4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
38 #include <sys/times.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
51 #include <linux/if_tun.h>
53 #include <arpa/inet.h>
56 #include <sys/select.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
70 #include <linux/rtc.h>
72 /* For the benefit of older linux systems which don't supply it,
73 we use a local copy of hpet.h. */
74 /* #include <linux/hpet.h> */
77 #include <linux/ppdev.h>
78 #include <linux/parport.h>
82 #include <sys/ethernet.h>
83 #include <sys/sockio.h>
84 #include <netinet/arp.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_icmp.h> // must come after ip.h
89 #include <netinet/udp.h>
90 #include <netinet/tcp.h>
98 #if defined(__OpenBSD__)
102 #if defined(CONFIG_VDE)
103 #include <libvdeplug.h>
109 #include <sys/timeb.h>
110 #include <mmsystem.h>
111 #define getopt_long_only getopt_long
112 #define memalign(align, size) malloc(size)
118 int qemu_main(int argc
, char **argv
, char **envp
);
119 int main(int argc
, char **argv
)
121 qemu_main(argc
, argv
, NULL
);
124 #define main qemu_main
126 #endif /* CONFIG_SDL */
130 #define main qemu_main
131 #endif /* CONFIG_COCOA */
134 #include "hw/boards.h"
136 #include "hw/pcmcia.h"
138 #include "hw/audiodev.h"
142 #include "hw/watchdog.h"
143 #include "hw/smbios.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
156 #include "audio/audio.h"
157 #include "migration.h"
160 #include "qemu-option.h"
161 #include "qemu-kvm.h"
162 #include "hw/device-assignment.h"
166 #include "exec-all.h"
168 #include "qemu_socket.h"
170 #if defined(CONFIG_SLIRP)
171 #include "libslirp.h"
174 //#define DEBUG_UNUSED_IOPORT
175 //#define DEBUG_IOPORT
177 //#define DEBUG_SLIRP
181 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
183 # define LOG_IOPORT(...) do { } while (0)
186 #define DEFAULT_RAM_SIZE 128
188 /* Max number of USB devices that can be specified on the commandline. */
189 #define MAX_USB_CMDLINE 8
191 /* Max number of bluetooth switches on the commandline. */
192 #define MAX_BT_CMDLINE 10
194 /* XXX: use a two level table to limit memory usage */
195 #define MAX_IOPORTS 65536
197 static const char *data_dir
;
198 const char *bios_name
= NULL
;
199 static void *ioport_opaque
[MAX_IOPORTS
];
200 static IOPortReadFunc
*ioport_read_table
[3][MAX_IOPORTS
];
201 static IOPortWriteFunc
*ioport_write_table
[3][MAX_IOPORTS
];
202 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
203 to store the VM snapshots */
204 DriveInfo drives_table
[MAX_DRIVES
+1];
206 int extboot_drive
= -1;
207 enum vga_retrace_method vga_retrace_method
= VGA_RETRACE_DUMB
;
208 static DisplayState
*display_state
;
209 DisplayType display_type
= DT_DEFAULT
;
210 const char* keyboard_layout
= NULL
;
211 int64_t ticks_per_sec
;
214 NICInfo nd_table
[MAX_NICS
];
216 static int autostart
;
217 static int rtc_utc
= 1;
218 static int rtc_date_offset
= -1; /* -1 means no change */
219 int cirrus_vga_enabled
= 1;
220 int std_vga_enabled
= 0;
221 int vmsvga_enabled
= 0;
222 int xenfb_enabled
= 0;
224 int graphic_width
= 1024;
225 int graphic_height
= 768;
226 int graphic_depth
= 8;
228 int graphic_width
= 800;
229 int graphic_height
= 600;
230 int graphic_depth
= 15;
232 static int full_screen
= 0;
234 static int no_frame
= 0;
237 CharDriverState
*serial_hds
[MAX_SERIAL_PORTS
];
238 CharDriverState
*parallel_hds
[MAX_PARALLEL_PORTS
];
239 CharDriverState
*virtcon_hds
[MAX_VIRTIO_CONSOLES
];
241 int win2k_install_hack
= 0;
246 const char *assigned_devices
[MAX_DEV_ASSIGN_CMDLINE
];
247 int assigned_devices_index
;
249 const char *vnc_display
;
250 int acpi_enabled
= 1;
256 int graphic_rotate
= 0;
260 WatchdogTimerModel
*watchdog
= NULL
;
261 int watchdog_action
= WDT_RESET
;
262 const char *option_rom
[MAX_OPTION_ROMS
];
264 int semihosting_enabled
= 0;
265 int time_drift_fix
= 0;
266 unsigned int kvm_shadow_memory
= 0;
267 const char *mem_path
= NULL
;
269 int mem_prealloc
= 1; /* force preallocation of physical target memory */
274 const char *qemu_name
;
276 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
277 unsigned int nb_prom_envs
= 0;
278 const char *prom_envs
[MAX_PROM_ENVS
];
281 const char *nvram
= NULL
;
282 struct drive_opt drives_opt
[MAX_DRIVES
];
285 uint64_t node_mem
[MAX_NODES
];
286 uint64_t node_cpumask
[MAX_NODES
];
288 static CPUState
*cur_cpu
;
289 static CPUState
*next_cpu
;
290 static int timer_alarm_pending
= 1;
291 /* Conversion factor from emulated instructions to virtual clock ticks. */
292 static int icount_time_shift
;
293 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
294 #define MAX_ICOUNT_SHIFT 10
295 /* Compensate for varying guest execution speed. */
296 static int64_t qemu_icount_bias
;
297 static QEMUTimer
*icount_rt_timer
;
298 static QEMUTimer
*icount_vm_timer
;
299 static QEMUTimer
*nographic_timer
;
301 uint8_t qemu_uuid
[16];
303 static int qemu_select(int max_fd
, fd_set
*rfds
, fd_set
*wfds
, fd_set
*xfds
,
308 /* KVM holds a mutex while QEMU code is running, we need hooks to
309 release the mutex whenever QEMU code sleeps. */
313 ret
= select(max_fd
, rfds
, wfds
, xfds
, tv
);
321 /***********************************************************/
322 /* x86 ISA bus support */
324 target_phys_addr_t isa_mem_base
= 0;
327 static IOPortReadFunc default_ioport_readb
, default_ioport_readw
, default_ioport_readl
;
328 static IOPortWriteFunc default_ioport_writeb
, default_ioport_writew
, default_ioport_writel
;
330 static uint32_t ioport_read(int index
, uint32_t address
)
332 static IOPortReadFunc
*default_func
[3] = {
333 default_ioport_readb
,
334 default_ioport_readw
,
337 IOPortReadFunc
*func
= ioport_read_table
[index
][address
];
339 func
= default_func
[index
];
340 return func(ioport_opaque
[address
], address
);
343 static void ioport_write(int index
, uint32_t address
, uint32_t data
)
345 static IOPortWriteFunc
*default_func
[3] = {
346 default_ioport_writeb
,
347 default_ioport_writew
,
348 default_ioport_writel
350 IOPortWriteFunc
*func
= ioport_write_table
[index
][address
];
352 func
= default_func
[index
];
353 func(ioport_opaque
[address
], address
, data
);
356 static uint32_t default_ioport_readb(void *opaque
, uint32_t address
)
358 #ifdef DEBUG_UNUSED_IOPORT
359 fprintf(stderr
, "unused inb: port=0x%04x\n", address
);
364 static void default_ioport_writeb(void *opaque
, uint32_t address
, uint32_t data
)
366 #ifdef DEBUG_UNUSED_IOPORT
367 fprintf(stderr
, "unused outb: port=0x%04x data=0x%02x\n", address
, data
);
371 /* default is to make two byte accesses */
372 static uint32_t default_ioport_readw(void *opaque
, uint32_t address
)
375 data
= ioport_read(0, address
);
376 address
= (address
+ 1) & (MAX_IOPORTS
- 1);
377 data
|= ioport_read(0, address
) << 8;
381 static void default_ioport_writew(void *opaque
, uint32_t address
, uint32_t data
)
383 ioport_write(0, address
, data
& 0xff);
384 address
= (address
+ 1) & (MAX_IOPORTS
- 1);
385 ioport_write(0, address
, (data
>> 8) & 0xff);
388 static uint32_t default_ioport_readl(void *opaque
, uint32_t address
)
390 #ifdef DEBUG_UNUSED_IOPORT
391 fprintf(stderr
, "unused inl: port=0x%04x\n", address
);
396 static void default_ioport_writel(void *opaque
, uint32_t address
, uint32_t data
)
398 #ifdef DEBUG_UNUSED_IOPORT
399 fprintf(stderr
, "unused outl: port=0x%04x data=0x%02x\n", address
, data
);
403 /* size is the word size in byte */
404 int register_ioport_read(int start
, int length
, int size
,
405 IOPortReadFunc
*func
, void *opaque
)
411 } else if (size
== 2) {
413 } else if (size
== 4) {
416 hw_error("register_ioport_read: invalid size");
419 for(i
= start
; i
< start
+ length
; i
+= size
) {
420 ioport_read_table
[bsize
][i
] = func
;
421 if (ioport_opaque
[i
] != NULL
&& ioport_opaque
[i
] != opaque
)
422 hw_error("register_ioport_read: invalid opaque");
423 ioport_opaque
[i
] = opaque
;
428 /* size is the word size in byte */
429 int register_ioport_write(int start
, int length
, int size
,
430 IOPortWriteFunc
*func
, void *opaque
)
436 } else if (size
== 2) {
438 } else if (size
== 4) {
441 hw_error("register_ioport_write: invalid size");
444 for(i
= start
; i
< start
+ length
; i
+= size
) {
445 ioport_write_table
[bsize
][i
] = func
;
446 if (ioport_opaque
[i
] != NULL
&& ioport_opaque
[i
] != opaque
)
447 hw_error("register_ioport_write: invalid opaque");
448 ioport_opaque
[i
] = opaque
;
453 void isa_unassign_ioport(int start
, int length
)
457 for(i
= start
; i
< start
+ length
; i
++) {
458 ioport_read_table
[0][i
] = default_ioport_readb
;
459 ioport_read_table
[1][i
] = default_ioport_readw
;
460 ioport_read_table
[2][i
] = default_ioport_readl
;
462 ioport_write_table
[0][i
] = default_ioport_writeb
;
463 ioport_write_table
[1][i
] = default_ioport_writew
;
464 ioport_write_table
[2][i
] = default_ioport_writel
;
466 ioport_opaque
[i
] = NULL
;
470 /***********************************************************/
472 void cpu_outb(CPUState
*env
, int addr
, int val
)
474 LOG_IOPORT("outb: %04x %02x\n", addr
, val
);
475 ioport_write(0, addr
, val
);
478 env
->last_io_time
= cpu_get_time_fast();
482 void cpu_outw(CPUState
*env
, int addr
, int val
)
484 LOG_IOPORT("outw: %04x %04x\n", addr
, val
);
485 ioport_write(1, addr
, val
);
488 env
->last_io_time
= cpu_get_time_fast();
492 void cpu_outl(CPUState
*env
, int addr
, int val
)
494 LOG_IOPORT("outl: %04x %08x\n", addr
, val
);
495 ioport_write(2, addr
, val
);
498 env
->last_io_time
= cpu_get_time_fast();
502 int cpu_inb(CPUState
*env
, int addr
)
505 val
= ioport_read(0, addr
);
506 LOG_IOPORT("inb : %04x %02x\n", addr
, val
);
509 env
->last_io_time
= cpu_get_time_fast();
514 int cpu_inw(CPUState
*env
, int addr
)
517 val
= ioport_read(1, addr
);
518 LOG_IOPORT("inw : %04x %04x\n", addr
, val
);
521 env
->last_io_time
= cpu_get_time_fast();
526 int cpu_inl(CPUState
*env
, int addr
)
529 val
= ioport_read(2, addr
);
530 LOG_IOPORT("inl : %04x %08x\n", addr
, val
);
533 env
->last_io_time
= cpu_get_time_fast();
538 /***********************************************************/
539 void hw_error(const char *fmt
, ...)
545 fprintf(stderr
, "qemu: hardware error: ");
546 vfprintf(stderr
, fmt
, ap
);
547 fprintf(stderr
, "\n");
548 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
549 fprintf(stderr
, "CPU #%d:\n", env
->cpu_index
);
551 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
);
553 cpu_dump_state(env
, stderr
, fprintf
, 0);
563 static QEMUBalloonEvent
*qemu_balloon_event
;
564 void *qemu_balloon_event_opaque
;
566 void qemu_add_balloon_handler(QEMUBalloonEvent
*func
, void *opaque
)
568 qemu_balloon_event
= func
;
569 qemu_balloon_event_opaque
= opaque
;
572 void qemu_balloon(ram_addr_t target
)
574 if (qemu_balloon_event
)
575 qemu_balloon_event(qemu_balloon_event_opaque
, target
);
578 ram_addr_t
qemu_balloon_status(void)
580 if (qemu_balloon_event
)
581 return qemu_balloon_event(qemu_balloon_event_opaque
, 0);
585 /***********************************************************/
588 static QEMUPutKBDEvent
*qemu_put_kbd_event
;
589 static void *qemu_put_kbd_event_opaque
;
590 static QEMUPutMouseEntry
*qemu_put_mouse_event_head
;
591 static QEMUPutMouseEntry
*qemu_put_mouse_event_current
;
593 void qemu_add_kbd_event_handler(QEMUPutKBDEvent
*func
, void *opaque
)
595 qemu_put_kbd_event_opaque
= opaque
;
596 qemu_put_kbd_event
= func
;
599 QEMUPutMouseEntry
*qemu_add_mouse_event_handler(QEMUPutMouseEvent
*func
,
600 void *opaque
, int absolute
,
603 QEMUPutMouseEntry
*s
, *cursor
;
605 s
= qemu_mallocz(sizeof(QEMUPutMouseEntry
));
607 s
->qemu_put_mouse_event
= func
;
608 s
->qemu_put_mouse_event_opaque
= opaque
;
609 s
->qemu_put_mouse_event_absolute
= absolute
;
610 s
->qemu_put_mouse_event_name
= qemu_strdup(name
);
613 if (!qemu_put_mouse_event_head
) {
614 qemu_put_mouse_event_head
= qemu_put_mouse_event_current
= s
;
618 cursor
= qemu_put_mouse_event_head
;
619 while (cursor
->next
!= NULL
)
620 cursor
= cursor
->next
;
623 qemu_put_mouse_event_current
= s
;
628 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry
*entry
)
630 QEMUPutMouseEntry
*prev
= NULL
, *cursor
;
632 if (!qemu_put_mouse_event_head
|| entry
== NULL
)
635 cursor
= qemu_put_mouse_event_head
;
636 while (cursor
!= NULL
&& cursor
!= entry
) {
638 cursor
= cursor
->next
;
641 if (cursor
== NULL
) // does not exist or list empty
643 else if (prev
== NULL
) { // entry is head
644 qemu_put_mouse_event_head
= cursor
->next
;
645 if (qemu_put_mouse_event_current
== entry
)
646 qemu_put_mouse_event_current
= cursor
->next
;
647 qemu_free(entry
->qemu_put_mouse_event_name
);
652 prev
->next
= entry
->next
;
654 if (qemu_put_mouse_event_current
== entry
)
655 qemu_put_mouse_event_current
= prev
;
657 qemu_free(entry
->qemu_put_mouse_event_name
);
661 void kbd_put_keycode(int keycode
)
663 if (qemu_put_kbd_event
) {
664 qemu_put_kbd_event(qemu_put_kbd_event_opaque
, keycode
);
668 void kbd_mouse_event(int dx
, int dy
, int dz
, int buttons_state
)
670 QEMUPutMouseEvent
*mouse_event
;
671 void *mouse_event_opaque
;
674 if (!qemu_put_mouse_event_current
) {
679 qemu_put_mouse_event_current
->qemu_put_mouse_event
;
681 qemu_put_mouse_event_current
->qemu_put_mouse_event_opaque
;
684 if (graphic_rotate
) {
685 if (qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
)
688 width
= graphic_width
- 1;
689 mouse_event(mouse_event_opaque
,
690 width
- dy
, dx
, dz
, buttons_state
);
692 mouse_event(mouse_event_opaque
,
693 dx
, dy
, dz
, buttons_state
);
697 int kbd_mouse_is_absolute(void)
699 if (!qemu_put_mouse_event_current
)
702 return qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
;
705 void do_info_mice(Monitor
*mon
)
707 QEMUPutMouseEntry
*cursor
;
710 if (!qemu_put_mouse_event_head
) {
711 monitor_printf(mon
, "No mouse devices connected\n");
715 monitor_printf(mon
, "Mouse devices available:\n");
716 cursor
= qemu_put_mouse_event_head
;
717 while (cursor
!= NULL
) {
718 monitor_printf(mon
, "%c Mouse #%d: %s\n",
719 (cursor
== qemu_put_mouse_event_current
? '*' : ' '),
720 index
, cursor
->qemu_put_mouse_event_name
);
722 cursor
= cursor
->next
;
726 void do_mouse_set(Monitor
*mon
, int index
)
728 QEMUPutMouseEntry
*cursor
;
731 if (!qemu_put_mouse_event_head
) {
732 monitor_printf(mon
, "No mouse devices connected\n");
736 cursor
= qemu_put_mouse_event_head
;
737 while (cursor
!= NULL
&& index
!= i
) {
739 cursor
= cursor
->next
;
743 qemu_put_mouse_event_current
= cursor
;
745 monitor_printf(mon
, "Mouse at given index not found\n");
748 /* compute with 96 bit intermediate result: (a*b)/c */
749 uint64_t muldiv64(uint64_t a
, uint32_t b
, uint32_t c
)
754 #ifdef WORDS_BIGENDIAN
764 rl
= (uint64_t)u
.l
.low
* (uint64_t)b
;
765 rh
= (uint64_t)u
.l
.high
* (uint64_t)b
;
768 res
.l
.low
= (((rh
% c
) << 32) + (rl
& 0xffffffff)) / c
;
772 /***********************************************************/
773 /* real time host monotonic timer */
775 #define QEMU_TIMER_BASE 1000000000LL
779 static int64_t clock_freq
;
781 static void init_get_clock(void)
785 ret
= QueryPerformanceFrequency(&freq
);
787 fprintf(stderr
, "Could not calibrate ticks\n");
790 clock_freq
= freq
.QuadPart
;
793 static int64_t get_clock(void)
796 QueryPerformanceCounter(&ti
);
797 return muldiv64(ti
.QuadPart
, QEMU_TIMER_BASE
, clock_freq
);
802 static int use_rt_clock
;
804 static void init_get_clock(void)
807 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
808 || defined(__DragonFly__)
811 if (clock_gettime(CLOCK_MONOTONIC
, &ts
) == 0) {
818 static int64_t get_clock(void)
820 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
821 || defined(__DragonFly__)
824 clock_gettime(CLOCK_MONOTONIC
, &ts
);
825 return ts
.tv_sec
* 1000000000LL + ts
.tv_nsec
;
829 /* XXX: using gettimeofday leads to problems if the date
830 changes, so it should be avoided. */
832 gettimeofday(&tv
, NULL
);
833 return tv
.tv_sec
* 1000000000LL + (tv
.tv_usec
* 1000);
838 /* Return the virtual CPU time, based on the instruction counter. */
839 static int64_t cpu_get_icount(void)
842 CPUState
*env
= cpu_single_env
;;
843 icount
= qemu_icount
;
846 fprintf(stderr
, "Bad clock read\n");
847 icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
849 return qemu_icount_bias
+ (icount
<< icount_time_shift
);
852 /***********************************************************/
853 /* guest cycle counter */
855 static int64_t cpu_ticks_prev
;
856 static int64_t cpu_ticks_offset
;
857 static int64_t cpu_clock_offset
;
858 static int cpu_ticks_enabled
;
860 /* return the host CPU cycle counter and handle stop/restart */
861 int64_t cpu_get_ticks(void)
864 return cpu_get_icount();
866 if (!cpu_ticks_enabled
) {
867 return cpu_ticks_offset
;
870 ticks
= cpu_get_real_ticks();
871 if (cpu_ticks_prev
> ticks
) {
872 /* Note: non increasing ticks may happen if the host uses
874 cpu_ticks_offset
+= cpu_ticks_prev
- ticks
;
876 cpu_ticks_prev
= ticks
;
877 return ticks
+ cpu_ticks_offset
;
881 /* return the host CPU monotonic timer and handle stop/restart */
882 static int64_t cpu_get_clock(void)
885 if (!cpu_ticks_enabled
) {
886 return cpu_clock_offset
;
889 return ti
+ cpu_clock_offset
;
893 /* enable cpu_get_ticks() */
894 void cpu_enable_ticks(void)
896 if (!cpu_ticks_enabled
) {
897 cpu_ticks_offset
-= cpu_get_real_ticks();
898 cpu_clock_offset
-= get_clock();
899 cpu_ticks_enabled
= 1;
903 /* disable cpu_get_ticks() : the clock is stopped. You must not call
904 cpu_get_ticks() after that. */
905 void cpu_disable_ticks(void)
907 if (cpu_ticks_enabled
) {
908 cpu_ticks_offset
= cpu_get_ticks();
909 cpu_clock_offset
= cpu_get_clock();
910 cpu_ticks_enabled
= 0;
914 /***********************************************************/
917 #define QEMU_TIMER_REALTIME 0
918 #define QEMU_TIMER_VIRTUAL 1
922 /* XXX: add frequency */
930 struct QEMUTimer
*next
;
933 struct qemu_alarm_timer
{
937 int (*start
)(struct qemu_alarm_timer
*t
);
938 void (*stop
)(struct qemu_alarm_timer
*t
);
939 void (*rearm
)(struct qemu_alarm_timer
*t
);
943 #define ALARM_FLAG_DYNTICKS 0x1
944 #define ALARM_FLAG_EXPIRED 0x2
946 static inline int alarm_has_dynticks(struct qemu_alarm_timer
*t
)
948 return t
&& (t
->flags
& ALARM_FLAG_DYNTICKS
);
951 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer
*t
)
953 if (!alarm_has_dynticks(t
))
959 /* TODO: MIN_TIMER_REARM_US should be optimized */
960 #define MIN_TIMER_REARM_US 250
962 static struct qemu_alarm_timer
*alarm_timer
;
966 struct qemu_alarm_win32
{
969 } alarm_win32_data
= {0, -1};
971 static int win32_start_timer(struct qemu_alarm_timer
*t
);
972 static void win32_stop_timer(struct qemu_alarm_timer
*t
);
973 static void win32_rearm_timer(struct qemu_alarm_timer
*t
);
977 static int unix_start_timer(struct qemu_alarm_timer
*t
);
978 static void unix_stop_timer(struct qemu_alarm_timer
*t
);
982 static int dynticks_start_timer(struct qemu_alarm_timer
*t
);
983 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
);
984 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
);
986 static int hpet_start_timer(struct qemu_alarm_timer
*t
);
987 static void hpet_stop_timer(struct qemu_alarm_timer
*t
);
989 static int rtc_start_timer(struct qemu_alarm_timer
*t
);
990 static void rtc_stop_timer(struct qemu_alarm_timer
*t
);
992 #endif /* __linux__ */
996 /* Correlation between real and virtual time is always going to be
997 fairly approximate, so ignore small variation.
998 When the guest is idle real and virtual time will be aligned in
1000 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
1002 static void icount_adjust(void)
1007 static int64_t last_delta
;
1008 /* If the VM is not running, then do nothing. */
1012 cur_time
= cpu_get_clock();
1013 cur_icount
= qemu_get_clock(vm_clock
);
1014 delta
= cur_icount
- cur_time
;
1015 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
1017 && last_delta
+ ICOUNT_WOBBLE
< delta
* 2
1018 && icount_time_shift
> 0) {
1019 /* The guest is getting too far ahead. Slow time down. */
1020 icount_time_shift
--;
1023 && last_delta
- ICOUNT_WOBBLE
> delta
* 2
1024 && icount_time_shift
< MAX_ICOUNT_SHIFT
) {
1025 /* The guest is getting too far behind. Speed time up. */
1026 icount_time_shift
++;
1029 qemu_icount_bias
= cur_icount
- (qemu_icount
<< icount_time_shift
);
1032 static void icount_adjust_rt(void * opaque
)
1034 qemu_mod_timer(icount_rt_timer
,
1035 qemu_get_clock(rt_clock
) + 1000);
1039 static void icount_adjust_vm(void * opaque
)
1041 qemu_mod_timer(icount_vm_timer
,
1042 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
1046 static void init_icount_adjust(void)
1048 /* Have both realtime and virtual time triggers for speed adjustment.
1049 The realtime trigger catches emulated time passing too slowly,
1050 the virtual time trigger catches emulated time passing too fast.
1051 Realtime triggers occur even when idle, so use them less frequently
1052 than VM triggers. */
1053 icount_rt_timer
= qemu_new_timer(rt_clock
, icount_adjust_rt
, NULL
);
1054 qemu_mod_timer(icount_rt_timer
,
1055 qemu_get_clock(rt_clock
) + 1000);
1056 icount_vm_timer
= qemu_new_timer(vm_clock
, icount_adjust_vm
, NULL
);
1057 qemu_mod_timer(icount_vm_timer
,
1058 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
1061 static struct qemu_alarm_timer alarm_timers
[] = {
1064 {"dynticks", ALARM_FLAG_DYNTICKS
, dynticks_start_timer
,
1065 dynticks_stop_timer
, dynticks_rearm_timer
, NULL
},
1066 /* HPET - if available - is preferred */
1067 {"hpet", 0, hpet_start_timer
, hpet_stop_timer
, NULL
, NULL
},
1068 /* ...otherwise try RTC */
1069 {"rtc", 0, rtc_start_timer
, rtc_stop_timer
, NULL
, NULL
},
1071 {"unix", 0, unix_start_timer
, unix_stop_timer
, NULL
, NULL
},
1073 {"dynticks", ALARM_FLAG_DYNTICKS
, win32_start_timer
,
1074 win32_stop_timer
, win32_rearm_timer
, &alarm_win32_data
},
1075 {"win32", 0, win32_start_timer
,
1076 win32_stop_timer
, NULL
, &alarm_win32_data
},
1081 static void show_available_alarms(void)
1085 printf("Available alarm timers, in order of precedence:\n");
1086 for (i
= 0; alarm_timers
[i
].name
; i
++)
1087 printf("%s\n", alarm_timers
[i
].name
);
1090 static void configure_alarms(char const *opt
)
1094 int count
= ARRAY_SIZE(alarm_timers
) - 1;
1097 struct qemu_alarm_timer tmp
;
1099 if (!strcmp(opt
, "?")) {
1100 show_available_alarms();
1106 /* Reorder the array */
1107 name
= strtok(arg
, ",");
1109 for (i
= 0; i
< count
&& alarm_timers
[i
].name
; i
++) {
1110 if (!strcmp(alarm_timers
[i
].name
, name
))
1115 fprintf(stderr
, "Unknown clock %s\n", name
);
1124 tmp
= alarm_timers
[i
];
1125 alarm_timers
[i
] = alarm_timers
[cur
];
1126 alarm_timers
[cur
] = tmp
;
1130 name
= strtok(NULL
, ",");
1136 /* Disable remaining timers */
1137 for (i
= cur
; i
< count
; i
++)
1138 alarm_timers
[i
].name
= NULL
;
1140 show_available_alarms();
1145 QEMUClock
*rt_clock
;
1146 QEMUClock
*vm_clock
;
1148 static QEMUTimer
*active_timers
[2];
1150 static QEMUClock
*qemu_new_clock(int type
)
1153 clock
= qemu_mallocz(sizeof(QEMUClock
));
1158 QEMUTimer
*qemu_new_timer(QEMUClock
*clock
, QEMUTimerCB
*cb
, void *opaque
)
1162 ts
= qemu_mallocz(sizeof(QEMUTimer
));
1165 ts
->opaque
= opaque
;
1169 void qemu_free_timer(QEMUTimer
*ts
)
1174 /* stop a timer, but do not dealloc it */
1175 void qemu_del_timer(QEMUTimer
*ts
)
1179 /* NOTE: this code must be signal safe because
1180 qemu_timer_expired() can be called from a signal. */
1181 pt
= &active_timers
[ts
->clock
->type
];
1194 /* modify the current timer so that it will be fired when current_time
1195 >= expire_time. The corresponding callback will be called. */
1196 void qemu_mod_timer(QEMUTimer
*ts
, int64_t expire_time
)
1202 /* add the timer in the sorted list */
1203 /* NOTE: this code must be signal safe because
1204 qemu_timer_expired() can be called from a signal. */
1205 pt
= &active_timers
[ts
->clock
->type
];
1210 if (t
->expire_time
> expire_time
)
1214 ts
->expire_time
= expire_time
;
1218 /* Rearm if necessary */
1219 if (pt
== &active_timers
[ts
->clock
->type
]) {
1220 if ((alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) == 0) {
1221 qemu_rearm_alarm_timer(alarm_timer
);
1223 /* Interrupt execution to force deadline recalculation. */
1225 qemu_notify_event();
1229 int qemu_timer_pending(QEMUTimer
*ts
)
1232 for(t
= active_timers
[ts
->clock
->type
]; t
!= NULL
; t
= t
->next
) {
1239 static inline int qemu_timer_expired(QEMUTimer
*timer_head
, int64_t current_time
)
1243 return (timer_head
->expire_time
<= current_time
);
1246 static void qemu_run_timers(QEMUTimer
**ptimer_head
, int64_t current_time
)
1252 if (!ts
|| ts
->expire_time
> current_time
)
1254 /* remove timer from the list before calling the callback */
1255 *ptimer_head
= ts
->next
;
1258 /* run the callback (the timer list can be modified) */
1263 int64_t qemu_get_clock(QEMUClock
*clock
)
1265 switch(clock
->type
) {
1266 case QEMU_TIMER_REALTIME
:
1267 return get_clock() / 1000000;
1269 case QEMU_TIMER_VIRTUAL
:
1271 return cpu_get_icount();
1273 return cpu_get_clock();
1278 static void init_timers(void)
1281 ticks_per_sec
= QEMU_TIMER_BASE
;
1282 rt_clock
= qemu_new_clock(QEMU_TIMER_REALTIME
);
1283 vm_clock
= qemu_new_clock(QEMU_TIMER_VIRTUAL
);
1287 void qemu_put_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1289 uint64_t expire_time
;
1291 if (qemu_timer_pending(ts
)) {
1292 expire_time
= ts
->expire_time
;
1296 qemu_put_be64(f
, expire_time
);
1299 void qemu_get_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1301 uint64_t expire_time
;
1303 expire_time
= qemu_get_be64(f
);
1304 if (expire_time
!= -1) {
1305 qemu_mod_timer(ts
, expire_time
);
1311 static void timer_save(QEMUFile
*f
, void *opaque
)
1313 if (cpu_ticks_enabled
) {
1314 hw_error("cannot save state if virtual timers are running");
1316 qemu_put_be64(f
, cpu_ticks_offset
);
1317 qemu_put_be64(f
, ticks_per_sec
);
1318 qemu_put_be64(f
, cpu_clock_offset
);
1321 static int timer_load(QEMUFile
*f
, void *opaque
, int version_id
)
1323 if (version_id
!= 1 && version_id
!= 2)
1325 if (cpu_ticks_enabled
) {
1328 cpu_ticks_offset
=qemu_get_be64(f
);
1329 ticks_per_sec
=qemu_get_be64(f
);
1330 if (version_id
== 2) {
1331 cpu_clock_offset
=qemu_get_be64(f
);
1336 static void qemu_event_increment(void);
1339 static void CALLBACK
host_alarm_handler(UINT uTimerID
, UINT uMsg
,
1340 DWORD_PTR dwUser
, DWORD_PTR dw1
,
1343 static void host_alarm_handler(int host_signum
)
1347 #define DISP_FREQ 1000
1349 static int64_t delta_min
= INT64_MAX
;
1350 static int64_t delta_max
, delta_cum
, last_clock
, delta
, ti
;
1352 ti
= qemu_get_clock(vm_clock
);
1353 if (last_clock
!= 0) {
1354 delta
= ti
- last_clock
;
1355 if (delta
< delta_min
)
1357 if (delta
> delta_max
)
1360 if (++count
== DISP_FREQ
) {
1361 printf("timer: min=%" PRId64
" us max=%" PRId64
" us avg=%" PRId64
" us avg_freq=%0.3f Hz\n",
1362 muldiv64(delta_min
, 1000000, ticks_per_sec
),
1363 muldiv64(delta_max
, 1000000, ticks_per_sec
),
1364 muldiv64(delta_cum
, 1000000 / DISP_FREQ
, ticks_per_sec
),
1365 (double)ticks_per_sec
/ ((double)delta_cum
/ DISP_FREQ
));
1367 delta_min
= INT64_MAX
;
1375 if (alarm_has_dynticks(alarm_timer
) ||
1377 qemu_timer_expired(active_timers
[QEMU_TIMER_VIRTUAL
],
1378 qemu_get_clock(vm_clock
))) ||
1379 qemu_timer_expired(active_timers
[QEMU_TIMER_REALTIME
],
1380 qemu_get_clock(rt_clock
))) {
1381 qemu_event_increment();
1382 if (alarm_timer
) alarm_timer
->flags
|= ALARM_FLAG_EXPIRED
;
1384 #ifndef CONFIG_IOTHREAD
1386 /* stop the currently executing cpu because a timer occured */
1389 if (next_cpu
->kqemu_enabled
) {
1390 kqemu_cpu_interrupt(next_cpu
);
1395 timer_alarm_pending
= 1;
1396 qemu_notify_event();
1400 static int64_t qemu_next_deadline(void)
1404 if (active_timers
[QEMU_TIMER_VIRTUAL
]) {
1405 delta
= active_timers
[QEMU_TIMER_VIRTUAL
]->expire_time
-
1406 qemu_get_clock(vm_clock
);
1408 /* To avoid problems with overflow limit this to 2^32. */
1418 #if defined(__linux__) || defined(_WIN32)
1419 static uint64_t qemu_next_deadline_dyntick(void)
1427 delta
= (qemu_next_deadline() + 999) / 1000;
1429 if (active_timers
[QEMU_TIMER_REALTIME
]) {
1430 rtdelta
= (active_timers
[QEMU_TIMER_REALTIME
]->expire_time
-
1431 qemu_get_clock(rt_clock
))*1000;
1432 if (rtdelta
< delta
)
1436 if (delta
< MIN_TIMER_REARM_US
)
1437 delta
= MIN_TIMER_REARM_US
;
1445 /* Sets a specific flag */
1446 static int fcntl_setfl(int fd
, int flag
)
1450 flags
= fcntl(fd
, F_GETFL
);
1454 if (fcntl(fd
, F_SETFL
, flags
| flag
) == -1)
1460 #if defined(__linux__)
1462 #define RTC_FREQ 1024
1464 static void enable_sigio_timer(int fd
)
1466 struct sigaction act
;
1469 sigfillset(&act
.sa_mask
);
1471 act
.sa_handler
= host_alarm_handler
;
1473 sigaction(SIGIO
, &act
, NULL
);
1474 fcntl_setfl(fd
, O_ASYNC
);
1475 fcntl(fd
, F_SETOWN
, getpid());
1478 static int hpet_start_timer(struct qemu_alarm_timer
*t
)
1480 struct hpet_info info
;
1483 fd
= open("/dev/hpet", O_RDONLY
);
1488 r
= ioctl(fd
, HPET_IRQFREQ
, RTC_FREQ
);
1490 fprintf(stderr
, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1491 "error, but for better emulation accuracy type:\n"
1492 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1496 /* Check capabilities */
1497 r
= ioctl(fd
, HPET_INFO
, &info
);
1501 /* Enable periodic mode */
1502 r
= ioctl(fd
, HPET_EPI
, 0);
1503 if (info
.hi_flags
&& (r
< 0))
1506 /* Enable interrupt */
1507 r
= ioctl(fd
, HPET_IE_ON
, 0);
1511 enable_sigio_timer(fd
);
1512 t
->priv
= (void *)(long)fd
;
1520 static void hpet_stop_timer(struct qemu_alarm_timer
*t
)
1522 int fd
= (long)t
->priv
;
1527 static int rtc_start_timer(struct qemu_alarm_timer
*t
)
1530 unsigned long current_rtc_freq
= 0;
1532 TFR(rtc_fd
= open("/dev/rtc", O_RDONLY
));
1535 ioctl(rtc_fd
, RTC_IRQP_READ
, ¤t_rtc_freq
);
1536 if (current_rtc_freq
!= RTC_FREQ
&&
1537 ioctl(rtc_fd
, RTC_IRQP_SET
, RTC_FREQ
) < 0) {
1538 fprintf(stderr
, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1539 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1540 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1543 if (ioctl(rtc_fd
, RTC_PIE_ON
, 0) < 0) {
1549 enable_sigio_timer(rtc_fd
);
1551 t
->priv
= (void *)(long)rtc_fd
;
1556 static void rtc_stop_timer(struct qemu_alarm_timer
*t
)
1558 int rtc_fd
= (long)t
->priv
;
1563 static int dynticks_start_timer(struct qemu_alarm_timer
*t
)
1567 struct sigaction act
;
1569 sigfillset(&act
.sa_mask
);
1571 act
.sa_handler
= host_alarm_handler
;
1573 sigaction(SIGALRM
, &act
, NULL
);
1576 * Initialize ev struct to 0 to avoid valgrind complaining
1577 * about uninitialized data in timer_create call
1579 memset(&ev
, 0, sizeof(ev
));
1580 ev
.sigev_value
.sival_int
= 0;
1581 ev
.sigev_notify
= SIGEV_SIGNAL
;
1582 ev
.sigev_signo
= SIGALRM
;
1584 if (timer_create(CLOCK_REALTIME
, &ev
, &host_timer
)) {
1585 perror("timer_create");
1587 /* disable dynticks */
1588 fprintf(stderr
, "Dynamic Ticks disabled\n");
1593 t
->priv
= (void *)(long)host_timer
;
1598 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
)
1600 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1602 timer_delete(host_timer
);
1605 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
)
1607 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1608 struct itimerspec timeout
;
1609 int64_t nearest_delta_us
= INT64_MAX
;
1612 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1613 !active_timers
[QEMU_TIMER_VIRTUAL
])
1616 nearest_delta_us
= qemu_next_deadline_dyntick();
1618 /* check whether a timer is already running */
1619 if (timer_gettime(host_timer
, &timeout
)) {
1621 fprintf(stderr
, "Internal timer error: aborting\n");
1624 current_us
= timeout
.it_value
.tv_sec
* 1000000 + timeout
.it_value
.tv_nsec
/1000;
1625 if (current_us
&& current_us
<= nearest_delta_us
)
1628 timeout
.it_interval
.tv_sec
= 0;
1629 timeout
.it_interval
.tv_nsec
= 0; /* 0 for one-shot timer */
1630 timeout
.it_value
.tv_sec
= nearest_delta_us
/ 1000000;
1631 timeout
.it_value
.tv_nsec
= (nearest_delta_us
% 1000000) * 1000;
1632 if (timer_settime(host_timer
, 0 /* RELATIVE */, &timeout
, NULL
)) {
1634 fprintf(stderr
, "Internal timer error: aborting\n");
1639 #endif /* defined(__linux__) */
1641 static int unix_start_timer(struct qemu_alarm_timer
*t
)
1643 struct sigaction act
;
1644 struct itimerval itv
;
1648 sigfillset(&act
.sa_mask
);
1650 act
.sa_handler
= host_alarm_handler
;
1652 sigaction(SIGALRM
, &act
, NULL
);
1654 itv
.it_interval
.tv_sec
= 0;
1655 /* for i386 kernel 2.6 to get 1 ms */
1656 itv
.it_interval
.tv_usec
= 999;
1657 itv
.it_value
.tv_sec
= 0;
1658 itv
.it_value
.tv_usec
= 10 * 1000;
1660 err
= setitimer(ITIMER_REAL
, &itv
, NULL
);
1667 static void unix_stop_timer(struct qemu_alarm_timer
*t
)
1669 struct itimerval itv
;
1671 memset(&itv
, 0, sizeof(itv
));
1672 setitimer(ITIMER_REAL
, &itv
, NULL
);
1675 #endif /* !defined(_WIN32) */
1680 static int win32_start_timer(struct qemu_alarm_timer
*t
)
1683 struct qemu_alarm_win32
*data
= t
->priv
;
1686 memset(&tc
, 0, sizeof(tc
));
1687 timeGetDevCaps(&tc
, sizeof(tc
));
1689 if (data
->period
< tc
.wPeriodMin
)
1690 data
->period
= tc
.wPeriodMin
;
1692 timeBeginPeriod(data
->period
);
1694 flags
= TIME_CALLBACK_FUNCTION
;
1695 if (alarm_has_dynticks(t
))
1696 flags
|= TIME_ONESHOT
;
1698 flags
|= TIME_PERIODIC
;
1700 data
->timerId
= timeSetEvent(1, // interval (ms)
1701 data
->period
, // resolution
1702 host_alarm_handler
, // function
1703 (DWORD
)t
, // parameter
1706 if (!data
->timerId
) {
1707 perror("Failed to initialize win32 alarm timer");
1708 timeEndPeriod(data
->period
);
1715 static void win32_stop_timer(struct qemu_alarm_timer
*t
)
1717 struct qemu_alarm_win32
*data
= t
->priv
;
1719 timeKillEvent(data
->timerId
);
1720 timeEndPeriod(data
->period
);
1723 static void win32_rearm_timer(struct qemu_alarm_timer
*t
)
1725 struct qemu_alarm_win32
*data
= t
->priv
;
1726 uint64_t nearest_delta_us
;
1728 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1729 !active_timers
[QEMU_TIMER_VIRTUAL
])
1732 nearest_delta_us
= qemu_next_deadline_dyntick();
1733 nearest_delta_us
/= 1000;
1735 timeKillEvent(data
->timerId
);
1737 data
->timerId
= timeSetEvent(1,
1741 TIME_ONESHOT
| TIME_PERIODIC
);
1743 if (!data
->timerId
) {
1744 perror("Failed to re-arm win32 alarm timer");
1746 timeEndPeriod(data
->period
);
1753 static int init_timer_alarm(void)
1755 struct qemu_alarm_timer
*t
= NULL
;
1758 for (i
= 0; alarm_timers
[i
].name
; i
++) {
1759 t
= &alarm_timers
[i
];
1779 static void quit_timers(void)
1781 alarm_timer
->stop(alarm_timer
);
1785 /***********************************************************/
1786 /* host time/date access */
1787 void qemu_get_timedate(struct tm
*tm
, int offset
)
1794 if (rtc_date_offset
== -1) {
1798 ret
= localtime(&ti
);
1800 ti
-= rtc_date_offset
;
1804 memcpy(tm
, ret
, sizeof(struct tm
));
1807 int qemu_timedate_diff(struct tm
*tm
)
1811 if (rtc_date_offset
== -1)
1813 seconds
= mktimegm(tm
);
1815 seconds
= mktime(tm
);
1817 seconds
= mktimegm(tm
) + rtc_date_offset
;
1819 return seconds
- time(NULL
);
1823 static void socket_cleanup(void)
1828 static int socket_init(void)
1833 ret
= WSAStartup(MAKEWORD(2,2), &Data
);
1835 err
= WSAGetLastError();
1836 fprintf(stderr
, "WSAStartup: %d\n", err
);
1839 atexit(socket_cleanup
);
1844 int get_param_value(char *buf
, int buf_size
,
1845 const char *tag
, const char *str
)
1852 p
= get_opt_name(option
, sizeof(option
), p
, '=');
1856 if (!strcmp(tag
, option
)) {
1857 (void)get_opt_value(buf
, buf_size
, p
);
1860 p
= get_opt_value(NULL
, 0, p
);
1869 int check_params(const char * const *params
, const char *str
)
1871 int name_buf_size
= 1;
1877 for (i
= 0; params
[i
] != NULL
; i
++) {
1878 len
= strlen(params
[i
]) + 1;
1879 if (len
> name_buf_size
) {
1880 name_buf_size
= len
;
1883 name_buf
= qemu_malloc(name_buf_size
);
1886 while (*p
!= '\0') {
1887 p
= get_opt_name(name_buf
, name_buf_size
, p
, '=');
1893 for(i
= 0; params
[i
] != NULL
; i
++)
1894 if (!strcmp(params
[i
], name_buf
))
1896 if (params
[i
] == NULL
) {
1900 p
= get_opt_value(NULL
, 0, p
);
1906 qemu_free(name_buf
);
1910 /***********************************************************/
1911 /* Bluetooth support */
1914 static struct HCIInfo
*hci_table
[MAX_NICS
];
1916 static struct bt_vlan_s
{
1917 struct bt_scatternet_s net
;
1919 struct bt_vlan_s
*next
;
1922 /* find or alloc a new bluetooth "VLAN" */
1923 static struct bt_scatternet_s
*qemu_find_bt_vlan(int id
)
1925 struct bt_vlan_s
**pvlan
, *vlan
;
1926 for (vlan
= first_bt_vlan
; vlan
!= NULL
; vlan
= vlan
->next
) {
1930 vlan
= qemu_mallocz(sizeof(struct bt_vlan_s
));
1932 pvlan
= &first_bt_vlan
;
1933 while (*pvlan
!= NULL
)
1934 pvlan
= &(*pvlan
)->next
;
1939 static void null_hci_send(struct HCIInfo
*hci
, const uint8_t *data
, int len
)
1943 static int null_hci_addr_set(struct HCIInfo
*hci
, const uint8_t *bd_addr
)
1948 static struct HCIInfo null_hci
= {
1949 .cmd_send
= null_hci_send
,
1950 .sco_send
= null_hci_send
,
1951 .acl_send
= null_hci_send
,
1952 .bdaddr_set
= null_hci_addr_set
,
1955 struct HCIInfo
*qemu_next_hci(void)
1957 if (cur_hci
== nb_hcis
)
1960 return hci_table
[cur_hci
++];
1963 static struct HCIInfo
*hci_init(const char *str
)
1966 struct bt_scatternet_s
*vlan
= 0;
1968 if (!strcmp(str
, "null"))
1971 else if (!strncmp(str
, "host", 4) && (str
[4] == '\0' || str
[4] == ':'))
1973 return bt_host_hci(str
[4] ? str
+ 5 : "hci0");
1974 else if (!strncmp(str
, "hci", 3)) {
1977 if (!strncmp(str
+ 3, ",vlan=", 6)) {
1978 vlan
= qemu_find_bt_vlan(strtol(str
+ 9, &endp
, 0));
1983 vlan
= qemu_find_bt_vlan(0);
1985 return bt_new_hci(vlan
);
1988 fprintf(stderr
, "qemu: Unknown bluetooth HCI `%s'.\n", str
);
1993 static int bt_hci_parse(const char *str
)
1995 struct HCIInfo
*hci
;
1998 if (nb_hcis
>= MAX_NICS
) {
1999 fprintf(stderr
, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS
);
2003 hci
= hci_init(str
);
2012 bdaddr
.b
[5] = 0x56 + nb_hcis
;
2013 hci
->bdaddr_set(hci
, bdaddr
.b
);
2015 hci_table
[nb_hcis
++] = hci
;
2020 static void bt_vhci_add(int vlan_id
)
2022 struct bt_scatternet_s
*vlan
= qemu_find_bt_vlan(vlan_id
);
2025 fprintf(stderr
, "qemu: warning: adding a VHCI to "
2026 "an empty scatternet %i\n", vlan_id
);
2028 bt_vhci_init(bt_new_hci(vlan
));
2031 static struct bt_device_s
*bt_device_add(const char *opt
)
2033 struct bt_scatternet_s
*vlan
;
2035 char *endp
= strstr(opt
, ",vlan=");
2036 int len
= (endp
? endp
- opt
: strlen(opt
)) + 1;
2039 pstrcpy(devname
, MIN(sizeof(devname
), len
), opt
);
2042 vlan_id
= strtol(endp
+ 6, &endp
, 0);
2044 fprintf(stderr
, "qemu: unrecognised bluetooth vlan Id\n");
2049 vlan
= qemu_find_bt_vlan(vlan_id
);
2052 fprintf(stderr
, "qemu: warning: adding a slave device to "
2053 "an empty scatternet %i\n", vlan_id
);
2055 if (!strcmp(devname
, "keyboard"))
2056 return bt_keyboard_init(vlan
);
2058 fprintf(stderr
, "qemu: unsupported bluetooth device `%s'\n", devname
);
2062 static int bt_parse(const char *opt
)
2064 const char *endp
, *p
;
2067 if (strstart(opt
, "hci", &endp
)) {
2068 if (!*endp
|| *endp
== ',') {
2070 if (!strstart(endp
, ",vlan=", 0))
2073 return bt_hci_parse(opt
);
2075 } else if (strstart(opt
, "vhci", &endp
)) {
2076 if (!*endp
|| *endp
== ',') {
2078 if (strstart(endp
, ",vlan=", &p
)) {
2079 vlan
= strtol(p
, (char **) &endp
, 0);
2081 fprintf(stderr
, "qemu: bad scatternet '%s'\n", p
);
2085 fprintf(stderr
, "qemu: bad parameter '%s'\n", endp
+ 1);
2094 } else if (strstart(opt
, "device:", &endp
))
2095 return !bt_device_add(endp
);
2097 fprintf(stderr
, "qemu: bad bluetooth parameter '%s'\n", opt
);
2101 /***********************************************************/
2102 /* QEMU Block devices */
2104 #define HD_ALIAS "index=%d,media=disk"
2105 #define CDROM_ALIAS "index=2,media=cdrom"
2106 #define FD_ALIAS "index=%d,if=floppy"
2107 #define PFLASH_ALIAS "if=pflash"
2108 #define MTD_ALIAS "if=mtd"
2109 #define SD_ALIAS "index=0,if=sd"
2111 static int drive_opt_get_free_idx(void)
2115 for (index
= 0; index
< MAX_DRIVES
; index
++)
2116 if (!drives_opt
[index
].used
) {
2117 drives_opt
[index
].used
= 1;
2124 static int drive_get_free_idx(void)
2128 for (index
= 0; index
< MAX_DRIVES
; index
++)
2129 if (!drives_table
[index
].used
) {
2130 drives_table
[index
].used
= 1;
2137 int drive_add(const char *file
, const char *fmt
, ...)
2140 int index
= drive_opt_get_free_idx();
2142 if (nb_drives_opt
>= MAX_DRIVES
|| index
== -1) {
2143 fprintf(stderr
, "qemu: too many drives\n");
2147 drives_opt
[index
].file
= file
;
2149 vsnprintf(drives_opt
[index
].opt
,
2150 sizeof(drives_opt
[0].opt
), fmt
, ap
);
2157 void drive_remove(int index
)
2159 drives_opt
[index
].used
= 0;
2163 int drive_get_index(BlockInterfaceType type
, int bus
, int unit
)
2167 /* seek interface, bus and unit */
2169 for (index
= 0; index
< MAX_DRIVES
; index
++)
2170 if (drives_table
[index
].type
== type
&&
2171 drives_table
[index
].bus
== bus
&&
2172 drives_table
[index
].unit
== unit
&&
2173 drives_table
[index
].used
)
2179 int drive_get_max_bus(BlockInterfaceType type
)
2185 for (index
= 0; index
< nb_drives
; index
++) {
2186 if(drives_table
[index
].type
== type
&&
2187 drives_table
[index
].bus
> max_bus
)
2188 max_bus
= drives_table
[index
].bus
;
2193 const char *drive_get_serial(BlockDriverState
*bdrv
)
2197 for (index
= 0; index
< nb_drives
; index
++)
2198 if (drives_table
[index
].bdrv
== bdrv
)
2199 return drives_table
[index
].serial
;
2204 BlockInterfaceErrorAction
drive_get_onerror(BlockDriverState
*bdrv
)
2208 for (index
= 0; index
< nb_drives
; index
++)
2209 if (drives_table
[index
].bdrv
== bdrv
)
2210 return drives_table
[index
].onerror
;
2212 return BLOCK_ERR_STOP_ENOSPC
;
2215 static void bdrv_format_print(void *opaque
, const char *name
)
2217 fprintf(stderr
, " %s", name
);
2220 void drive_uninit(BlockDriverState
*bdrv
)
2224 for (i
= 0; i
< MAX_DRIVES
; i
++)
2225 if (drives_table
[i
].bdrv
== bdrv
) {
2226 drives_table
[i
].bdrv
= NULL
;
2227 drives_table
[i
].used
= 0;
2228 drive_remove(drives_table
[i
].drive_opt_idx
);
2234 int drive_init(struct drive_opt
*arg
, int snapshot
, void *opaque
)
2240 const char *mediastr
= "";
2241 BlockInterfaceType type
;
2242 enum { MEDIA_DISK
, MEDIA_CDROM
} media
;
2243 int bus_id
, unit_id
;
2244 int cyls
, heads
, secs
, translation
;
2245 BlockDriverState
*bdrv
;
2246 BlockDriver
*drv
= NULL
;
2247 QEMUMachine
*machine
= opaque
;
2251 int bdrv_flags
, onerror
;
2252 int drives_table_idx
;
2253 char *str
= arg
->opt
;
2254 static const char * const params
[] = { "bus", "unit", "if", "index",
2255 "cyls", "heads", "secs", "trans",
2256 "media", "snapshot", "file",
2257 "cache", "format", "serial", "werror",
2260 if (check_params(params
, str
) < 0) {
2261 fprintf(stderr
, "qemu: unknown parameter in '%s'\n", str
);
2266 cyls
= heads
= secs
= 0;
2269 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2273 if (machine
->use_scsi
) {
2275 max_devs
= MAX_SCSI_DEVS
;
2276 pstrcpy(devname
, sizeof(devname
), "scsi");
2279 max_devs
= MAX_IDE_DEVS
;
2280 pstrcpy(devname
, sizeof(devname
), "ide");
2284 /* extract parameters */
2286 if (get_param_value(buf
, sizeof(buf
), "bus", str
)) {
2287 bus_id
= strtol(buf
, NULL
, 0);
2289 fprintf(stderr
, "qemu: '%s' invalid bus id\n", str
);
2294 if (get_param_value(buf
, sizeof(buf
), "unit", str
)) {
2295 unit_id
= strtol(buf
, NULL
, 0);
2297 fprintf(stderr
, "qemu: '%s' invalid unit id\n", str
);
2302 if (get_param_value(buf
, sizeof(buf
), "if", str
)) {
2303 pstrcpy(devname
, sizeof(devname
), buf
);
2304 if (!strcmp(buf
, "ide")) {
2306 max_devs
= MAX_IDE_DEVS
;
2307 } else if (!strcmp(buf
, "scsi")) {
2309 max_devs
= MAX_SCSI_DEVS
;
2310 } else if (!strcmp(buf
, "floppy")) {
2313 } else if (!strcmp(buf
, "pflash")) {
2316 } else if (!strcmp(buf
, "mtd")) {
2319 } else if (!strcmp(buf
, "sd")) {
2322 } else if (!strcmp(buf
, "virtio")) {
2325 } else if (!strcmp(buf
, "xen")) {
2329 fprintf(stderr
, "qemu: '%s' unsupported bus type '%s'\n", str
, buf
);
2334 if (get_param_value(buf
, sizeof(buf
), "index", str
)) {
2335 index
= strtol(buf
, NULL
, 0);
2337 fprintf(stderr
, "qemu: '%s' invalid index\n", str
);
2342 if (get_param_value(buf
, sizeof(buf
), "cyls", str
)) {
2343 cyls
= strtol(buf
, NULL
, 0);
2346 if (get_param_value(buf
, sizeof(buf
), "heads", str
)) {
2347 heads
= strtol(buf
, NULL
, 0);
2350 if (get_param_value(buf
, sizeof(buf
), "secs", str
)) {
2351 secs
= strtol(buf
, NULL
, 0);
2354 if (cyls
|| heads
|| secs
) {
2355 if (cyls
< 1 || cyls
> 16383) {
2356 fprintf(stderr
, "qemu: '%s' invalid physical cyls number\n", str
);
2359 if (heads
< 1 || heads
> 16) {
2360 fprintf(stderr
, "qemu: '%s' invalid physical heads number\n", str
);
2363 if (secs
< 1 || secs
> 63) {
2364 fprintf(stderr
, "qemu: '%s' invalid physical secs number\n", str
);
2369 if (get_param_value(buf
, sizeof(buf
), "trans", str
)) {
2372 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2376 if (!strcmp(buf
, "none"))
2377 translation
= BIOS_ATA_TRANSLATION_NONE
;
2378 else if (!strcmp(buf
, "lba"))
2379 translation
= BIOS_ATA_TRANSLATION_LBA
;
2380 else if (!strcmp(buf
, "auto"))
2381 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2383 fprintf(stderr
, "qemu: '%s' invalid translation type\n", str
);
2388 if (get_param_value(buf
, sizeof(buf
), "media", str
)) {
2389 if (!strcmp(buf
, "disk")) {
2391 } else if (!strcmp(buf
, "cdrom")) {
2392 if (cyls
|| secs
|| heads
) {
2394 "qemu: '%s' invalid physical CHS format\n", str
);
2397 media
= MEDIA_CDROM
;
2399 fprintf(stderr
, "qemu: '%s' invalid media\n", str
);
2404 if (get_param_value(buf
, sizeof(buf
), "snapshot", str
)) {
2405 if (!strcmp(buf
, "on"))
2407 else if (!strcmp(buf
, "off"))
2410 fprintf(stderr
, "qemu: '%s' invalid snapshot option\n", str
);
2415 if (get_param_value(buf
, sizeof(buf
), "cache", str
)) {
2416 if (!strcmp(buf
, "off") || !strcmp(buf
, "none"))
2418 else if (!strcmp(buf
, "writethrough"))
2420 else if (!strcmp(buf
, "writeback"))
2423 fprintf(stderr
, "qemu: invalid cache option\n");
2428 if (get_param_value(buf
, sizeof(buf
), "format", str
)) {
2429 if (strcmp(buf
, "?") == 0) {
2430 fprintf(stderr
, "qemu: Supported formats:");
2431 bdrv_iterate_format(bdrv_format_print
, NULL
);
2432 fprintf(stderr
, "\n");
2435 drv
= bdrv_find_format(buf
);
2437 fprintf(stderr
, "qemu: '%s' invalid format\n", buf
);
2442 if (get_param_value(buf
, sizeof(buf
), "boot", str
)) {
2443 if (!strcmp(buf
, "on")) {
2444 if (extboot_drive
!= -1) {
2445 fprintf(stderr
, "qemu: two bootable drives specified\n");
2448 extboot_drive
= nb_drives
;
2449 } else if (strcmp(buf
, "off")) {
2450 fprintf(stderr
, "qemu: '%s' invalid boot option\n", str
);
2455 if (arg
->file
== NULL
)
2456 get_param_value(file
, sizeof(file
), "file", str
);
2458 pstrcpy(file
, sizeof(file
), arg
->file
);
2460 if (!get_param_value(serial
, sizeof(serial
), "serial", str
))
2461 memset(serial
, 0, sizeof(serial
));
2463 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2464 if (get_param_value(buf
, sizeof(serial
), "werror", str
)) {
2465 if (type
!= IF_IDE
&& type
!= IF_SCSI
&& type
!= IF_VIRTIO
) {
2466 fprintf(stderr
, "werror is no supported by this format\n");
2469 if (!strcmp(buf
, "ignore"))
2470 onerror
= BLOCK_ERR_IGNORE
;
2471 else if (!strcmp(buf
, "enospc"))
2472 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2473 else if (!strcmp(buf
, "stop"))
2474 onerror
= BLOCK_ERR_STOP_ANY
;
2475 else if (!strcmp(buf
, "report"))
2476 onerror
= BLOCK_ERR_REPORT
;
2478 fprintf(stderr
, "qemu: '%s' invalid write error action\n", buf
);
2483 /* compute bus and unit according index */
2486 if (bus_id
!= 0 || unit_id
!= -1) {
2488 "qemu: '%s' index cannot be used with bus and unit\n", str
);
2496 unit_id
= index
% max_devs
;
2497 bus_id
= index
/ max_devs
;
2501 /* if user doesn't specify a unit_id,
2502 * try to find the first free
2505 if (unit_id
== -1) {
2507 while (drive_get_index(type
, bus_id
, unit_id
) != -1) {
2509 if (max_devs
&& unit_id
>= max_devs
) {
2510 unit_id
-= max_devs
;
2518 if (max_devs
&& unit_id
>= max_devs
) {
2519 fprintf(stderr
, "qemu: '%s' unit %d too big (max is %d)\n",
2520 str
, unit_id
, max_devs
- 1);
2525 * ignore multiple definitions
2528 if (drive_get_index(type
, bus_id
, unit_id
) != -1)
2533 if (type
== IF_IDE
|| type
== IF_SCSI
)
2534 mediastr
= (media
== MEDIA_CDROM
) ? "-cd" : "-hd";
2536 snprintf(buf
, sizeof(buf
), "%s%i%s%i",
2537 devname
, bus_id
, mediastr
, unit_id
);
2539 snprintf(buf
, sizeof(buf
), "%s%s%i",
2540 devname
, mediastr
, unit_id
);
2541 bdrv
= bdrv_new(buf
);
2542 drives_table_idx
= drive_get_free_idx();
2543 drives_table
[drives_table_idx
].bdrv
= bdrv
;
2544 drives_table
[drives_table_idx
].type
= type
;
2545 drives_table
[drives_table_idx
].bus
= bus_id
;
2546 drives_table
[drives_table_idx
].unit
= unit_id
;
2547 drives_table
[drives_table_idx
].onerror
= onerror
;
2548 drives_table
[drives_table_idx
].drive_opt_idx
= arg
- drives_opt
;
2549 strncpy(drives_table
[drives_table_idx
].serial
, serial
, sizeof(serial
));
2559 bdrv_set_geometry_hint(bdrv
, cyls
, heads
, secs
);
2560 bdrv_set_translation_hint(bdrv
, translation
);
2564 bdrv_set_type_hint(bdrv
, BDRV_TYPE_CDROM
);
2569 /* FIXME: This isn't really a floppy, but it's a reasonable
2572 bdrv_set_type_hint(bdrv
, BDRV_TYPE_FLOPPY
);
2585 bdrv_flags
|= BDRV_O_SNAPSHOT
;
2586 cache
= 2; /* always use write-back with snapshot */
2588 if (cache
== 0) /* no caching */
2589 bdrv_flags
|= BDRV_O_NOCACHE
;
2590 else if (cache
== 2) /* write-back */
2591 bdrv_flags
|= BDRV_O_CACHE_WB
;
2592 else if (cache
== 3) /* not specified */
2593 bdrv_flags
|= BDRV_O_CACHE_DEF
;
2594 if (bdrv_open2(bdrv
, file
, bdrv_flags
, drv
) < 0) {
2595 fprintf(stderr
, "qemu: could not open disk image %s\n",
2599 if (bdrv_key_required(bdrv
))
2601 return drives_table_idx
;
2604 static void numa_add(const char *optarg
)
2608 unsigned long long value
, endvalue
;
2611 optarg
= get_opt_name(option
, 128, optarg
, ',') + 1;
2612 if (!strcmp(option
, "node")) {
2613 if (get_param_value(option
, 128, "nodeid", optarg
) == 0) {
2614 nodenr
= nb_numa_nodes
;
2616 nodenr
= strtoull(option
, NULL
, 10);
2619 if (get_param_value(option
, 128, "mem", optarg
) == 0) {
2620 node_mem
[nodenr
] = 0;
2622 value
= strtoull(option
, &endptr
, 0);
2624 case 0: case 'M': case 'm':
2631 node_mem
[nodenr
] = value
;
2633 if (get_param_value(option
, 128, "cpus", optarg
) == 0) {
2634 node_cpumask
[nodenr
] = 0;
2636 value
= strtoull(option
, &endptr
, 10);
2639 fprintf(stderr
, "only 64 CPUs in NUMA mode supported.\n");
2641 if (*endptr
== '-') {
2642 endvalue
= strtoull(endptr
+1, &endptr
, 10);
2643 if (endvalue
>= 63) {
2646 "only 63 CPUs in NUMA mode supported.\n");
2648 value
= (1 << (endvalue
+ 1)) - (1 << value
);
2653 node_cpumask
[nodenr
] = value
;
2660 /***********************************************************/
2663 static USBPort
*used_usb_ports
;
2664 static USBPort
*free_usb_ports
;
2666 /* ??? Maybe change this to register a hub to keep track of the topology. */
2667 void qemu_register_usb_port(USBPort
*port
, void *opaque
, int index
,
2668 usb_attachfn attach
)
2670 port
->opaque
= opaque
;
2671 port
->index
= index
;
2672 port
->attach
= attach
;
2673 port
->next
= free_usb_ports
;
2674 free_usb_ports
= port
;
2677 int usb_device_add_dev(USBDevice
*dev
)
2681 /* Find a USB port to add the device to. */
2682 port
= free_usb_ports
;
2686 /* Create a new hub and chain it on. */
2687 free_usb_ports
= NULL
;
2688 port
->next
= used_usb_ports
;
2689 used_usb_ports
= port
;
2691 hub
= usb_hub_init(VM_USB_HUB_SIZE
);
2692 usb_attach(port
, hub
);
2693 port
= free_usb_ports
;
2696 free_usb_ports
= port
->next
;
2697 port
->next
= used_usb_ports
;
2698 used_usb_ports
= port
;
2699 usb_attach(port
, dev
);
2703 static void usb_msd_password_cb(void *opaque
, int err
)
2705 USBDevice
*dev
= opaque
;
2708 usb_device_add_dev(dev
);
2710 dev
->handle_destroy(dev
);
2713 static int usb_device_add(const char *devname
, int is_hotplug
)
2718 if (!free_usb_ports
)
2721 if (strstart(devname
, "host:", &p
)) {
2722 dev
= usb_host_device_open(p
);
2723 } else if (!strcmp(devname
, "mouse")) {
2724 dev
= usb_mouse_init();
2725 } else if (!strcmp(devname
, "tablet")) {
2726 dev
= usb_tablet_init();
2727 } else if (!strcmp(devname
, "keyboard")) {
2728 dev
= usb_keyboard_init();
2729 } else if (strstart(devname
, "disk:", &p
)) {
2730 BlockDriverState
*bs
;
2732 dev
= usb_msd_init(p
);
2735 bs
= usb_msd_get_bdrv(dev
);
2736 if (bdrv_key_required(bs
)) {
2739 monitor_read_bdrv_key_start(cur_mon
, bs
, usb_msd_password_cb
,
2744 } else if (!strcmp(devname
, "wacom-tablet")) {
2745 dev
= usb_wacom_init();
2746 } else if (strstart(devname
, "serial:", &p
)) {
2747 dev
= usb_serial_init(p
);
2748 #ifdef CONFIG_BRLAPI
2749 } else if (!strcmp(devname
, "braille")) {
2750 dev
= usb_baum_init();
2752 } else if (strstart(devname
, "net:", &p
)) {
2755 if (net_client_init("nic", p
) < 0)
2757 nd_table
[nic
].model
= "usb";
2758 dev
= usb_net_init(&nd_table
[nic
]);
2759 } else if (!strcmp(devname
, "bt") || strstart(devname
, "bt:", &p
)) {
2760 dev
= usb_bt_init(devname
[2] ? hci_init(p
) :
2761 bt_new_hci(qemu_find_bt_vlan(0)));
2768 return usb_device_add_dev(dev
);
2771 int usb_device_del_addr(int bus_num
, int addr
)
2777 if (!used_usb_ports
)
2783 lastp
= &used_usb_ports
;
2784 port
= used_usb_ports
;
2785 while (port
&& port
->dev
->addr
!= addr
) {
2786 lastp
= &port
->next
;
2794 *lastp
= port
->next
;
2795 usb_attach(port
, NULL
);
2796 dev
->handle_destroy(dev
);
2797 port
->next
= free_usb_ports
;
2798 free_usb_ports
= port
;
2802 static int usb_device_del(const char *devname
)
2807 if (strstart(devname
, "host:", &p
))
2808 return usb_host_device_close(p
);
2810 if (!used_usb_ports
)
2813 p
= strchr(devname
, '.');
2816 bus_num
= strtoul(devname
, NULL
, 0);
2817 addr
= strtoul(p
+ 1, NULL
, 0);
2819 return usb_device_del_addr(bus_num
, addr
);
2822 void do_usb_add(Monitor
*mon
, const char *devname
)
2824 usb_device_add(devname
, 1);
2827 void do_usb_del(Monitor
*mon
, const char *devname
)
2829 usb_device_del(devname
);
2832 void usb_info(Monitor
*mon
)
2836 const char *speed_str
;
2839 monitor_printf(mon
, "USB support not enabled\n");
2843 for (port
= used_usb_ports
; port
; port
= port
->next
) {
2847 switch(dev
->speed
) {
2851 case USB_SPEED_FULL
:
2854 case USB_SPEED_HIGH
:
2861 monitor_printf(mon
, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2862 0, dev
->addr
, speed_str
, dev
->devname
);
2866 /***********************************************************/
2867 /* PCMCIA/Cardbus */
2869 static struct pcmcia_socket_entry_s
{
2870 PCMCIASocket
*socket
;
2871 struct pcmcia_socket_entry_s
*next
;
2872 } *pcmcia_sockets
= 0;
2874 void pcmcia_socket_register(PCMCIASocket
*socket
)
2876 struct pcmcia_socket_entry_s
*entry
;
2878 entry
= qemu_malloc(sizeof(struct pcmcia_socket_entry_s
));
2879 entry
->socket
= socket
;
2880 entry
->next
= pcmcia_sockets
;
2881 pcmcia_sockets
= entry
;
2884 void pcmcia_socket_unregister(PCMCIASocket
*socket
)
2886 struct pcmcia_socket_entry_s
*entry
, **ptr
;
2888 ptr
= &pcmcia_sockets
;
2889 for (entry
= *ptr
; entry
; ptr
= &entry
->next
, entry
= *ptr
)
2890 if (entry
->socket
== socket
) {
2896 void pcmcia_info(Monitor
*mon
)
2898 struct pcmcia_socket_entry_s
*iter
;
2900 if (!pcmcia_sockets
)
2901 monitor_printf(mon
, "No PCMCIA sockets\n");
2903 for (iter
= pcmcia_sockets
; iter
; iter
= iter
->next
)
2904 monitor_printf(mon
, "%s: %s\n", iter
->socket
->slot_string
,
2905 iter
->socket
->attached
? iter
->socket
->card_string
:
2909 /***********************************************************/
2910 /* register display */
2912 struct DisplayAllocator default_allocator
= {
2913 defaultallocator_create_displaysurface
,
2914 defaultallocator_resize_displaysurface
,
2915 defaultallocator_free_displaysurface
2918 void register_displaystate(DisplayState
*ds
)
2928 DisplayState
*get_displaystate(void)
2930 return display_state
;
2933 DisplayAllocator
*register_displayallocator(DisplayState
*ds
, DisplayAllocator
*da
)
2935 if(ds
->allocator
== &default_allocator
) ds
->allocator
= da
;
2936 return ds
->allocator
;
2941 static void dumb_display_init(void)
2943 DisplayState
*ds
= qemu_mallocz(sizeof(DisplayState
));
2944 ds
->allocator
= &default_allocator
;
2945 ds
->surface
= qemu_create_displaysurface(ds
, 640, 480);
2946 register_displaystate(ds
);
2949 /***********************************************************/
2952 typedef struct IOHandlerRecord
{
2954 IOCanRWHandler
*fd_read_poll
;
2956 IOHandler
*fd_write
;
2959 /* temporary data */
2961 struct IOHandlerRecord
*next
;
2964 static IOHandlerRecord
*first_io_handler
;
2966 /* XXX: fd_read_poll should be suppressed, but an API change is
2967 necessary in the character devices to suppress fd_can_read(). */
2968 int qemu_set_fd_handler2(int fd
,
2969 IOCanRWHandler
*fd_read_poll
,
2971 IOHandler
*fd_write
,
2974 IOHandlerRecord
**pioh
, *ioh
;
2976 if (!fd_read
&& !fd_write
) {
2977 pioh
= &first_io_handler
;
2982 if (ioh
->fd
== fd
) {
2989 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
2993 ioh
= qemu_mallocz(sizeof(IOHandlerRecord
));
2994 ioh
->next
= first_io_handler
;
2995 first_io_handler
= ioh
;
2998 ioh
->fd_read_poll
= fd_read_poll
;
2999 ioh
->fd_read
= fd_read
;
3000 ioh
->fd_write
= fd_write
;
3001 ioh
->opaque
= opaque
;
3004 qemu_notify_event();
3008 int qemu_set_fd_handler(int fd
,
3010 IOHandler
*fd_write
,
3013 return qemu_set_fd_handler2(fd
, NULL
, fd_read
, fd_write
, opaque
);
3017 /***********************************************************/
3018 /* Polling handling */
3020 typedef struct PollingEntry
{
3023 struct PollingEntry
*next
;
3026 static PollingEntry
*first_polling_entry
;
3028 int qemu_add_polling_cb(PollingFunc
*func
, void *opaque
)
3030 PollingEntry
**ppe
, *pe
;
3031 pe
= qemu_mallocz(sizeof(PollingEntry
));
3033 pe
->opaque
= opaque
;
3034 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
);
3039 void qemu_del_polling_cb(PollingFunc
*func
, void *opaque
)
3041 PollingEntry
**ppe
, *pe
;
3042 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
) {
3044 if (pe
->func
== func
&& pe
->opaque
== opaque
) {
3052 /***********************************************************/
3053 /* Wait objects support */
3054 typedef struct WaitObjects
{
3056 HANDLE events
[MAXIMUM_WAIT_OBJECTS
+ 1];
3057 WaitObjectFunc
*func
[MAXIMUM_WAIT_OBJECTS
+ 1];
3058 void *opaque
[MAXIMUM_WAIT_OBJECTS
+ 1];
3061 static WaitObjects wait_objects
= {0};
3063 int qemu_add_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
3065 WaitObjects
*w
= &wait_objects
;
3067 if (w
->num
>= MAXIMUM_WAIT_OBJECTS
)
3069 w
->events
[w
->num
] = handle
;
3070 w
->func
[w
->num
] = func
;
3071 w
->opaque
[w
->num
] = opaque
;
3076 void qemu_del_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
3079 WaitObjects
*w
= &wait_objects
;
3082 for (i
= 0; i
< w
->num
; i
++) {
3083 if (w
->events
[i
] == handle
)
3086 w
->events
[i
] = w
->events
[i
+ 1];
3087 w
->func
[i
] = w
->func
[i
+ 1];
3088 w
->opaque
[i
] = w
->opaque
[i
+ 1];
3096 /***********************************************************/
3097 /* ram save/restore */
3099 static int ram_get_page(QEMUFile
*f
, uint8_t *buf
, int len
)
3103 v
= qemu_get_byte(f
);
3106 if (qemu_get_buffer(f
, buf
, len
) != len
)
3110 v
= qemu_get_byte(f
);
3111 memset(buf
, v
, len
);
3117 if (qemu_file_has_error(f
))
3123 static int ram_load_v1(QEMUFile
*f
, void *opaque
)
3128 if (qemu_get_be32(f
) != last_ram_offset
)
3130 for(i
= 0; i
< last_ram_offset
; i
+= TARGET_PAGE_SIZE
) {
3131 if (kvm_enabled() && (i
>=0xa0000) && (i
<0xc0000)) /* do not access video-addresses */
3133 ret
= ram_get_page(f
, qemu_get_ram_ptr(i
), TARGET_PAGE_SIZE
);
3140 #define BDRV_HASH_BLOCK_SIZE 1024
3141 #define IOBUF_SIZE 4096
3142 #define RAM_CBLOCK_MAGIC 0xfabe
3144 typedef struct RamDecompressState
{
3147 uint8_t buf
[IOBUF_SIZE
];
3148 } RamDecompressState
;
3150 static int ram_decompress_open(RamDecompressState
*s
, QEMUFile
*f
)
3153 memset(s
, 0, sizeof(*s
));
3155 ret
= inflateInit(&s
->zstream
);
3161 static int ram_decompress_buf(RamDecompressState
*s
, uint8_t *buf
, int len
)
3165 s
->zstream
.avail_out
= len
;
3166 s
->zstream
.next_out
= buf
;
3167 while (s
->zstream
.avail_out
> 0) {
3168 if (s
->zstream
.avail_in
== 0) {
3169 if (qemu_get_be16(s
->f
) != RAM_CBLOCK_MAGIC
)
3171 clen
= qemu_get_be16(s
->f
);
3172 if (clen
> IOBUF_SIZE
)
3174 qemu_get_buffer(s
->f
, s
->buf
, clen
);
3175 s
->zstream
.avail_in
= clen
;
3176 s
->zstream
.next_in
= s
->buf
;
3178 ret
= inflate(&s
->zstream
, Z_PARTIAL_FLUSH
);
3179 if (ret
!= Z_OK
&& ret
!= Z_STREAM_END
) {
3186 static void ram_decompress_close(RamDecompressState
*s
)
3188 inflateEnd(&s
->zstream
);
3191 #define RAM_SAVE_FLAG_FULL 0x01
3192 #define RAM_SAVE_FLAG_COMPRESS 0x02
3193 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3194 #define RAM_SAVE_FLAG_PAGE 0x08
3195 #define RAM_SAVE_FLAG_EOS 0x10
3197 static int is_dup_page(uint8_t *page
, uint8_t ch
)
3199 uint32_t val
= ch
<< 24 | ch
<< 16 | ch
<< 8 | ch
;
3200 uint32_t *array
= (uint32_t *)page
;
3203 for (i
= 0; i
< (TARGET_PAGE_SIZE
/ 4); i
++) {
3204 if (array
[i
] != val
)
3211 static int ram_save_block(QEMUFile
*f
)
3213 static ram_addr_t current_addr
= 0;
3214 ram_addr_t saved_addr
= current_addr
;
3215 ram_addr_t addr
= 0;
3218 while (addr
< last_ram_offset
) {
3219 if (kvm_enabled() && current_addr
== 0) {
3221 r
= kvm_update_dirty_pages_log();
3223 fprintf(stderr
, "%s: update dirty pages log failed %d\n", __FUNCTION__
, r
);
3224 qemu_file_set_error(f
);
3228 if (cpu_physical_memory_get_dirty(current_addr
, MIGRATION_DIRTY_FLAG
)) {
3231 cpu_physical_memory_reset_dirty(current_addr
,
3232 current_addr
+ TARGET_PAGE_SIZE
,
3233 MIGRATION_DIRTY_FLAG
);
3235 p
= qemu_get_ram_ptr(current_addr
);
3237 if (is_dup_page(p
, *p
)) {
3238 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_COMPRESS
);
3239 qemu_put_byte(f
, *p
);
3241 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_PAGE
);
3242 qemu_put_buffer(f
, p
, TARGET_PAGE_SIZE
);
3248 addr
+= TARGET_PAGE_SIZE
;
3249 current_addr
= (saved_addr
+ addr
) % last_ram_offset
;
3255 static ram_addr_t ram_save_threshold
= 10;
3256 static uint64_t bytes_transferred
= 0;
3258 static ram_addr_t
ram_save_remaining(void)
3261 ram_addr_t count
= 0;
3263 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
3264 if (cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
3271 uint64_t ram_bytes_remaining(void)
3273 return ram_save_remaining() * TARGET_PAGE_SIZE
;
3276 uint64_t ram_bytes_transferred(void)
3278 return bytes_transferred
;
3281 uint64_t ram_bytes_total(void)
3283 return last_ram_offset
;
3286 static int ram_save_live(QEMUFile
*f
, int stage
, void *opaque
)
3290 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX
) != 0) {
3291 qemu_file_set_error(f
);
3296 /* Make sure all dirty bits are set */
3297 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
3298 if (!cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
3299 cpu_physical_memory_set_dirty(addr
);
3302 /* Enable dirty memory tracking */
3303 cpu_physical_memory_set_dirty_tracking(1);
3305 qemu_put_be64(f
, last_ram_offset
| RAM_SAVE_FLAG_MEM_SIZE
);
3308 while (!qemu_file_rate_limit(f
)) {
3311 ret
= ram_save_block(f
);
3312 bytes_transferred
+= ret
* TARGET_PAGE_SIZE
;
3313 if (ret
== 0) /* no more blocks */
3317 /* try transferring iterative blocks of memory */
3321 /* flush all remaining blocks regardless of rate limiting */
3322 while (ram_save_block(f
) != 0) {
3323 bytes_transferred
+= TARGET_PAGE_SIZE
;
3325 cpu_physical_memory_set_dirty_tracking(0);
3328 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
3330 return (stage
== 2) && (ram_save_remaining() < ram_save_threshold
);
3333 static int ram_load_dead(QEMUFile
*f
, void *opaque
)
3335 RamDecompressState s1
, *s
= &s1
;
3339 if (ram_decompress_open(s
, f
) < 0)
3341 for(i
= 0; i
< last_ram_offset
; i
+= BDRV_HASH_BLOCK_SIZE
) {
3342 if (kvm_enabled() && (i
>=0xa0000) && (i
<0xc0000)) /* do not access video-addresses */
3344 if (ram_decompress_buf(s
, buf
, 1) < 0) {
3345 fprintf(stderr
, "Error while reading ram block header\n");
3349 if (ram_decompress_buf(s
, qemu_get_ram_ptr(i
),
3350 BDRV_HASH_BLOCK_SIZE
) < 0) {
3351 fprintf(stderr
, "Error while reading ram block address=0x%08" PRIx64
, (uint64_t)i
);
3356 printf("Error block header\n");
3360 ram_decompress_close(s
);
3365 static int ram_load(QEMUFile
*f
, void *opaque
, int version_id
)
3370 if (version_id
== 1)
3371 return ram_load_v1(f
, opaque
);
3373 if (version_id
== 2) {
3374 if (qemu_get_be32(f
) != last_ram_offset
)
3376 return ram_load_dead(f
, opaque
);
3379 if (version_id
!= 3)
3383 addr
= qemu_get_be64(f
);
3385 flags
= addr
& ~TARGET_PAGE_MASK
;
3386 addr
&= TARGET_PAGE_MASK
;
3388 if (flags
& RAM_SAVE_FLAG_MEM_SIZE
) {
3389 if (addr
!= last_ram_offset
)
3393 if (flags
& RAM_SAVE_FLAG_FULL
) {
3394 if (ram_load_dead(f
, opaque
) < 0)
3398 if (flags
& RAM_SAVE_FLAG_COMPRESS
) {
3399 uint8_t ch
= qemu_get_byte(f
);
3400 memset(qemu_get_ram_ptr(addr
), ch
, TARGET_PAGE_SIZE
);
3401 } else if (flags
& RAM_SAVE_FLAG_PAGE
)
3402 qemu_get_buffer(f
, qemu_get_ram_ptr(addr
), TARGET_PAGE_SIZE
);
3403 } while (!(flags
& RAM_SAVE_FLAG_EOS
));
3408 void qemu_service_io(void)
3410 qemu_notify_event();
3413 /***********************************************************/
3414 /* bottom halves (can be seen as timers which expire ASAP) */
3425 static QEMUBH
*first_bh
= NULL
;
3427 QEMUBH
*qemu_bh_new(QEMUBHFunc
*cb
, void *opaque
)
3430 bh
= qemu_mallocz(sizeof(QEMUBH
));
3432 bh
->opaque
= opaque
;
3433 bh
->next
= first_bh
;
3438 int qemu_bh_poll(void)
3444 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3445 if (!bh
->deleted
&& bh
->scheduled
) {
3454 /* remove deleted bhs */
3468 void qemu_bh_schedule_idle(QEMUBH
*bh
)
3476 void qemu_bh_schedule(QEMUBH
*bh
)
3482 /* stop the currently executing CPU to execute the BH ASAP */
3483 qemu_notify_event();
3486 void qemu_bh_cancel(QEMUBH
*bh
)
3491 void qemu_bh_delete(QEMUBH
*bh
)
3497 static void qemu_bh_update_timeout(int *timeout
)
3501 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3502 if (!bh
->deleted
&& bh
->scheduled
) {
3504 /* idle bottom halves will be polled at least
3506 *timeout
= MIN(10, *timeout
);
3508 /* non-idle bottom halves will be executed
3517 /***********************************************************/
3518 /* machine registration */
3520 static QEMUMachine
*first_machine
= NULL
;
3521 QEMUMachine
*current_machine
= NULL
;
3523 int qemu_register_machine(QEMUMachine
*m
)
3526 pm
= &first_machine
;
3534 static QEMUMachine
*find_machine(const char *name
)
3538 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
3539 if (!strcmp(m
->name
, name
))
3545 static QEMUMachine
*find_default_machine(void)
3549 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
3550 if (m
->is_default
) {
3557 /***********************************************************/
3558 /* main execution loop */
3560 static void gui_update(void *opaque
)
3562 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3563 DisplayState
*ds
= opaque
;
3564 DisplayChangeListener
*dcl
= ds
->listeners
;
3568 while (dcl
!= NULL
) {
3569 if (dcl
->gui_timer_interval
&&
3570 dcl
->gui_timer_interval
< interval
)
3571 interval
= dcl
->gui_timer_interval
;
3574 qemu_mod_timer(ds
->gui_timer
, interval
+ qemu_get_clock(rt_clock
));
3577 static void nographic_update(void *opaque
)
3579 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3581 qemu_mod_timer(nographic_timer
, interval
+ qemu_get_clock(rt_clock
));
3584 struct vm_change_state_entry
{
3585 VMChangeStateHandler
*cb
;
3587 LIST_ENTRY (vm_change_state_entry
) entries
;
3590 static LIST_HEAD(vm_change_state_head
, vm_change_state_entry
) vm_change_state_head
;
3592 VMChangeStateEntry
*qemu_add_vm_change_state_handler(VMChangeStateHandler
*cb
,
3595 VMChangeStateEntry
*e
;
3597 e
= qemu_mallocz(sizeof (*e
));
3601 LIST_INSERT_HEAD(&vm_change_state_head
, e
, entries
);
3605 void qemu_del_vm_change_state_handler(VMChangeStateEntry
*e
)
3607 LIST_REMOVE (e
, entries
);
3611 static void vm_state_notify(int running
, int reason
)
3613 VMChangeStateEntry
*e
;
3615 for (e
= vm_change_state_head
.lh_first
; e
; e
= e
->entries
.le_next
) {
3616 e
->cb(e
->opaque
, running
, reason
);
3620 static void resume_all_vcpus(void);
3621 static void pause_all_vcpus(void);
3628 vm_state_notify(1, 0);
3629 qemu_rearm_alarm_timer(alarm_timer
);
3634 /* reset/shutdown handler */
3636 typedef struct QEMUResetEntry
{
3637 QEMUResetHandler
*func
;
3640 struct QEMUResetEntry
*next
;
3643 static QEMUResetEntry
*first_reset_entry
;
3644 static int reset_requested
;
3645 static int shutdown_requested
;
3646 static int powerdown_requested
;
3647 static int debug_requested
;
3648 static int vmstop_requested
;
3650 int qemu_no_shutdown(void)
3652 int r
= no_shutdown
;
3657 int qemu_shutdown_requested(void)
3659 int r
= shutdown_requested
;
3660 shutdown_requested
= 0;
3664 int qemu_reset_requested(void)
3666 int r
= reset_requested
;
3667 reset_requested
= 0;
3671 int qemu_powerdown_requested(void)
3673 int r
= powerdown_requested
;
3674 powerdown_requested
= 0;
3678 static int qemu_debug_requested(void)
3680 int r
= debug_requested
;
3681 debug_requested
= 0;
3685 static int qemu_vmstop_requested(void)
3687 int r
= vmstop_requested
;
3688 vmstop_requested
= 0;
3692 static void do_vm_stop(int reason
)
3695 cpu_disable_ticks();
3698 vm_state_notify(0, reason
);
3702 void qemu_register_reset(QEMUResetHandler
*func
, int order
, void *opaque
)
3704 QEMUResetEntry
**pre
, *re
;
3706 pre
= &first_reset_entry
;
3707 while (*pre
!= NULL
&& (*pre
)->order
>= order
) {
3708 pre
= &(*pre
)->next
;
3710 re
= qemu_mallocz(sizeof(QEMUResetEntry
));
3712 re
->opaque
= opaque
;
3718 void qemu_system_reset(void)
3722 /* reset all devices */
3723 for(re
= first_reset_entry
; re
!= NULL
; re
= re
->next
) {
3724 re
->func(re
->opaque
);
3728 void qemu_system_reset_request(void)
3731 shutdown_requested
= 1;
3733 reset_requested
= 1;
3735 if (cpu_single_env
) {
3736 qemu_kvm_cpu_stop(cpu_single_env
);
3737 cpu_exit(cpu_single_env
);
3739 qemu_notify_event();
3742 void qemu_system_shutdown_request(void)
3744 shutdown_requested
= 1;
3745 qemu_notify_event();
3748 void qemu_system_powerdown_request(void)
3750 powerdown_requested
= 1;
3751 qemu_notify_event();
3754 #ifdef CONFIG_IOTHREAD
3755 static void qemu_system_vmstop_request(int reason
)
3757 vmstop_requested
= reason
;
3758 qemu_notify_event();
3763 static int io_thread_fd
= -1;
3765 static void qemu_event_increment(void)
3767 static const char byte
= 0;
3769 if (io_thread_fd
== -1)
3772 write(io_thread_fd
, &byte
, sizeof(byte
));
3775 static void qemu_event_read(void *opaque
)
3777 int fd
= (unsigned long)opaque
;
3780 /* Drain the notify pipe */
3783 len
= read(fd
, buffer
, sizeof(buffer
));
3784 } while ((len
== -1 && errno
== EINTR
) || len
> 0);
3787 static int qemu_event_init(void)
3796 err
= fcntl_setfl(fds
[0], O_NONBLOCK
);
3800 err
= fcntl_setfl(fds
[1], O_NONBLOCK
);
3804 qemu_set_fd_handler2(fds
[0], NULL
, qemu_event_read
, NULL
,
3805 (void *)(unsigned long)fds
[0]);
3807 io_thread_fd
= fds
[1];
3816 HANDLE qemu_event_handle
;
3818 static void dummy_event_handler(void *opaque
)
3822 static int qemu_event_init(void)
3824 qemu_event_handle
= CreateEvent(NULL
, FALSE
, FALSE
, NULL
);
3825 if (!qemu_event_handle
) {
3826 perror("Failed CreateEvent");
3829 qemu_add_wait_object(qemu_event_handle
, dummy_event_handler
, NULL
);
3833 static void qemu_event_increment(void)
3835 SetEvent(qemu_event_handle
);
3839 static int cpu_can_run(CPUState
*env
)
3848 #ifndef CONFIG_IOTHREAD
3849 static int qemu_init_main_loop(void)
3851 return qemu_event_init();
3854 void qemu_init_vcpu(void *_env
)
3856 CPUState
*env
= _env
;
3863 int qemu_cpu_self(void *env
)
3868 static void resume_all_vcpus(void)
3872 static void pause_all_vcpus(void)
3876 void qemu_cpu_kick(void *env
)
3881 void qemu_notify_event(void)
3883 CPUState
*env
= cpu_single_env
;
3885 if (kvm_enabled()) {
3886 qemu_kvm_notify_work();
3892 if (env
->kqemu_enabled
)
3893 kqemu_cpu_interrupt(env
);
3898 #define qemu_mutex_lock_iothread() do { } while (0)
3899 #define qemu_mutex_unlock_iothread() do { } while (0)
3901 void vm_stop(int reason
)
3906 #else /* CONFIG_IOTHREAD */
3908 #include "qemu-thread.h"
3910 QemuMutex qemu_global_mutex
;
3911 static QemuMutex qemu_fair_mutex
;
3913 static QemuThread io_thread
;
3915 static QemuThread
*tcg_cpu_thread
;
3916 static QemuCond
*tcg_halt_cond
;
3918 static int qemu_system_ready
;
3920 static QemuCond qemu_cpu_cond
;
3922 static QemuCond qemu_system_cond
;
3923 static QemuCond qemu_pause_cond
;
3925 static void block_io_signals(void);
3926 static void unblock_io_signals(void);
3927 static int tcg_has_work(void);
3929 static int qemu_init_main_loop(void)
3933 ret
= qemu_event_init();
3937 qemu_cond_init(&qemu_pause_cond
);
3938 qemu_mutex_init(&qemu_fair_mutex
);
3939 qemu_mutex_init(&qemu_global_mutex
);
3940 qemu_mutex_lock(&qemu_global_mutex
);
3942 unblock_io_signals();
3943 qemu_thread_self(&io_thread
);
3948 static void qemu_wait_io_event(CPUState
*env
)
3950 while (!tcg_has_work())
3951 qemu_cond_timedwait(env
->halt_cond
, &qemu_global_mutex
, 1000);
3953 qemu_mutex_unlock(&qemu_global_mutex
);
3956 * Users of qemu_global_mutex can be starved, having no chance
3957 * to acquire it since this path will get to it first.
3958 * So use another lock to provide fairness.
3960 qemu_mutex_lock(&qemu_fair_mutex
);
3961 qemu_mutex_unlock(&qemu_fair_mutex
);
3963 qemu_mutex_lock(&qemu_global_mutex
);
3967 qemu_cond_signal(&qemu_pause_cond
);
3971 static int qemu_cpu_exec(CPUState
*env
);
3973 static void *kvm_cpu_thread_fn(void *arg
)
3975 CPUState
*env
= arg
;
3978 qemu_thread_self(env
->thread
);
3980 /* signal CPU creation */
3981 qemu_mutex_lock(&qemu_global_mutex
);
3983 qemu_cond_signal(&qemu_cpu_cond
);
3985 /* and wait for machine initialization */
3986 while (!qemu_system_ready
)
3987 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3990 if (cpu_can_run(env
))
3992 qemu_wait_io_event(env
);
3998 static void tcg_cpu_exec(void);
4000 static void *tcg_cpu_thread_fn(void *arg
)
4002 CPUState
*env
= arg
;
4005 qemu_thread_self(env
->thread
);
4007 /* signal CPU creation */
4008 qemu_mutex_lock(&qemu_global_mutex
);
4009 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
4011 qemu_cond_signal(&qemu_cpu_cond
);
4013 /* and wait for machine initialization */
4014 while (!qemu_system_ready
)
4015 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
4019 qemu_wait_io_event(cur_cpu
);
4025 void qemu_cpu_kick(void *_env
)
4027 CPUState
*env
= _env
;
4028 qemu_cond_broadcast(env
->halt_cond
);
4030 qemu_thread_signal(env
->thread
, SIGUSR1
);
4033 int qemu_cpu_self(void *env
)
4035 return (cpu_single_env
!= NULL
);
4038 static void cpu_signal(int sig
)
4041 cpu_exit(cpu_single_env
);
4044 static void block_io_signals(void)
4047 struct sigaction sigact
;
4050 sigaddset(&set
, SIGUSR2
);
4051 sigaddset(&set
, SIGIO
);
4052 sigaddset(&set
, SIGALRM
);
4053 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
4056 sigaddset(&set
, SIGUSR1
);
4057 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
4059 memset(&sigact
, 0, sizeof(sigact
));
4060 sigact
.sa_handler
= cpu_signal
;
4061 sigaction(SIGUSR1
, &sigact
, NULL
);
4064 static void unblock_io_signals(void)
4069 sigaddset(&set
, SIGUSR2
);
4070 sigaddset(&set
, SIGIO
);
4071 sigaddset(&set
, SIGALRM
);
4072 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
4075 sigaddset(&set
, SIGUSR1
);
4076 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
4079 static void qemu_signal_lock(unsigned int msecs
)
4081 qemu_mutex_lock(&qemu_fair_mutex
);
4083 while (qemu_mutex_trylock(&qemu_global_mutex
)) {
4084 qemu_thread_signal(tcg_cpu_thread
, SIGUSR1
);
4085 if (!qemu_mutex_timedlock(&qemu_global_mutex
, msecs
))
4088 qemu_mutex_unlock(&qemu_fair_mutex
);
4091 static void qemu_mutex_lock_iothread(void)
4093 if (kvm_enabled()) {
4094 qemu_mutex_lock(&qemu_fair_mutex
);
4095 qemu_mutex_lock(&qemu_global_mutex
);
4096 qemu_mutex_unlock(&qemu_fair_mutex
);
4098 qemu_signal_lock(100);
4101 static void qemu_mutex_unlock_iothread(void)
4103 qemu_mutex_unlock(&qemu_global_mutex
);
4106 static int all_vcpus_paused(void)
4108 CPUState
*penv
= first_cpu
;
4113 penv
= (CPUState
*)penv
->next_cpu
;
4119 static void pause_all_vcpus(void)
4121 CPUState
*penv
= first_cpu
;
4125 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4126 qemu_cpu_kick(penv
);
4127 penv
= (CPUState
*)penv
->next_cpu
;
4130 while (!all_vcpus_paused()) {
4131 qemu_cond_timedwait(&qemu_pause_cond
, &qemu_global_mutex
, 100);
4134 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4135 penv
= (CPUState
*)penv
->next_cpu
;
4140 static void resume_all_vcpus(void)
4142 CPUState
*penv
= first_cpu
;
4147 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4148 qemu_cpu_kick(penv
);
4149 penv
= (CPUState
*)penv
->next_cpu
;
4153 static void tcg_init_vcpu(void *_env
)
4155 CPUState
*env
= _env
;
4156 /* share a single thread for all cpus with TCG */
4157 if (!tcg_cpu_thread
) {
4158 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
4159 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
4160 qemu_cond_init(env
->halt_cond
);
4161 qemu_thread_create(env
->thread
, tcg_cpu_thread_fn
, env
);
4162 while (env
->created
== 0)
4163 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
4164 tcg_cpu_thread
= env
->thread
;
4165 tcg_halt_cond
= env
->halt_cond
;
4167 env
->thread
= tcg_cpu_thread
;
4168 env
->halt_cond
= tcg_halt_cond
;
4172 static void kvm_start_vcpu(CPUState
*env
)
4175 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
4176 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
4177 qemu_cond_init(env
->halt_cond
);
4178 qemu_thread_create(env
->thread
, kvm_cpu_thread_fn
, env
);
4179 while (env
->created
== 0)
4180 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
4183 void qemu_init_vcpu(void *_env
)
4185 CPUState
*env
= _env
;
4188 kvm_start_vcpu(env
);
4193 void qemu_notify_event(void)
4195 qemu_event_increment();
4198 void vm_stop(int reason
)
4201 qemu_thread_self(&me
);
4203 if (!qemu_thread_equal(&me
, &io_thread
)) {
4204 qemu_system_vmstop_request(reason
);
4206 * FIXME: should not return to device code in case
4207 * vm_stop() has been requested.
4209 if (cpu_single_env
) {
4210 cpu_exit(cpu_single_env
);
4211 cpu_single_env
->stop
= 1;
4222 static void host_main_loop_wait(int *timeout
)
4228 /* XXX: need to suppress polling by better using win32 events */
4230 for(pe
= first_polling_entry
; pe
!= NULL
; pe
= pe
->next
) {
4231 ret
|= pe
->func(pe
->opaque
);
4235 WaitObjects
*w
= &wait_objects
;
4237 ret
= WaitForMultipleObjects(w
->num
, w
->events
, FALSE
, *timeout
);
4238 if (WAIT_OBJECT_0
+ 0 <= ret
&& ret
<= WAIT_OBJECT_0
+ w
->num
- 1) {
4239 if (w
->func
[ret
- WAIT_OBJECT_0
])
4240 w
->func
[ret
- WAIT_OBJECT_0
](w
->opaque
[ret
- WAIT_OBJECT_0
]);
4242 /* Check for additional signaled events */
4243 for(i
= (ret
- WAIT_OBJECT_0
+ 1); i
< w
->num
; i
++) {
4245 /* Check if event is signaled */
4246 ret2
= WaitForSingleObject(w
->events
[i
], 0);
4247 if(ret2
== WAIT_OBJECT_0
) {
4249 w
->func
[i
](w
->opaque
[i
]);
4250 } else if (ret2
== WAIT_TIMEOUT
) {
4252 err
= GetLastError();
4253 fprintf(stderr
, "WaitForSingleObject error %d %d\n", i
, err
);
4256 } else if (ret
== WAIT_TIMEOUT
) {
4258 err
= GetLastError();
4259 fprintf(stderr
, "WaitForMultipleObjects error %d %d\n", ret
, err
);
4266 static void host_main_loop_wait(int *timeout
)
4271 void main_loop_wait(int timeout
)
4273 IOHandlerRecord
*ioh
;
4274 fd_set rfds
, wfds
, xfds
;
4278 qemu_bh_update_timeout(&timeout
);
4280 host_main_loop_wait(&timeout
);
4282 /* poll any events */
4283 /* XXX: separate device handlers from system ones */
4288 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4292 (!ioh
->fd_read_poll
||
4293 ioh
->fd_read_poll(ioh
->opaque
) != 0)) {
4294 FD_SET(ioh
->fd
, &rfds
);
4298 if (ioh
->fd_write
) {
4299 FD_SET(ioh
->fd
, &wfds
);
4305 tv
.tv_sec
= timeout
/ 1000;
4306 tv
.tv_usec
= (timeout
% 1000) * 1000;
4308 #if defined(CONFIG_SLIRP)
4309 if (slirp_is_inited()) {
4310 slirp_select_fill(&nfds
, &rfds
, &wfds
, &xfds
);
4313 ret
= qemu_select(nfds
+ 1, &rfds
, &wfds
, &xfds
, &tv
);
4315 IOHandlerRecord
**pioh
;
4317 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4318 if (!ioh
->deleted
&& ioh
->fd_read
&& FD_ISSET(ioh
->fd
, &rfds
)) {
4319 ioh
->fd_read(ioh
->opaque
);
4320 if (!(ioh
->fd_read_poll
&& ioh
->fd_read_poll(ioh
->opaque
)))
4321 FD_CLR(ioh
->fd
, &rfds
);
4323 if (!ioh
->deleted
&& ioh
->fd_write
&& FD_ISSET(ioh
->fd
, &wfds
)) {
4324 ioh
->fd_write(ioh
->opaque
);
4328 /* remove deleted IO handlers */
4329 pioh
= &first_io_handler
;
4339 #if defined(CONFIG_SLIRP)
4340 if (slirp_is_inited()) {
4346 slirp_select_poll(&rfds
, &wfds
, &xfds
);
4350 /* rearm timer, if not periodic */
4351 if (alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) {
4352 alarm_timer
->flags
&= ~ALARM_FLAG_EXPIRED
;
4353 qemu_rearm_alarm_timer(alarm_timer
);
4356 /* vm time timers */
4358 if (!cur_cpu
|| likely(!(cur_cpu
->singlestep_enabled
& SSTEP_NOTIMER
)))
4359 qemu_run_timers(&active_timers
[QEMU_TIMER_VIRTUAL
],
4360 qemu_get_clock(vm_clock
));
4363 /* real time timers */
4364 qemu_run_timers(&active_timers
[QEMU_TIMER_REALTIME
],
4365 qemu_get_clock(rt_clock
));
4367 /* Check bottom-halves last in case any of the earlier events triggered
4373 static int qemu_cpu_exec(CPUState
*env
)
4376 #ifdef CONFIG_PROFILER
4380 #ifdef CONFIG_PROFILER
4381 ti
= profile_getclock();
4386 qemu_icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
4387 env
->icount_decr
.u16
.low
= 0;
4388 env
->icount_extra
= 0;
4389 count
= qemu_next_deadline();
4390 count
= (count
+ (1 << icount_time_shift
) - 1)
4391 >> icount_time_shift
;
4392 qemu_icount
+= count
;
4393 decr
= (count
> 0xffff) ? 0xffff : count
;
4395 env
->icount_decr
.u16
.low
= decr
;
4396 env
->icount_extra
= count
;
4398 ret
= cpu_exec(env
);
4399 #ifdef CONFIG_PROFILER
4400 qemu_time
+= profile_getclock() - ti
;
4403 /* Fold pending instructions back into the
4404 instruction counter, and clear the interrupt flag. */
4405 qemu_icount
-= (env
->icount_decr
.u16
.low
4406 + env
->icount_extra
);
4407 env
->icount_decr
.u32
= 0;
4408 env
->icount_extra
= 0;
4413 static void tcg_cpu_exec(void)
4417 if (next_cpu
== NULL
)
4418 next_cpu
= first_cpu
;
4419 for (; next_cpu
!= NULL
; next_cpu
= next_cpu
->next_cpu
) {
4420 CPUState
*env
= cur_cpu
= next_cpu
;
4424 if (timer_alarm_pending
) {
4425 timer_alarm_pending
= 0;
4428 if (cpu_can_run(env
))
4429 ret
= qemu_cpu_exec(env
);
4430 if (ret
== EXCP_DEBUG
) {
4431 gdb_set_stop_cpu(env
);
4432 debug_requested
= 1;
4438 static int cpu_has_work(CPUState
*env
)
4446 if (qemu_cpu_has_work(env
))
4451 static int tcg_has_work(void)
4455 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
4456 if (cpu_has_work(env
))
4461 static int qemu_calculate_timeout(void)
4467 else if (tcg_has_work())
4469 else if (!use_icount
)
4472 /* XXX: use timeout computed from timers */
4475 /* Advance virtual time to the next event. */
4476 if (use_icount
== 1) {
4477 /* When not using an adaptive execution frequency
4478 we tend to get badly out of sync with real time,
4479 so just delay for a reasonable amount of time. */
4482 delta
= cpu_get_icount() - cpu_get_clock();
4485 /* If virtual time is ahead of real time then just
4487 timeout
= (delta
/ 1000000) + 1;
4489 /* Wait for either IO to occur or the next
4491 add
= qemu_next_deadline();
4492 /* We advance the timer before checking for IO.
4493 Limit the amount we advance so that early IO
4494 activity won't get the guest too far ahead. */
4498 add
= (add
+ (1 << icount_time_shift
) - 1)
4499 >> icount_time_shift
;
4501 timeout
= delta
/ 1000000;
4510 static int vm_can_run(void)
4512 if (powerdown_requested
)
4514 if (reset_requested
)
4516 if (shutdown_requested
)
4518 if (debug_requested
)
4523 static void main_loop(void)
4527 if (kvm_enabled()) {
4529 cpu_disable_ticks();
4533 #ifdef CONFIG_IOTHREAD
4534 qemu_system_ready
= 1;
4535 qemu_cond_broadcast(&qemu_system_cond
);
4540 #ifdef CONFIG_PROFILER
4543 #ifndef CONFIG_IOTHREAD
4546 #ifdef CONFIG_PROFILER
4547 ti
= profile_getclock();
4549 #ifdef CONFIG_IOTHREAD
4550 main_loop_wait(1000);
4552 main_loop_wait(qemu_calculate_timeout());
4554 #ifdef CONFIG_PROFILER
4555 dev_time
+= profile_getclock() - ti
;
4557 } while (vm_can_run());
4559 if (qemu_debug_requested())
4560 vm_stop(EXCP_DEBUG
);
4561 if (qemu_shutdown_requested()) {
4568 if (qemu_reset_requested()) {
4570 qemu_system_reset();
4573 if (qemu_powerdown_requested())
4574 qemu_system_powerdown();
4575 if ((r
= qemu_vmstop_requested()))
4581 static void version(void)
4583 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION
", Copyright (c) 2003-2008 Fabrice Bellard\n");
4586 static void help(int exitcode
)
4589 printf("usage: %s [options] [disk_image]\n"
4591 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4593 #define DEF(option, opt_arg, opt_enum, opt_help) \
4595 #define DEFHEADING(text) stringify(text) "\n"
4596 #include "qemu-options.h"
4601 "During emulation, the following keys are useful:\n"
4602 "ctrl-alt-f toggle full screen\n"
4603 "ctrl-alt-n switch to virtual console 'n'\n"
4604 "ctrl-alt toggle mouse and keyboard grab\n"
4606 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4611 DEFAULT_NETWORK_SCRIPT
,
4612 DEFAULT_NETWORK_DOWN_SCRIPT
,
4614 DEFAULT_GDBSTUB_PORT
,
4619 #define HAS_ARG 0x0001
4622 #define DEF(option, opt_arg, opt_enum, opt_help) \
4624 #define DEFHEADING(text)
4625 #include "qemu-options.h"
4631 typedef struct QEMUOption
{
4637 static const QEMUOption qemu_options
[] = {
4638 { "h", 0, QEMU_OPTION_h
},
4639 #define DEF(option, opt_arg, opt_enum, opt_help) \
4640 { option, opt_arg, opt_enum },
4641 #define DEFHEADING(text)
4642 #include "qemu-options.h"
4650 struct soundhw soundhw
[] = {
4651 #ifdef HAS_AUDIO_CHOICE
4652 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4658 { .init_isa
= pcspk_audio_init
}
4665 "Creative Sound Blaster 16",
4668 { .init_isa
= SB16_init
}
4672 #ifdef CONFIG_CS4231A
4678 { .init_isa
= cs4231a_init
}
4686 "Yamaha YMF262 (OPL3)",
4688 "Yamaha YM3812 (OPL2)",
4692 { .init_isa
= Adlib_init
}
4699 "Gravis Ultrasound GF1",
4702 { .init_isa
= GUS_init
}
4709 "Intel 82801AA AC97 Audio",
4712 { .init_pci
= ac97_init
}
4716 #ifdef CONFIG_ES1370
4719 "ENSONIQ AudioPCI ES1370",
4722 { .init_pci
= es1370_init
}
4726 #endif /* HAS_AUDIO_CHOICE */
4728 { NULL
, NULL
, 0, 0, { NULL
} }
4731 static void select_soundhw (const char *optarg
)
4735 if (*optarg
== '?') {
4738 printf ("Valid sound card names (comma separated):\n");
4739 for (c
= soundhw
; c
->name
; ++c
) {
4740 printf ("%-11s %s\n", c
->name
, c
->descr
);
4742 printf ("\n-soundhw all will enable all of the above\n");
4743 exit (*optarg
!= '?');
4751 if (!strcmp (optarg
, "all")) {
4752 for (c
= soundhw
; c
->name
; ++c
) {
4760 e
= strchr (p
, ',');
4761 l
= !e
? strlen (p
) : (size_t) (e
- p
);
4763 for (c
= soundhw
; c
->name
; ++c
) {
4764 if (!strncmp (c
->name
, p
, l
)) {
4773 "Unknown sound card name (too big to show)\n");
4776 fprintf (stderr
, "Unknown sound card name `%.*s'\n",
4781 p
+= l
+ (e
!= NULL
);
4785 goto show_valid_cards
;
4790 static void select_vgahw (const char *p
)
4794 cirrus_vga_enabled
= 0;
4795 std_vga_enabled
= 0;
4798 if (strstart(p
, "std", &opts
)) {
4799 std_vga_enabled
= 1;
4800 } else if (strstart(p
, "cirrus", &opts
)) {
4801 cirrus_vga_enabled
= 1;
4802 } else if (strstart(p
, "vmware", &opts
)) {
4804 } else if (strstart(p
, "xenfb", &opts
)) {
4806 } else if (!strstart(p
, "none", &opts
)) {
4808 fprintf(stderr
, "Unknown vga type: %s\n", p
);
4812 const char *nextopt
;
4814 if (strstart(opts
, ",retrace=", &nextopt
)) {
4816 if (strstart(opts
, "dumb", &nextopt
))
4817 vga_retrace_method
= VGA_RETRACE_DUMB
;
4818 else if (strstart(opts
, "precise", &nextopt
))
4819 vga_retrace_method
= VGA_RETRACE_PRECISE
;
4820 else goto invalid_vga
;
4821 } else goto invalid_vga
;
4827 static BOOL WINAPI
qemu_ctrl_handler(DWORD type
)
4829 exit(STATUS_CONTROL_C_EXIT
);
4834 int qemu_uuid_parse(const char *str
, uint8_t *uuid
)
4838 if(strlen(str
) != 36)
4841 ret
= sscanf(str
, UUID_FMT
, &uuid
[0], &uuid
[1], &uuid
[2], &uuid
[3],
4842 &uuid
[4], &uuid
[5], &uuid
[6], &uuid
[7], &uuid
[8], &uuid
[9],
4843 &uuid
[10], &uuid
[11], &uuid
[12], &uuid
[13], &uuid
[14], &uuid
[15]);
4849 smbios_add_field(1, offsetof(struct smbios_type_1
, uuid
), 16, uuid
);
4855 #define MAX_NET_CLIENTS 32
4859 static void termsig_handler(int signal
)
4861 qemu_system_shutdown_request();
4864 static void termsig_setup(void)
4866 struct sigaction act
;
4868 memset(&act
, 0, sizeof(act
));
4869 act
.sa_handler
= termsig_handler
;
4870 sigaction(SIGINT
, &act
, NULL
);
4871 sigaction(SIGHUP
, &act
, NULL
);
4872 sigaction(SIGTERM
, &act
, NULL
);
4878 /* Look for support files in the same directory as the executable. */
4879 static char *find_datadir(const char *argv0
)
4885 len
= GetModuleFileName(NULL
, buf
, sizeof(buf
) - 1);
4892 while (p
!= buf
&& *p
!= '\\')
4895 if (access(buf
, R_OK
) == 0) {
4896 return qemu_strdup(buf
);
4902 /* Find a likely location for support files using the location of the binary.
4903 For installed binaries this will be "$bindir/../share/qemu". When
4904 running from the build tree this will be "$bindir/../pc-bios". */
4905 #define SHARE_SUFFIX "/share/qemu"
4906 #define BUILD_SUFFIX "/pc-bios"
4907 static char *find_datadir(const char *argv0
)
4916 #if defined(__linux__)
4919 len
= readlink("/proc/self/exe", buf
, sizeof(buf
) - 1);
4925 #elif defined(__FreeBSD__)
4928 len
= readlink("/proc/curproc/file", buf
, sizeof(buf
) - 1);
4935 /* If we don't have any way of figuring out the actual executable
4936 location then try argv[0]. */
4941 p
= realpath(argv0
, p
);
4949 res
= qemu_mallocz(strlen(dir
) +
4950 MAX(strlen(SHARE_SUFFIX
), strlen(BUILD_SUFFIX
)) + 1);
4951 sprintf(res
, "%s%s", dir
, SHARE_SUFFIX
);
4952 if (access(res
, R_OK
)) {
4953 sprintf(res
, "%s%s", dir
, BUILD_SUFFIX
);
4954 if (access(res
, R_OK
)) {
4968 char *qemu_find_file(int type
, const char *name
)
4974 /* If name contains path separators then try it as a straight path. */
4975 if ((strchr(name
, '/') || strchr(name
, '\\'))
4976 && access(name
, R_OK
) == 0) {
4977 return strdup(name
);
4980 case QEMU_FILE_TYPE_BIOS
:
4983 case QEMU_FILE_TYPE_KEYMAP
:
4984 subdir
= "keymaps/";
4989 len
= strlen(data_dir
) + strlen(name
) + strlen(subdir
) + 2;
4990 buf
= qemu_mallocz(len
);
4991 sprintf(buf
, "%s/%s%s", data_dir
, subdir
, name
);
4992 if (access(buf
, R_OK
)) {
4999 int main(int argc
, char **argv
, char **envp
)
5001 const char *gdbstub_dev
= NULL
;
5002 uint32_t boot_devices_bitmap
= 0;
5004 int snapshot
, linux_boot
, net_boot
;
5005 const char *initrd_filename
;
5006 const char *kernel_filename
, *kernel_cmdline
;
5007 const char *boot_devices
= "";
5009 DisplayChangeListener
*dcl
;
5010 int cyls
, heads
, secs
, translation
;
5011 const char *net_clients
[MAX_NET_CLIENTS
];
5013 const char *bt_opts
[MAX_BT_CMDLINE
];
5017 const char *r
, *optarg
;
5018 CharDriverState
*monitor_hd
= NULL
;
5019 const char *monitor_device
;
5020 const char *serial_devices
[MAX_SERIAL_PORTS
];
5021 int serial_device_index
;
5022 const char *parallel_devices
[MAX_PARALLEL_PORTS
];
5023 int parallel_device_index
;
5024 const char *virtio_consoles
[MAX_VIRTIO_CONSOLES
];
5025 int virtio_console_index
;
5026 const char *loadvm
= NULL
;
5027 QEMUMachine
*machine
;
5028 const char *cpu_model
;
5029 const char *usb_devices
[MAX_USB_CMDLINE
];
5030 int usb_devices_index
;
5035 const char *pid_file
= NULL
;
5036 const char *incoming
= NULL
;
5039 struct passwd
*pwd
= NULL
;
5040 const char *chroot_dir
= NULL
;
5041 const char *run_as
= NULL
;
5044 int show_vnc_port
= 0;
5046 qemu_cache_utils_init(envp
);
5048 LIST_INIT (&vm_change_state_head
);
5051 struct sigaction act
;
5052 sigfillset(&act
.sa_mask
);
5054 act
.sa_handler
= SIG_IGN
;
5055 sigaction(SIGPIPE
, &act
, NULL
);
5058 SetConsoleCtrlHandler(qemu_ctrl_handler
, TRUE
);
5059 /* Note: cpu_interrupt() is currently not SMP safe, so we force
5060 QEMU to run on a single CPU */
5065 h
= GetCurrentProcess();
5066 if (GetProcessAffinityMask(h
, &mask
, &smask
)) {
5067 for(i
= 0; i
< 32; i
++) {
5068 if (mask
& (1 << i
))
5073 SetProcessAffinityMask(h
, mask
);
5079 module_call_init(MODULE_INIT_MACHINE
);
5080 machine
= find_default_machine();
5082 initrd_filename
= NULL
;
5085 kernel_filename
= NULL
;
5086 kernel_cmdline
= "";
5087 cyls
= heads
= secs
= 0;
5088 translation
= BIOS_ATA_TRANSLATION_AUTO
;
5089 monitor_device
= "vc:80Cx24C";
5091 serial_devices
[0] = "vc:80Cx24C";
5092 for(i
= 1; i
< MAX_SERIAL_PORTS
; i
++)
5093 serial_devices
[i
] = NULL
;
5094 serial_device_index
= 0;
5096 parallel_devices
[0] = "vc:80Cx24C";
5097 for(i
= 1; i
< MAX_PARALLEL_PORTS
; i
++)
5098 parallel_devices
[i
] = NULL
;
5099 parallel_device_index
= 0;
5101 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++)
5102 virtio_consoles
[i
] = NULL
;
5103 virtio_console_index
= 0;
5105 for (i
= 0; i
< MAX_NODES
; i
++) {
5107 node_cpumask
[i
] = 0;
5110 usb_devices_index
= 0;
5111 assigned_devices_index
= 0;
5125 register_watchdogs();
5133 hda_index
= drive_add(argv
[optind
++], HD_ALIAS
, 0);
5135 const QEMUOption
*popt
;
5138 /* Treat --foo the same as -foo. */
5141 popt
= qemu_options
;
5144 fprintf(stderr
, "%s: invalid option -- '%s'\n",
5148 if (!strcmp(popt
->name
, r
+ 1))
5152 if (popt
->flags
& HAS_ARG
) {
5153 if (optind
>= argc
) {
5154 fprintf(stderr
, "%s: option '%s' requires an argument\n",
5158 optarg
= argv
[optind
++];
5163 switch(popt
->index
) {
5165 machine
= find_machine(optarg
);
5168 printf("Supported machines are:\n");
5169 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
5170 printf("%-10s %s%s\n",
5172 m
->is_default
? " (default)" : "");
5174 exit(*optarg
!= '?');
5177 case QEMU_OPTION_cpu
:
5178 /* hw initialization will check this */
5179 if (*optarg
== '?') {
5180 /* XXX: implement xxx_cpu_list for targets that still miss it */
5181 #if defined(cpu_list)
5182 cpu_list(stdout
, &fprintf
);
5189 case QEMU_OPTION_initrd
:
5190 initrd_filename
= optarg
;
5192 case QEMU_OPTION_hda
:
5194 hda_index
= drive_add(optarg
, HD_ALIAS
, 0);
5196 hda_index
= drive_add(optarg
, HD_ALIAS
5197 ",cyls=%d,heads=%d,secs=%d%s",
5198 0, cyls
, heads
, secs
,
5199 translation
== BIOS_ATA_TRANSLATION_LBA
?
5201 translation
== BIOS_ATA_TRANSLATION_NONE
?
5202 ",trans=none" : "");
5204 case QEMU_OPTION_hdb
:
5205 case QEMU_OPTION_hdc
:
5206 case QEMU_OPTION_hdd
:
5207 drive_add(optarg
, HD_ALIAS
, popt
->index
- QEMU_OPTION_hda
);
5209 case QEMU_OPTION_drive
:
5210 drive_add(NULL
, "%s", optarg
);
5212 case QEMU_OPTION_mtdblock
:
5213 drive_add(optarg
, MTD_ALIAS
);
5215 case QEMU_OPTION_sd
:
5216 drive_add(optarg
, SD_ALIAS
);
5218 case QEMU_OPTION_pflash
:
5219 drive_add(optarg
, PFLASH_ALIAS
);
5221 case QEMU_OPTION_snapshot
:
5224 case QEMU_OPTION_hdachs
:
5228 cyls
= strtol(p
, (char **)&p
, 0);
5229 if (cyls
< 1 || cyls
> 16383)
5234 heads
= strtol(p
, (char **)&p
, 0);
5235 if (heads
< 1 || heads
> 16)
5240 secs
= strtol(p
, (char **)&p
, 0);
5241 if (secs
< 1 || secs
> 63)
5245 if (!strcmp(p
, "none"))
5246 translation
= BIOS_ATA_TRANSLATION_NONE
;
5247 else if (!strcmp(p
, "lba"))
5248 translation
= BIOS_ATA_TRANSLATION_LBA
;
5249 else if (!strcmp(p
, "auto"))
5250 translation
= BIOS_ATA_TRANSLATION_AUTO
;
5253 } else if (*p
!= '\0') {
5255 fprintf(stderr
, "qemu: invalid physical CHS format\n");
5258 if (hda_index
!= -1)
5259 snprintf(drives_opt
[hda_index
].opt
,
5260 sizeof(drives_opt
[hda_index
].opt
),
5261 HD_ALIAS
",cyls=%d,heads=%d,secs=%d%s",
5262 0, cyls
, heads
, secs
,
5263 translation
== BIOS_ATA_TRANSLATION_LBA
?
5265 translation
== BIOS_ATA_TRANSLATION_NONE
?
5266 ",trans=none" : "");
5269 case QEMU_OPTION_numa
:
5270 if (nb_numa_nodes
>= MAX_NODES
) {
5271 fprintf(stderr
, "qemu: too many NUMA nodes\n");
5276 case QEMU_OPTION_nographic
:
5277 display_type
= DT_NOGRAPHIC
;
5279 #ifdef CONFIG_CURSES
5280 case QEMU_OPTION_curses
:
5281 display_type
= DT_CURSES
;
5284 case QEMU_OPTION_portrait
:
5287 case QEMU_OPTION_kernel
:
5288 kernel_filename
= optarg
;
5290 case QEMU_OPTION_append
:
5291 kernel_cmdline
= optarg
;
5293 case QEMU_OPTION_cdrom
:
5294 drive_add(optarg
, CDROM_ALIAS
);
5296 case QEMU_OPTION_boot
:
5297 boot_devices
= optarg
;
5298 /* We just do some generic consistency checks */
5300 /* Could easily be extended to 64 devices if needed */
5303 boot_devices_bitmap
= 0;
5304 for (p
= boot_devices
; *p
!= '\0'; p
++) {
5305 /* Allowed boot devices are:
5306 * a b : floppy disk drives
5307 * c ... f : IDE disk drives
5308 * g ... m : machine implementation dependant drives
5309 * n ... p : network devices
5310 * It's up to each machine implementation to check
5311 * if the given boot devices match the actual hardware
5312 * implementation and firmware features.
5314 if (*p
< 'a' || *p
> 'q') {
5315 fprintf(stderr
, "Invalid boot device '%c'\n", *p
);
5318 if (boot_devices_bitmap
& (1 << (*p
- 'a'))) {
5320 "Boot device '%c' was given twice\n",*p
);
5323 boot_devices_bitmap
|= 1 << (*p
- 'a');
5327 case QEMU_OPTION_fda
:
5328 case QEMU_OPTION_fdb
:
5329 drive_add(optarg
, FD_ALIAS
, popt
->index
- QEMU_OPTION_fda
);
5332 case QEMU_OPTION_no_fd_bootchk
:
5336 case QEMU_OPTION_net
:
5337 if (nb_net_clients
>= MAX_NET_CLIENTS
) {
5338 fprintf(stderr
, "qemu: too many network clients\n");
5341 net_clients
[nb_net_clients
] = optarg
;
5345 case QEMU_OPTION_tftp
:
5346 tftp_prefix
= optarg
;
5348 case QEMU_OPTION_bootp
:
5349 bootp_filename
= optarg
;
5352 case QEMU_OPTION_smb
:
5353 net_slirp_smb(optarg
);
5356 case QEMU_OPTION_redir
:
5357 net_slirp_redir(NULL
, optarg
, NULL
);
5360 case QEMU_OPTION_bt
:
5361 if (nb_bt_opts
>= MAX_BT_CMDLINE
) {
5362 fprintf(stderr
, "qemu: too many bluetooth options\n");
5365 bt_opts
[nb_bt_opts
++] = optarg
;
5368 case QEMU_OPTION_audio_help
:
5372 case QEMU_OPTION_soundhw
:
5373 select_soundhw (optarg
);
5379 case QEMU_OPTION_version
:
5383 case QEMU_OPTION_m
: {
5387 value
= strtoul(optarg
, &ptr
, 10);
5389 case 0: case 'M': case 'm':
5396 fprintf(stderr
, "qemu: invalid ram size: %s\n", optarg
);
5400 /* On 32-bit hosts, QEMU is limited by virtual address space */
5401 if (value
> (2047 << 20)
5402 #ifndef CONFIG_KQEMU
5403 && HOST_LONG_BITS
== 32
5406 fprintf(stderr
, "qemu: at most 2047 MB RAM can be simulated\n");
5409 if (value
!= (uint64_t)(ram_addr_t
)value
) {
5410 fprintf(stderr
, "qemu: ram size too large\n");
5419 const CPULogItem
*item
;
5421 mask
= cpu_str_to_log_mask(optarg
);
5423 printf("Log items (comma separated):\n");
5424 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
5425 printf("%-10s %s\n", item
->name
, item
->help
);
5433 gdbstub_dev
= "tcp::" DEFAULT_GDBSTUB_PORT
;
5435 case QEMU_OPTION_gdb
:
5436 gdbstub_dev
= optarg
;
5441 case QEMU_OPTION_bios
:
5444 case QEMU_OPTION_singlestep
:
5452 keyboard_layout
= optarg
;
5455 case QEMU_OPTION_localtime
:
5458 case QEMU_OPTION_vga
:
5459 select_vgahw (optarg
);
5461 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5467 w
= strtol(p
, (char **)&p
, 10);
5470 fprintf(stderr
, "qemu: invalid resolution or depth\n");
5476 h
= strtol(p
, (char **)&p
, 10);
5481 depth
= strtol(p
, (char **)&p
, 10);
5482 if (depth
!= 8 && depth
!= 15 && depth
!= 16 &&
5483 depth
!= 24 && depth
!= 32)
5485 } else if (*p
== '\0') {
5486 depth
= graphic_depth
;
5493 graphic_depth
= depth
;
5497 case QEMU_OPTION_echr
:
5500 term_escape_char
= strtol(optarg
, &r
, 0);
5502 printf("Bad argument to echr\n");
5505 case QEMU_OPTION_monitor
:
5506 monitor_device
= optarg
;
5508 case QEMU_OPTION_serial
:
5509 if (serial_device_index
>= MAX_SERIAL_PORTS
) {
5510 fprintf(stderr
, "qemu: too many serial ports\n");
5513 serial_devices
[serial_device_index
] = optarg
;
5514 serial_device_index
++;
5516 case QEMU_OPTION_watchdog
:
5517 i
= select_watchdog(optarg
);
5519 exit (i
== 1 ? 1 : 0);
5521 case QEMU_OPTION_watchdog_action
:
5522 if (select_watchdog_action(optarg
) == -1) {
5523 fprintf(stderr
, "Unknown -watchdog-action parameter\n");
5527 case QEMU_OPTION_virtiocon
:
5528 if (virtio_console_index
>= MAX_VIRTIO_CONSOLES
) {
5529 fprintf(stderr
, "qemu: too many virtio consoles\n");
5532 virtio_consoles
[virtio_console_index
] = optarg
;
5533 virtio_console_index
++;
5535 case QEMU_OPTION_parallel
:
5536 if (parallel_device_index
>= MAX_PARALLEL_PORTS
) {
5537 fprintf(stderr
, "qemu: too many parallel ports\n");
5540 parallel_devices
[parallel_device_index
] = optarg
;
5541 parallel_device_index
++;
5543 case QEMU_OPTION_loadvm
:
5546 case QEMU_OPTION_full_screen
:
5550 case QEMU_OPTION_no_frame
:
5553 case QEMU_OPTION_alt_grab
:
5556 case QEMU_OPTION_no_quit
:
5559 case QEMU_OPTION_sdl
:
5560 display_type
= DT_SDL
;
5563 case QEMU_OPTION_pidfile
:
5567 case QEMU_OPTION_win2k_hack
:
5568 win2k_install_hack
= 1;
5570 case QEMU_OPTION_rtc_td_hack
:
5573 case QEMU_OPTION_acpitable
:
5574 if(acpi_table_add(optarg
) < 0) {
5575 fprintf(stderr
, "Wrong acpi table provided\n");
5579 case QEMU_OPTION_smbios
:
5580 if(smbios_entry_add(optarg
) < 0) {
5581 fprintf(stderr
, "Wrong smbios provided\n");
5587 case QEMU_OPTION_no_kqemu
:
5590 case QEMU_OPTION_kernel_kqemu
:
5595 case QEMU_OPTION_enable_kvm
:
5603 case QEMU_OPTION_no_kvm
:
5606 case QEMU_OPTION_no_kvm_irqchip
: {
5611 case QEMU_OPTION_no_kvm_pit
: {
5615 case QEMU_OPTION_no_kvm_pit_reinjection
: {
5616 kvm_pit_reinject
= 0;
5619 case QEMU_OPTION_enable_nesting
: {
5623 #if defined(TARGET_I386) || defined(TARGET_X86_64) || defined(TARGET_IA64) || defined(__linux__)
5624 case QEMU_OPTION_pcidevice
:
5625 if (assigned_devices_index
>= MAX_DEV_ASSIGN_CMDLINE
) {
5626 fprintf(stderr
, "Too many assigned devices\n");
5629 assigned_devices
[assigned_devices_index
] = optarg
;
5630 assigned_devices_index
++;
5634 case QEMU_OPTION_usb
:
5637 case QEMU_OPTION_usbdevice
:
5639 if (usb_devices_index
>= MAX_USB_CMDLINE
) {
5640 fprintf(stderr
, "Too many USB devices\n");
5643 usb_devices
[usb_devices_index
] = optarg
;
5644 usb_devices_index
++;
5646 case QEMU_OPTION_smp
:
5647 smp_cpus
= atoi(optarg
);
5649 fprintf(stderr
, "Invalid number of CPUs\n");
5653 case QEMU_OPTION_vnc
:
5654 display_type
= DT_VNC
;
5655 vnc_display
= optarg
;
5658 case QEMU_OPTION_no_acpi
:
5661 case QEMU_OPTION_no_hpet
:
5665 case QEMU_OPTION_no_reboot
:
5668 case QEMU_OPTION_no_shutdown
:
5671 case QEMU_OPTION_show_cursor
:
5674 case QEMU_OPTION_uuid
:
5675 if(qemu_uuid_parse(optarg
, qemu_uuid
) < 0) {
5676 fprintf(stderr
, "Fail to parse UUID string."
5677 " Wrong format.\n");
5682 case QEMU_OPTION_daemonize
:
5686 case QEMU_OPTION_option_rom
:
5687 if (nb_option_roms
>= MAX_OPTION_ROMS
) {
5688 fprintf(stderr
, "Too many option ROMs\n");
5691 option_rom
[nb_option_roms
] = optarg
;
5694 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5695 case QEMU_OPTION_semihosting
:
5696 semihosting_enabled
= 1;
5699 case QEMU_OPTION_tdf
:
5702 case QEMU_OPTION_kvm_shadow_memory
:
5703 kvm_shadow_memory
= (int64_t)atoi(optarg
) * 1024 * 1024 / 4096;
5705 case QEMU_OPTION_mempath
:
5709 case QEMU_OPTION_mem_prealloc
:
5710 mem_prealloc
= !mem_prealloc
;
5713 case QEMU_OPTION_name
:
5716 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5717 case QEMU_OPTION_prom_env
:
5718 if (nb_prom_envs
>= MAX_PROM_ENVS
) {
5719 fprintf(stderr
, "Too many prom variables\n");
5722 prom_envs
[nb_prom_envs
] = optarg
;
5727 case QEMU_OPTION_old_param
:
5731 case QEMU_OPTION_clock
:
5732 configure_alarms(optarg
);
5734 case QEMU_OPTION_startdate
:
5737 time_t rtc_start_date
;
5738 if (!strcmp(optarg
, "now")) {
5739 rtc_date_offset
= -1;
5741 if (sscanf(optarg
, "%d-%d-%dT%d:%d:%d",
5749 } else if (sscanf(optarg
, "%d-%d-%d",
5752 &tm
.tm_mday
) == 3) {
5761 rtc_start_date
= mktimegm(&tm
);
5762 if (rtc_start_date
== -1) {
5764 fprintf(stderr
, "Invalid date format. Valid format are:\n"
5765 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5768 rtc_date_offset
= time(NULL
) - rtc_start_date
;
5772 case QEMU_OPTION_tb_size
:
5773 tb_size
= strtol(optarg
, NULL
, 0);
5777 case QEMU_OPTION_icount
:
5779 if (strcmp(optarg
, "auto") == 0) {
5780 icount_time_shift
= -1;
5782 icount_time_shift
= strtol(optarg
, NULL
, 0);
5785 case QEMU_OPTION_incoming
:
5789 case QEMU_OPTION_chroot
:
5790 chroot_dir
= optarg
;
5792 case QEMU_OPTION_runas
:
5795 case QEMU_OPTION_nvram
:
5800 case QEMU_OPTION_xen_domid
:
5801 xen_domid
= atoi(optarg
);
5803 case QEMU_OPTION_xen_create
:
5804 xen_mode
= XEN_CREATE
;
5806 case QEMU_OPTION_xen_attach
:
5807 xen_mode
= XEN_ATTACH
;
5814 /* If no data_dir is specified then try to find it relative to the
5817 data_dir
= find_datadir(argv
[0]);
5819 /* If all else fails use the install patch specified when building. */
5821 data_dir
= CONFIG_QEMU_SHAREDIR
;
5824 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5825 if (kvm_allowed
&& kqemu_allowed
) {
5827 "You can not enable both KVM and kqemu at the same time\n");
5832 machine
->max_cpus
= machine
->max_cpus
?: 1; /* Default to UP */
5833 if (smp_cpus
> machine
->max_cpus
) {
5834 fprintf(stderr
, "Number of SMP cpus requested (%d), exceeds max cpus "
5835 "supported by machine `%s' (%d)\n", smp_cpus
, machine
->name
,
5840 if (display_type
== DT_NOGRAPHIC
) {
5841 if (serial_device_index
== 0)
5842 serial_devices
[0] = "stdio";
5843 if (parallel_device_index
== 0)
5844 parallel_devices
[0] = "null";
5845 if (strncmp(monitor_device
, "vc", 2) == 0)
5846 monitor_device
= "stdio";
5853 if (pipe(fds
) == -1)
5864 len
= read(fds
[0], &status
, 1);
5865 if (len
== -1 && (errno
== EINTR
))
5870 else if (status
== 1) {
5871 fprintf(stderr
, "Could not acquire pidfile\n");
5888 signal(SIGTSTP
, SIG_IGN
);
5889 signal(SIGTTOU
, SIG_IGN
);
5890 signal(SIGTTIN
, SIG_IGN
);
5894 if (kvm_enabled()) {
5895 if (kvm_qemu_init() < 0) {
5896 fprintf(stderr
, "Could not initialize KVM, will disable KVM support\n");
5897 #ifdef NO_CPU_EMULATION
5898 fprintf(stderr
, "Compiled with --disable-cpu-emulation, exiting.\n");
5906 if (pid_file
&& qemu_create_pidfile(pid_file
) != 0) {
5909 write(fds
[1], &status
, 1);
5911 fprintf(stderr
, "Could not acquire pid file\n");
5920 if (qemu_init_main_loop()) {
5921 fprintf(stderr
, "qemu_init_main_loop failed\n");
5924 linux_boot
= (kernel_filename
!= NULL
);
5925 net_boot
= (boot_devices_bitmap
>> ('n' - 'a')) & 0xF;
5927 if (!linux_boot
&& *kernel_cmdline
!= '\0') {
5928 fprintf(stderr
, "-append only allowed with -kernel option\n");
5932 if (!linux_boot
&& initrd_filename
!= NULL
) {
5933 fprintf(stderr
, "-initrd only allowed with -kernel option\n");
5937 /* boot to floppy or the default cd if no hard disk defined yet */
5938 if (!boot_devices
[0]) {
5939 boot_devices
= "cad";
5941 setvbuf(stdout
, NULL
, _IOLBF
, 0);
5944 if (init_timer_alarm() < 0) {
5945 fprintf(stderr
, "could not initialize alarm timer\n");
5948 if (use_icount
&& icount_time_shift
< 0) {
5950 /* 125MIPS seems a reasonable initial guess at the guest speed.
5951 It will be corrected fairly quickly anyway. */
5952 icount_time_shift
= 3;
5953 init_icount_adjust();
5960 /* init network clients */
5961 if (nb_net_clients
== 0) {
5962 /* if no clients, we use a default config */
5963 net_clients
[nb_net_clients
++] = "nic";
5965 net_clients
[nb_net_clients
++] = "user";
5969 for(i
= 0;i
< nb_net_clients
; i
++) {
5970 if (net_client_parse(net_clients
[i
]) < 0)
5976 /* XXX: this should be moved in the PC machine instantiation code */
5977 if (net_boot
!= 0) {
5979 for (i
= 0; i
< nb_nics
&& i
< 4; i
++) {
5980 const char *model
= nd_table
[i
].model
;
5983 if (net_boot
& (1 << i
)) {
5986 snprintf(buf
, sizeof(buf
), "pxe-%s.bin", model
);
5987 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, buf
);
5988 if (filename
&& get_image_size(filename
) > 0) {
5989 if (nb_option_roms
>= MAX_OPTION_ROMS
) {
5990 fprintf(stderr
, "Too many option ROMs\n");
5993 option_rom
[nb_option_roms
] = qemu_strdup(buf
);
5998 qemu_free(filename
);
6003 fprintf(stderr
, "No valid PXE rom found for network device\n");
6009 /* init the bluetooth world */
6010 for (i
= 0; i
< nb_bt_opts
; i
++)
6011 if (bt_parse(bt_opts
[i
]))
6014 /* init the memory */
6016 ram_size
= DEFAULT_RAM_SIZE
* 1024 * 1024;
6018 if (kvm_enabled()) {
6019 if (kvm_qemu_create_context() < 0) {
6020 fprintf(stderr
, "Could not create KVM context\n");
6026 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
6027 guest ram allocation. It needs to go away. */
6028 if (kqemu_allowed
) {
6029 kqemu_phys_ram_size
= ram_size
+ 8 * 1024 * 1024 + 4 * 1024 * 1024;
6030 kqemu_phys_ram_base
= qemu_vmalloc(kqemu_phys_ram_size
);
6031 if (!kqemu_phys_ram_base
) {
6032 fprintf(stderr
, "Could not allocate physical memory\n");
6038 /* init the dynamic translator */
6039 cpu_exec_init_all(tb_size
* 1024 * 1024);
6043 /* we always create the cdrom drive, even if no disk is there */
6045 if (nb_drives_opt
< MAX_DRIVES
)
6046 drive_add(NULL
, CDROM_ALIAS
);
6048 /* we always create at least one floppy */
6050 if (nb_drives_opt
< MAX_DRIVES
)
6051 drive_add(NULL
, FD_ALIAS
, 0);
6053 /* we always create one sd slot, even if no card is in it */
6055 if (nb_drives_opt
< MAX_DRIVES
)
6056 drive_add(NULL
, SD_ALIAS
);
6058 /* open the virtual block devices
6059 * note that migration with device
6060 * hot add/remove is broken.
6062 for(i
= 0; i
< nb_drives_opt
; i
++)
6063 if (drive_init(&drives_opt
[i
], snapshot
, machine
) == -1)
6066 register_savevm("timer", 0, 2, timer_save
, timer_load
, NULL
);
6067 register_savevm_live("ram", 0, 3, ram_save_live
, NULL
, ram_load
, NULL
);
6070 /* must be after terminal init, SDL library changes signal handlers */
6074 /* Maintain compatibility with multiple stdio monitors */
6075 if (!strcmp(monitor_device
,"stdio")) {
6076 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
6077 const char *devname
= serial_devices
[i
];
6078 if (devname
&& !strcmp(devname
,"mon:stdio")) {
6079 monitor_device
= NULL
;
6081 } else if (devname
&& !strcmp(devname
,"stdio")) {
6082 monitor_device
= NULL
;
6083 serial_devices
[i
] = "mon:stdio";
6089 if (nb_numa_nodes
> 0) {
6092 if (nb_numa_nodes
> smp_cpus
) {
6093 nb_numa_nodes
= smp_cpus
;
6096 /* If no memory size if given for any node, assume the default case
6097 * and distribute the available memory equally across all nodes
6099 for (i
= 0; i
< nb_numa_nodes
; i
++) {
6100 if (node_mem
[i
] != 0)
6103 if (i
== nb_numa_nodes
) {
6104 uint64_t usedmem
= 0;
6106 /* On Linux, the each node's border has to be 8MB aligned,
6107 * the final node gets the rest.
6109 for (i
= 0; i
< nb_numa_nodes
- 1; i
++) {
6110 node_mem
[i
] = (ram_size
/ nb_numa_nodes
) & ~((1 << 23UL) - 1);
6111 usedmem
+= node_mem
[i
];
6113 node_mem
[i
] = ram_size
- usedmem
;
6116 for (i
= 0; i
< nb_numa_nodes
; i
++) {
6117 if (node_cpumask
[i
] != 0)
6120 /* assigning the VCPUs round-robin is easier to implement, guest OSes
6121 * must cope with this anyway, because there are BIOSes out there in
6122 * real machines which also use this scheme.
6124 if (i
== nb_numa_nodes
) {
6125 for (i
= 0; i
< smp_cpus
; i
++) {
6126 node_cpumask
[i
% nb_numa_nodes
] |= 1 << i
;
6132 if (kvm_enabled()) {
6135 ret
= kvm_init(smp_cpus
);
6137 fprintf(stderr
, "failed to initialize KVM\n");
6143 if (monitor_device
) {
6144 monitor_hd
= qemu_chr_open("monitor", monitor_device
, NULL
);
6146 fprintf(stderr
, "qemu: could not open monitor device '%s'\n", monitor_device
);
6151 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
6152 const char *devname
= serial_devices
[i
];
6153 if (devname
&& strcmp(devname
, "none")) {
6155 snprintf(label
, sizeof(label
), "serial%d", i
);
6156 serial_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
6157 if (!serial_hds
[i
]) {
6158 fprintf(stderr
, "qemu: could not open serial device '%s'\n",
6165 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
6166 const char *devname
= parallel_devices
[i
];
6167 if (devname
&& strcmp(devname
, "none")) {
6169 snprintf(label
, sizeof(label
), "parallel%d", i
);
6170 parallel_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
6171 if (!parallel_hds
[i
]) {
6172 fprintf(stderr
, "qemu: could not open parallel device '%s'\n",
6179 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
6180 const char *devname
= virtio_consoles
[i
];
6181 if (devname
&& strcmp(devname
, "none")) {
6183 snprintf(label
, sizeof(label
), "virtcon%d", i
);
6184 virtcon_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
6185 if (!virtcon_hds
[i
]) {
6186 fprintf(stderr
, "qemu: could not open virtio console '%s'\n",
6193 module_call_init(MODULE_INIT_DEVICE
);
6198 machine
->init(ram_size
, boot_devices
,
6199 kernel_filename
, kernel_cmdline
, initrd_filename
, cpu_model
);
6202 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
6203 for (i
= 0; i
< nb_numa_nodes
; i
++) {
6204 if (node_cpumask
[i
] & (1 << env
->cpu_index
)) {
6210 current_machine
= machine
;
6212 /* Set KVM's vcpu state to qemu's initial CPUState. */
6213 if (kvm_enabled()) {
6216 ret
= kvm_sync_vcpus();
6218 fprintf(stderr
, "failed to initialize vcpus\n");
6223 /* init USB devices */
6225 for(i
= 0; i
< usb_devices_index
; i
++) {
6226 if (usb_device_add(usb_devices
[i
], 0) < 0) {
6227 fprintf(stderr
, "Warning: could not add USB device %s\n",
6234 dumb_display_init();
6235 /* just use the first displaystate for the moment */
6238 if (display_type
== DT_DEFAULT
) {
6239 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
6240 display_type
= DT_SDL
;
6242 display_type
= DT_VNC
;
6243 vnc_display
= "localhost:0,to=99";
6249 switch (display_type
) {
6252 #if defined(CONFIG_CURSES)
6254 curses_display_init(ds
, full_screen
);
6257 #if defined(CONFIG_SDL)
6259 sdl_display_init(ds
, full_screen
, no_frame
);
6261 #elif defined(CONFIG_COCOA)
6263 cocoa_display_init(ds
, full_screen
);
6267 vnc_display_init(ds
);
6268 if (vnc_display_open(ds
, vnc_display
) < 0)
6271 if (show_vnc_port
) {
6272 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds
));
6280 dcl
= ds
->listeners
;
6281 while (dcl
!= NULL
) {
6282 if (dcl
->dpy_refresh
!= NULL
) {
6283 ds
->gui_timer
= qemu_new_timer(rt_clock
, gui_update
, ds
);
6284 qemu_mod_timer(ds
->gui_timer
, qemu_get_clock(rt_clock
));
6289 if (display_type
== DT_NOGRAPHIC
|| display_type
== DT_VNC
) {
6290 nographic_timer
= qemu_new_timer(rt_clock
, nographic_update
, NULL
);
6291 qemu_mod_timer(nographic_timer
, qemu_get_clock(rt_clock
));
6294 text_consoles_set_display(display_state
);
6295 qemu_chr_initial_reset();
6297 if (monitor_device
&& monitor_hd
)
6298 monitor_init(monitor_hd
, MONITOR_USE_READLINE
| MONITOR_IS_DEFAULT
);
6300 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
6301 const char *devname
= serial_devices
[i
];
6302 if (devname
&& strcmp(devname
, "none")) {
6304 snprintf(label
, sizeof(label
), "serial%d", i
);
6305 if (strstart(devname
, "vc", 0))
6306 qemu_chr_printf(serial_hds
[i
], "serial%d console\r\n", i
);
6310 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
6311 const char *devname
= parallel_devices
[i
];
6312 if (devname
&& strcmp(devname
, "none")) {
6314 snprintf(label
, sizeof(label
), "parallel%d", i
);
6315 if (strstart(devname
, "vc", 0))
6316 qemu_chr_printf(parallel_hds
[i
], "parallel%d console\r\n", i
);
6320 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
6321 const char *devname
= virtio_consoles
[i
];
6322 if (virtcon_hds
[i
] && devname
) {
6324 snprintf(label
, sizeof(label
), "virtcon%d", i
);
6325 if (strstart(devname
, "vc", 0))
6326 qemu_chr_printf(virtcon_hds
[i
], "virtio console%d\r\n", i
);
6330 if (gdbstub_dev
&& gdbserver_start(gdbstub_dev
) < 0) {
6331 fprintf(stderr
, "qemu: could not open gdbserver on device '%s'\n",
6337 do_loadvm(cur_mon
, loadvm
);
6340 autostart
= 0; /* fixme how to deal with -daemonize */
6341 qemu_start_incoming_migration(incoming
);
6353 len
= write(fds
[1], &status
, 1);
6354 if (len
== -1 && (errno
== EINTR
))
6361 TFR(fd
= open("/dev/null", O_RDWR
));
6367 pwd
= getpwnam(run_as
);
6369 fprintf(stderr
, "User \"%s\" doesn't exist\n", run_as
);
6375 if (chroot(chroot_dir
) < 0) {
6376 fprintf(stderr
, "chroot failed\n");
6383 if (setgid(pwd
->pw_gid
) < 0) {
6384 fprintf(stderr
, "Failed to setgid(%d)\n", pwd
->pw_gid
);
6387 if (setuid(pwd
->pw_uid
) < 0) {
6388 fprintf(stderr
, "Failed to setuid(%d)\n", pwd
->pw_uid
);
6391 if (setuid(0) != -1) {
6392 fprintf(stderr
, "Dropping privileges failed\n");