Clarify portability and main program.
[python/dscho.git] / Lib / lib-old / zmod.py
blob4f03626390390d907dbb2cd00cc295b7a92ac2f8
1 # module 'zmod'
3 # Compute properties of mathematical "fields" formed by taking
4 # Z/n (the whole numbers modulo some whole number n) and an
5 # irreducible polynomial (i.e., a polynomial with only complex zeros),
6 # e.g., Z/5 and X**2 + 2.
8 # The field is formed by taking all possible linear combinations of
9 # a set of d base vectors (where d is the degree of the polynomial).
11 # Note that this procedure doesn't yield a field for all combinations
12 # of n and p: it may well be that some numbers have more than one
13 # inverse and others have none. This is what we check.
15 # Remember that a field is a ring where each element has an inverse.
16 # A ring has commutative addition and multiplication, a zero and a one:
17 # 0*x = x*0 = 0, 0+x = x+0 = x, 1*x = x*1 = x. Also, the distributive
18 # property holds: a*(b+c) = a*b + b*c.
19 # (XXX I forget if this is an axiom or follows from the rules.)
21 import poly
24 # Example N and polynomial
26 N = 5
27 P = poly.plus(poly.one(0, 2), poly.one(2, 1)) # 2 + x**2
30 # Return x modulo y. Returns >= 0 even if x < 0.
32 def mod(x, y):
33 return divmod(x, y)[1]
36 # Normalize a polynomial modulo n and modulo p.
38 def norm(a, n, p):
39 a = poly.modulo(a, p)
40 a = a[:]
41 for i in range(len(a)): a[i] = mod(a[i], n)
42 a = poly.normalize(a)
43 return a
46 # Make a list of all n^d elements of the proposed field.
48 def make_all(mat):
49 all = []
50 for row in mat:
51 for a in row:
52 all.append(a)
53 return all
55 def make_elements(n, d):
56 if d == 0: return [poly.one(0, 0)]
57 sub = make_elements(n, d-1)
58 all = []
59 for a in sub:
60 for i in range(n):
61 all.append(poly.plus(a, poly.one(d-1, i)))
62 return all
64 def make_inv(all, n, p):
65 x = poly.one(1, 1)
66 inv = []
67 for a in all:
68 inv.append(norm(poly.times(a, x), n, p))
69 return inv
71 def checkfield(n, p):
72 all = make_elements(n, len(p)-1)
73 inv = make_inv(all, n, p)
74 all1 = all[:]
75 inv1 = inv[:]
76 all1.sort()
77 inv1.sort()
78 if all1 == inv1: print 'BINGO!'
79 else:
80 print 'Sorry:', n, p
81 print all
82 print inv
84 def rj(s, width):
85 if type(s) <> type(''): s = `s`
86 n = len(s)
87 if n >= width: return s
88 return ' '*(width - n) + s
90 def lj(s, width):
91 if type(s) <> type(''): s = `s`
92 n = len(s)
93 if n >= width: return s
94 return s + ' '*(width - n)