Use py_resource module
[python/dscho.git] / Lib / profile.py
blob7f4abed60cbcbf1a4f1d79eb54750516a19df0bd
2 # Class for profiling python code. rev 1.0 6/2/94
4 # Based on prior profile module by Sjoerd Mullender...
5 # which was hacked somewhat by: Guido van Rossum
7 # See profile.doc for more information
10 # Copyright 1994, by InfoSeek Corporation, all rights reserved.
11 # Written by James Roskind
13 # Permission to use, copy, modify, and distribute this Python software
14 # and its associated documentation for any purpose (subject to the
15 # restriction in the following sentence) without fee is hereby granted,
16 # provided that the above copyright notice appears in all copies, and
17 # that both that copyright notice and this permission notice appear in
18 # supporting documentation, and that the name of InfoSeek not be used in
19 # advertising or publicity pertaining to distribution of the software
20 # without specific, written prior permission. This permission is
21 # explicitly restricted to the copying and modification of the software
22 # to remain in Python, compiled Python, or other languages (such as C)
23 # wherein the modified or derived code is exclusively imported into a
24 # Python module.
26 # INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
27 # SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
28 # FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
29 # SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
30 # RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
31 # CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
32 # CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
36 import sys
37 import os
38 import time
39 import string
40 import marshal
43 # Global variables
44 func_norm_dict = {}
45 func_norm_counter = 0
46 if hasattr(os, 'getpid'):
47 pid_string = `os.getpid()`
48 else:
49 pid_string = ''
52 # Sample timer for use with
53 #i_count = 0
54 #def integer_timer():
55 # global i_count
56 # i_count = i_count + 1
57 # return i_count
58 #itimes = integer_timer # replace with C coded timer returning integers
60 #**************************************************************************
61 # The following are the static member functions for the profiler class
62 # Note that an instance of Profile() is *not* needed to call them.
63 #**************************************************************************
66 # simplified user interface
67 def run(statement, *args):
68 prof = Profile()
69 try:
70 prof = prof.run(statement)
71 except SystemExit:
72 pass
73 if args:
74 prof.dump_stats(args[0])
75 else:
76 return prof.print_stats()
78 # print help
79 def help():
80 for dirname in sys.path:
81 fullname = os.path.join(dirname, 'profile.doc')
82 if os.path.exists(fullname):
83 sts = os.system('${PAGER-more} '+fullname)
84 if sts: print '*** Pager exit status:', sts
85 break
86 else:
87 print 'Sorry, can\'t find the help file "profile.doc"',
88 print 'along the Python search path'
91 #**************************************************************************
92 # class Profile documentation:
93 #**************************************************************************
94 # self.cur is always a tuple. Each such tuple corresponds to a stack
95 # frame that is currently active (self.cur[-2]). The following are the
96 # definitions of its members. We use this external "parallel stack" to
97 # avoid contaminating the program that we are profiling. (old profiler
98 # used to write into the frames local dictionary!!) Derived classes
99 # can change the definition of some entries, as long as they leave
100 # [-2:] intact.
102 # [ 0] = Time that needs to be charged to the parent frame's function. It is
103 # used so that a function call will not have to access the timing data
104 # for the parents frame.
105 # [ 1] = Total time spent in this frame's function, excluding time in
106 # subfunctions
107 # [ 2] = Cumulative time spent in this frame's function, including time in
108 # all subfunctions to this frame.
109 # [-3] = Name of the function that corresonds to this frame.
110 # [-2] = Actual frame that we correspond to (used to sync exception handling)
111 # [-1] = Our parent 6-tuple (corresonds to frame.f_back)
112 #**************************************************************************
113 # Timing data for each function is stored as a 5-tuple in the dictionary
114 # self.timings[]. The index is always the name stored in self.cur[4].
115 # The following are the definitions of the members:
117 # [0] = The number of times this function was called, not counting direct
118 # or indirect recursion,
119 # [1] = Number of times this function appears on the stack, minus one
120 # [2] = Total time spent internal to this function
121 # [3] = Cumulative time that this function was present on the stack. In
122 # non-recursive functions, this is the total execution time from start
123 # to finish of each invocation of a function, including time spent in
124 # all subfunctions.
125 # [5] = A dictionary indicating for each function name, the number of times
126 # it was called by us.
127 #**************************************************************************
128 # We produce function names via a repr() call on the f_code object during
129 # profiling. This save a *lot* of CPU time. This results in a string that
130 # always looks like:
131 # <code object main at 87090, file "/a/lib/python-local/myfib.py", line 76>
132 # After we "normalize it, it is a tuple of filename, line, function-name.
133 # We wait till we are done profiling to do the normalization.
134 # *IF* this repr format changes, then only the normalization routine should
135 # need to be fixed.
136 #**************************************************************************
137 class Profile:
139 def __init__(self, timer=None):
140 self.timings = {}
141 self.cur = None
142 self.cmd = ""
144 self.dispatch = { \
145 'call' : self.trace_dispatch_call, \
146 'return' : self.trace_dispatch_return, \
147 'exception': self.trace_dispatch_exception, \
150 if not timer:
151 if hasattr(os, 'times'):
152 self.timer = os.times
153 self.dispatcher = self.trace_dispatch
154 else:
155 self.timer = time.time
156 self.dispatcher = self.trace_dispatch_i
157 else:
158 self.timer = timer
159 t = self.timer() # test out timer function
160 try:
161 if len(t) == 2:
162 self.dispatcher = self.trace_dispatch
163 else:
164 self.dispatcher = self.trace_dispatch_l
165 except TypeError:
166 self.dispatcher = self.trace_dispatch_i
167 self.t = self.get_time()
168 self.simulate_call('profiler')
171 def get_time(self): # slow simulation of method to acquire time
172 t = self.timer()
173 if type(t) == type(()) or type(t) == type([]):
174 t = reduce(lambda x,y: x+y, t, 0)
175 return t
178 # Heavily optimized dispatch routine for os.times() timer
180 def trace_dispatch(self, frame, event, arg):
181 t = self.timer()
182 t = t[0] + t[1] - self.t # No Calibration constant
183 # t = t[0] + t[1] - self.t - .00053 # Calibration constant
185 if self.dispatch[event](frame,t):
186 t = self.timer()
187 self.t = t[0] + t[1]
188 else:
189 r = self.timer()
190 self.t = r[0] + r[1] - t # put back unrecorded delta
191 return
195 # Dispatch routine for best timer program (return = scalar integer)
197 def trace_dispatch_i(self, frame, event, arg):
198 t = self.timer() - self.t # - 1 # Integer calibration constant
199 if self.dispatch[event](frame,t):
200 self.t = self.timer()
201 else:
202 self.t = self.timer() - t # put back unrecorded delta
203 return
206 # SLOW generic dispatch rountine for timer returning lists of numbers
208 def trace_dispatch_l(self, frame, event, arg):
209 t = self.get_time() - self.t
211 if self.dispatch[event](frame,t):
212 self.t = self.get_time()
213 else:
214 self.t = self.get_time()-t # put back unrecorded delta
215 return
218 def trace_dispatch_exception(self, frame, t):
219 rt, rtt, rct, rfn, rframe, rcur = self.cur
220 if (not rframe is frame) and rcur:
221 return self.trace_dispatch_return(rframe, t)
222 return 0
225 def trace_dispatch_call(self, frame, t):
226 fn = `frame.f_code`
228 # The following should be about the best approach, but
229 # we would need a function that maps from id() back to
230 # the actual code object.
231 # fn = id(frame.f_code)
232 # Note we would really use our own function, which would
233 # return the code address, *and* bump the ref count. We
234 # would then fix up the normalize function to do the
235 # actualy repr(fn) call.
237 # The following is an interesting alternative
238 # It doesn't do as good a job, and it doesn't run as
239 # fast 'cause repr() is written in C, and this is Python.
240 #fcode = frame.f_code
241 #code = fcode.co_code
242 #if ord(code[0]) == 127: # == SET_LINENO
243 # # see "opcode.h" in the Python source
244 # fn = (fcode.co_filename, ord(code[1]) | \
245 # ord(code[2]) << 8, fcode.co_name)
246 #else:
247 # fn = (fcode.co_filename, 0, fcode.co_name)
249 self.cur = (t, 0, 0, fn, frame, self.cur)
250 if self.timings.has_key(fn):
251 cc, ns, tt, ct, callers = self.timings[fn]
252 self.timings[fn] = cc, ns + 1, tt, ct, callers
253 else:
254 self.timings[fn] = 0, 0, 0, 0, {}
255 return 1
257 def trace_dispatch_return(self, frame, t):
258 # if not frame is self.cur[-2]: raise "Bad return", self.cur[3]
260 # Prefix "r" means part of the Returning or exiting frame
261 # Prefix "p" means part of the Previous or older frame
263 rt, rtt, rct, rfn, frame, rcur = self.cur
264 rtt = rtt + t
265 sft = rtt + rct
267 pt, ptt, pct, pfn, pframe, pcur = rcur
268 self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur
270 cc, ns, tt, ct, callers = self.timings[rfn]
271 if not ns:
272 ct = ct + sft
273 cc = cc + 1
274 if callers.has_key(pfn):
275 callers[pfn] = callers[pfn] + 1 # hack: gather more
276 # stats such as the amount of time added to ct courtesy
277 # of this specific call, and the contribution to cc
278 # courtesy of this call.
279 else:
280 callers[pfn] = 1
281 self.timings[rfn] = cc, ns - 1, tt+rtt, ct, callers
283 return 1
285 # The next few function play with self.cmd. By carefully preloading
286 # our paralell stack, we can force the profiled result to include
287 # an arbitrary string as the name of the calling function.
288 # We use self.cmd as that string, and the resulting stats look
289 # very nice :-).
291 def set_cmd(self, cmd):
292 if self.cur[-1]: return # already set
293 self.cmd = cmd
294 self.simulate_call(cmd)
296 class fake_code:
297 def __init__(self, filename, line, name):
298 self.co_filename = filename
299 self.co_line = line
300 self.co_name = name
301 self.co_code = '\0' # anything but 127
303 def __repr__(self):
304 return (self.co_filename, self.co_line, self.co_name)
306 class fake_frame:
307 def __init__(self, code, prior):
308 self.f_code = code
309 self.f_back = prior
311 def simulate_call(self, name):
312 code = self.fake_code('profile', 0, name)
313 if self.cur:
314 pframe = self.cur[-2]
315 else:
316 pframe = None
317 frame = self.fake_frame(code, pframe)
318 a = self.dispatch['call'](frame, 0)
319 return
321 # collect stats from pending stack, including getting final
322 # timings for self.cmd frame.
324 def simulate_cmd_complete(self):
325 t = self.get_time() - self.t
326 while self.cur[-1]:
327 # We *can* cause assertion errors here if
328 # dispatch_trace_return checks for a frame match!
329 a = self.dispatch['return'](self.cur[-2], t)
330 t = 0
331 self.t = self.get_time() - t
334 def print_stats(self):
335 import pstats
336 pstats.Stats(self).strip_dirs().sort_stats(-1). \
337 print_stats()
339 def dump_stats(self, file):
340 f = open(file, 'w')
341 self.create_stats()
342 marshal.dump(self.stats, f)
343 f.close()
345 def create_stats(self):
346 self.simulate_cmd_complete()
347 self.snapshot_stats()
349 def snapshot_stats(self):
350 self.stats = {}
351 for func in self.timings.keys():
352 cc, ns, tt, ct, callers = self.timings[func]
353 nor_func = self.func_normalize(func)
354 nor_callers = {}
355 nc = 0
356 for func_caller in callers.keys():
357 nor_callers[self.func_normalize(func_caller)]=\
358 callers[func_caller]
359 nc = nc + callers[func_caller]
360 self.stats[nor_func] = cc, nc, tt, ct, nor_callers
363 # Override the following function if you can figure out
364 # a better name for the binary f_code entries. I just normalize
365 # them sequentially in a dictionary. It would be nice if we could
366 # *really* see the name of the underlying C code :-). Sometimes
367 # you can figure out what-is-what by looking at caller and callee
368 # lists (and knowing what your python code does).
370 def func_normalize(self, func_name):
371 global func_norm_dict
372 global func_norm_counter
373 global func_sequence_num
375 if func_norm_dict.has_key(func_name):
376 return func_norm_dict[func_name]
377 if type(func_name) == type(""):
378 long_name = string.split(func_name)
379 file_name = long_name[-3][1:-2]
380 func = long_name[2]
381 lineno = long_name[-1][:-1]
382 if '?' == func: # Until I find out how to may 'em...
383 file_name = 'python'
384 func_norm_counter = func_norm_counter + 1
385 func = pid_string + ".C." + `func_norm_counter`
386 result = file_name , string.atoi(lineno) , func
387 else:
388 result = func_name
389 func_norm_dict[func_name] = result
390 return result
393 # The following two methods can be called by clients to use
394 # a profiler to profile a statement, given as a string.
396 def run(self, cmd):
397 import __main__
398 dict = __main__.__dict__
399 return self.runctx(cmd, dict, dict)
401 def runctx(self, cmd, globals, locals):
402 self.set_cmd(cmd)
403 sys.setprofile(self.dispatcher)
404 try:
405 exec cmd in globals, locals
406 finally:
407 sys.setprofile(None)
408 return self
410 # This method is more useful to profile a single function call.
411 def runcall(self, func, *args):
412 self.set_cmd(`func`)
413 sys.setprofile(self.dispatcher)
414 try:
415 return apply(func, args)
416 finally:
417 sys.setprofile(None)
420 #******************************************************************
421 # The following calculates the overhead for using a profiler. The
422 # problem is that it takes a fair amount of time for the profiler
423 # to stop the stopwatch (from the time it recieves an event).
424 # Similarly, there is a delay from the time that the profiler
425 # re-starts the stopwatch before the user's code really gets to
426 # continue. The following code tries to measure the difference on
427 # a per-event basis. The result can the be placed in the
428 # Profile.dispatch_event() routine for the given platform. Note
429 # that this difference is only significant if there are a lot of
430 # events, and relatively little user code per event. For example,
431 # code with small functions will typically benefit from having the
432 # profiler calibrated for the current platform. This *could* be
433 # done on the fly during init() time, but it is not worth the
434 # effort. Also note that if too large a value specified, then
435 # execution time on some functions will actually appear as a
436 # negative number. It is *normal* for some functions (with very
437 # low call counts) to have such negative stats, even if the
438 # calibration figure is "correct."
440 # One alternative to profile-time calibration adjustments (i.e.,
441 # adding in the magic little delta during each event) is to track
442 # more carefully the number of events (and cumulatively, the number
443 # of events during sub functions) that are seen. If this were
444 # done, then the arithmetic could be done after the fact (i.e., at
445 # display time). Currintly, we track only call/return events.
446 # These values can be deduced by examining the callees and callers
447 # vectors for each functions. Hence we *can* almost correct the
448 # internal time figure at print time (note that we currently don't
449 # track exception event processing counts). Unfortunately, there
450 # is currently no similar information for cumulative sub-function
451 # time. It would not be hard to "get all this info" at profiler
452 # time. Specifically, we would have to extend the tuples to keep
453 # counts of this in each frame, and then extend the defs of timing
454 # tuples to include the significant two figures. I'm a bit fearful
455 # that this additional feature will slow the heavily optimized
456 # event/time ratio (i.e., the profiler would run slower, fur a very
457 # low "value added" feature.)
459 # Plugging in the calibration constant doesn't slow down the
460 # profiler very much, and the accuracy goes way up.
461 #**************************************************************
463 def calibrate(self, m):
464 n = m
465 s = self.timer()
466 while n:
467 self.simple()
468 n = n - 1
469 f = self.timer()
470 my_simple = f[0]+f[1]-s[0]-s[1]
471 #print "Simple =", my_simple,
473 n = m
474 s = self.timer()
475 while n:
476 self.instrumented()
477 n = n - 1
478 f = self.timer()
479 my_inst = f[0]+f[1]-s[0]-s[1]
480 # print "Instrumented =", my_inst
481 avg_cost = (my_inst - my_simple)/m
482 #print "Delta/call =", avg_cost, "(profiler fixup constant)"
483 return avg_cost
485 # simulate a program with no profiler activity
486 def simple(self):
487 a = 1
488 pass
490 # simulate a program with call/return event processing
491 def instrumented(self):
492 a = 1
493 self.profiler_simulation(a, a, a)
495 # simulate an event processing activity (from user's perspective)
496 def profiler_simulation(self, x, y, z):
497 t = self.timer()
498 t = t[0] + t[1]
499 self.ut = t
503 #****************************************************************************
504 # OldProfile class documentation
505 #****************************************************************************
507 # The following derived profiler simulates the old style profile, providing
508 # errant results on recursive functions. The reason for the usefulnes of this
509 # profiler is that it runs faster (i.e., less overhead). It still creates
510 # all the caller stats, and is quite useful when there is *no* recursion
511 # in the user's code.
513 # This code also shows how easy it is to create a modified profiler.
514 #****************************************************************************
515 class OldProfile(Profile):
516 def trace_dispatch_exception(self, frame, t):
517 rt, rtt, rct, rfn, rframe, rcur = self.cur
518 if rcur and not rframe is frame:
519 return self.trace_dispatch_return(rframe, t)
520 return 0
522 def trace_dispatch_call(self, frame, t):
523 fn = `frame.f_code`
525 self.cur = (t, 0, 0, fn, frame, self.cur)
526 if self.timings.has_key(fn):
527 tt, ct, callers = self.timings[fn]
528 self.timings[fn] = tt, ct, callers
529 else:
530 self.timings[fn] = 0, 0, {}
531 return 1
533 def trace_dispatch_return(self, frame, t):
534 rt, rtt, rct, rfn, frame, rcur = self.cur
535 rtt = rtt + t
536 sft = rtt + rct
538 pt, ptt, pct, pfn, pframe, pcur = rcur
539 self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur
541 tt, ct, callers = self.timings[rfn]
542 if callers.has_key(pfn):
543 callers[pfn] = callers[pfn] + 1
544 else:
545 callers[pfn] = 1
546 self.timings[rfn] = tt+rtt, ct + sft, callers
548 return 1
551 def snapshot_stats(self):
552 self.stats = {}
553 for func in self.timings.keys():
554 tt, ct, callers = self.timings[func]
555 nor_func = self.func_normalize(func)
556 nor_callers = {}
557 nc = 0
558 for func_caller in callers.keys():
559 nor_callers[self.func_normalize(func_caller)]=\
560 callers[func_caller]
561 nc = nc + callers[func_caller]
562 self.stats[nor_func] = nc, nc, tt, ct, nor_callers
566 #****************************************************************************
567 # HotProfile class documentation
568 #****************************************************************************
570 # This profiler is the fastest derived profile example. It does not
571 # calculate caller-callee relationships, and does not calculate cumulative
572 # time under a function. It only calculates time spent in a function, so
573 # it runs very quickly (re: very low overhead)
574 #****************************************************************************
575 class HotProfile(Profile):
576 def trace_dispatch_exception(self, frame, t):
577 rt, rtt, rfn, rframe, rcur = self.cur
578 if rcur and not rframe is frame:
579 return self.trace_dispatch_return(rframe, t)
580 return 0
582 def trace_dispatch_call(self, frame, t):
583 self.cur = (t, 0, frame, self.cur)
584 return 1
586 def trace_dispatch_return(self, frame, t):
587 rt, rtt, frame, rcur = self.cur
589 rfn = `frame.f_code`
591 pt, ptt, pframe, pcur = rcur
592 self.cur = pt, ptt+rt, pframe, pcur
594 if self.timings.has_key(rfn):
595 nc, tt = self.timings[rfn]
596 self.timings[rfn] = nc + 1, rt + rtt + tt
597 else:
598 self.timings[rfn] = 1, rt + rtt
600 return 1
603 def snapshot_stats(self):
604 self.stats = {}
605 for func in self.timings.keys():
606 nc, tt = self.timings[func]
607 nor_func = self.func_normalize(func)
608 self.stats[nor_func] = nc, nc, tt, 0, {}
612 #****************************************************************************
613 def Stats(*args):
614 print 'Report generating functions are in the "pstats" module\a'