9 #include "qemu-common.h"
10 #include "host-utils.h"
11 #if !defined(CONFIG_USER_ONLY)
12 #include "hw/loader.h"
15 static uint32_t cortexa9_cp15_c0_c1
[8] =
16 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
18 static uint32_t cortexa9_cp15_c0_c2
[8] =
19 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
21 static uint32_t cortexa8_cp15_c0_c1
[8] =
22 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
24 static uint32_t cortexa8_cp15_c0_c2
[8] =
25 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
27 static uint32_t mpcore_cp15_c0_c1
[8] =
28 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
30 static uint32_t mpcore_cp15_c0_c2
[8] =
31 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
33 static uint32_t arm1136_cp15_c0_c1
[8] =
34 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
36 static uint32_t arm1136_cp15_c0_c2
[8] =
37 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
39 static uint32_t cpu_arm_find_by_name(const char *name
);
41 static inline void set_feature(CPUARMState
*env
, int feature
)
43 env
->features
|= 1u << feature
;
46 static void cpu_reset_model_id(CPUARMState
*env
, uint32_t id
)
48 env
->cp15
.c0_cpuid
= id
;
50 case ARM_CPUID_ARM926
:
51 set_feature(env
, ARM_FEATURE_V4T
);
52 set_feature(env
, ARM_FEATURE_V5
);
53 set_feature(env
, ARM_FEATURE_VFP
);
54 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x41011090;
55 env
->cp15
.c0_cachetype
= 0x1dd20d2;
56 env
->cp15
.c1_sys
= 0x00090078;
58 case ARM_CPUID_ARM946
:
59 set_feature(env
, ARM_FEATURE_V4T
);
60 set_feature(env
, ARM_FEATURE_V5
);
61 set_feature(env
, ARM_FEATURE_MPU
);
62 env
->cp15
.c0_cachetype
= 0x0f004006;
63 env
->cp15
.c1_sys
= 0x00000078;
65 case ARM_CPUID_ARM1026
:
66 set_feature(env
, ARM_FEATURE_V4T
);
67 set_feature(env
, ARM_FEATURE_V5
);
68 set_feature(env
, ARM_FEATURE_VFP
);
69 set_feature(env
, ARM_FEATURE_AUXCR
);
70 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410110a0;
71 env
->cp15
.c0_cachetype
= 0x1dd20d2;
72 env
->cp15
.c1_sys
= 0x00090078;
74 case ARM_CPUID_ARM1136_R2
:
75 case ARM_CPUID_ARM1136
:
76 set_feature(env
, ARM_FEATURE_V4T
);
77 set_feature(env
, ARM_FEATURE_V5
);
78 set_feature(env
, ARM_FEATURE_V6
);
79 set_feature(env
, ARM_FEATURE_VFP
);
80 set_feature(env
, ARM_FEATURE_AUXCR
);
81 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b4;
82 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
83 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
84 memcpy(env
->cp15
.c0_c1
, arm1136_cp15_c0_c1
, 8 * sizeof(uint32_t));
85 memcpy(env
->cp15
.c0_c2
, arm1136_cp15_c0_c2
, 8 * sizeof(uint32_t));
86 env
->cp15
.c0_cachetype
= 0x1dd20d2;
87 env
->cp15
.c1_sys
= 0x00050078;
89 case ARM_CPUID_ARM11MPCORE
:
90 set_feature(env
, ARM_FEATURE_V4T
);
91 set_feature(env
, ARM_FEATURE_V5
);
92 set_feature(env
, ARM_FEATURE_V6
);
93 set_feature(env
, ARM_FEATURE_V6K
);
94 set_feature(env
, ARM_FEATURE_VFP
);
95 set_feature(env
, ARM_FEATURE_AUXCR
);
96 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b4;
97 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
98 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
99 memcpy(env
->cp15
.c0_c1
, mpcore_cp15_c0_c1
, 8 * sizeof(uint32_t));
100 memcpy(env
->cp15
.c0_c2
, mpcore_cp15_c0_c2
, 8 * sizeof(uint32_t));
101 env
->cp15
.c0_cachetype
= 0x1dd20d2;
103 case ARM_CPUID_CORTEXA8
:
104 set_feature(env
, ARM_FEATURE_V4T
);
105 set_feature(env
, ARM_FEATURE_V5
);
106 set_feature(env
, ARM_FEATURE_V6
);
107 set_feature(env
, ARM_FEATURE_V6K
);
108 set_feature(env
, ARM_FEATURE_V7
);
109 set_feature(env
, ARM_FEATURE_AUXCR
);
110 set_feature(env
, ARM_FEATURE_THUMB2
);
111 set_feature(env
, ARM_FEATURE_VFP
);
112 set_feature(env
, ARM_FEATURE_VFP3
);
113 set_feature(env
, ARM_FEATURE_NEON
);
114 set_feature(env
, ARM_FEATURE_THUMB2EE
);
115 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410330c0;
116 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11110222;
117 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00011100;
118 memcpy(env
->cp15
.c0_c1
, cortexa8_cp15_c0_c1
, 8 * sizeof(uint32_t));
119 memcpy(env
->cp15
.c0_c2
, cortexa8_cp15_c0_c2
, 8 * sizeof(uint32_t));
120 env
->cp15
.c0_cachetype
= 0x82048004;
121 env
->cp15
.c0_clid
= (1 << 27) | (2 << 24) | 3;
122 env
->cp15
.c0_ccsid
[0] = 0xe007e01a; /* 16k L1 dcache. */
123 env
->cp15
.c0_ccsid
[1] = 0x2007e01a; /* 16k L1 icache. */
124 env
->cp15
.c0_ccsid
[2] = 0xf0000000; /* No L2 icache. */
125 env
->cp15
.c1_sys
= 0x00c50078;
127 case ARM_CPUID_CORTEXA9
:
128 set_feature(env
, ARM_FEATURE_V4T
);
129 set_feature(env
, ARM_FEATURE_V5
);
130 set_feature(env
, ARM_FEATURE_V6
);
131 set_feature(env
, ARM_FEATURE_V6K
);
132 set_feature(env
, ARM_FEATURE_V7
);
133 set_feature(env
, ARM_FEATURE_AUXCR
);
134 set_feature(env
, ARM_FEATURE_THUMB2
);
135 set_feature(env
, ARM_FEATURE_VFP
);
136 set_feature(env
, ARM_FEATURE_VFP3
);
137 set_feature(env
, ARM_FEATURE_VFP_FP16
);
138 set_feature(env
, ARM_FEATURE_NEON
);
139 set_feature(env
, ARM_FEATURE_THUMB2EE
);
140 /* Note that A9 supports the MP extensions even for
141 * A9UP and single-core A9MP (which are both different
142 * and valid configurations; we don't model A9UP).
144 set_feature(env
, ARM_FEATURE_V7MP
);
145 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x41034000; /* Guess */
146 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11110222;
147 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x01111111;
148 memcpy(env
->cp15
.c0_c1
, cortexa9_cp15_c0_c1
, 8 * sizeof(uint32_t));
149 memcpy(env
->cp15
.c0_c2
, cortexa9_cp15_c0_c2
, 8 * sizeof(uint32_t));
150 env
->cp15
.c0_cachetype
= 0x80038003;
151 env
->cp15
.c0_clid
= (1 << 27) | (1 << 24) | 3;
152 env
->cp15
.c0_ccsid
[0] = 0xe00fe015; /* 16k L1 dcache. */
153 env
->cp15
.c0_ccsid
[1] = 0x200fe015; /* 16k L1 icache. */
154 env
->cp15
.c1_sys
= 0x00c50078;
156 case ARM_CPUID_CORTEXM3
:
157 set_feature(env
, ARM_FEATURE_V4T
);
158 set_feature(env
, ARM_FEATURE_V5
);
159 set_feature(env
, ARM_FEATURE_V6
);
160 set_feature(env
, ARM_FEATURE_THUMB2
);
161 set_feature(env
, ARM_FEATURE_V7
);
162 set_feature(env
, ARM_FEATURE_M
);
163 set_feature(env
, ARM_FEATURE_DIV
);
165 case ARM_CPUID_ANY
: /* For userspace emulation. */
166 set_feature(env
, ARM_FEATURE_V4T
);
167 set_feature(env
, ARM_FEATURE_V5
);
168 set_feature(env
, ARM_FEATURE_V6
);
169 set_feature(env
, ARM_FEATURE_V6K
);
170 set_feature(env
, ARM_FEATURE_V7
);
171 set_feature(env
, ARM_FEATURE_THUMB2
);
172 set_feature(env
, ARM_FEATURE_VFP
);
173 set_feature(env
, ARM_FEATURE_VFP3
);
174 set_feature(env
, ARM_FEATURE_VFP_FP16
);
175 set_feature(env
, ARM_FEATURE_NEON
);
176 set_feature(env
, ARM_FEATURE_THUMB2EE
);
177 set_feature(env
, ARM_FEATURE_DIV
);
178 set_feature(env
, ARM_FEATURE_V7MP
);
180 case ARM_CPUID_TI915T
:
181 case ARM_CPUID_TI925T
:
182 set_feature(env
, ARM_FEATURE_V4T
);
183 set_feature(env
, ARM_FEATURE_OMAPCP
);
184 env
->cp15
.c0_cpuid
= ARM_CPUID_TI925T
; /* Depends on wiring. */
185 env
->cp15
.c0_cachetype
= 0x5109149;
186 env
->cp15
.c1_sys
= 0x00000070;
187 env
->cp15
.c15_i_max
= 0x000;
188 env
->cp15
.c15_i_min
= 0xff0;
190 case ARM_CPUID_PXA250
:
191 case ARM_CPUID_PXA255
:
192 case ARM_CPUID_PXA260
:
193 case ARM_CPUID_PXA261
:
194 case ARM_CPUID_PXA262
:
195 set_feature(env
, ARM_FEATURE_V4T
);
196 set_feature(env
, ARM_FEATURE_V5
);
197 set_feature(env
, ARM_FEATURE_XSCALE
);
198 /* JTAG_ID is ((id << 28) | 0x09265013) */
199 env
->cp15
.c0_cachetype
= 0xd172172;
200 env
->cp15
.c1_sys
= 0x00000078;
202 case ARM_CPUID_PXA270_A0
:
203 case ARM_CPUID_PXA270_A1
:
204 case ARM_CPUID_PXA270_B0
:
205 case ARM_CPUID_PXA270_B1
:
206 case ARM_CPUID_PXA270_C0
:
207 case ARM_CPUID_PXA270_C5
:
208 set_feature(env
, ARM_FEATURE_V4T
);
209 set_feature(env
, ARM_FEATURE_V5
);
210 set_feature(env
, ARM_FEATURE_XSCALE
);
211 /* JTAG_ID is ((id << 28) | 0x09265013) */
212 set_feature(env
, ARM_FEATURE_IWMMXT
);
213 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
214 env
->cp15
.c0_cachetype
= 0xd172172;
215 env
->cp15
.c1_sys
= 0x00000078;
217 case ARM_CPUID_SA1100
:
218 case ARM_CPUID_SA1110
:
219 set_feature(env
, ARM_FEATURE_STRONGARM
);
220 env
->cp15
.c1_sys
= 0x00000070;
223 cpu_abort(env
, "Bad CPU ID: %x\n", id
);
228 void cpu_reset(CPUARMState
*env
)
232 if (qemu_loglevel_mask(CPU_LOG_RESET
)) {
233 qemu_log("CPU Reset (CPU %d)\n", env
->cpu_index
);
234 log_cpu_state(env
, 0);
237 id
= env
->cp15
.c0_cpuid
;
238 memset(env
, 0, offsetof(CPUARMState
, breakpoints
));
240 cpu_reset_model_id(env
, id
);
241 #if defined (CONFIG_USER_ONLY)
242 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
243 /* For user mode we must enable access to coprocessors */
244 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
245 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
246 env
->cp15
.c15_cpar
= 3;
247 } else if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
248 env
->cp15
.c15_cpar
= 1;
251 /* SVC mode with interrupts disabled. */
252 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
| CPSR_A
| CPSR_F
| CPSR_I
;
253 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
254 clear at reset. Initial SP and PC are loaded from ROM. */
258 env
->uncached_cpsr
&= ~CPSR_I
;
261 /* We should really use ldl_phys here, in case the guest
262 modified flash and reset itself. However images
263 loaded via -kenrel have not been copied yet, so load the
264 values directly from there. */
265 env
->regs
[13] = ldl_p(rom
);
268 env
->regs
[15] = pc
& ~1;
271 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
272 env
->cp15
.c2_base_mask
= 0xffffc000u
;
274 set_flush_to_zero(1, &env
->vfp
.standard_fp_status
);
275 set_flush_inputs_to_zero(1, &env
->vfp
.standard_fp_status
);
276 set_default_nan_mode(1, &env
->vfp
.standard_fp_status
);
277 set_float_detect_tininess(float_tininess_before_rounding
,
278 &env
->vfp
.fp_status
);
279 set_float_detect_tininess(float_tininess_before_rounding
,
280 &env
->vfp
.standard_fp_status
);
284 static int vfp_gdb_get_reg(CPUState
*env
, uint8_t *buf
, int reg
)
288 /* VFP data registers are always little-endian. */
289 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
291 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
294 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
295 /* Aliases for Q regs. */
298 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
299 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
303 switch (reg
- nregs
) {
304 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
305 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
306 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
311 static int vfp_gdb_set_reg(CPUState
*env
, uint8_t *buf
, int reg
)
315 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
317 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
320 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
323 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
324 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
328 switch (reg
- nregs
) {
329 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
330 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
331 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
336 CPUARMState
*cpu_arm_init(const char *cpu_model
)
340 static int inited
= 0;
342 id
= cpu_arm_find_by_name(cpu_model
);
345 env
= qemu_mallocz(sizeof(CPUARMState
));
349 arm_translate_init();
352 env
->cpu_model_str
= cpu_model
;
353 env
->cp15
.c0_cpuid
= id
;
355 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
356 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
357 51, "arm-neon.xml", 0);
358 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
359 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
360 35, "arm-vfp3.xml", 0);
361 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
362 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
363 19, "arm-vfp.xml", 0);
374 static const struct arm_cpu_t arm_cpu_names
[] = {
375 { ARM_CPUID_ARM926
, "arm926"},
376 { ARM_CPUID_ARM946
, "arm946"},
377 { ARM_CPUID_ARM1026
, "arm1026"},
378 { ARM_CPUID_ARM1136
, "arm1136"},
379 { ARM_CPUID_ARM1136_R2
, "arm1136-r2"},
380 { ARM_CPUID_ARM11MPCORE
, "arm11mpcore"},
381 { ARM_CPUID_CORTEXM3
, "cortex-m3"},
382 { ARM_CPUID_CORTEXA8
, "cortex-a8"},
383 { ARM_CPUID_CORTEXA9
, "cortex-a9"},
384 { ARM_CPUID_TI925T
, "ti925t" },
385 { ARM_CPUID_PXA250
, "pxa250" },
386 { ARM_CPUID_SA1100
, "sa1100" },
387 { ARM_CPUID_SA1110
, "sa1110" },
388 { ARM_CPUID_PXA255
, "pxa255" },
389 { ARM_CPUID_PXA260
, "pxa260" },
390 { ARM_CPUID_PXA261
, "pxa261" },
391 { ARM_CPUID_PXA262
, "pxa262" },
392 { ARM_CPUID_PXA270
, "pxa270" },
393 { ARM_CPUID_PXA270_A0
, "pxa270-a0" },
394 { ARM_CPUID_PXA270_A1
, "pxa270-a1" },
395 { ARM_CPUID_PXA270_B0
, "pxa270-b0" },
396 { ARM_CPUID_PXA270_B1
, "pxa270-b1" },
397 { ARM_CPUID_PXA270_C0
, "pxa270-c0" },
398 { ARM_CPUID_PXA270_C5
, "pxa270-c5" },
399 { ARM_CPUID_ANY
, "any"},
403 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
407 (*cpu_fprintf
)(f
, "Available CPUs:\n");
408 for (i
= 0; arm_cpu_names
[i
].name
; i
++) {
409 (*cpu_fprintf
)(f
, " %s\n", arm_cpu_names
[i
].name
);
413 /* return 0 if not found */
414 static uint32_t cpu_arm_find_by_name(const char *name
)
420 for (i
= 0; arm_cpu_names
[i
].name
; i
++) {
421 if (strcmp(name
, arm_cpu_names
[i
].name
) == 0) {
422 id
= arm_cpu_names
[i
].id
;
429 void cpu_arm_close(CPUARMState
*env
)
434 uint32_t cpsr_read(CPUARMState
*env
)
438 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
439 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
440 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
441 | ((env
->condexec_bits
& 0xfc) << 8)
445 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
447 if (mask
& CPSR_NZCV
) {
448 env
->ZF
= (~val
) & CPSR_Z
;
450 env
->CF
= (val
>> 29) & 1;
451 env
->VF
= (val
<< 3) & 0x80000000;
454 env
->QF
= ((val
& CPSR_Q
) != 0);
456 env
->thumb
= ((val
& CPSR_T
) != 0);
457 if (mask
& CPSR_IT_0_1
) {
458 env
->condexec_bits
&= ~3;
459 env
->condexec_bits
|= (val
>> 25) & 3;
461 if (mask
& CPSR_IT_2_7
) {
462 env
->condexec_bits
&= 3;
463 env
->condexec_bits
|= (val
>> 8) & 0xfc;
465 if (mask
& CPSR_GE
) {
466 env
->GE
= (val
>> 16) & 0xf;
469 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
470 switch_mode(env
, val
& CPSR_M
);
472 mask
&= ~CACHED_CPSR_BITS
;
473 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
476 /* Sign/zero extend */
477 uint32_t HELPER(sxtb16
)(uint32_t x
)
480 res
= (uint16_t)(int8_t)x
;
481 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
485 uint32_t HELPER(uxtb16
)(uint32_t x
)
488 res
= (uint16_t)(uint8_t)x
;
489 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
493 uint32_t HELPER(clz
)(uint32_t x
)
498 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
502 if (num
== INT_MIN
&& den
== -1)
507 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
514 uint32_t HELPER(rbit
)(uint32_t x
)
516 x
= ((x
& 0xff000000) >> 24)
517 | ((x
& 0x00ff0000) >> 8)
518 | ((x
& 0x0000ff00) << 8)
519 | ((x
& 0x000000ff) << 24);
520 x
= ((x
& 0xf0f0f0f0) >> 4)
521 | ((x
& 0x0f0f0f0f) << 4);
522 x
= ((x
& 0x88888888) >> 3)
523 | ((x
& 0x44444444) >> 1)
524 | ((x
& 0x22222222) << 1)
525 | ((x
& 0x11111111) << 3);
529 uint32_t HELPER(abs
)(uint32_t x
)
531 return ((int32_t)x
< 0) ? -x
: x
;
534 #if defined(CONFIG_USER_ONLY)
536 void do_interrupt (CPUState
*env
)
538 env
->exception_index
= -1;
541 int cpu_arm_handle_mmu_fault (CPUState
*env
, target_ulong address
, int rw
,
542 int mmu_idx
, int is_softmmu
)
545 env
->exception_index
= EXCP_PREFETCH_ABORT
;
546 env
->cp15
.c6_insn
= address
;
548 env
->exception_index
= EXCP_DATA_ABORT
;
549 env
->cp15
.c6_data
= address
;
554 /* These should probably raise undefined insn exceptions. */
555 void HELPER(set_cp
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
557 int op1
= (insn
>> 8) & 0xf;
558 cpu_abort(env
, "cp%i insn %08x\n", op1
, insn
);
562 uint32_t HELPER(get_cp
)(CPUState
*env
, uint32_t insn
)
564 int op1
= (insn
>> 8) & 0xf;
565 cpu_abort(env
, "cp%i insn %08x\n", op1
, insn
);
569 void HELPER(set_cp15
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
571 cpu_abort(env
, "cp15 insn %08x\n", insn
);
574 uint32_t HELPER(get_cp15
)(CPUState
*env
, uint32_t insn
)
576 cpu_abort(env
, "cp15 insn %08x\n", insn
);
579 /* These should probably raise undefined insn exceptions. */
580 void HELPER(v7m_msr
)(CPUState
*env
, uint32_t reg
, uint32_t val
)
582 cpu_abort(env
, "v7m_mrs %d\n", reg
);
585 uint32_t HELPER(v7m_mrs
)(CPUState
*env
, uint32_t reg
)
587 cpu_abort(env
, "v7m_mrs %d\n", reg
);
591 void switch_mode(CPUState
*env
, int mode
)
593 if (mode
!= ARM_CPU_MODE_USR
)
594 cpu_abort(env
, "Tried to switch out of user mode\n");
597 void HELPER(set_r13_banked
)(CPUState
*env
, uint32_t mode
, uint32_t val
)
599 cpu_abort(env
, "banked r13 write\n");
602 uint32_t HELPER(get_r13_banked
)(CPUState
*env
, uint32_t mode
)
604 cpu_abort(env
, "banked r13 read\n");
610 extern int semihosting_enabled
;
612 /* Map CPU modes onto saved register banks. */
613 static inline int bank_number (int mode
)
616 case ARM_CPU_MODE_USR
:
617 case ARM_CPU_MODE_SYS
:
619 case ARM_CPU_MODE_SVC
:
621 case ARM_CPU_MODE_ABT
:
623 case ARM_CPU_MODE_UND
:
625 case ARM_CPU_MODE_IRQ
:
627 case ARM_CPU_MODE_FIQ
:
630 cpu_abort(cpu_single_env
, "Bad mode %x\n", mode
);
634 void switch_mode(CPUState
*env
, int mode
)
639 old_mode
= env
->uncached_cpsr
& CPSR_M
;
640 if (mode
== old_mode
)
643 if (old_mode
== ARM_CPU_MODE_FIQ
) {
644 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
645 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
646 } else if (mode
== ARM_CPU_MODE_FIQ
) {
647 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
648 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
651 i
= bank_number(old_mode
);
652 env
->banked_r13
[i
] = env
->regs
[13];
653 env
->banked_r14
[i
] = env
->regs
[14];
654 env
->banked_spsr
[i
] = env
->spsr
;
656 i
= bank_number(mode
);
657 env
->regs
[13] = env
->banked_r13
[i
];
658 env
->regs
[14] = env
->banked_r14
[i
];
659 env
->spsr
= env
->banked_spsr
[i
];
662 static void v7m_push(CPUARMState
*env
, uint32_t val
)
665 stl_phys(env
->regs
[13], val
);
668 static uint32_t v7m_pop(CPUARMState
*env
)
671 val
= ldl_phys(env
->regs
[13]);
676 /* Switch to V7M main or process stack pointer. */
677 static void switch_v7m_sp(CPUARMState
*env
, int process
)
680 if (env
->v7m
.current_sp
!= process
) {
681 tmp
= env
->v7m
.other_sp
;
682 env
->v7m
.other_sp
= env
->regs
[13];
684 env
->v7m
.current_sp
= process
;
688 static void do_v7m_exception_exit(CPUARMState
*env
)
693 type
= env
->regs
[15];
694 if (env
->v7m
.exception
!= 0)
695 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
697 /* Switch to the target stack. */
698 switch_v7m_sp(env
, (type
& 4) != 0);
700 env
->regs
[0] = v7m_pop(env
);
701 env
->regs
[1] = v7m_pop(env
);
702 env
->regs
[2] = v7m_pop(env
);
703 env
->regs
[3] = v7m_pop(env
);
704 env
->regs
[12] = v7m_pop(env
);
705 env
->regs
[14] = v7m_pop(env
);
706 env
->regs
[15] = v7m_pop(env
);
708 xpsr_write(env
, xpsr
, 0xfffffdff);
709 /* Undo stack alignment. */
712 /* ??? The exception return type specifies Thread/Handler mode. However
713 this is also implied by the xPSR value. Not sure what to do
714 if there is a mismatch. */
715 /* ??? Likewise for mismatches between the CONTROL register and the stack
719 static void do_interrupt_v7m(CPUARMState
*env
)
721 uint32_t xpsr
= xpsr_read(env
);
726 if (env
->v7m
.current_sp
)
728 if (env
->v7m
.exception
== 0)
731 /* For exceptions we just mark as pending on the NVIC, and let that
733 /* TODO: Need to escalate if the current priority is higher than the
734 one we're raising. */
735 switch (env
->exception_index
) {
737 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
741 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
743 case EXCP_PREFETCH_ABORT
:
744 case EXCP_DATA_ABORT
:
745 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
748 if (semihosting_enabled
) {
750 nr
= lduw_code(env
->regs
[15]) & 0xff;
753 env
->regs
[0] = do_arm_semihosting(env
);
757 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
760 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
762 case EXCP_EXCEPTION_EXIT
:
763 do_v7m_exception_exit(env
);
766 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
767 return; /* Never happens. Keep compiler happy. */
770 /* Align stack pointer. */
771 /* ??? Should only do this if Configuration Control Register
772 STACKALIGN bit is set. */
773 if (env
->regs
[13] & 4) {
777 /* Switch to the handler mode. */
779 v7m_push(env
, env
->regs
[15]);
780 v7m_push(env
, env
->regs
[14]);
781 v7m_push(env
, env
->regs
[12]);
782 v7m_push(env
, env
->regs
[3]);
783 v7m_push(env
, env
->regs
[2]);
784 v7m_push(env
, env
->regs
[1]);
785 v7m_push(env
, env
->regs
[0]);
786 switch_v7m_sp(env
, 0);
787 env
->uncached_cpsr
&= ~CPSR_IT
;
789 addr
= ldl_phys(env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
790 env
->regs
[15] = addr
& 0xfffffffe;
791 env
->thumb
= addr
& 1;
794 /* Handle a CPU exception. */
795 void do_interrupt(CPUARMState
*env
)
803 do_interrupt_v7m(env
);
806 /* TODO: Vectored interrupt controller. */
807 switch (env
->exception_index
) {
809 new_mode
= ARM_CPU_MODE_UND
;
818 if (semihosting_enabled
) {
819 /* Check for semihosting interrupt. */
821 mask
= lduw_code(env
->regs
[15] - 2) & 0xff;
823 mask
= ldl_code(env
->regs
[15] - 4) & 0xffffff;
825 /* Only intercept calls from privileged modes, to provide some
826 semblance of security. */
827 if (((mask
== 0x123456 && !env
->thumb
)
828 || (mask
== 0xab && env
->thumb
))
829 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
830 env
->regs
[0] = do_arm_semihosting(env
);
834 new_mode
= ARM_CPU_MODE_SVC
;
837 /* The PC already points to the next instruction. */
841 /* See if this is a semihosting syscall. */
842 if (env
->thumb
&& semihosting_enabled
) {
843 mask
= lduw_code(env
->regs
[15]) & 0xff;
845 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
847 env
->regs
[0] = do_arm_semihosting(env
);
851 env
->cp15
.c5_insn
= 2;
852 /* Fall through to prefetch abort. */
853 case EXCP_PREFETCH_ABORT
:
854 new_mode
= ARM_CPU_MODE_ABT
;
856 mask
= CPSR_A
| CPSR_I
;
859 case EXCP_DATA_ABORT
:
860 new_mode
= ARM_CPU_MODE_ABT
;
862 mask
= CPSR_A
| CPSR_I
;
866 new_mode
= ARM_CPU_MODE_IRQ
;
868 /* Disable IRQ and imprecise data aborts. */
869 mask
= CPSR_A
| CPSR_I
;
873 new_mode
= ARM_CPU_MODE_FIQ
;
875 /* Disable FIQ, IRQ and imprecise data aborts. */
876 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
880 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
881 return; /* Never happens. Keep compiler happy. */
884 if (env
->cp15
.c1_sys
& (1 << 13)) {
887 switch_mode (env
, new_mode
);
888 env
->spsr
= cpsr_read(env
);
890 env
->condexec_bits
= 0;
891 /* Switch to the new mode, and to the correct instruction set. */
892 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
893 env
->uncached_cpsr
|= mask
;
894 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
895 * and we should just guard the thumb mode on V4 */
896 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
897 env
->thumb
= (env
->cp15
.c1_sys
& (1 << 30)) != 0;
899 env
->regs
[14] = env
->regs
[15] + offset
;
900 env
->regs
[15] = addr
;
901 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
904 /* Check section/page access permissions.
905 Returns the page protection flags, or zero if the access is not
907 static inline int check_ap(CPUState
*env
, int ap
, int domain
, int access_type
,
913 return PAGE_READ
| PAGE_WRITE
;
915 if (access_type
== 1)
922 if (access_type
== 1)
924 switch ((env
->cp15
.c1_sys
>> 8) & 3) {
926 return is_user
? 0 : PAGE_READ
;
933 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
938 return PAGE_READ
| PAGE_WRITE
;
940 return PAGE_READ
| PAGE_WRITE
;
941 case 4: /* Reserved. */
944 return is_user
? 0 : prot_ro
;
948 if (!arm_feature (env
, ARM_FEATURE_V7
))
956 static uint32_t get_level1_table_address(CPUState
*env
, uint32_t address
)
960 if (address
& env
->cp15
.c2_mask
)
961 table
= env
->cp15
.c2_base1
& 0xffffc000;
963 table
= env
->cp15
.c2_base0
& env
->cp15
.c2_base_mask
;
965 table
|= (address
>> 18) & 0x3ffc;
969 static int get_phys_addr_v5(CPUState
*env
, uint32_t address
, int access_type
,
970 int is_user
, uint32_t *phys_ptr
, int *prot
,
971 target_ulong
*page_size
)
981 /* Pagetable walk. */
982 /* Lookup l1 descriptor. */
983 table
= get_level1_table_address(env
, address
);
984 desc
= ldl_phys(table
);
986 domain
= (env
->cp15
.c3
>> ((desc
>> 4) & 0x1e)) & 3;
988 /* Section translation fault. */
992 if (domain
== 0 || domain
== 2) {
994 code
= 9; /* Section domain fault. */
996 code
= 11; /* Page domain fault. */
1001 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
1002 ap
= (desc
>> 10) & 3;
1004 *page_size
= 1024 * 1024;
1006 /* Lookup l2 entry. */
1008 /* Coarse pagetable. */
1009 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
1011 /* Fine pagetable. */
1012 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
1014 desc
= ldl_phys(table
);
1016 case 0: /* Page translation fault. */
1019 case 1: /* 64k page. */
1020 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
1021 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
1022 *page_size
= 0x10000;
1024 case 2: /* 4k page. */
1025 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1026 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
1027 *page_size
= 0x1000;
1029 case 3: /* 1k page. */
1031 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1032 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1034 /* Page translation fault. */
1039 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
1041 ap
= (desc
>> 4) & 3;
1045 /* Never happens, but compiler isn't smart enough to tell. */
1050 *prot
= check_ap(env
, ap
, domain
, access_type
, is_user
);
1052 /* Access permission fault. */
1056 *phys_ptr
= phys_addr
;
1059 return code
| (domain
<< 4);
1062 static int get_phys_addr_v6(CPUState
*env
, uint32_t address
, int access_type
,
1063 int is_user
, uint32_t *phys_ptr
, int *prot
,
1064 target_ulong
*page_size
)
1075 /* Pagetable walk. */
1076 /* Lookup l1 descriptor. */
1077 table
= get_level1_table_address(env
, address
);
1078 desc
= ldl_phys(table
);
1081 /* Section translation fault. */
1085 } else if (type
== 2 && (desc
& (1 << 18))) {
1089 /* Section or page. */
1090 domain
= (desc
>> 4) & 0x1e;
1092 domain
= (env
->cp15
.c3
>> domain
) & 3;
1093 if (domain
== 0 || domain
== 2) {
1095 code
= 9; /* Section domain fault. */
1097 code
= 11; /* Page domain fault. */
1101 if (desc
& (1 << 18)) {
1103 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
1104 *page_size
= 0x1000000;
1107 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
1108 *page_size
= 0x100000;
1110 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
1111 xn
= desc
& (1 << 4);
1114 /* Lookup l2 entry. */
1115 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
1116 desc
= ldl_phys(table
);
1117 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
1119 case 0: /* Page translation fault. */
1122 case 1: /* 64k page. */
1123 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
1124 xn
= desc
& (1 << 15);
1125 *page_size
= 0x10000;
1127 case 2: case 3: /* 4k page. */
1128 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1130 *page_size
= 0x1000;
1133 /* Never happens, but compiler isn't smart enough to tell. */
1139 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
1141 if (xn
&& access_type
== 2)
1144 /* The simplified model uses AP[0] as an access control bit. */
1145 if ((env
->cp15
.c1_sys
& (1 << 29)) && (ap
& 1) == 0) {
1146 /* Access flag fault. */
1147 code
= (code
== 15) ? 6 : 3;
1150 *prot
= check_ap(env
, ap
, domain
, access_type
, is_user
);
1152 /* Access permission fault. */
1159 *phys_ptr
= phys_addr
;
1162 return code
| (domain
<< 4);
1165 static int get_phys_addr_mpu(CPUState
*env
, uint32_t address
, int access_type
,
1166 int is_user
, uint32_t *phys_ptr
, int *prot
)
1172 *phys_ptr
= address
;
1173 for (n
= 7; n
>= 0; n
--) {
1174 base
= env
->cp15
.c6_region
[n
];
1175 if ((base
& 1) == 0)
1177 mask
= 1 << ((base
>> 1) & 0x1f);
1178 /* Keep this shift separate from the above to avoid an
1179 (undefined) << 32. */
1180 mask
= (mask
<< 1) - 1;
1181 if (((base
^ address
) & ~mask
) == 0)
1187 if (access_type
== 2) {
1188 mask
= env
->cp15
.c5_insn
;
1190 mask
= env
->cp15
.c5_data
;
1192 mask
= (mask
>> (n
* 4)) & 0xf;
1199 *prot
= PAGE_READ
| PAGE_WRITE
;
1204 *prot
|= PAGE_WRITE
;
1207 *prot
= PAGE_READ
| PAGE_WRITE
;
1218 /* Bad permission. */
1225 static inline int get_phys_addr(CPUState
*env
, uint32_t address
,
1226 int access_type
, int is_user
,
1227 uint32_t *phys_ptr
, int *prot
,
1228 target_ulong
*page_size
)
1230 /* Fast Context Switch Extension. */
1231 if (address
< 0x02000000)
1232 address
+= env
->cp15
.c13_fcse
;
1234 if ((env
->cp15
.c1_sys
& 1) == 0) {
1235 /* MMU/MPU disabled. */
1236 *phys_ptr
= address
;
1237 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
1238 *page_size
= TARGET_PAGE_SIZE
;
1240 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1241 *page_size
= TARGET_PAGE_SIZE
;
1242 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
1244 } else if (env
->cp15
.c1_sys
& (1 << 23)) {
1245 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
1248 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
1253 int cpu_arm_handle_mmu_fault (CPUState
*env
, target_ulong address
,
1254 int access_type
, int mmu_idx
, int is_softmmu
)
1257 target_ulong page_size
;
1261 is_user
= mmu_idx
== MMU_USER_IDX
;
1262 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
,
1265 /* Map a single [sub]page. */
1266 phys_addr
&= ~(uint32_t)0x3ff;
1267 address
&= ~(uint32_t)0x3ff;
1268 tlb_set_page (env
, address
, phys_addr
, prot
, mmu_idx
, page_size
);
1272 if (access_type
== 2) {
1273 env
->cp15
.c5_insn
= ret
;
1274 env
->cp15
.c6_insn
= address
;
1275 env
->exception_index
= EXCP_PREFETCH_ABORT
;
1277 env
->cp15
.c5_data
= ret
;
1278 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
))
1279 env
->cp15
.c5_data
|= (1 << 11);
1280 env
->cp15
.c6_data
= address
;
1281 env
->exception_index
= EXCP_DATA_ABORT
;
1286 target_phys_addr_t
cpu_get_phys_page_debug(CPUState
*env
, target_ulong addr
)
1289 target_ulong page_size
;
1293 ret
= get_phys_addr(env
, addr
, 0, 0, &phys_addr
, &prot
, &page_size
);
1301 void HELPER(set_cp
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
1303 int cp_num
= (insn
>> 8) & 0xf;
1304 int cp_info
= (insn
>> 5) & 7;
1305 int src
= (insn
>> 16) & 0xf;
1306 int operand
= insn
& 0xf;
1308 if (env
->cp
[cp_num
].cp_write
)
1309 env
->cp
[cp_num
].cp_write(env
->cp
[cp_num
].opaque
,
1310 cp_info
, src
, operand
, val
);
1313 uint32_t HELPER(get_cp
)(CPUState
*env
, uint32_t insn
)
1315 int cp_num
= (insn
>> 8) & 0xf;
1316 int cp_info
= (insn
>> 5) & 7;
1317 int dest
= (insn
>> 16) & 0xf;
1318 int operand
= insn
& 0xf;
1320 if (env
->cp
[cp_num
].cp_read
)
1321 return env
->cp
[cp_num
].cp_read(env
->cp
[cp_num
].opaque
,
1322 cp_info
, dest
, operand
);
1326 /* Return basic MPU access permission bits. */
1327 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1334 for (i
= 0; i
< 16; i
+= 2) {
1335 ret
|= (val
>> i
) & mask
;
1341 /* Pad basic MPU access permission bits to extended format. */
1342 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1349 for (i
= 0; i
< 16; i
+= 2) {
1350 ret
|= (val
& mask
) << i
;
1356 void HELPER(set_cp15
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
1362 op1
= (insn
>> 21) & 7;
1363 op2
= (insn
>> 5) & 7;
1365 switch ((insn
>> 16) & 0xf) {
1368 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1370 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1372 if (arm_feature(env
, ARM_FEATURE_V7
)
1373 && op1
== 2 && crm
== 0 && op2
== 0) {
1374 env
->cp15
.c0_cssel
= val
& 0xf;
1378 case 1: /* System configuration. */
1379 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1383 if (!arm_feature(env
, ARM_FEATURE_XSCALE
) || crm
== 0)
1384 env
->cp15
.c1_sys
= val
;
1385 /* ??? Lots of these bits are not implemented. */
1386 /* This may enable/disable the MMU, so do a TLB flush. */
1389 case 1: /* Auxiliary control register. */
1390 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1391 env
->cp15
.c1_xscaleauxcr
= val
;
1394 /* Not implemented. */
1397 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1399 if (env
->cp15
.c1_coproc
!= val
) {
1400 env
->cp15
.c1_coproc
= val
;
1401 /* ??? Is this safe when called from within a TB? */
1409 case 2: /* MMU Page table control / MPU cache control. */
1410 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1413 env
->cp15
.c2_data
= val
;
1416 env
->cp15
.c2_insn
= val
;
1424 env
->cp15
.c2_base0
= val
;
1427 env
->cp15
.c2_base1
= val
;
1431 env
->cp15
.c2_control
= val
;
1432 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> val
);
1433 env
->cp15
.c2_base_mask
= ~((uint32_t)0x3fffu
>> val
);
1440 case 3: /* MMU Domain access control / MPU write buffer control. */
1442 tlb_flush(env
, 1); /* Flush TLB as domain not tracked in TLB */
1444 case 4: /* Reserved. */
1446 case 5: /* MMU Fault status / MPU access permission. */
1447 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1451 if (arm_feature(env
, ARM_FEATURE_MPU
))
1452 val
= extended_mpu_ap_bits(val
);
1453 env
->cp15
.c5_data
= val
;
1456 if (arm_feature(env
, ARM_FEATURE_MPU
))
1457 val
= extended_mpu_ap_bits(val
);
1458 env
->cp15
.c5_insn
= val
;
1461 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1463 env
->cp15
.c5_data
= val
;
1466 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1468 env
->cp15
.c5_insn
= val
;
1474 case 6: /* MMU Fault address / MPU base/size. */
1475 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1478 env
->cp15
.c6_region
[crm
] = val
;
1480 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1484 env
->cp15
.c6_data
= val
;
1486 case 1: /* ??? This is WFAR on armv6 */
1488 env
->cp15
.c6_insn
= val
;
1495 case 7: /* Cache control. */
1496 env
->cp15
.c15_i_max
= 0x000;
1497 env
->cp15
.c15_i_min
= 0xff0;
1501 /* No cache, so nothing to do except VA->PA translations. */
1502 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
1505 if (arm_feature(env
, ARM_FEATURE_V7
)) {
1506 env
->cp15
.c7_par
= val
& 0xfffff6ff;
1508 env
->cp15
.c7_par
= val
& 0xfffff1ff;
1513 target_ulong page_size
;
1515 int ret
, is_user
= op2
& 2;
1516 int access_type
= op2
& 1;
1519 /* Other states are only available with TrustZone */
1522 ret
= get_phys_addr(env
, val
, access_type
, is_user
,
1523 &phys_addr
, &prot
, &page_size
);
1525 /* We do not set any attribute bits in the PAR */
1526 if (page_size
== (1 << 24)
1527 && arm_feature(env
, ARM_FEATURE_V7
)) {
1528 env
->cp15
.c7_par
= (phys_addr
& 0xff000000) | 1 << 1;
1530 env
->cp15
.c7_par
= phys_addr
& 0xfffff000;
1533 env
->cp15
.c7_par
= ((ret
& (10 << 1)) >> 5) |
1534 ((ret
& (12 << 1)) >> 6) |
1535 ((ret
& 0xf) << 1) | 1;
1542 case 8: /* MMU TLB control. */
1544 case 0: /* Invalidate all. */
1547 case 1: /* Invalidate single TLB entry. */
1548 tlb_flush_page(env
, val
& TARGET_PAGE_MASK
);
1550 case 2: /* Invalidate on ASID. */
1551 tlb_flush(env
, val
== 0);
1553 case 3: /* Invalidate single entry on MVA. */
1554 /* ??? This is like case 1, but ignores ASID. */
1562 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1564 if (arm_feature(env
, ARM_FEATURE_STRONGARM
))
1565 break; /* Ignore ReadBuffer access */
1567 case 0: /* Cache lockdown. */
1569 case 0: /* L1 cache. */
1572 env
->cp15
.c9_data
= val
;
1575 env
->cp15
.c9_insn
= val
;
1581 case 1: /* L2 cache. */
1582 /* Ignore writes to L2 lockdown/auxiliary registers. */
1588 case 1: /* TCM memory region registers. */
1589 /* Not implemented. */
1595 case 10: /* MMU TLB lockdown. */
1596 /* ??? TLB lockdown not implemented. */
1598 case 12: /* Reserved. */
1600 case 13: /* Process ID. */
1603 /* Unlike real hardware the qemu TLB uses virtual addresses,
1604 not modified virtual addresses, so this causes a TLB flush.
1606 if (env
->cp15
.c13_fcse
!= val
)
1608 env
->cp15
.c13_fcse
= val
;
1611 /* This changes the ASID, so do a TLB flush. */
1612 if (env
->cp15
.c13_context
!= val
1613 && !arm_feature(env
, ARM_FEATURE_MPU
))
1615 env
->cp15
.c13_context
= val
;
1621 case 14: /* Reserved. */
1623 case 15: /* Implementation specific. */
1624 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1625 if (op2
== 0 && crm
== 1) {
1626 if (env
->cp15
.c15_cpar
!= (val
& 0x3fff)) {
1627 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1629 env
->cp15
.c15_cpar
= val
& 0x3fff;
1635 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1639 case 1: /* Set TI925T configuration. */
1640 env
->cp15
.c15_ticonfig
= val
& 0xe7;
1641 env
->cp15
.c0_cpuid
= (val
& (1 << 5)) ? /* OS_TYPE bit */
1642 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1644 case 2: /* Set I_max. */
1645 env
->cp15
.c15_i_max
= val
;
1647 case 3: /* Set I_min. */
1648 env
->cp15
.c15_i_min
= val
;
1650 case 4: /* Set thread-ID. */
1651 env
->cp15
.c15_threadid
= val
& 0xffff;
1653 case 8: /* Wait-for-interrupt (deprecated). */
1654 cpu_interrupt(env
, CPU_INTERRUPT_HALT
);
1664 /* ??? For debugging only. Should raise illegal instruction exception. */
1665 cpu_abort(env
, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1666 (insn
>> 16) & 0xf, crm
, op1
, op2
);
1669 uint32_t HELPER(get_cp15
)(CPUState
*env
, uint32_t insn
)
1675 op1
= (insn
>> 21) & 7;
1676 op2
= (insn
>> 5) & 7;
1678 switch ((insn
>> 16) & 0xf) {
1679 case 0: /* ID codes. */
1685 case 0: /* Device ID. */
1686 return env
->cp15
.c0_cpuid
;
1687 case 1: /* Cache Type. */
1688 return env
->cp15
.c0_cachetype
;
1689 case 2: /* TCM status. */
1691 case 3: /* TLB type register. */
1692 return 0; /* No lockable TLB entries. */
1694 /* The MPIDR was standardised in v7; prior to
1695 * this it was implemented only in the 11MPCore.
1696 * For all other pre-v7 cores it does not exist.
1698 if (arm_feature(env
, ARM_FEATURE_V7
) ||
1699 ARM_CPUID(env
) == ARM_CPUID_ARM11MPCORE
) {
1700 int mpidr
= env
->cpu_index
;
1701 /* We don't support setting cluster ID ([8..11])
1702 * so these bits always RAZ.
1704 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
1706 /* Cores which are uniprocessor (non-coherent)
1707 * but still implement the MP extensions set
1708 * bit 30. (For instance, A9UP.) However we do
1709 * not currently model any of those cores.
1714 /* otherwise fall through to the unimplemented-reg case */
1719 if (!arm_feature(env
, ARM_FEATURE_V6
))
1721 return env
->cp15
.c0_c1
[op2
];
1723 if (!arm_feature(env
, ARM_FEATURE_V6
))
1725 return env
->cp15
.c0_c2
[op2
];
1726 case 3: case 4: case 5: case 6: case 7:
1732 /* These registers aren't documented on arm11 cores. However
1733 Linux looks at them anyway. */
1734 if (!arm_feature(env
, ARM_FEATURE_V6
))
1738 if (!arm_feature(env
, ARM_FEATURE_V7
))
1743 return env
->cp15
.c0_ccsid
[env
->cp15
.c0_cssel
];
1745 return env
->cp15
.c0_clid
;
1751 if (op2
!= 0 || crm
!= 0)
1753 return env
->cp15
.c0_cssel
;
1757 case 1: /* System configuration. */
1758 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1761 case 0: /* Control register. */
1762 return env
->cp15
.c1_sys
;
1763 case 1: /* Auxiliary control register. */
1764 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1765 return env
->cp15
.c1_xscaleauxcr
;
1766 if (!arm_feature(env
, ARM_FEATURE_AUXCR
))
1768 switch (ARM_CPUID(env
)) {
1769 case ARM_CPUID_ARM1026
:
1771 case ARM_CPUID_ARM1136
:
1772 case ARM_CPUID_ARM1136_R2
:
1774 case ARM_CPUID_ARM11MPCORE
:
1776 case ARM_CPUID_CORTEXA8
:
1778 case ARM_CPUID_CORTEXA9
:
1783 case 2: /* Coprocessor access register. */
1784 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1786 return env
->cp15
.c1_coproc
;
1790 case 2: /* MMU Page table control / MPU cache control. */
1791 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1794 return env
->cp15
.c2_data
;
1797 return env
->cp15
.c2_insn
;
1805 return env
->cp15
.c2_base0
;
1807 return env
->cp15
.c2_base1
;
1809 return env
->cp15
.c2_control
;
1814 case 3: /* MMU Domain access control / MPU write buffer control. */
1815 return env
->cp15
.c3
;
1816 case 4: /* Reserved. */
1818 case 5: /* MMU Fault status / MPU access permission. */
1819 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1823 if (arm_feature(env
, ARM_FEATURE_MPU
))
1824 return simple_mpu_ap_bits(env
->cp15
.c5_data
);
1825 return env
->cp15
.c5_data
;
1827 if (arm_feature(env
, ARM_FEATURE_MPU
))
1828 return simple_mpu_ap_bits(env
->cp15
.c5_data
);
1829 return env
->cp15
.c5_insn
;
1831 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1833 return env
->cp15
.c5_data
;
1835 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1837 return env
->cp15
.c5_insn
;
1841 case 6: /* MMU Fault address. */
1842 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1845 return env
->cp15
.c6_region
[crm
];
1847 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1851 return env
->cp15
.c6_data
;
1853 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1854 /* Watchpoint Fault Adrress. */
1855 return 0; /* Not implemented. */
1857 /* Instruction Fault Adrress. */
1858 /* Arm9 doesn't have an IFAR, but implementing it anyway
1859 shouldn't do any harm. */
1860 return env
->cp15
.c6_insn
;
1863 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1864 /* Instruction Fault Adrress. */
1865 return env
->cp15
.c6_insn
;
1873 case 7: /* Cache control. */
1874 if (crm
== 4 && op1
== 0 && op2
== 0) {
1875 return env
->cp15
.c7_par
;
1877 /* FIXME: Should only clear Z flag if destination is r15. */
1880 case 8: /* MMU TLB control. */
1882 case 9: /* Cache lockdown. */
1884 case 0: /* L1 cache. */
1885 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1889 return env
->cp15
.c9_data
;
1891 return env
->cp15
.c9_insn
;
1895 case 1: /* L2 cache */
1898 /* L2 Lockdown and Auxiliary control. */
1903 case 10: /* MMU TLB lockdown. */
1904 /* ??? TLB lockdown not implemented. */
1906 case 11: /* TCM DMA control. */
1907 case 12: /* Reserved. */
1909 case 13: /* Process ID. */
1912 return env
->cp15
.c13_fcse
;
1914 return env
->cp15
.c13_context
;
1918 case 14: /* Reserved. */
1920 case 15: /* Implementation specific. */
1921 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1922 if (op2
== 0 && crm
== 1)
1923 return env
->cp15
.c15_cpar
;
1927 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1931 case 1: /* Read TI925T configuration. */
1932 return env
->cp15
.c15_ticonfig
;
1933 case 2: /* Read I_max. */
1934 return env
->cp15
.c15_i_max
;
1935 case 3: /* Read I_min. */
1936 return env
->cp15
.c15_i_min
;
1937 case 4: /* Read thread-ID. */
1938 return env
->cp15
.c15_threadid
;
1939 case 8: /* TI925T_status */
1942 /* TODO: Peripheral port remap register:
1943 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1944 * controller base address at $rn & ~0xfff and map size of
1945 * 0x200 << ($rn & 0xfff), when MMU is off. */
1951 /* ??? For debugging only. Should raise illegal instruction exception. */
1952 cpu_abort(env
, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1953 (insn
>> 16) & 0xf, crm
, op1
, op2
);
1957 void HELPER(set_r13_banked
)(CPUState
*env
, uint32_t mode
, uint32_t val
)
1959 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
1960 env
->regs
[13] = val
;
1962 env
->banked_r13
[bank_number(mode
)] = val
;
1966 uint32_t HELPER(get_r13_banked
)(CPUState
*env
, uint32_t mode
)
1968 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
1969 return env
->regs
[13];
1971 return env
->banked_r13
[bank_number(mode
)];
1975 uint32_t HELPER(v7m_mrs
)(CPUState
*env
, uint32_t reg
)
1979 return xpsr_read(env
) & 0xf8000000;
1981 return xpsr_read(env
) & 0xf80001ff;
1983 return xpsr_read(env
) & 0xff00fc00;
1985 return xpsr_read(env
) & 0xff00fdff;
1987 return xpsr_read(env
) & 0x000001ff;
1989 return xpsr_read(env
) & 0x0700fc00;
1991 return xpsr_read(env
) & 0x0700edff;
1993 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
1995 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
1996 case 16: /* PRIMASK */
1997 return (env
->uncached_cpsr
& CPSR_I
) != 0;
1998 case 17: /* FAULTMASK */
1999 return (env
->uncached_cpsr
& CPSR_F
) != 0;
2000 case 18: /* BASEPRI */
2001 case 19: /* BASEPRI_MAX */
2002 return env
->v7m
.basepri
;
2003 case 20: /* CONTROL */
2004 return env
->v7m
.control
;
2006 /* ??? For debugging only. */
2007 cpu_abort(env
, "Unimplemented system register read (%d)\n", reg
);
2012 void HELPER(v7m_msr
)(CPUState
*env
, uint32_t reg
, uint32_t val
)
2016 xpsr_write(env
, val
, 0xf8000000);
2019 xpsr_write(env
, val
, 0xf8000000);
2022 xpsr_write(env
, val
, 0xfe00fc00);
2025 xpsr_write(env
, val
, 0xfe00fc00);
2028 /* IPSR bits are readonly. */
2031 xpsr_write(env
, val
, 0x0600fc00);
2034 xpsr_write(env
, val
, 0x0600fc00);
2037 if (env
->v7m
.current_sp
)
2038 env
->v7m
.other_sp
= val
;
2040 env
->regs
[13] = val
;
2043 if (env
->v7m
.current_sp
)
2044 env
->regs
[13] = val
;
2046 env
->v7m
.other_sp
= val
;
2048 case 16: /* PRIMASK */
2050 env
->uncached_cpsr
|= CPSR_I
;
2052 env
->uncached_cpsr
&= ~CPSR_I
;
2054 case 17: /* FAULTMASK */
2056 env
->uncached_cpsr
|= CPSR_F
;
2058 env
->uncached_cpsr
&= ~CPSR_F
;
2060 case 18: /* BASEPRI */
2061 env
->v7m
.basepri
= val
& 0xff;
2063 case 19: /* BASEPRI_MAX */
2065 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
2066 env
->v7m
.basepri
= val
;
2068 case 20: /* CONTROL */
2069 env
->v7m
.control
= val
& 3;
2070 switch_v7m_sp(env
, (val
& 2) != 0);
2073 /* ??? For debugging only. */
2074 cpu_abort(env
, "Unimplemented system register write (%d)\n", reg
);
2079 void cpu_arm_set_cp_io(CPUARMState
*env
, int cpnum
,
2080 ARMReadCPFunc
*cp_read
, ARMWriteCPFunc
*cp_write
,
2083 if (cpnum
< 0 || cpnum
> 14) {
2084 cpu_abort(env
, "Bad coprocessor number: %i\n", cpnum
);
2088 env
->cp
[cpnum
].cp_read
= cp_read
;
2089 env
->cp
[cpnum
].cp_write
= cp_write
;
2090 env
->cp
[cpnum
].opaque
= opaque
;
2095 /* Note that signed overflow is undefined in C. The following routines are
2096 careful to use unsigned types where modulo arithmetic is required.
2097 Failure to do so _will_ break on newer gcc. */
2099 /* Signed saturating arithmetic. */
2101 /* Perform 16-bit signed saturating addition. */
2102 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
2107 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
2116 /* Perform 8-bit signed saturating addition. */
2117 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
2122 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
2131 /* Perform 16-bit signed saturating subtraction. */
2132 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
2137 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
2146 /* Perform 8-bit signed saturating subtraction. */
2147 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
2152 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
2161 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2162 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2163 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2164 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2167 #include "op_addsub.h"
2169 /* Unsigned saturating arithmetic. */
2170 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
2179 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
2187 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
2196 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
2204 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2205 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2206 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2207 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2210 #include "op_addsub.h"
2212 /* Signed modulo arithmetic. */
2213 #define SARITH16(a, b, n, op) do { \
2215 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2216 RESULT(sum, n, 16); \
2218 ge |= 3 << (n * 2); \
2221 #define SARITH8(a, b, n, op) do { \
2223 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2224 RESULT(sum, n, 8); \
2230 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2231 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2232 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2233 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2237 #include "op_addsub.h"
2239 /* Unsigned modulo arithmetic. */
2240 #define ADD16(a, b, n) do { \
2242 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2243 RESULT(sum, n, 16); \
2244 if ((sum >> 16) == 1) \
2245 ge |= 3 << (n * 2); \
2248 #define ADD8(a, b, n) do { \
2250 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2251 RESULT(sum, n, 8); \
2252 if ((sum >> 8) == 1) \
2256 #define SUB16(a, b, n) do { \
2258 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2259 RESULT(sum, n, 16); \
2260 if ((sum >> 16) == 0) \
2261 ge |= 3 << (n * 2); \
2264 #define SUB8(a, b, n) do { \
2266 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2267 RESULT(sum, n, 8); \
2268 if ((sum >> 8) == 0) \
2275 #include "op_addsub.h"
2277 /* Halved signed arithmetic. */
2278 #define ADD16(a, b, n) \
2279 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2280 #define SUB16(a, b, n) \
2281 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2282 #define ADD8(a, b, n) \
2283 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2284 #define SUB8(a, b, n) \
2285 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2288 #include "op_addsub.h"
2290 /* Halved unsigned arithmetic. */
2291 #define ADD16(a, b, n) \
2292 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2293 #define SUB16(a, b, n) \
2294 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2295 #define ADD8(a, b, n) \
2296 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2297 #define SUB8(a, b, n) \
2298 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2301 #include "op_addsub.h"
2303 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
2311 /* Unsigned sum of absolute byte differences. */
2312 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
2315 sum
= do_usad(a
, b
);
2316 sum
+= do_usad(a
>> 8, b
>> 8);
2317 sum
+= do_usad(a
>> 16, b
>>16);
2318 sum
+= do_usad(a
>> 24, b
>> 24);
2322 /* For ARMv6 SEL instruction. */
2323 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
2336 return (a
& mask
) | (b
& ~mask
);
2339 uint32_t HELPER(logicq_cc
)(uint64_t val
)
2341 return (val
>> 32) | (val
!= 0);
2344 /* VFP support. We follow the convention used for VFP instrunctions:
2345 Single precition routines have a "s" suffix, double precision a
2348 /* Convert host exception flags to vfp form. */
2349 static inline int vfp_exceptbits_from_host(int host_bits
)
2351 int target_bits
= 0;
2353 if (host_bits
& float_flag_invalid
)
2355 if (host_bits
& float_flag_divbyzero
)
2357 if (host_bits
& float_flag_overflow
)
2359 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
2361 if (host_bits
& float_flag_inexact
)
2362 target_bits
|= 0x10;
2363 if (host_bits
& float_flag_input_denormal
)
2364 target_bits
|= 0x80;
2368 uint32_t HELPER(vfp_get_fpscr
)(CPUState
*env
)
2373 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
2374 | (env
->vfp
.vec_len
<< 16)
2375 | (env
->vfp
.vec_stride
<< 20);
2376 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
2377 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
2378 fpscr
|= vfp_exceptbits_from_host(i
);
2382 uint32_t vfp_get_fpscr(CPUState
*env
)
2384 return HELPER(vfp_get_fpscr
)(env
);
2387 /* Convert vfp exception flags to target form. */
2388 static inline int vfp_exceptbits_to_host(int target_bits
)
2392 if (target_bits
& 1)
2393 host_bits
|= float_flag_invalid
;
2394 if (target_bits
& 2)
2395 host_bits
|= float_flag_divbyzero
;
2396 if (target_bits
& 4)
2397 host_bits
|= float_flag_overflow
;
2398 if (target_bits
& 8)
2399 host_bits
|= float_flag_underflow
;
2400 if (target_bits
& 0x10)
2401 host_bits
|= float_flag_inexact
;
2402 if (target_bits
& 0x80)
2403 host_bits
|= float_flag_input_denormal
;
2407 void HELPER(vfp_set_fpscr
)(CPUState
*env
, uint32_t val
)
2412 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
2413 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
2414 env
->vfp
.vec_len
= (val
>> 16) & 7;
2415 env
->vfp
.vec_stride
= (val
>> 20) & 3;
2418 if (changed
& (3 << 22)) {
2419 i
= (val
>> 22) & 3;
2422 i
= float_round_nearest_even
;
2428 i
= float_round_down
;
2431 i
= float_round_to_zero
;
2434 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
2436 if (changed
& (1 << 24)) {
2437 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
2438 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
2440 if (changed
& (1 << 25))
2441 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
2443 i
= vfp_exceptbits_to_host(val
);
2444 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
2445 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
2448 void vfp_set_fpscr(CPUState
*env
, uint32_t val
)
2450 HELPER(vfp_set_fpscr
)(env
, val
);
2453 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2455 #define VFP_BINOP(name) \
2456 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2458 return float32_ ## name (a, b, &env->vfp.fp_status); \
2460 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2462 return float64_ ## name (a, b, &env->vfp.fp_status); \
2470 float32
VFP_HELPER(neg
, s
)(float32 a
)
2472 return float32_chs(a
);
2475 float64
VFP_HELPER(neg
, d
)(float64 a
)
2477 return float64_chs(a
);
2480 float32
VFP_HELPER(abs
, s
)(float32 a
)
2482 return float32_abs(a
);
2485 float64
VFP_HELPER(abs
, d
)(float64 a
)
2487 return float64_abs(a
);
2490 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUState
*env
)
2492 return float32_sqrt(a
, &env
->vfp
.fp_status
);
2495 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUState
*env
)
2497 return float64_sqrt(a
, &env
->vfp
.fp_status
);
2500 /* XXX: check quiet/signaling case */
2501 #define DO_VFP_cmp(p, type) \
2502 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2505 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2506 case 0: flags = 0x6; break; \
2507 case -1: flags = 0x8; break; \
2508 case 1: flags = 0x2; break; \
2509 default: case 2: flags = 0x3; break; \
2511 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2512 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2514 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2517 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2518 case 0: flags = 0x6; break; \
2519 case -1: flags = 0x8; break; \
2520 case 1: flags = 0x2; break; \
2521 default: case 2: flags = 0x3; break; \
2523 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2524 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2526 DO_VFP_cmp(s
, float32
)
2527 DO_VFP_cmp(d
, float64
)
2530 /* Integer to float and float to integer conversions */
2532 #define CONV_ITOF(name, fsz, sign) \
2533 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2535 float_status *fpst = fpstp; \
2536 return sign##int32_to_##float##fsz(x, fpst); \
2539 #define CONV_FTOI(name, fsz, sign, round) \
2540 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2542 float_status *fpst = fpstp; \
2543 if (float##fsz##_is_any_nan(x)) { \
2544 float_raise(float_flag_invalid, fpst); \
2547 return float##fsz##_to_##sign##int32##round(x, fpst); \
2550 #define FLOAT_CONVS(name, p, fsz, sign) \
2551 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2552 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2553 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2555 FLOAT_CONVS(si
, s
, 32, )
2556 FLOAT_CONVS(si
, d
, 64, )
2557 FLOAT_CONVS(ui
, s
, 32, u
)
2558 FLOAT_CONVS(ui
, d
, 64, u
)
2564 /* floating point conversion */
2565 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUState
*env
)
2567 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
2568 /* ARM requires that S<->D conversion of any kind of NaN generates
2569 * a quiet NaN by forcing the most significant frac bit to 1.
2571 return float64_maybe_silence_nan(r
);
2574 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUState
*env
)
2576 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
2577 /* ARM requires that S<->D conversion of any kind of NaN generates
2578 * a quiet NaN by forcing the most significant frac bit to 1.
2580 return float32_maybe_silence_nan(r
);
2583 /* VFP3 fixed point conversion. */
2584 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2585 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2588 float_status *fpst = fpstp; \
2590 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2591 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2593 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2596 float_status *fpst = fpstp; \
2598 if (float##fsz##_is_any_nan(x)) { \
2599 float_raise(float_flag_invalid, fpst); \
2602 tmp = float##fsz##_scalbn(x, shift, fpst); \
2603 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2606 VFP_CONV_FIX(sh
, d
, 64, int16
, )
2607 VFP_CONV_FIX(sl
, d
, 64, int32
, )
2608 VFP_CONV_FIX(uh
, d
, 64, uint16
, u
)
2609 VFP_CONV_FIX(ul
, d
, 64, uint32
, u
)
2610 VFP_CONV_FIX(sh
, s
, 32, int16
, )
2611 VFP_CONV_FIX(sl
, s
, 32, int32
, )
2612 VFP_CONV_FIX(uh
, s
, 32, uint16
, u
)
2613 VFP_CONV_FIX(ul
, s
, 32, uint32
, u
)
2616 /* Half precision conversions. */
2617 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUState
*env
, float_status
*s
)
2619 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
2620 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
2622 return float32_maybe_silence_nan(r
);
2627 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUState
*env
, float_status
*s
)
2629 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
2630 float16 r
= float32_to_float16(a
, ieee
, s
);
2632 r
= float16_maybe_silence_nan(r
);
2634 return float16_val(r
);
2637 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUState
*env
)
2639 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
2642 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUState
*env
)
2644 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
2647 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUState
*env
)
2649 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
2652 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUState
*env
)
2654 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
2657 #define float32_two make_float32(0x40000000)
2658 #define float32_three make_float32(0x40400000)
2659 #define float32_one_point_five make_float32(0x3fc00000)
2661 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUState
*env
)
2663 float_status
*s
= &env
->vfp
.standard_fp_status
;
2664 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
2665 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
2666 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
2667 float_raise(float_flag_input_denormal
, s
);
2671 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
2674 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUState
*env
)
2676 float_status
*s
= &env
->vfp
.standard_fp_status
;
2678 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
2679 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
2680 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
2681 float_raise(float_flag_input_denormal
, s
);
2683 return float32_one_point_five
;
2685 product
= float32_mul(a
, b
, s
);
2686 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
2691 /* Constants 256 and 512 are used in some helpers; we avoid relying on
2692 * int->float conversions at run-time. */
2693 #define float64_256 make_float64(0x4070000000000000LL)
2694 #define float64_512 make_float64(0x4080000000000000LL)
2696 /* The algorithm that must be used to calculate the estimate
2697 * is specified by the ARM ARM.
2699 static float64
recip_estimate(float64 a
, CPUState
*env
)
2701 /* These calculations mustn't set any fp exception flags,
2702 * so we use a local copy of the fp_status.
2704 float_status dummy_status
= env
->vfp
.standard_fp_status
;
2705 float_status
*s
= &dummy_status
;
2706 /* q = (int)(a * 512.0) */
2707 float64 q
= float64_mul(float64_512
, a
, s
);
2708 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
2710 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
2711 q
= int64_to_float64(q_int
, s
);
2712 q
= float64_add(q
, float64_half
, s
);
2713 q
= float64_div(q
, float64_512
, s
);
2714 q
= float64_div(float64_one
, q
, s
);
2716 /* s = (int)(256.0 * r + 0.5) */
2717 q
= float64_mul(q
, float64_256
, s
);
2718 q
= float64_add(q
, float64_half
, s
);
2719 q_int
= float64_to_int64_round_to_zero(q
, s
);
2721 /* return (double)s / 256.0 */
2722 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
2725 float32
HELPER(recpe_f32
)(float32 a
, CPUState
*env
)
2727 float_status
*s
= &env
->vfp
.standard_fp_status
;
2729 uint32_t val32
= float32_val(a
);
2732 int a_exp
= (val32
& 0x7f800000) >> 23;
2733 int sign
= val32
& 0x80000000;
2735 if (float32_is_any_nan(a
)) {
2736 if (float32_is_signaling_nan(a
)) {
2737 float_raise(float_flag_invalid
, s
);
2739 return float32_default_nan
;
2740 } else if (float32_is_infinity(a
)) {
2741 return float32_set_sign(float32_zero
, float32_is_neg(a
));
2742 } else if (float32_is_zero_or_denormal(a
)) {
2743 if (!float32_is_zero(a
)) {
2744 float_raise(float_flag_input_denormal
, s
);
2746 float_raise(float_flag_divbyzero
, s
);
2747 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
2748 } else if (a_exp
>= 253) {
2749 float_raise(float_flag_underflow
, s
);
2750 return float32_set_sign(float32_zero
, float32_is_neg(a
));
2753 f64
= make_float64((0x3feULL
<< 52)
2754 | ((int64_t)(val32
& 0x7fffff) << 29));
2756 result_exp
= 253 - a_exp
;
2758 f64
= recip_estimate(f64
, env
);
2761 | ((result_exp
& 0xff) << 23)
2762 | ((float64_val(f64
) >> 29) & 0x7fffff);
2763 return make_float32(val32
);
2766 /* The algorithm that must be used to calculate the estimate
2767 * is specified by the ARM ARM.
2769 static float64
recip_sqrt_estimate(float64 a
, CPUState
*env
)
2771 /* These calculations mustn't set any fp exception flags,
2772 * so we use a local copy of the fp_status.
2774 float_status dummy_status
= env
->vfp
.standard_fp_status
;
2775 float_status
*s
= &dummy_status
;
2779 if (float64_lt(a
, float64_half
, s
)) {
2780 /* range 0.25 <= a < 0.5 */
2782 /* a in units of 1/512 rounded down */
2783 /* q0 = (int)(a * 512.0); */
2784 q
= float64_mul(float64_512
, a
, s
);
2785 q_int
= float64_to_int64_round_to_zero(q
, s
);
2787 /* reciprocal root r */
2788 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
2789 q
= int64_to_float64(q_int
, s
);
2790 q
= float64_add(q
, float64_half
, s
);
2791 q
= float64_div(q
, float64_512
, s
);
2792 q
= float64_sqrt(q
, s
);
2793 q
= float64_div(float64_one
, q
, s
);
2795 /* range 0.5 <= a < 1.0 */
2797 /* a in units of 1/256 rounded down */
2798 /* q1 = (int)(a * 256.0); */
2799 q
= float64_mul(float64_256
, a
, s
);
2800 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
2802 /* reciprocal root r */
2803 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
2804 q
= int64_to_float64(q_int
, s
);
2805 q
= float64_add(q
, float64_half
, s
);
2806 q
= float64_div(q
, float64_256
, s
);
2807 q
= float64_sqrt(q
, s
);
2808 q
= float64_div(float64_one
, q
, s
);
2810 /* r in units of 1/256 rounded to nearest */
2811 /* s = (int)(256.0 * r + 0.5); */
2813 q
= float64_mul(q
, float64_256
,s
);
2814 q
= float64_add(q
, float64_half
, s
);
2815 q_int
= float64_to_int64_round_to_zero(q
, s
);
2817 /* return (double)s / 256.0;*/
2818 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
2821 float32
HELPER(rsqrte_f32
)(float32 a
, CPUState
*env
)
2823 float_status
*s
= &env
->vfp
.standard_fp_status
;
2829 val
= float32_val(a
);
2831 if (float32_is_any_nan(a
)) {
2832 if (float32_is_signaling_nan(a
)) {
2833 float_raise(float_flag_invalid
, s
);
2835 return float32_default_nan
;
2836 } else if (float32_is_zero_or_denormal(a
)) {
2837 if (!float32_is_zero(a
)) {
2838 float_raise(float_flag_input_denormal
, s
);
2840 float_raise(float_flag_divbyzero
, s
);
2841 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
2842 } else if (float32_is_neg(a
)) {
2843 float_raise(float_flag_invalid
, s
);
2844 return float32_default_nan
;
2845 } else if (float32_is_infinity(a
)) {
2846 return float32_zero
;
2849 /* Normalize to a double-precision value between 0.25 and 1.0,
2850 * preserving the parity of the exponent. */
2851 if ((val
& 0x800000) == 0) {
2852 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
2854 | ((uint64_t)(val
& 0x7fffff) << 29));
2856 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
2858 | ((uint64_t)(val
& 0x7fffff) << 29));
2861 result_exp
= (380 - ((val
& 0x7f800000) >> 23)) / 2;
2863 f64
= recip_sqrt_estimate(f64
, env
);
2865 val64
= float64_val(f64
);
2867 val
= ((val64
>> 63) & 0x80000000)
2868 | ((result_exp
& 0xff) << 23)
2869 | ((val64
>> 29) & 0x7fffff);
2870 return make_float32(val
);
2873 uint32_t HELPER(recpe_u32
)(uint32_t a
, CPUState
*env
)
2877 if ((a
& 0x80000000) == 0) {
2881 f64
= make_float64((0x3feULL
<< 52)
2882 | ((int64_t)(a
& 0x7fffffff) << 21));
2884 f64
= recip_estimate (f64
, env
);
2886 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
2889 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, CPUState
*env
)
2893 if ((a
& 0xc0000000) == 0) {
2897 if (a
& 0x80000000) {
2898 f64
= make_float64((0x3feULL
<< 52)
2899 | ((uint64_t)(a
& 0x7fffffff) << 21));
2900 } else { /* bits 31-30 == '01' */
2901 f64
= make_float64((0x3fdULL
<< 52)
2902 | ((uint64_t)(a
& 0x3fffffff) << 22));
2905 f64
= recip_sqrt_estimate(f64
, env
);
2907 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
2910 void HELPER(set_teecr
)(CPUState
*env
, uint32_t val
)
2913 if (env
->teecr
!= val
) {