1 /* List object implementation */
8 #include <sys/types.h> /* For size_t */
14 unsigned int nbits
= 0;
15 unsigned int n2
= (unsigned int)n
>> 5;
18 * If n < 256, to a multiple of 8.
19 * If n < 2048, to a multiple of 64.
20 * If n < 16384, to a multiple of 512.
21 * If n < 131072, to a multiple of 4096.
22 * If n < 1048576, to a multiple of 32768.
23 * If n < 8388608, to a multiple of 262144.
24 * If n < 67108864, to a multiple of 2097152.
25 * If n < 536870912, to a multiple of 16777216.
27 * If n < 2**(5+3*i), to a multiple of 2**(3*i).
29 * This over-allocates proportional to the list size, making room
30 * for additional growth. The over-allocation is mild, but is
31 * enough to give linear-time amortized behavior over a long
32 * sequence of appends() in the presence of a poorly-performing
33 * system realloc() (which is a reality, e.g., across all flavors
34 * of Windows, with Win9x behavior being particularly bad -- and
35 * we've still got address space fragmentation problems on Win9x
36 * even with this scheme, although it requires much longer lists to
37 * provoke them than it used to).
43 return ((n
>> nbits
) + 1) << nbits
;
46 #define NRESIZE(var, type, nitems) \
48 size_t _new_size = roundupsize(nitems); \
49 if (_new_size <= ((~(size_t)0) / sizeof(type))) \
50 PyMem_RESIZE(var, type, _new_size); \
61 PyErr_BadInternalCall();
64 nbytes
= size
* sizeof(PyObject
*);
65 /* Check for overflow */
66 if (nbytes
/ sizeof(PyObject
*) != (size_t)size
) {
67 return PyErr_NoMemory();
69 op
= PyObject_GC_New(PyListObject
, &PyList_Type
);
77 op
->ob_item
= (PyObject
**) PyMem_MALLOC(nbytes
);
78 if (op
->ob_item
== NULL
) {
79 return PyErr_NoMemory();
81 memset(op
->ob_item
, 0, sizeof(*op
->ob_item
) * size
);
84 _PyObject_GC_TRACK(op
);
85 return (PyObject
*) op
;
89 PyList_Size(PyObject
*op
)
91 if (!PyList_Check(op
)) {
92 PyErr_BadInternalCall();
96 return ((PyListObject
*)op
) -> ob_size
;
99 static PyObject
*indexerr
;
102 PyList_GetItem(PyObject
*op
, int i
)
104 if (!PyList_Check(op
)) {
105 PyErr_BadInternalCall();
108 if (i
< 0 || i
>= ((PyListObject
*)op
) -> ob_size
) {
109 if (indexerr
== NULL
)
110 indexerr
= PyString_FromString(
111 "list index out of range");
112 PyErr_SetObject(PyExc_IndexError
, indexerr
);
115 return ((PyListObject
*)op
) -> ob_item
[i
];
119 PyList_SetItem(register PyObject
*op
, register int i
,
120 register PyObject
*newitem
)
122 register PyObject
*olditem
;
123 register PyObject
**p
;
124 if (!PyList_Check(op
)) {
126 PyErr_BadInternalCall();
129 if (i
< 0 || i
>= ((PyListObject
*)op
) -> ob_size
) {
131 PyErr_SetString(PyExc_IndexError
,
132 "list assignment index out of range");
135 p
= ((PyListObject
*)op
) -> ob_item
+ i
;
143 ins1(PyListObject
*self
, int where
, PyObject
*v
)
148 PyErr_BadInternalCall();
151 if (self
->ob_size
== INT_MAX
) {
152 PyErr_SetString(PyExc_OverflowError
,
153 "cannot add more objects to list");
156 items
= self
->ob_item
;
157 NRESIZE(items
, PyObject
*, self
->ob_size
+1);
164 if (where
> self
->ob_size
)
165 where
= self
->ob_size
;
166 for (i
= self
->ob_size
; --i
>= where
; )
167 items
[i
+1] = items
[i
];
170 self
->ob_item
= items
;
176 PyList_Insert(PyObject
*op
, int where
, PyObject
*newitem
)
178 if (!PyList_Check(op
)) {
179 PyErr_BadInternalCall();
182 return ins1((PyListObject
*)op
, where
, newitem
);
186 PyList_Append(PyObject
*op
, PyObject
*newitem
)
188 if (!PyList_Check(op
)) {
189 PyErr_BadInternalCall();
192 return ins1((PyListObject
*)op
,
193 (int) ((PyListObject
*)op
)->ob_size
, newitem
);
199 list_dealloc(PyListObject
*op
)
202 PyObject_GC_UnTrack(op
);
203 Py_TRASHCAN_SAFE_BEGIN(op
)
204 if (op
->ob_item
!= NULL
) {
205 /* Do it backwards, for Christian Tismer.
206 There's a simple test case where somehow this reduces
207 thrashing when a *very* large list is created and
208 immediately deleted. */
211 Py_XDECREF(op
->ob_item
[i
]);
213 PyMem_FREE(op
->ob_item
);
215 op
->ob_type
->tp_free((PyObject
*)op
);
216 Py_TRASHCAN_SAFE_END(op
)
220 list_print(PyListObject
*op
, FILE *fp
, int flags
)
224 i
= Py_ReprEnter((PyObject
*)op
);
228 fprintf(fp
, "[...]");
232 for (i
= 0; i
< op
->ob_size
; i
++) {
235 if (PyObject_Print(op
->ob_item
[i
], fp
, 0) != 0) {
236 Py_ReprLeave((PyObject
*)op
);
241 Py_ReprLeave((PyObject
*)op
);
246 list_repr(PyListObject
*v
)
250 PyObject
*pieces
= NULL
, *result
= NULL
;
252 i
= Py_ReprEnter((PyObject
*)v
);
254 return i
> 0 ? PyString_FromString("[...]") : NULL
;
257 if (v
->ob_size
== 0) {
258 result
= PyString_FromString("[]");
262 pieces
= PyList_New(0);
266 /* Do repr() on each element. Note that this may mutate the list,
267 so must refetch the list size on each iteration. */
268 for (i
= 0; i
< v
->ob_size
; ++i
) {
270 s
= PyObject_Repr(v
->ob_item
[i
]);
273 status
= PyList_Append(pieces
, s
);
274 Py_DECREF(s
); /* append created a new ref */
279 /* Add "[]" decorations to the first and last items. */
280 assert(PyList_GET_SIZE(pieces
) > 0);
281 s
= PyString_FromString("[");
284 temp
= PyList_GET_ITEM(pieces
, 0);
285 PyString_ConcatAndDel(&s
, temp
);
286 PyList_SET_ITEM(pieces
, 0, s
);
290 s
= PyString_FromString("]");
293 temp
= PyList_GET_ITEM(pieces
, PyList_GET_SIZE(pieces
) - 1);
294 PyString_ConcatAndDel(&temp
, s
);
295 PyList_SET_ITEM(pieces
, PyList_GET_SIZE(pieces
) - 1, temp
);
299 /* Paste them all together with ", " between. */
300 s
= PyString_FromString(", ");
303 result
= _PyString_Join(s
, pieces
);
308 Py_ReprLeave((PyObject
*)v
);
313 list_length(PyListObject
*a
)
321 list_contains(PyListObject
*a
, PyObject
*el
)
325 for (i
= 0, cmp
= 0 ; cmp
== 0 && i
< a
->ob_size
; ++i
)
326 cmp
= PyObject_RichCompareBool(el
, PyList_GET_ITEM(a
, i
),
333 list_item(PyListObject
*a
, int i
)
335 if (i
< 0 || i
>= a
->ob_size
) {
336 if (indexerr
== NULL
)
337 indexerr
= PyString_FromString(
338 "list index out of range");
339 PyErr_SetObject(PyExc_IndexError
, indexerr
);
342 Py_INCREF(a
->ob_item
[i
]);
343 return a
->ob_item
[i
];
347 list_slice(PyListObject
*a
, int ilow
, int ihigh
)
353 else if (ilow
> a
->ob_size
)
357 else if (ihigh
> a
->ob_size
)
359 np
= (PyListObject
*) PyList_New(ihigh
- ilow
);
362 for (i
= ilow
; i
< ihigh
; i
++) {
363 PyObject
*v
= a
->ob_item
[i
];
365 np
->ob_item
[i
- ilow
] = v
;
367 return (PyObject
*)np
;
371 PyList_GetSlice(PyObject
*a
, int ilow
, int ihigh
)
373 if (!PyList_Check(a
)) {
374 PyErr_BadInternalCall();
377 return list_slice((PyListObject
*)a
, ilow
, ihigh
);
381 list_concat(PyListObject
*a
, PyObject
*bb
)
386 if (!PyList_Check(bb
)) {
387 PyErr_Format(PyExc_TypeError
,
388 "can only concatenate list (not \"%.200s\") to list",
389 bb
->ob_type
->tp_name
);
392 #define b ((PyListObject *)bb)
393 size
= a
->ob_size
+ b
->ob_size
;
395 return PyErr_NoMemory();
396 np
= (PyListObject
*) PyList_New(size
);
400 for (i
= 0; i
< a
->ob_size
; i
++) {
401 PyObject
*v
= a
->ob_item
[i
];
405 for (i
= 0; i
< b
->ob_size
; i
++) {
406 PyObject
*v
= b
->ob_item
[i
];
408 np
->ob_item
[i
+ a
->ob_size
] = v
;
410 return (PyObject
*)np
;
415 list_repeat(PyListObject
*a
, int n
)
423 size
= a
->ob_size
* n
;
424 if (n
&& size
/n
!= a
->ob_size
)
425 return PyErr_NoMemory();
426 np
= (PyListObject
*) PyList_New(size
);
430 for (i
= 0; i
< n
; i
++) {
431 for (j
= 0; j
< a
->ob_size
; j
++) {
437 return (PyObject
*) np
;
441 list_ass_slice(PyListObject
*a
, int ilow
, int ihigh
, PyObject
*v
)
443 /* Because [X]DECREF can recursively invoke list operations on
444 this list, we must postpone all [X]DECREF activity until
445 after the list is back in its canonical shape. Therefore
446 we must allocate an additional array, 'recycle', into which
447 we temporarily copy the items that are deleted from the
449 PyObject
**recycle
, **p
;
451 PyObject
*v_as_SF
= NULL
; /* PySequence_Fast(v) */
452 int n
; /* Size of replacement list */
453 int d
; /* Change in size */
454 int k
; /* Loop index */
455 #define b ((PyListObject *)v)
460 PyOS_snprintf(msg
, sizeof(msg
),
461 "must assign sequence"
462 " (not \"%.200s\") to slice",
463 v
->ob_type
->tp_name
);
464 v_as_SF
= PySequence_Fast(v
, msg
);
467 n
= PySequence_Fast_GET_SIZE(v_as_SF
);
470 /* Special case "a[i:j] = a" -- copy b first */
472 v
= list_slice(b
, 0, n
);
473 ret
= list_ass_slice(a
, ilow
, ihigh
, v
);
480 else if (ilow
> a
->ob_size
)
484 else if (ihigh
> a
->ob_size
)
487 d
= n
- (ihigh
-ilow
);
489 p
= recycle
= PyMem_NEW(PyObject
*, (ihigh
-ilow
));
492 if (d
<= 0) { /* Delete -d items; recycle ihigh-ilow items */
493 for (k
= ilow
; k
< ihigh
; k
++)
496 for (/*k = ihigh*/; k
< a
->ob_size
; k
++)
499 NRESIZE(item
, PyObject
*, a
->ob_size
); /* Can't fail */
503 else { /* Insert d items; recycle ihigh-ilow items */
504 NRESIZE(item
, PyObject
*, a
->ob_size
+ d
);
511 for (k
= a
->ob_size
; --k
>= ihigh
; )
513 for (/*k = ihigh-1*/; k
>= ilow
; --k
)
518 for (k
= 0; k
< n
; k
++, ilow
++) {
519 PyObject
*w
= PySequence_Fast_GET_ITEM(v_as_SF
, k
);
524 while (--p
>= recycle
)
528 if (a
->ob_size
== 0 && a
->ob_item
!= NULL
) {
529 PyMem_FREE(a
->ob_item
);
538 PyList_SetSlice(PyObject
*a
, int ilow
, int ihigh
, PyObject
*v
)
540 if (!PyList_Check(a
)) {
541 PyErr_BadInternalCall();
544 return list_ass_slice((PyListObject
*)a
, ilow
, ihigh
, v
);
548 list_inplace_repeat(PyListObject
*self
, int n
)
554 size
= PyList_GET_SIZE(self
);
557 return (PyObject
*)self
;
560 items
= self
->ob_item
;
563 self
->ob_item
= NULL
;
565 for (i
= 0; i
< size
; i
++)
566 Py_XDECREF(items
[i
]);
569 return (PyObject
*)self
;
572 NRESIZE(items
, PyObject
*, size
*n
);
577 self
->ob_item
= items
;
578 for (i
= 1; i
< n
; i
++) { /* Start counting at 1, not 0 */
579 for (j
= 0; j
< size
; j
++) {
580 PyObject
*o
= PyList_GET_ITEM(self
, j
);
582 PyList_SET_ITEM(self
, self
->ob_size
++, o
);
586 return (PyObject
*)self
;
592 list_ass_item(PyListObject
*a
, int i
, PyObject
*v
)
595 if (i
< 0 || i
>= a
->ob_size
) {
596 PyErr_SetString(PyExc_IndexError
,
597 "list assignment index out of range");
601 return list_ass_slice(a
, i
, i
+1, v
);
603 old_value
= a
->ob_item
[i
];
605 Py_DECREF(old_value
);
610 ins(PyListObject
*self
, int where
, PyObject
*v
)
612 if (ins1(self
, where
, v
) != 0)
619 listinsert(PyListObject
*self
, PyObject
*args
)
623 if (!PyArg_ParseTuple(args
, "iO:insert", &i
, &v
))
625 return ins(self
, i
, v
);
629 listappend(PyListObject
*self
, PyObject
*v
)
631 return ins(self
, (int) self
->ob_size
, v
);
635 listextend_internal(PyListObject
*self
, PyObject
*b
)
638 int selflen
= PyList_GET_SIZE(self
);
642 if (PyObject_Size(b
) == 0) {
643 /* short circuit when b is empty */
648 if (self
== (PyListObject
*)b
) {
649 /* as in list_ass_slice() we must special case the
650 * situation: a.extend(a)
652 * XXX: I think this way ought to be faster than using
653 * list_slice() the way list_ass_slice() does.
656 b
= PyList_New(selflen
);
659 for (i
= 0; i
< selflen
; i
++) {
660 PyObject
*o
= PyList_GET_ITEM(self
, i
);
662 PyList_SET_ITEM(b
, i
, o
);
666 blen
= PyObject_Size(b
);
668 /* resize a using idiom */
669 items
= self
->ob_item
;
670 NRESIZE(items
, PyObject
*, selflen
+ blen
);
677 self
->ob_item
= items
;
679 /* populate the end of self with b's items */
680 for (i
= 0; i
< blen
; i
++) {
681 PyObject
*o
= PySequence_Fast_GET_ITEM(b
, i
);
683 PyList_SET_ITEM(self
, self
->ob_size
++, o
);
691 list_inplace_concat(PyListObject
*self
, PyObject
*other
)
693 other
= PySequence_Fast(other
, "argument to += must be iterable");
697 if (listextend_internal(self
, other
) < 0)
701 return (PyObject
*)self
;
705 listextend(PyListObject
*self
, PyObject
*b
)
708 b
= PySequence_Fast(b
, "list.extend() argument must be iterable");
712 if (listextend_internal(self
, b
) < 0)
720 listpop(PyListObject
*self
, PyObject
*args
)
724 if (!PyArg_ParseTuple(args
, "|i:pop", &i
))
726 if (self
->ob_size
== 0) {
727 /* Special-case most common failure cause */
728 PyErr_SetString(PyExc_IndexError
, "pop from empty list");
733 if (i
< 0 || i
>= self
->ob_size
) {
734 PyErr_SetString(PyExc_IndexError
, "pop index out of range");
737 v
= self
->ob_item
[i
];
739 if (list_ass_slice(self
, i
, i
+1, (PyObject
*)NULL
) != 0) {
746 /* Reverse a slice of a list in place, from lo up to (exclusive) hi. */
748 reverse_slice(PyObject
**lo
, PyObject
**hi
)
762 /* Lots of code for an adaptive, stable, natural mergesort. There are many
763 * pieces to this algorithm; read listsort.txt for overviews and details.
766 /* Comparison function. Takes care of calling a user-supplied
767 * comparison function (any callable Python object), which must not be
768 * NULL (use the ISLT macro if you don't know, or call PyObject_RichCompareBool
769 * with Py_LT if you know it's NULL).
770 * Returns -1 on error, 1 if x < y, 0 if x >= y.
773 islt(PyObject
*x
, PyObject
*y
, PyObject
*compare
)
779 assert(compare
!= NULL
);
780 /* Call the user's comparison function and translate the 3-way
781 * result into true or false (or error).
783 args
= PyTuple_New(2);
788 PyTuple_SET_ITEM(args
, 0, x
);
789 PyTuple_SET_ITEM(args
, 1, y
);
790 res
= PyObject_Call(compare
, args
, NULL
);
794 if (!PyInt_Check(res
)) {
796 PyErr_SetString(PyExc_TypeError
,
797 "comparison function must return int");
800 i
= PyInt_AsLong(res
);
805 /* If COMPARE is NULL, calls PyObject_RichCompareBool with Py_LT, else calls
806 * islt. This avoids a layer of function call in the usual case, and
807 * sorting does many comparisons.
808 * Returns -1 on error, 1 if x < y, 0 if x >= y.
810 #define ISLT(X, Y, COMPARE) ((COMPARE) == NULL ? \
811 PyObject_RichCompareBool(X, Y, Py_LT) : \
814 /* Compare X to Y via "<". Goto "fail" if the comparison raises an
815 error. Else "k" is set to true iff X<Y, and an "if (k)" block is
816 started. It makes more sense in context <wink>. X and Y are PyObject*s.
818 #define IFLT(X, Y) if ((k = ISLT(X, Y, compare)) < 0) goto fail; \
821 /* binarysort is the best method for sorting small arrays: it does
822 few compares, but can do data movement quadratic in the number of
824 [lo, hi) is a contiguous slice of a list, and is sorted via
825 binary insertion. This sort is stable.
826 On entry, must have lo <= start <= hi, and that [lo, start) is already
827 sorted (pass start == lo if you don't know!).
828 If islt() complains return -1, else 0.
829 Even in case of error, the output slice will be some permutation of
830 the input (nothing is lost or duplicated).
833 binarysort(PyObject
**lo
, PyObject
**hi
, PyObject
**start
, PyObject
*compare
)
834 /* compare -- comparison function object, or NULL for default */
837 register PyObject
**l
, **p
, **r
;
838 register PyObject
*pivot
;
840 assert(lo
<= start
&& start
<= hi
);
841 /* assert [lo, start) is sorted */
844 for (; start
< hi
; ++start
) {
845 /* set l to where *start belongs */
850 * pivot >= all in [lo, l).
851 * pivot < all in [r, start).
852 * The second is vacuously true at the start.
856 p
= l
+ ((r
- l
) >> 1);
863 /* The invariants still hold, so pivot >= all in [lo, l) and
864 pivot < all in [l, start), so pivot belongs at l. Note
865 that if there are elements equal to pivot, l points to the
866 first slot after them -- that's why this sort is stable.
867 Slide over to make room.
868 Caution: using memmove is much slower under MSVC 5;
869 we're not usually moving many slots. */
870 for (p
= start
; p
> l
; --p
)
881 Return the length of the run beginning at lo, in the slice [lo, hi). lo < hi
882 is required on entry. "A run" is the longest ascending sequence, with
884 lo[0] <= lo[1] <= lo[2] <= ...
886 or the longest descending sequence, with
888 lo[0] > lo[1] > lo[2] > ...
890 Boolean *descending is set to 0 in the former case, or to 1 in the latter.
891 For its intended use in a stable mergesort, the strictness of the defn of
892 "descending" is needed so that the caller can safely reverse a descending
893 sequence without violating stability (strict > ensures there are no equal
894 elements to get out of order).
896 Returns -1 in case of error.
899 count_run(PyObject
**lo
, PyObject
**hi
, PyObject
*compare
, int *descending
)
913 for (lo
= lo
+1; lo
< hi
; ++lo
, ++n
) {
921 for (lo
= lo
+1; lo
< hi
; ++lo
, ++n
) {
933 Locate the proper position of key in a sorted vector; if the vector contains
934 an element equal to key, return the position immediately to the left of
935 the leftmost equal element. [gallop_right() does the same except returns
936 the position to the right of the rightmost equal element (if any).]
938 "a" is a sorted vector with n elements, starting at a[0]. n must be > 0.
940 "hint" is an index at which to begin the search, 0 <= hint < n. The closer
941 hint is to the final result, the faster this runs.
943 The return value is the int k in 0..n such that
947 pretending that *(a-1) is minus infinity and a[n] is plus infinity. IOW,
948 key belongs at index k; or, IOW, the first k elements of a should precede
949 key, and the last n-k should follow key.
951 Returns -1 on error. See listsort.txt for info on the method.
954 gallop_left(PyObject
*key
, PyObject
**a
, int n
, int hint
, PyObject
*compare
)
960 assert(key
&& a
&& n
> 0 && hint
>= 0 && hint
< n
);
966 /* a[hint] < key -- gallop right, until
967 * a[hint + lastofs] < key <= a[hint + ofs]
969 const int maxofs
= n
- hint
; /* &a[n-1] is highest */
970 while (ofs
< maxofs
) {
973 ofs
= (ofs
<< 1) + 1;
974 if (ofs
<= 0) /* int overflow */
977 else /* key <= a[hint + ofs] */
982 /* Translate back to offsets relative to &a[0]. */
987 /* key <= a[hint] -- gallop left, until
988 * a[hint - ofs] < key <= a[hint - lastofs]
990 const int maxofs
= hint
+ 1; /* &a[0] is lowest */
991 while (ofs
< maxofs
) {
994 /* key <= a[hint - ofs] */
996 ofs
= (ofs
<< 1) + 1;
997 if (ofs
<= 0) /* int overflow */
1002 /* Translate back to positive offsets relative to &a[0]. */
1004 lastofs
= hint
- ofs
;
1009 assert(-1 <= lastofs
&& lastofs
< ofs
&& ofs
<= n
);
1010 /* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the
1011 * right of lastofs but no farther right than ofs. Do a binary
1012 * search, with invariant a[lastofs-1] < key <= a[ofs].
1015 while (lastofs
< ofs
) {
1016 int m
= lastofs
+ ((ofs
- lastofs
) >> 1);
1019 lastofs
= m
+1; /* a[m] < key */
1021 ofs
= m
; /* key <= a[m] */
1023 assert(lastofs
== ofs
); /* so a[ofs-1] < key <= a[ofs] */
1031 Exactly like gallop_left(), except that if key already exists in a[0:n],
1032 finds the position immediately to the right of the rightmost equal value.
1034 The return value is the int k in 0..n such that
1036 a[k-1] <= key < a[k]
1040 The code duplication is massive, but this is enough different given that
1041 we're sticking to "<" comparisons that it's much harder to follow if
1042 written as one routine with yet another "left or right?" flag.
1045 gallop_right(PyObject
*key
, PyObject
**a
, int n
, int hint
, PyObject
*compare
)
1051 assert(key
&& a
&& n
> 0 && hint
>= 0 && hint
< n
);
1057 /* key < a[hint] -- gallop left, until
1058 * a[hint - ofs] <= key < a[hint - lastofs]
1060 const int maxofs
= hint
+ 1; /* &a[0] is lowest */
1061 while (ofs
< maxofs
) {
1062 IFLT(key
, *(a
-ofs
)) {
1064 ofs
= (ofs
<< 1) + 1;
1065 if (ofs
<= 0) /* int overflow */
1068 else /* a[hint - ofs] <= key */
1073 /* Translate back to positive offsets relative to &a[0]. */
1075 lastofs
= hint
- ofs
;
1079 /* a[hint] <= key -- gallop right, until
1080 * a[hint + lastofs] <= key < a[hint + ofs]
1082 const int maxofs
= n
- hint
; /* &a[n-1] is highest */
1083 while (ofs
< maxofs
) {
1086 /* a[hint + ofs] <= key */
1088 ofs
= (ofs
<< 1) + 1;
1089 if (ofs
<= 0) /* int overflow */
1094 /* Translate back to offsets relative to &a[0]. */
1100 assert(-1 <= lastofs
&& lastofs
< ofs
&& ofs
<= n
);
1101 /* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the
1102 * right of lastofs but no farther right than ofs. Do a binary
1103 * search, with invariant a[lastofs-1] <= key < a[ofs].
1106 while (lastofs
< ofs
) {
1107 int m
= lastofs
+ ((ofs
- lastofs
) >> 1);
1110 ofs
= m
; /* key < a[m] */
1112 lastofs
= m
+1; /* a[m] <= key */
1114 assert(lastofs
== ofs
); /* so a[ofs-1] <= key < a[ofs] */
1121 /* The maximum number of entries in a MergeState's pending-runs stack.
1122 * This is enough to sort arrays of size up to about
1123 * 32 * phi ** MAX_MERGE_PENDING
1124 * where phi ~= 1.618. 85 is ridiculouslylarge enough, good for an array
1125 * with 2**64 elements.
1127 #define MAX_MERGE_PENDING 85
1129 /* When we get into galloping mode, we stay there until both runs win less
1130 * often than MIN_GALLOP consecutive times. See listsort.txt for more info.
1132 #define MIN_GALLOP 7
1134 /* Avoid malloc for small temp arrays. */
1135 #define MERGESTATE_TEMP_SIZE 256
1137 /* One MergeState exists on the stack per invocation of mergesort. It's just
1138 * a convenient way to pass state around among the helper functions.
1145 typedef struct s_MergeState
{
1146 /* The user-supplied comparison function. or NULL if none given. */
1149 /* This controls when we get *into* galloping mode. It's initialized
1150 * to MIN_GALLOP. merge_lo and merge_hi tend to nudge it higher for
1151 * random data, and lower for highly structured data.
1155 /* 'a' is temp storage to help with merges. It contains room for
1158 PyObject
**a
; /* may point to temparray below */
1161 /* A stack of n pending runs yet to be merged. Run #i starts at
1162 * address base[i] and extends for len[i] elements. It's always
1163 * true (so long as the indices are in bounds) that
1165 * pending[i].base + pending[i].len == pending[i+1].base
1167 * so we could cut the storage for this, but it's a minor amount,
1168 * and keeping all the info explicit simplifies the code.
1171 struct s_slice pending
[MAX_MERGE_PENDING
];
1173 /* 'a' points to this when possible, rather than muck with malloc. */
1174 PyObject
*temparray
[MERGESTATE_TEMP_SIZE
];
1177 /* Conceptually a MergeState's constructor. */
1179 merge_init(MergeState
*ms
, PyObject
*compare
)
1182 ms
->compare
= compare
;
1183 ms
->a
= ms
->temparray
;
1184 ms
->alloced
= MERGESTATE_TEMP_SIZE
;
1186 ms
->min_gallop
= MIN_GALLOP
;
1189 /* Free all the temp memory owned by the MergeState. This must be called
1190 * when you're done with a MergeState, and may be called before then if
1191 * you want to free the temp memory early.
1194 merge_freemem(MergeState
*ms
)
1197 if (ms
->a
!= ms
->temparray
)
1199 ms
->a
= ms
->temparray
;
1200 ms
->alloced
= MERGESTATE_TEMP_SIZE
;
1203 /* Ensure enough temp memory for 'need' array slots is available.
1204 * Returns 0 on success and -1 if the memory can't be gotten.
1207 merge_getmem(MergeState
*ms
, int need
)
1210 if (need
<= ms
->alloced
)
1212 /* Don't realloc! That can cost cycles to copy the old data, but
1213 * we don't care what's in the block.
1216 ms
->a
= (PyObject
**)PyMem_Malloc(need
* sizeof(PyObject
*));
1222 merge_freemem(ms
); /* reset to sane state */
1225 #define MERGE_GETMEM(MS, NEED) ((NEED) <= (MS)->alloced ? 0 : \
1226 merge_getmem(MS, NEED))
1228 /* Merge the na elements starting at pa with the nb elements starting at pb
1229 * in a stable way, in-place. na and nb must be > 0, and pa + na == pb.
1230 * Must also have that *pb < *pa, that pa[na-1] belongs at the end of the
1231 * merge, and should have na <= nb. See listsort.txt for more info.
1232 * Return 0 if successful, -1 if error.
1235 merge_lo(MergeState
*ms
, PyObject
**pa
, int na
, PyObject
**pb
, int nb
)
1240 int result
= -1; /* guilty until proved innocent */
1241 int min_gallop
= ms
->min_gallop
;
1243 assert(ms
&& pa
&& pb
&& na
> 0 && nb
> 0 && pa
+ na
== pb
);
1244 if (MERGE_GETMEM(ms
, na
) < 0)
1246 memcpy(ms
->a
, pa
, na
* sizeof(PyObject
*));
1257 compare
= ms
->compare
;
1259 int acount
= 0; /* # of times A won in a row */
1260 int bcount
= 0; /* # of times B won in a row */
1262 /* Do the straightforward thing until (if ever) one run
1263 * appears to win consistently.
1266 assert(na
> 1 && nb
> 0);
1267 k
= ISLT(*pb
, *pa
, compare
);
1277 if (bcount
>= min_gallop
)
1287 if (acount
>= min_gallop
)
1292 /* One run is winning so consistently that galloping may
1293 * be a huge win. So try that, and continue galloping until
1294 * (if ever) neither run appears to be winning consistently
1299 assert(na
> 1 && nb
> 0);
1300 min_gallop
-= min_gallop
> 1;
1301 ms
->min_gallop
= min_gallop
;
1302 k
= gallop_right(*pb
, pa
, na
, 0, compare
);
1307 memcpy(dest
, pa
, k
* sizeof(PyObject
*));
1313 /* na==0 is impossible now if the comparison
1314 * function is consistent, but we can't assume
1325 k
= gallop_left(*pa
, pb
, nb
, 0, compare
);
1330 memmove(dest
, pb
, k
* sizeof(PyObject
*));
1341 } while (acount
>= MIN_GALLOP
|| bcount
>= MIN_GALLOP
);
1342 ++min_gallop
; /* penalize it for leaving galloping mode */
1343 ms
->min_gallop
= min_gallop
;
1349 memcpy(dest
, pa
, na
* sizeof(PyObject
*));
1352 assert(na
== 1 && nb
> 0);
1353 /* The last element of pa belongs at the end of the merge. */
1354 memmove(dest
, pb
, nb
* sizeof(PyObject
*));
1359 /* Merge the na elements starting at pa with the nb elements starting at pb
1360 * in a stable way, in-place. na and nb must be > 0, and pa + na == pb.
1361 * Must also have that *pb < *pa, that pa[na-1] belongs at the end of the
1362 * merge, and should have na >= nb. See listsort.txt for more info.
1363 * Return 0 if successful, -1 if error.
1366 merge_hi(MergeState
*ms
, PyObject
**pa
, int na
, PyObject
**pb
, int nb
)
1371 int result
= -1; /* guilty until proved innocent */
1374 int min_gallop
= ms
->min_gallop
;
1376 assert(ms
&& pa
&& pb
&& na
> 0 && nb
> 0 && pa
+ na
== pb
);
1377 if (MERGE_GETMEM(ms
, nb
) < 0)
1380 memcpy(ms
->a
, pb
, nb
* sizeof(PyObject
*));
1383 pb
= ms
->a
+ nb
- 1;
1393 compare
= ms
->compare
;
1395 int acount
= 0; /* # of times A won in a row */
1396 int bcount
= 0; /* # of times B won in a row */
1398 /* Do the straightforward thing until (if ever) one run
1399 * appears to win consistently.
1402 assert(na
> 0 && nb
> 1);
1403 k
= ISLT(*pb
, *pa
, compare
);
1413 if (acount
>= min_gallop
)
1423 if (bcount
>= min_gallop
)
1428 /* One run is winning so consistently that galloping may
1429 * be a huge win. So try that, and continue galloping until
1430 * (if ever) neither run appears to be winning consistently
1435 assert(na
> 0 && nb
> 1);
1436 min_gallop
-= min_gallop
> 1;
1437 ms
->min_gallop
= min_gallop
;
1438 k
= gallop_right(*pb
, basea
, na
, na
-1, compare
);
1446 memmove(dest
+1, pa
+1, k
* sizeof(PyObject
*));
1456 k
= gallop_left(*pa
, baseb
, nb
, nb
-1, compare
);
1464 memcpy(dest
+1, pb
+1, k
* sizeof(PyObject
*));
1468 /* nb==0 is impossible now if the comparison
1469 * function is consistent, but we can't assume
1479 } while (acount
>= MIN_GALLOP
|| bcount
>= MIN_GALLOP
);
1480 ++min_gallop
; /* penalize it for leaving galloping mode */
1481 ms
->min_gallop
= min_gallop
;
1487 memcpy(dest
-(nb
-1), baseb
, nb
* sizeof(PyObject
*));
1490 assert(nb
== 1 && na
> 0);
1491 /* The first element of pb belongs at the front of the merge. */
1494 memmove(dest
+1, pa
+1, na
* sizeof(PyObject
*));
1499 /* Merge the two runs at stack indices i and i+1.
1500 * Returns 0 on success, -1 on error.
1503 merge_at(MergeState
*ms
, int i
)
1505 PyObject
**pa
, **pb
;
1513 assert(i
== ms
->n
- 2 || i
== ms
->n
- 3);
1515 pa
= ms
->pending
[i
].base
;
1516 na
= ms
->pending
[i
].len
;
1517 pb
= ms
->pending
[i
+1].base
;
1518 nb
= ms
->pending
[i
+1].len
;
1519 assert(na
> 0 && nb
> 0);
1520 assert(pa
+ na
== pb
);
1522 /* Record the length of the combined runs; if i is the 3rd-last
1523 * run now, also slide over the last run (which isn't involved
1524 * in this merge). The current run i+1 goes away in any case.
1526 ms
->pending
[i
].len
= na
+ nb
;
1528 ms
->pending
[i
+1] = ms
->pending
[i
+2];
1531 /* Where does b start in a? Elements in a before that can be
1532 * ignored (already in place).
1534 compare
= ms
->compare
;
1535 k
= gallop_right(*pb
, pa
, na
, 0, compare
);
1543 /* Where does a end in b? Elements in b after that can be
1544 * ignored (already in place).
1546 nb
= gallop_left(pa
[na
-1], pb
, nb
, nb
-1, compare
);
1550 /* Merge what remains of the runs, using a temp array with
1551 * min(na, nb) elements.
1554 return merge_lo(ms
, pa
, na
, pb
, nb
);
1556 return merge_hi(ms
, pa
, na
, pb
, nb
);
1559 /* Examine the stack of runs waiting to be merged, merging adjacent runs
1560 * until the stack invariants are re-established:
1562 * 1. len[-3] > len[-2] + len[-1]
1563 * 2. len[-2] > len[-1]
1565 * See listsort.txt for more info.
1567 * Returns 0 on success, -1 on error.
1570 merge_collapse(MergeState
*ms
)
1572 struct s_slice
*p
= ms
->pending
;
1577 if (n
> 0 && p
[n
-1].len
<= p
[n
].len
+ p
[n
+1].len
) {
1578 if (p
[n
-1].len
< p
[n
+1].len
)
1580 if (merge_at(ms
, n
) < 0)
1583 else if (p
[n
].len
<= p
[n
+1].len
) {
1584 if (merge_at(ms
, n
) < 0)
1593 /* Regardless of invariants, merge all runs on the stack until only one
1594 * remains. This is used at the end of the mergesort.
1596 * Returns 0 on success, -1 on error.
1599 merge_force_collapse(MergeState
*ms
)
1601 struct s_slice
*p
= ms
->pending
;
1606 if (n
> 0 && p
[n
-1].len
< p
[n
+1].len
)
1608 if (merge_at(ms
, n
) < 0)
1614 /* Compute a good value for the minimum run length; natural runs shorter
1615 * than this are boosted artificially via binary insertion.
1617 * If n < 64, return n (it's too small to bother with fancy stuff).
1618 * Else if n is an exact power of 2, return 32.
1619 * Else return an int k, 32 <= k <= 64, such that n/k is close to, but
1620 * strictly less than, an exact power of 2.
1622 * See listsort.txt for more info.
1625 merge_compute_minrun(int n
)
1627 int r
= 0; /* becomes 1 if any 1 bits are shifted off */
1637 /* An adaptive, stable, natural mergesort. See listsort.txt.
1638 * Returns Py_None on success, NULL on error. Even in case of error, the
1639 * list will be some permutation of its input state (nothing is lost or
1643 listsort(PyListObject
*self
, PyObject
*args
)
1646 PyObject
**lo
, **hi
;
1650 PyObject
**saved_ob_item
;
1651 PyObject
**empty_ob_item
;
1652 PyObject
*compare
= NULL
;
1653 PyObject
*result
= NULL
; /* guilty until proved innocent */
1655 assert(self
!= NULL
);
1657 if (!PyArg_UnpackTuple(args
, "sort", 0, 1, &compare
))
1660 merge_init(&ms
, compare
);
1662 /* The list is temporarily made empty, so that mutations performed
1663 * by comparison functions can't affect the slice of memory we're
1664 * sorting (allowing mutations during sorting is a core-dump
1665 * factory, since ob_item may change).
1667 saved_ob_size
= self
->ob_size
;
1668 saved_ob_item
= self
->ob_item
;
1670 self
->ob_item
= empty_ob_item
= PyMem_NEW(PyObject
*, 0);
1672 nremaining
= saved_ob_size
;
1676 /* March over the array once, left to right, finding natural runs,
1677 * and extending short natural runs to minrun elements.
1680 hi
= lo
+ nremaining
;
1681 minrun
= merge_compute_minrun(nremaining
);
1686 /* Identify next run. */
1687 n
= count_run(lo
, hi
, compare
, &descending
);
1691 reverse_slice(lo
, lo
+ n
);
1692 /* If short, extend to min(minrun, nremaining). */
1694 const int force
= nremaining
<= minrun
?
1695 nremaining
: minrun
;
1696 if (binarysort(lo
, lo
+ force
, lo
+ n
, compare
) < 0)
1700 /* Push run onto pending-runs stack, and maybe merge. */
1701 assert(ms
.n
< MAX_MERGE_PENDING
);
1702 ms
.pending
[ms
.n
].base
= lo
;
1703 ms
.pending
[ms
.n
].len
= n
;
1705 if (merge_collapse(&ms
) < 0)
1707 /* Advance to find next run. */
1710 } while (nremaining
);
1713 if (merge_force_collapse(&ms
) < 0)
1716 assert(ms
.pending
[0].base
== saved_ob_item
);
1717 assert(ms
.pending
[0].len
== saved_ob_size
);
1722 if (self
->ob_item
!= empty_ob_item
|| self
->ob_size
) {
1723 /* The user mucked with the list during the sort. */
1724 (void)list_ass_slice(self
, 0, self
->ob_size
, (PyObject
*)NULL
);
1725 if (result
!= NULL
) {
1726 PyErr_SetString(PyExc_ValueError
,
1727 "list modified during sort");
1731 if (self
->ob_item
== empty_ob_item
)
1732 PyMem_FREE(empty_ob_item
);
1733 self
->ob_size
= saved_ob_size
;
1734 self
->ob_item
= saved_ob_item
;
1743 PyList_Sort(PyObject
*v
)
1745 if (v
== NULL
|| !PyList_Check(v
)) {
1746 PyErr_BadInternalCall();
1749 v
= listsort((PyListObject
*)v
, (PyObject
*)NULL
);
1757 listreverse(PyListObject
*self
)
1759 if (self
->ob_size
> 1)
1760 reverse_slice(self
->ob_item
, self
->ob_item
+ self
->ob_size
);
1766 PyList_Reverse(PyObject
*v
)
1768 PyListObject
*self
= (PyListObject
*)v
;
1770 if (v
== NULL
|| !PyList_Check(v
)) {
1771 PyErr_BadInternalCall();
1774 if (self
->ob_size
> 1)
1775 reverse_slice(self
->ob_item
, self
->ob_item
+ self
->ob_size
);
1780 PyList_AsTuple(PyObject
*v
)
1785 if (v
== NULL
|| !PyList_Check(v
)) {
1786 PyErr_BadInternalCall();
1789 n
= ((PyListObject
*)v
)->ob_size
;
1793 p
= ((PyTupleObject
*)w
)->ob_item
;
1795 (void *)((PyListObject
*)v
)->ob_item
,
1796 n
*sizeof(PyObject
*));
1805 listindex(PyListObject
*self
, PyObject
*v
)
1809 for (i
= 0; i
< self
->ob_size
; i
++) {
1810 int cmp
= PyObject_RichCompareBool(self
->ob_item
[i
], v
, Py_EQ
);
1812 return PyInt_FromLong((long)i
);
1816 PyErr_SetString(PyExc_ValueError
, "list.index(x): x not in list");
1821 listcount(PyListObject
*self
, PyObject
*v
)
1826 for (i
= 0; i
< self
->ob_size
; i
++) {
1827 int cmp
= PyObject_RichCompareBool(self
->ob_item
[i
], v
, Py_EQ
);
1833 return PyInt_FromLong((long)count
);
1837 listremove(PyListObject
*self
, PyObject
*v
)
1841 for (i
= 0; i
< self
->ob_size
; i
++) {
1842 int cmp
= PyObject_RichCompareBool(self
->ob_item
[i
], v
, Py_EQ
);
1844 if (list_ass_slice(self
, i
, i
+1,
1845 (PyObject
*)NULL
) != 0)
1853 PyErr_SetString(PyExc_ValueError
, "list.remove(x): x not in list");
1858 list_traverse(PyListObject
*o
, visitproc visit
, void *arg
)
1863 for (i
= o
->ob_size
; --i
>= 0; ) {
1866 err
= visit(x
, arg
);
1875 list_clear(PyListObject
*lp
)
1877 (void) PyList_SetSlice((PyObject
*)lp
, 0, lp
->ob_size
, 0);
1882 list_richcompare(PyObject
*v
, PyObject
*w
, int op
)
1884 PyListObject
*vl
, *wl
;
1887 if (!PyList_Check(v
) || !PyList_Check(w
)) {
1888 Py_INCREF(Py_NotImplemented
);
1889 return Py_NotImplemented
;
1892 vl
= (PyListObject
*)v
;
1893 wl
= (PyListObject
*)w
;
1895 if (vl
->ob_size
!= wl
->ob_size
&& (op
== Py_EQ
|| op
== Py_NE
)) {
1896 /* Shortcut: if the lengths differ, the lists differ */
1906 /* Search for the first index where items are different */
1907 for (i
= 0; i
< vl
->ob_size
&& i
< wl
->ob_size
; i
++) {
1908 int k
= PyObject_RichCompareBool(vl
->ob_item
[i
],
1909 wl
->ob_item
[i
], Py_EQ
);
1916 if (i
>= vl
->ob_size
|| i
>= wl
->ob_size
) {
1917 /* No more items to compare -- compare sizes */
1918 int vs
= vl
->ob_size
;
1919 int ws
= wl
->ob_size
;
1923 case Py_LT
: cmp
= vs
< ws
; break;
1924 case Py_LE
: cmp
= vs
<= ws
; break;
1925 case Py_EQ
: cmp
= vs
== ws
; break;
1926 case Py_NE
: cmp
= vs
!= ws
; break;
1927 case Py_GT
: cmp
= vs
> ws
; break;
1928 case Py_GE
: cmp
= vs
>= ws
; break;
1929 default: return NULL
; /* cannot happen */
1939 /* We have an item that differs -- shortcuts for EQ/NE */
1941 Py_INCREF(Py_False
);
1949 /* Compare the final item again using the proper operator */
1950 return PyObject_RichCompare(vl
->ob_item
[i
], wl
->ob_item
[i
], op
);
1953 /* Adapted from newer code by Tim */
1955 list_fill(PyListObject
*result
, PyObject
*v
)
1957 PyObject
*it
; /* iter(v) */
1958 int n
; /* guess for result list size */
1961 n
= result
->ob_size
;
1963 /* Special-case list(a_list), for speed. */
1964 if (PyList_Check(v
)) {
1965 if (v
== (PyObject
*)result
)
1966 return 0; /* source is destination, we're done */
1967 return list_ass_slice(result
, 0, n
, v
);
1970 /* Empty previous contents */
1972 if (list_ass_slice(result
, 0, n
, (PyObject
*)NULL
) != 0)
1976 /* Get iterator. There may be some low-level efficiency to be gained
1977 * by caching the tp_iternext slot instead of using PyIter_Next()
1978 * later, but premature optimization is the root etc.
1980 it
= PyObject_GetIter(v
);
1984 /* Guess a result list size. */
1985 n
= -1; /* unknown */
1986 if (PySequence_Check(v
) &&
1987 v
->ob_type
->tp_as_sequence
->sq_length
) {
1988 n
= PySequence_Size(v
);
1993 n
= 8; /* arbitrary */
1994 NRESIZE(result
->ob_item
, PyObject
*, n
);
1995 if (result
->ob_item
== NULL
) {
1999 memset(result
->ob_item
, 0, sizeof(*result
->ob_item
) * n
);
2000 result
->ob_size
= n
;
2002 /* Run iterator to exhaustion. */
2003 for (i
= 0; ; i
++) {
2004 PyObject
*item
= PyIter_Next(it
);
2006 if (PyErr_Occurred())
2011 PyList_SET_ITEM(result
, i
, item
); /* steals ref */
2013 int status
= ins1(result
, result
->ob_size
, item
);
2014 Py_DECREF(item
); /* append creates a new ref */
2020 /* Cut back result list if initial guess was too large. */
2021 if (i
< n
&& result
!= NULL
) {
2022 if (list_ass_slice(result
, i
, n
, (PyObject
*)NULL
) != 0)
2034 list_init(PyListObject
*self
, PyObject
*args
, PyObject
*kw
)
2036 PyObject
*arg
= NULL
;
2037 static char *kwlist
[] = {"sequence", 0};
2039 if (!PyArg_ParseTupleAndKeywords(args
, kw
, "|O:list", kwlist
, &arg
))
2042 return list_fill(self
, arg
);
2043 if (self
->ob_size
> 0)
2044 return list_ass_slice(self
, 0, self
->ob_size
, (PyObject
*)NULL
);
2049 list_nohash(PyObject
*self
)
2051 PyErr_SetString(PyExc_TypeError
, "list objects are unhashable");
2055 PyDoc_STRVAR(append_doc
,
2056 "L.append(object) -- append object to end");
2057 PyDoc_STRVAR(extend_doc
,
2058 "L.extend(iterable) -- extend list by appending elements from the iterable");
2059 PyDoc_STRVAR(insert_doc
,
2060 "L.insert(index, object) -- insert object before index");
2061 PyDoc_STRVAR(pop_doc
,
2062 "L.pop([index]) -> item -- remove and return item at index (default last)");
2063 PyDoc_STRVAR(remove_doc
,
2064 "L.remove(value) -- remove first occurrence of value");
2065 PyDoc_STRVAR(index_doc
,
2066 "L.index(value) -> integer -- return index of first occurrence of value");
2067 PyDoc_STRVAR(count_doc
,
2068 "L.count(value) -> integer -- return number of occurrences of value");
2069 PyDoc_STRVAR(reverse_doc
,
2070 "L.reverse() -- reverse *IN PLACE*");
2071 PyDoc_STRVAR(sort_doc
,
2072 "L.sort([cmpfunc]) -- stable sort *IN PLACE*; cmpfunc(x, y) -> -1, 0, 1");
2074 static PyMethodDef list_methods
[] = {
2075 {"append", (PyCFunction
)listappend
, METH_O
, append_doc
},
2076 {"insert", (PyCFunction
)listinsert
, METH_VARARGS
, insert_doc
},
2077 {"extend", (PyCFunction
)listextend
, METH_O
, extend_doc
},
2078 {"pop", (PyCFunction
)listpop
, METH_VARARGS
, pop_doc
},
2079 {"remove", (PyCFunction
)listremove
, METH_O
, remove_doc
},
2080 {"index", (PyCFunction
)listindex
, METH_O
, index_doc
},
2081 {"count", (PyCFunction
)listcount
, METH_O
, count_doc
},
2082 {"reverse", (PyCFunction
)listreverse
, METH_NOARGS
, reverse_doc
},
2083 {"sort", (PyCFunction
)listsort
, METH_VARARGS
, sort_doc
},
2084 {NULL
, NULL
} /* sentinel */
2087 static PySequenceMethods list_as_sequence
= {
2088 (inquiry
)list_length
, /* sq_length */
2089 (binaryfunc
)list_concat
, /* sq_concat */
2090 (intargfunc
)list_repeat
, /* sq_repeat */
2091 (intargfunc
)list_item
, /* sq_item */
2092 (intintargfunc
)list_slice
, /* sq_slice */
2093 (intobjargproc
)list_ass_item
, /* sq_ass_item */
2094 (intintobjargproc
)list_ass_slice
, /* sq_ass_slice */
2095 (objobjproc
)list_contains
, /* sq_contains */
2096 (binaryfunc
)list_inplace_concat
, /* sq_inplace_concat */
2097 (intargfunc
)list_inplace_repeat
, /* sq_inplace_repeat */
2100 PyDoc_STRVAR(list_doc
,
2101 "list() -> new list\n"
2102 "list(sequence) -> new list initialized from sequence's items");
2104 static PyObject
*list_iter(PyObject
*seq
);
2107 list_subscript(PyListObject
* self
, PyObject
* item
)
2109 if (PyInt_Check(item
)) {
2110 long i
= PyInt_AS_LONG(item
);
2112 i
+= PyList_GET_SIZE(self
);
2113 return list_item(self
, i
);
2115 else if (PyLong_Check(item
)) {
2116 long i
= PyLong_AsLong(item
);
2117 if (i
== -1 && PyErr_Occurred())
2120 i
+= PyList_GET_SIZE(self
);
2121 return list_item(self
, i
);
2123 else if (PySlice_Check(item
)) {
2124 int start
, stop
, step
, slicelength
, cur
, i
;
2128 if (PySlice_GetIndicesEx((PySliceObject
*)item
, self
->ob_size
,
2129 &start
, &stop
, &step
, &slicelength
) < 0) {
2133 if (slicelength
<= 0) {
2134 return PyList_New(0);
2137 result
= PyList_New(slicelength
);
2138 if (!result
) return NULL
;
2140 for (cur
= start
, i
= 0; i
< slicelength
;
2142 it
= PyList_GET_ITEM(self
, cur
);
2144 PyList_SET_ITEM(result
, i
, it
);
2151 PyErr_SetString(PyExc_TypeError
,
2152 "list indices must be integers");
2158 list_ass_subscript(PyListObject
* self
, PyObject
* item
, PyObject
* value
)
2160 if (PyInt_Check(item
)) {
2161 long i
= PyInt_AS_LONG(item
);
2163 i
+= PyList_GET_SIZE(self
);
2164 return list_ass_item(self
, i
, value
);
2166 else if (PyLong_Check(item
)) {
2167 long i
= PyLong_AsLong(item
);
2168 if (i
== -1 && PyErr_Occurred())
2171 i
+= PyList_GET_SIZE(self
);
2172 return list_ass_item(self
, i
, value
);
2174 else if (PySlice_Check(item
)) {
2175 int start
, stop
, step
, slicelength
;
2177 if (PySlice_GetIndicesEx((PySliceObject
*)item
, self
->ob_size
,
2178 &start
, &stop
, &step
, &slicelength
) < 0) {
2182 /* treat L[slice(a,b)] = v _exactly_ like L[a:b] = v */
2183 if (step
== 1 && ((PySliceObject
*)item
)->step
== Py_None
)
2184 return list_ass_slice(self
, start
, stop
, value
);
2186 if (value
== NULL
) {
2188 PyObject
**garbage
, **it
;
2191 if (slicelength
<= 0)
2196 start
= stop
+ step
*(slicelength
- 1) - 1;
2200 garbage
= (PyObject
**)
2201 PyMem_MALLOC(slicelength
*sizeof(PyObject
*));
2203 /* drawing pictures might help
2204 understand these for loops */
2205 for (cur
= start
, i
= 0;
2210 garbage
[i
] = PyList_GET_ITEM(self
, cur
);
2212 if (cur
+ step
>= self
->ob_size
) {
2213 lim
= self
->ob_size
- cur
- 1;
2216 for (j
= 0; j
< lim
; j
++) {
2217 PyList_SET_ITEM(self
, cur
+ j
- i
,
2218 PyList_GET_ITEM(self
,
2222 for (cur
= start
+ slicelength
*step
+ 1;
2223 cur
< self
->ob_size
; cur
++) {
2224 PyList_SET_ITEM(self
, cur
- slicelength
,
2225 PyList_GET_ITEM(self
, cur
));
2227 self
->ob_size
-= slicelength
;
2229 NRESIZE(it
, PyObject
*, self
->ob_size
);
2232 for (i
= 0; i
< slicelength
; i
++) {
2233 Py_DECREF(garbage
[i
]);
2235 PyMem_FREE(garbage
);
2241 PyObject
**garbage
, *ins
, *seq
;
2244 /* protect against a[::-1] = a */
2245 if (self
== (PyListObject
*)value
) {
2246 seq
= list_slice((PyListObject
*)value
, 0,
2247 PyList_GET_SIZE(value
));
2251 PyOS_snprintf(msg
, sizeof(msg
),
2252 "must assign sequence (not \"%.200s\") to extended slice",
2253 value
->ob_type
->tp_name
);
2254 seq
= PySequence_Fast(value
, msg
);
2259 if (PySequence_Fast_GET_SIZE(seq
) != slicelength
) {
2260 PyErr_Format(PyExc_ValueError
,
2261 "attempt to assign sequence of size %d to extended slice of size %d",
2262 PySequence_Fast_GET_SIZE(seq
),
2273 garbage
= (PyObject
**)
2274 PyMem_MALLOC(slicelength
*sizeof(PyObject
*));
2276 for (cur
= start
, i
= 0; i
< slicelength
;
2278 garbage
[i
] = PyList_GET_ITEM(self
, cur
);
2280 ins
= PySequence_Fast_GET_ITEM(seq
, i
);
2282 PyList_SET_ITEM(self
, cur
, ins
);
2285 for (i
= 0; i
< slicelength
; i
++) {
2286 Py_DECREF(garbage
[i
]);
2289 PyMem_FREE(garbage
);
2296 PyErr_SetString(PyExc_TypeError
,
2297 "list indices must be integers");
2302 static PyMappingMethods list_as_mapping
= {
2303 (inquiry
)list_length
,
2304 (binaryfunc
)list_subscript
,
2305 (objobjargproc
)list_ass_subscript
2308 PyTypeObject PyList_Type
= {
2309 PyObject_HEAD_INIT(&PyType_Type
)
2312 sizeof(PyListObject
),
2314 (destructor
)list_dealloc
, /* tp_dealloc */
2315 (printfunc
)list_print
, /* tp_print */
2319 (reprfunc
)list_repr
, /* tp_repr */
2320 0, /* tp_as_number */
2321 &list_as_sequence
, /* tp_as_sequence */
2322 &list_as_mapping
, /* tp_as_mapping */
2323 list_nohash
, /* tp_hash */
2326 PyObject_GenericGetAttr
, /* tp_getattro */
2327 0, /* tp_setattro */
2328 0, /* tp_as_buffer */
2329 Py_TPFLAGS_DEFAULT
| Py_TPFLAGS_HAVE_GC
|
2330 Py_TPFLAGS_BASETYPE
, /* tp_flags */
2331 list_doc
, /* tp_doc */
2332 (traverseproc
)list_traverse
, /* tp_traverse */
2333 (inquiry
)list_clear
, /* tp_clear */
2334 list_richcompare
, /* tp_richcompare */
2335 0, /* tp_weaklistoffset */
2336 list_iter
, /* tp_iter */
2337 0, /* tp_iternext */
2338 list_methods
, /* tp_methods */
2343 0, /* tp_descr_get */
2344 0, /* tp_descr_set */
2345 0, /* tp_dictoffset */
2346 (initproc
)list_init
, /* tp_init */
2347 PyType_GenericAlloc
, /* tp_alloc */
2348 PyType_GenericNew
, /* tp_new */
2349 PyObject_GC_Del
, /* tp_free */
2353 /*********************** List Iterator **************************/
2358 PyListObject
*it_seq
; /* Set to NULL when iterator is exhausted */
2361 PyTypeObject PyListIter_Type
;
2364 list_iter(PyObject
*seq
)
2368 if (!PyList_Check(seq
)) {
2369 PyErr_BadInternalCall();
2372 it
= PyObject_GC_New(listiterobject
, &PyListIter_Type
);
2377 it
->it_seq
= (PyListObject
*)seq
;
2378 _PyObject_GC_TRACK(it
);
2379 return (PyObject
*)it
;
2383 listiter_dealloc(listiterobject
*it
)
2385 _PyObject_GC_UNTRACK(it
);
2386 Py_XDECREF(it
->it_seq
);
2387 PyObject_GC_Del(it
);
2391 listiter_traverse(listiterobject
*it
, visitproc visit
, void *arg
)
2393 if (it
->it_seq
== NULL
)
2395 return visit((PyObject
*)it
->it_seq
, arg
);
2400 listiter_getiter(PyObject
*it
)
2407 listiter_next(listiterobject
*it
)
2416 assert(PyList_Check(seq
));
2418 if (it
->it_index
< PyList_GET_SIZE(seq
)) {
2419 item
= PyList_GET_ITEM(seq
, it
->it_index
);
2430 PyTypeObject PyListIter_Type
= {
2431 PyObject_HEAD_INIT(&PyType_Type
)
2433 "listiterator", /* tp_name */
2434 sizeof(listiterobject
), /* tp_basicsize */
2435 0, /* tp_itemsize */
2437 (destructor
)listiter_dealloc
, /* tp_dealloc */
2443 0, /* tp_as_number */
2444 0, /* tp_as_sequence */
2445 0, /* tp_as_mapping */
2449 PyObject_GenericGetAttr
, /* tp_getattro */
2450 0, /* tp_setattro */
2451 0, /* tp_as_buffer */
2452 Py_TPFLAGS_DEFAULT
| Py_TPFLAGS_HAVE_GC
,/* tp_flags */
2454 (traverseproc
)listiter_traverse
, /* tp_traverse */
2456 0, /* tp_richcompare */
2457 0, /* tp_weaklistoffset */
2458 (getiterfunc
)listiter_getiter
, /* tp_iter */
2459 (iternextfunc
)listiter_next
, /* tp_iternext */
2465 0, /* tp_descr_get */
2466 0, /* tp_descr_set */