -0.1)),
272 'pow(a,b)': [
273 (1, 10, 1),
274 (1, Complex(0,10), 1),
275 (Complex(0,10), 1, Complex(0,10)),
276 (Complex(0,10), Complex(1), Complex(0,10)),
277 (Complex(1), Complex(0,10), 1),
278 (2, Complex(4,0), 16),
280 'cmp(a,b)': [
281 (1, 10, -1),
282 (1, Complex(0,10), 1),
283 (Complex(0,10), 1, -1),
284 (Complex(0,10), Complex(1), -1),
285 (Complex(1), Complex(0,10), 1),
288 exprs = testsuite.keys()
289 exprs.sort()
290 for expr in exprs:
291 print expr + ':'
292 t = (expr,)
293 for item in testsuite[expr]:
294 apply(checkop, t+item)
297 if __name__ == '__main__':
298 test()