1 """Random variable generators.
10 generate random permutation
12 distributions on the real line:
13 ------------------------------
21 distributions on the circle (angles 0 to 2pi)
22 ---------------------------------------------
26 Translated from anonymously contributed C/C++ source.
28 Multi-threading note: the random number generator used here is not thread-
29 safe; it is possible that two calls return the same random value. However,
30 you can instantiate a different instance of Random() in each thread to get
31 generators that don't share state, then use .setstate() and .jumpahead() to
32 move the generators to disjoint segments of the full period. For example,
34 def create_generators(num, delta, firstseed=None):
35 ""\"Return list of num distinct generators.
36 Each generator has its own unique segment of delta elements from
37 Random.random()'s full period.
38 Seed the first generator with optional arg firstseed (default is
39 None, to seed from current time).
42 from random import Random
45 for i in range(num - 1):
46 laststate = g.getstate()
53 gens = create_generators(10, 1000000)
55 That creates 10 distinct generators, which can be passed out to 10 distinct
56 threads. The generators don't share state so can be called safely in
57 parallel. So long as no thread calls its g.random() more than a million
58 times (the second argument to create_generators), the sequences seen by
59 each thread will not overlap.
61 The period of the underlying Wichmann-Hill generator is 6,953,607,871,644,
62 and that limits how far this technique can be pushed.
64 Just for fun, note that since we know the period, .jumpahead() can also be
65 used to "move backward in time":
67 >>> g = Random(42) # arbitrary
70 >>> g.jumpahead(6953607871644L - 1) # move *back* one
74 # XXX The docstring sucks.
76 from math
import log
as _log
, exp
as _exp
, pi
as _pi
, e
as _e
77 from math
import sqrt
as _sqrt
, acos
as _acos
, cos
as _cos
, sin
as _sin
79 __all__
= ["Random","seed","random","uniform","randint","choice",
80 "randrange","shuffle","normalvariate","lognormvariate",
81 "cunifvariate","expovariate","vonmisesvariate","gammavariate",
82 "stdgamma","gauss","betavariate","paretovariate","weibullvariate",
83 "getstate","setstate","jumpahead","whseed"]
85 def _verify(name
, expected
):
87 if abs(computed
- expected
) > 1e-7:
89 "computed value for %s deviates too much "
90 "(computed %g, expected %g)" % (name
, computed
, expected
))
92 NV_MAGICCONST
= 4 * _exp(-0.5)/_sqrt(2.0)
93 _verify('NV_MAGICCONST', 1.71552776992141)
96 _verify('TWOPI', 6.28318530718)
99 _verify('LOG4', 1.38629436111989)
101 SG_MAGICCONST
= 1.0 + _log(4.5)
102 _verify('SG_MAGICCONST', 2.50407739677627)
106 # Translated by Guido van Rossum from C source provided by
111 VERSION
= 1 # used by getstate/setstate
113 def __init__(self
, x
=None):
114 """Initialize an instance.
116 Optional argument x controls seeding, as for Random.seed().
120 self
.gauss_next
= None
122 ## -------------------- core generator -------------------
124 # Specific to Wichmann-Hill generator. Subclasses wishing to use a
125 # different core generator should override the seed(), random(),
126 # getstate(), setstate() and jumpahead() methods.
128 def seed(self
, a
=None):
129 """Initialize internal state from hashable object.
131 None or no argument seeds from current time.
133 If a is not None or an int or long, hash(a) is used instead.
135 If a is an int or long, a is used directly. Distinct values between
136 0 and 27814431486575L inclusive are guaranteed to yield distinct
137 internal states (this guarantee is specific to the default
138 Wichmann-Hill generator).
142 # Initialize from current time
144 a
= long(time
.time() * 256)
146 if type(a
) not in (type(3), type(3L)):
149 a
, x
= divmod(a
, 30268)
150 a
, y
= divmod(a
, 30306)
151 a
, z
= divmod(a
, 30322)
152 self
._seed
= int(x
)+1, int(y
)+1, int(z
)+1
155 """Get the next random number in the range [0.0, 1.0)."""
157 # Wichman-Hill random number generator.
159 # Wichmann, B. A. & Hill, I. D. (1982)
161 # An efficient and portable pseudo-random number generator
162 # Applied Statistics 31 (1982) 188-190
165 # Correction to Algorithm AS 183
166 # Applied Statistics 33 (1984) 123
168 # McLeod, A. I. (1985)
169 # A remark on Algorithm AS 183
170 # Applied Statistics 34 (1985),198-200
172 # This part is thread-unsafe:
173 # BEGIN CRITICAL SECTION
175 x
= (171 * x
) % 30269
176 y
= (172 * y
) % 30307
177 z
= (170 * z
) % 30323
179 # END CRITICAL SECTION
181 # Note: on a platform using IEEE-754 double arithmetic, this can
182 # never return 0.0 (asserted by Tim; proof too long for a comment).
183 return (x
/30269.0 + y
/30307.0 + z
/30323.0) % 1.0
186 """Return internal state; can be passed to setstate() later."""
187 return self
.VERSION
, self
._seed
, self
.gauss_next
189 def setstate(self
, state
):
190 """Restore internal state from object returned by getstate()."""
193 version
, self
._seed
, self
.gauss_next
= state
195 raise ValueError("state with version %s passed to "
196 "Random.setstate() of version %s" %
197 (version
, self
.VERSION
))
199 def jumpahead(self
, n
):
200 """Act as if n calls to random() were made, but quickly.
202 n is an int, greater than or equal to 0.
204 Example use: If you have 2 threads and know that each will
205 consume no more than a million random numbers, create two Random
206 objects r1 and r2, then do
207 r2.setstate(r1.getstate())
208 r2.jumpahead(1000000)
209 Then r1 and r2 will use guaranteed-disjoint segments of the full
214 raise ValueError("n must be >= 0")
216 x
= int(x
* pow(171, n
, 30269)) % 30269
217 y
= int(y
* pow(172, n
, 30307)) % 30307
218 z
= int(z
* pow(170, n
, 30323)) % 30323
221 def __whseed(self
, x
=0, y
=0, z
=0):
222 """Set the Wichmann-Hill seed from (x, y, z).
224 These must be integers in the range [0, 256).
227 if not type(x
) == type(y
) == type(z
) == type(0):
228 raise TypeError('seeds must be integers')
229 if not (0 <= x
< 256 and 0 <= y
< 256 and 0 <= z
< 256):
230 raise ValueError('seeds must be in range(0, 256)')
232 # Initialize from current time
234 t
= long(time
.time() * 256)
235 t
= int((t
&0xffffff) ^
(t
>>24))
236 t
, x
= divmod(t
, 256)
237 t
, y
= divmod(t
, 256)
238 t
, z
= divmod(t
, 256)
239 # Zero is a poor seed, so substitute 1
240 self
._seed
= (x
or 1, y
or 1, z
or 1)
242 def whseed(self
, a
=None):
243 """Seed from hashable object's hash code.
245 None or no argument seeds from current time. It is not guaranteed
246 that objects with distinct hash codes lead to distinct internal
249 This is obsolete, provided for compatibility with the seed routine
250 used prior to Python 2.1. Use the .seed() method instead.
257 a
, x
= divmod(a
, 256)
258 a
, y
= divmod(a
, 256)
259 a
, z
= divmod(a
, 256)
260 x
= (x
+ a
) % 256 or 1
261 y
= (y
+ a
) % 256 or 1
262 z
= (z
+ a
) % 256 or 1
263 self
.__whseed
(x
, y
, z
)
265 ## ---- Methods below this point do not need to be overridden when
266 ## ---- subclassing for the purpose of using a different core generator.
268 ## -------------------- pickle support -------------------
270 def __getstate__(self
): # for pickle
271 return self
.getstate()
273 def __setstate__(self
, state
): # for pickle
276 ## -------------------- integer methods -------------------
278 def randrange(self
, start
, stop
=None, step
=1, int=int, default
=None):
279 """Choose a random item from range(start, stop[, step]).
281 This fixes the problem with randint() which includes the
282 endpoint; in Python this is usually not what you want.
283 Do not supply the 'int' and 'default' arguments.
286 # This code is a bit messy to make it fast for the
287 # common case while still doing adequate error checking
290 raise ValueError, "non-integer arg 1 for randrange()"
293 return int(self
.random() * istart
)
294 raise ValueError, "empty range for randrange()"
297 raise ValueError, "non-integer stop for randrange()"
300 return istart
+ int(self
.random() *
302 raise ValueError, "empty range for randrange()"
305 raise ValueError, "non-integer step for randrange()"
307 n
= (istop
- istart
+ istep
- 1) / istep
309 n
= (istop
- istart
+ istep
+ 1) / istep
311 raise ValueError, "zero step for randrange()"
314 raise ValueError, "empty range for randrange()"
315 return istart
+ istep
*int(self
.random() * n
)
317 def randint(self
, a
, b
):
318 """Return random integer in range [a, b], including both end points.
320 (Deprecated; use randrange(a, b+1).)
323 return self
.randrange(a
, b
+1)
325 ## -------------------- sequence methods -------------------
327 def choice(self
, seq
):
328 """Choose a random element from a non-empty sequence."""
329 return seq
[int(self
.random() * len(seq
))]
331 def shuffle(self
, x
, random
=None, int=int):
332 """x, random=random.random -> shuffle list x in place; return None.
334 Optional arg random is a 0-argument function returning a random
335 float in [0.0, 1.0); by default, the standard random.random.
337 Note that for even rather small len(x), the total number of
338 permutations of x is larger than the period of most random number
339 generators; this implies that "most" permutations of a long
340 sequence can never be generated.
345 for i
in xrange(len(x
)-1, 0, -1):
346 # pick an element in x[:i+1] with which to exchange x[i]
347 j
= int(random() * (i
+1))
348 x
[i
], x
[j
] = x
[j
], x
[i
]
350 ## -------------------- real-valued distributions -------------------
352 ## -------------------- uniform distribution -------------------
354 def uniform(self
, a
, b
):
355 """Get a random number in the range [a, b)."""
356 return a
+ (b
-a
) * self
.random()
358 ## -------------------- normal distribution --------------------
360 def normalvariate(self
, mu
, sigma
):
361 # mu = mean, sigma = standard deviation
363 # Uses Kinderman and Monahan method. Reference: Kinderman,
364 # A.J. and Monahan, J.F., "Computer generation of random
365 # variables using the ratio of uniform deviates", ACM Trans
366 # Math Software, 3, (1977), pp257-260.
372 z
= NV_MAGICCONST
*(u1
-0.5)/u2
378 ## -------------------- lognormal distribution --------------------
380 def lognormvariate(self
, mu
, sigma
):
381 return _exp(self
.normalvariate(mu
, sigma
))
383 ## -------------------- circular uniform --------------------
385 def cunifvariate(self
, mean
, arc
):
386 # mean: mean angle (in radians between 0 and pi)
387 # arc: range of distribution (in radians between 0 and pi)
389 return (mean
+ arc
* (self
.random() - 0.5)) % _pi
391 ## -------------------- exponential distribution --------------------
393 def expovariate(self
, lambd
):
394 # lambd: rate lambd = 1/mean
395 # ('lambda' is a Python reserved word)
401 return -_log(u
)/lambd
403 ## -------------------- von Mises distribution --------------------
405 def vonmisesvariate(self
, mu
, kappa
):
406 # mu: mean angle (in radians between 0 and 2*pi)
407 # kappa: concentration parameter kappa (>= 0)
408 # if kappa = 0 generate uniform random angle
410 # Based upon an algorithm published in: Fisher, N.I.,
411 # "Statistical Analysis of Circular Data", Cambridge
412 # University Press, 1993.
414 # Thanks to Magnus Kessler for a correction to the
415 # implementation of step 4.
419 return TWOPI
* random()
421 a
= 1.0 + _sqrt(1.0 + 4.0 * kappa
* kappa
)
422 b
= (a
- _sqrt(2.0 * a
))/(2.0 * kappa
)
423 r
= (1.0 + b
* b
)/(2.0 * b
)
429 f
= (1.0 + r
* z
)/(r
+ z
)
434 if not (u2
>= c
* (2.0 - c
) and u2
> c
* _exp(1.0 - c
)):
439 theta
= (mu
% TWOPI
) + _acos(f
)
441 theta
= (mu
% TWOPI
) - _acos(f
)
445 ## -------------------- gamma distribution --------------------
447 def gammavariate(self
, alpha
, beta
):
448 # beta times standard gamma
449 ainv
= _sqrt(2.0 * alpha
- 1.0)
450 return beta
* self
.stdgamma(alpha
, ainv
, alpha
- LOG4
, alpha
+ ainv
)
452 def stdgamma(self
, alpha
, ainv
, bbb
, ccc
):
453 # ainv = sqrt(2 * alpha - 1)
454 # bbb = alpha - log(4)
459 raise ValueError, 'stdgamma: alpha must be > 0.0'
463 # Uses R.C.H. Cheng, "The generation of Gamma
464 # variables with non-integral shape parameters",
465 # Applied Statistics, (1977), 26, No. 1, p71-74
470 v
= _log(u1
/(1.0-u1
))/ainv
474 if r
+ SG_MAGICCONST
- 4.5*z
>= 0.0 or r
>= _log(z
):
484 else: # alpha is between 0 and 1 (exclusive)
486 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
493 x
= pow(p
, 1.0/alpha
)
496 x
= -_log((b
-p
)/alpha
)
498 if not (((p
<= 1.0) and (u1
> _exp(-x
))) or
499 ((p
> 1) and (u1
> pow(x
, alpha
- 1.0)))):
504 ## -------------------- Gauss (faster alternative) --------------------
506 def gauss(self
, mu
, sigma
):
508 # When x and y are two variables from [0, 1), uniformly
511 # cos(2*pi*x)*sqrt(-2*log(1-y))
512 # sin(2*pi*x)*sqrt(-2*log(1-y))
514 # are two *independent* variables with normal distribution
515 # (mu = 0, sigma = 1).
517 # (corrected version; bug discovered by Mike Miller, fixed by LM)
519 # Multithreading note: When two threads call this function
520 # simultaneously, it is possible that they will receive the
521 # same return value. The window is very small though. To
522 # avoid this, you have to use a lock around all calls. (I
523 # didn't want to slow this down in the serial case by using a
528 self
.gauss_next
= None
530 x2pi
= random() * TWOPI
531 g2rad
= _sqrt(-2.0 * _log(1.0 - random()))
532 z
= _cos(x2pi
) * g2rad
533 self
.gauss_next
= _sin(x2pi
) * g2rad
537 ## -------------------- beta --------------------
539 ## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470
540 ## for Ivan Frohne's insightful analysis of why the original implementation:
542 ## def betavariate(self, alpha, beta):
543 ## # Discrete Event Simulation in C, pp 87-88.
545 ## y = self.expovariate(alpha)
546 ## z = self.expovariate(1.0/beta)
549 ## was dead wrong, and how it probably got that way.
551 def betavariate(self
, alpha
, beta
):
552 # This version due to Janne Sinkkonen, and matches all the std
553 # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
554 y
= self
.gammavariate(alpha
, 1.)
558 return y
/ (y
+ self
.gammavariate(beta
, 1.))
560 ## -------------------- Pareto --------------------
562 def paretovariate(self
, alpha
):
566 return 1.0 / pow(u
, 1.0/alpha
)
568 ## -------------------- Weibull --------------------
570 def weibullvariate(self
, alpha
, beta
):
571 # Jain, pg. 499; bug fix courtesy Bill Arms
574 return alpha
* pow(-_log(u
), 1.0/beta
)
576 ## -------------------- test program --------------------
578 def _test_generator(n
, funccall
):
580 print n
, 'times', funccall
581 code
= compile(funccall
, funccall
, 'eval')
591 smallest
= min(x
, smallest
)
592 largest
= max(x
, largest
)
594 print round(t1
-t0
, 3), 'sec,',
596 stddev
= _sqrt(sqsum
/n
- avg
*avg
)
597 print 'avg %g, stddev %g, min %g, max %g' % \
598 (avg
, stddev
, smallest
, largest
)
601 print 'TWOPI =', TWOPI
603 print 'NV_MAGICCONST =', NV_MAGICCONST
604 print 'SG_MAGICCONST =', SG_MAGICCONST
605 _test_generator(N
, 'random()')
606 _test_generator(N
, 'normalvariate(0.0, 1.0)')
607 _test_generator(N
, 'lognormvariate(0.0, 1.0)')
608 _test_generator(N
, 'cunifvariate(0.0, 1.0)')
609 _test_generator(N
, 'expovariate(1.0)')
610 _test_generator(N
, 'vonmisesvariate(0.0, 1.0)')
611 _test_generator(N
, 'gammavariate(0.5, 1.0)')
612 _test_generator(N
, 'gammavariate(0.9, 1.0)')
613 _test_generator(N
, 'gammavariate(1.0, 1.0)')
614 _test_generator(N
, 'gammavariate(2.0, 1.0)')
615 _test_generator(N
, 'gammavariate(20.0, 1.0)')
616 _test_generator(N
, 'gammavariate(200.0, 1.0)')
617 _test_generator(N
, 'gauss(0.0, 1.0)')
618 _test_generator(N
, 'betavariate(3.0, 3.0)')
619 _test_generator(N
, 'paretovariate(1.0)')
620 _test_generator(N
, 'weibullvariate(1.0, 1.0)')
626 # now do it the slow way
632 raise ValueError("jumpahead test failed " + `
(N
, r1
, r2
)`
)
634 # Create one instance, seeded from current time, and export its methods
635 # as module-level functions. The functions are not threadsafe, and state
636 # is shared across all uses (both in the user's code and in the Python
637 # libraries), but that's fine for most programs and is easier for the
638 # casual user than making them instantiate their own Random() instance.
641 random
= _inst
.random
642 uniform
= _inst
.uniform
643 randint
= _inst
.randint
644 choice
= _inst
.choice
645 randrange
= _inst
.randrange
646 shuffle
= _inst
.shuffle
647 normalvariate
= _inst
.normalvariate
648 lognormvariate
= _inst
.lognormvariate
649 cunifvariate
= _inst
.cunifvariate
650 expovariate
= _inst
.expovariate
651 vonmisesvariate
= _inst
.vonmisesvariate
652 gammavariate
= _inst
.gammavariate
653 stdgamma
= _inst
.stdgamma
655 betavariate
= _inst
.betavariate
656 paretovariate
= _inst
.paretovariate
657 weibullvariate
= _inst
.weibullvariate
658 getstate
= _inst
.getstate
659 setstate
= _inst
.setstate
660 jumpahead
= _inst
.jumpahead
661 whseed
= _inst
.whseed
663 if __name__
== '__main__':