7 /***********************************************************
8 Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam,
13 Permission to use, copy, modify, and distribute this software and its
14 documentation for any purpose and without fee is hereby granted,
15 provided that the above copyright notice appear in all copies and that
16 both that copyright notice and this permission notice appear in
17 supporting documentation, and that the names of Stichting Mathematisch
18 Centrum or CWI or Corporation for National Research Initiatives or
19 CNRI not be used in advertising or publicity pertaining to
20 distribution of the software without specific, written prior
23 While CWI is the initial source for this software, a modified version
24 is made available by the Corporation for National Research Initiatives
25 (CNRI) at the Internet address ftp://ftp.python.org.
27 STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH
28 REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
29 MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH
30 CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
31 DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
32 PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
33 TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
34 PERFORMANCE OF THIS SOFTWARE.
36 ******************************************************************/
38 /* Object and type object interface */
41 123456789-123456789-123456789-123456789-123456789-123456789-123456789-12
43 Objects are structures allocated on the heap. Special rules apply to
44 the use of objects to ensure they are properly garbage-collected.
45 Objects are never allocated statically or on the stack; they must be
46 accessed through special macros and functions only. (Type objects are
47 exceptions to the first rule; the standard types are represented by
48 statically initialized type objects.)
50 An object has a 'reference count' that is increased or decreased when a
51 pointer to the object is copied or deleted; when the reference count
52 reaches zero there are no references to the object left and it can be
53 removed from the heap.
55 An object has a 'type' that determines what it represents and what kind
56 of data it contains. An object's type is fixed when it is created.
57 Types themselves are represented as objects; an object contains a
58 pointer to the corresponding type object. The type itself has a type
59 pointer pointing to the object representing the type 'type', which
60 contains a pointer to itself!).
62 Objects do not float around in memory; once allocated an object keeps
63 the same size and address. Objects that must hold variable-size data
64 can contain pointers to variable-size parts of the object. Not all
65 objects of the same type have the same size; but the size cannot change
66 after allocation. (These restrictions are made so a reference to an
67 object can be simply a pointer -- moving an object would require
68 updating all the pointers, and changing an object's size would require
69 moving it if there was another object right next to it.)
71 Objects are always accessed through pointers of the type 'PyObject *'.
72 The type 'PyObject' is a structure that only contains the reference count
73 and the type pointer. The actual memory allocated for an object
74 contains other data that can only be accessed after casting the pointer
75 to a pointer to a longer structure type. This longer type must start
76 with the reference count and type fields; the macro PyObject_HEAD should be
77 used for this (to accomodate for future changes). The implementation
78 of a particular object type can cast the object pointer to the proper
81 A standard interface exists for objects that contain an array of items
82 whose size is determined when the object is allocated.
84 123456789-123456789-123456789-123456789-123456789-123456789-123456789-12
89 /* Turn on heavy reference debugging */
92 /* Turn on reference counting */
98 #define PyObject_HEAD \
99 struct _object *_ob_next, *_ob_prev; \
101 struct _typeobject *ob_type;
102 #define PyObject_HEAD_INIT(type) 0, 0, 1, type,
103 #else /* !Py_TRACE_REFS */
104 #define PyObject_HEAD \
106 struct _typeobject *ob_type;
107 #define PyObject_HEAD_INIT(type) 1, type,
108 #endif /* !Py_TRACE_REFS */
110 #define PyObject_VAR_HEAD \
112 int ob_size; /* Number of items in variable part */
114 typedef struct _object
{
124 123456789-123456789-123456789-123456789-123456789-123456789-123456789-12
126 Type objects contain a string containing the type name (to help somewhat
127 in debugging), the allocation parameters (see newobj() and newvarobj()),
128 and methods for accessing objects of the type. Methods are optional,a
129 nil pointer meaning that particular kind of access is not available for
130 this type. The Py_DECREF() macro uses the tp_dealloc method without
131 checking for a nil pointer; it should always be implemented except if
132 the implementation can guarantee that the reference count will never
133 reach zero (e.g., for type objects).
135 NB: the methods for certain type groups are now contained in separate
139 typedef PyObject
* (*unaryfunc
) Py_PROTO((PyObject
*));
140 typedef PyObject
* (*binaryfunc
) Py_PROTO((PyObject
*, PyObject
*));
141 typedef PyObject
* (*ternaryfunc
) Py_PROTO((PyObject
*, PyObject
*, PyObject
*));
142 typedef int (*inquiry
) Py_PROTO((PyObject
*));
143 typedef int (*coercion
) Py_PROTO((PyObject
**, PyObject
**));
144 typedef PyObject
*(*intargfunc
) Py_PROTO((PyObject
*, int));
145 typedef PyObject
*(*intintargfunc
) Py_PROTO((PyObject
*, int, int));
146 typedef int(*intobjargproc
) Py_PROTO((PyObject
*, int, PyObject
*));
147 typedef int(*intintobjargproc
) Py_PROTO((PyObject
*, int, int, PyObject
*));
148 typedef int(*objobjargproc
) Py_PROTO((PyObject
*, PyObject
*, PyObject
*));
149 typedef int (*getreadbufferproc
) Py_PROTO((PyObject
*, int, void **));
150 typedef int (*getwritebufferproc
) Py_PROTO((PyObject
*, int, void **));
151 typedef int (*getsegcountproc
) Py_PROTO((PyObject
*, int *));
152 typedef int (*getcharbufferproc
) Py_PROTO((PyObject
*, int, const char **));
156 binaryfunc nb_subtract
;
157 binaryfunc nb_multiply
;
158 binaryfunc nb_divide
;
159 binaryfunc nb_remainder
;
160 binaryfunc nb_divmod
;
161 ternaryfunc nb_power
;
162 unaryfunc nb_negative
;
163 unaryfunc nb_positive
;
164 unaryfunc nb_absolute
;
167 binaryfunc nb_lshift
;
168 binaryfunc nb_rshift
;
182 binaryfunc sq_concat
;
183 intargfunc sq_repeat
;
185 intintargfunc sq_slice
;
186 intobjargproc sq_ass_item
;
187 intintobjargproc sq_ass_slice
;
192 binaryfunc mp_subscript
;
193 objobjargproc mp_ass_subscript
;
197 getreadbufferproc bf_getreadbuffer
;
198 getwritebufferproc bf_getwritebuffer
;
199 getsegcountproc bf_getsegcount
;
200 getcharbufferproc bf_getcharbuffer
;
204 typedef void (*destructor
) Py_PROTO((PyObject
*));
205 typedef int (*printfunc
) Py_PROTO((PyObject
*, FILE *, int));
206 typedef PyObject
*(*getattrfunc
) Py_PROTO((PyObject
*, char *));
207 typedef PyObject
*(*getattrofunc
) Py_PROTO((PyObject
*, PyObject
*));
208 typedef int (*setattrfunc
) Py_PROTO((PyObject
*, char *, PyObject
*));
209 typedef int (*setattrofunc
) Py_PROTO((PyObject
*, PyObject
*, PyObject
*));
210 typedef int (*cmpfunc
) Py_PROTO((PyObject
*, PyObject
*));
211 typedef PyObject
*(*reprfunc
) Py_PROTO((PyObject
*));
212 typedef long (*hashfunc
) Py_PROTO((PyObject
*));
214 typedef struct _typeobject
{
216 char *tp_name
; /* For printing */
217 int tp_basicsize
, tp_itemsize
; /* For allocation */
219 /* Methods to implement standard operations */
221 destructor tp_dealloc
;
223 getattrfunc tp_getattr
;
224 setattrfunc tp_setattr
;
228 /* Method suites for standard classes */
230 PyNumberMethods
*tp_as_number
;
231 PySequenceMethods
*tp_as_sequence
;
232 PyMappingMethods
*tp_as_mapping
;
234 /* More standard operations (at end for binary compatibility) */
239 getattrofunc tp_getattro
;
240 setattrofunc tp_setattro
;
242 /* Functions to access object as input/output buffer */
243 PyBufferProcs
*tp_as_buffer
;
245 /* Flags to define presence of optional/expanded features */
248 char *tp_doc
; /* Documentation string */
257 /* these must be last */
261 struct _typeobject
*tp_next
;
265 extern DL_IMPORT(PyTypeObject
) PyType_Type
; /* The type of type objects */
267 #define PyType_Check(op) ((op)->ob_type == &PyType_Type)
269 /* Generic operations on objects */
270 extern int PyObject_Print
Py_PROTO((PyObject
*, FILE *, int));
271 extern PyObject
* PyObject_Repr
Py_PROTO((PyObject
*));
272 extern PyObject
* PyObject_Str
Py_PROTO((PyObject
*));
273 extern int PyObject_Compare
Py_PROTO((PyObject
*, PyObject
*));
274 extern PyObject
*PyObject_GetAttrString
Py_PROTO((PyObject
*, char *));
275 extern int PyObject_SetAttrString
Py_PROTO((PyObject
*, char *, PyObject
*));
276 extern int PyObject_HasAttrString
Py_PROTO((PyObject
*, char *));
277 extern PyObject
*PyObject_GetAttr
Py_PROTO((PyObject
*, PyObject
*));
278 extern int PyObject_SetAttr
Py_PROTO((PyObject
*, PyObject
*, PyObject
*));
279 extern int PyObject_HasAttr
Py_PROTO((PyObject
*, PyObject
*));
280 extern long PyObject_Hash
Py_PROTO((PyObject
*));
281 extern int PyObject_IsTrue
Py_PROTO((PyObject
*));
282 extern int PyObject_Not
Py_PROTO((PyObject
*));
283 extern int PyCallable_Check
Py_PROTO((PyObject
*));
284 extern int PyNumber_Coerce
Py_PROTO((PyObject
**, PyObject
**));
285 extern int PyNumber_CoerceEx
Py_PROTO((PyObject
**, PyObject
**));
287 /* Helpers for printing recursive container types */
288 extern int Py_ReprEnter
Py_PROTO((PyObject
*));
289 extern void Py_ReprLeave
Py_PROTO((PyObject
*));
291 /* Flag bits for printing: */
292 #define Py_PRINT_RAW 1 /* No string quotes etc. */
296 Type flags (tp_flags)
298 These flags are used to extend the type structure in a backwards-compatible
299 fashion. Extensions can use the flags to indicate (and test) when a given
300 type structure contains a new feature. The Python core will use these when
301 introducing new functionality between major revisions (to avoid mid-version
302 changes in the PYTHON_API_VERSION).
304 Arbitration of the flag bit positions will need to be coordinated among
305 all extension writers who publically release their extensions (this will
306 be fewer than you might expect!)..
308 Python 1.5.2 introduced the bf_getcharbuffer slot into PyBufferProcs.
310 Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value.
312 Code can use PyType_HasFeature(type_ob, flag_value) to test whether the
313 given type object has a specified feature.
317 /* PyBufferProcs contains bf_getcharbuffer */
318 #define Py_TPFLAGS_HAVE_GETCHARBUFFER (1L<<0)
320 #define Py_TPFLAGS_DEFAULT (Py_TPFLAGS_HAVE_GETCHARBUFFER)
322 #define PyType_HasFeature(t,f) (((t)->tp_flags & (f)) != 0)
326 123456789-123456789-123456789-123456789-123456789-123456789-123456789-12
328 The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement
329 reference counts. Py_DECREF calls the object's deallocator function; for
330 objects that don't contain references to other objects or heap memory
331 this can be the standard function free(). Both macros can be used
332 whereever a void expression is allowed. The argument shouldn't be a
333 NIL pointer. The macro _Py_NewReference(op) is used only to initialize
334 reference counts to 1; it is defined here for convenience.
336 We assume that the reference count field can never overflow; this can
337 be proven when the size of the field is the same as the pointer size
338 but even with a 16-bit reference count field it is pretty unlikely so
339 we ignore the possibility. (If you are paranoid, make it a long.)
341 Type objects should never be deallocated; the type pointer in an object
342 is not considered to be a reference to the type object, to save
343 complications in the deallocation function. (This is actually a
344 decision that's up to the implementer of each new type so if you want,
345 you can count such references to the type object.)
347 *** WARNING*** The Py_DECREF macro must have a side-effect-free argument
348 since it may evaluate its argument multiple times. (The alternative
349 would be to mace it a proper function or assign it to a global temporary
350 variable first, both of which are slower; and in a multi-threaded
351 environment the global variable trick is not safe.)
361 extern void _Py_Dealloc
Py_PROTO((PyObject
*));
362 extern void _Py_NewReference
Py_PROTO((PyObject
*));
363 extern void _Py_ForgetReference
Py_PROTO((PyObject
*));
364 extern void _Py_PrintReferences
Py_PROTO((FILE *));
367 #ifndef Py_TRACE_REFS
369 #define _Py_Dealloc(op) ((op)->ob_type->tp_free++, (*(op)->ob_type->tp_dealloc)((PyObject *)(op)))
370 #define _Py_ForgetReference(op) ((op)->ob_type->tp_free++)
371 #else /* !COUNT_ALLOCS */
372 #define _Py_Dealloc(op) (*(op)->ob_type->tp_dealloc)((PyObject *)(op))
373 #define _Py_ForgetReference(op) /*empty*/
374 #endif /* !COUNT_ALLOCS */
375 #endif /* !Py_TRACE_REFS */
378 extern void inc_count
Py_PROTO((PyTypeObject
*));
383 extern long _Py_RefTotal
;
385 #ifndef Py_TRACE_REFS
387 #define _Py_NewReference(op) (inc_count((op)->ob_type), _Py_RefTotal++, (op)->ob_refcnt = 1)
389 #define _Py_NewReference(op) (_Py_RefTotal++, (op)->ob_refcnt = 1)
391 #endif /* !Py_TRACE_REFS */
393 #define Py_INCREF(op) (_Py_RefTotal++, (op)->ob_refcnt++)
394 #define Py_DECREF(op) \
395 if (--_Py_RefTotal, --(op)->ob_refcnt != 0) \
398 _Py_Dealloc((PyObject *)(op))
399 #else /* !Py_REF_DEBUG */
402 #define _Py_NewReference(op) (inc_count((op)->ob_type), (op)->ob_refcnt = 1)
404 #define _Py_NewReference(op) ((op)->ob_refcnt = 1)
407 #define Py_INCREF(op) ((op)->ob_refcnt++)
408 #define Py_DECREF(op) \
409 if (--(op)->ob_refcnt != 0) \
412 _Py_Dealloc((PyObject *)(op))
413 #endif /* !Py_REF_DEBUG */
415 /* Macros to use in case the object pointer may be NULL: */
417 #define Py_XINCREF(op) if ((op) == NULL) ; else Py_INCREF(op)
418 #define Py_XDECREF(op) if ((op) == NULL) ; else Py_DECREF(op)
420 /* Definition of NULL, so you don't have to include <stdio.h> */
428 _Py_NoneStruct is an object of undefined type which can be used in contexts
429 where NULL (nil) is not suitable (since NULL often means 'error').
431 Don't forget to apply Py_INCREF() when returning this value!!!
434 extern DL_IMPORT(PyObject
) _Py_NoneStruct
; /* Don't use this directly */
436 #define Py_None (&_Py_NoneStruct)
440 A common programming style in Python requires the forward declaration
441 of static, initialized structures, e.g. for a type object that is used
442 by the functions whose address must be used in the initializer.
443 Some compilers (notably SCO ODT 3.0, I seem to remember early AIX as
444 well) botch this if you use the static keyword for both declarations
445 (they allocate two objects, and use the first, uninitialized one until
446 the second declaration is encountered). Therefore, the forward
447 declaration should use the 'forwardstatic' keyword. This expands to
448 static on most systems, but to extern on a few. The actual storage
449 and name will still be static because the second declaration is
450 static, so no linker visible symbols will be generated. (Standard C
451 compilers take offense to the extern forward declaration of a static
452 object, so I can't just put extern in all cases. :-( )
455 #ifdef BAD_STATIC_FORWARD
456 #define staticforward extern
460 #define statichere static
462 #else /* !BAD_STATIC_FORWARD */
463 #define staticforward static
464 #define statichere static
465 #endif /* !BAD_STATIC_FORWARD */
469 123456789-123456789-123456789-123456789-123456789-123456789-123456789-12
477 Functions that take objects as arguments normally don't check for nil
478 arguments, but they do check the type of the argument, and return an
479 error if the function doesn't apply to the type.
484 Functions may fail for a variety of reasons, including running out of
485 memory. This is communicated to the caller in two ways: an error string
486 is set (see errors.h), and the function result differs: functions that
487 normally return a pointer return NULL for failure, functions returning
488 an integer return -1 (which could be a legal return value too!), and
489 other functions return 0 for success and -1 for failure.
490 Callers should always check for errors before using the result.
495 It takes a while to get used to the proper usage of reference counts.
497 Functions that create an object set the reference count to 1; such new
498 objects must be stored somewhere or destroyed again with Py_DECREF().
499 Functions that 'store' objects such as PyTuple_SetItem() and
500 PyDict_SetItemString()
501 don't increment the reference count of the object, since the most
502 frequent use is to store a fresh object. Functions that 'retrieve'
503 objects such as PyTuple_GetItem() and PyDict_GetItemString() also
505 the reference count, since most frequently the object is only looked at
506 quickly. Thus, to retrieve an object and store it again, the caller
507 must call Py_INCREF() explicitly.
509 NOTE: functions that 'consume' a reference count like
510 PyList_SetItemString() even consume the reference if the object wasn't
511 stored, to simplify error handling.
513 It seems attractive to make other functions that take an object as
514 argument consume a reference count; however this may quickly get
515 confusing (even the current practice is already confusing). Consider
516 it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at
519 123456789-123456789-123456789-123456789-123456789-123456789-123456789-12
525 #endif /* !Py_OBJECT_H */