2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
23 #if !defined(TARGET_IA64)
28 #if !defined(CONFIG_SOFTMMU)
40 #include <sys/ucontext.h>
46 #if defined(__sparc__) && !defined(HOST_SOLARIS)
47 // Work around ugly bugs in glibc that mangle global register contents
49 #define env cpu_single_env
52 int tb_invalidated_flag
;
55 //#define DEBUG_SIGNAL
57 void cpu_loop_exit(void)
59 /* NOTE: the register at this point must be saved by hand because
60 longjmp restore them */
62 longjmp(env
->jmp_env
, 1);
65 /* exit the current TB from a signal handler. The host registers are
66 restored in a state compatible with the CPU emulator
68 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
70 #if !defined(CONFIG_SOFTMMU)
72 struct ucontext
*uc
= puc
;
73 #elif defined(__OpenBSD__)
74 struct sigcontext
*uc
= puc
;
80 /* XXX: restore cpu registers saved in host registers */
82 #if !defined(CONFIG_SOFTMMU)
84 /* XXX: use siglongjmp ? */
86 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
87 #elif defined(__OpenBSD__)
88 sigprocmask(SIG_SETMASK
, &uc
->sc_mask
, NULL
);
92 env
->exception_index
= -1;
93 longjmp(env
->jmp_env
, 1);
96 /* Execute the code without caching the generated code. An interpreter
97 could be used if available. */
98 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
100 unsigned long next_tb
;
101 TranslationBlock
*tb
;
103 /* Should never happen.
104 We only end up here when an existing TB is too long. */
105 if (max_cycles
> CF_COUNT_MASK
)
106 max_cycles
= CF_COUNT_MASK
;
108 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
110 env
->current_tb
= tb
;
111 /* execute the generated code */
112 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
114 if ((next_tb
& 3) == 2) {
115 /* Restore PC. This may happen if async event occurs before
116 the TB starts executing. */
117 cpu_pc_from_tb(env
, tb
);
119 tb_phys_invalidate(tb
, -1);
123 static TranslationBlock
*tb_find_slow(target_ulong pc
,
124 target_ulong cs_base
,
127 TranslationBlock
*tb
, **ptb1
;
129 target_ulong phys_pc
, phys_page1
, phys_page2
, virt_page2
;
131 tb_invalidated_flag
= 0;
133 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
135 /* find translated block using physical mappings */
136 phys_pc
= get_phys_addr_code(env
, pc
);
137 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
139 h
= tb_phys_hash_func(phys_pc
);
140 ptb1
= &tb_phys_hash
[h
];
146 tb
->page_addr
[0] == phys_page1
&&
147 tb
->cs_base
== cs_base
&&
148 tb
->flags
== flags
) {
149 /* check next page if needed */
150 if (tb
->page_addr
[1] != -1) {
151 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
153 phys_page2
= get_phys_addr_code(env
, virt_page2
);
154 if (tb
->page_addr
[1] == phys_page2
)
160 ptb1
= &tb
->phys_hash_next
;
163 /* if no translated code available, then translate it now */
164 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
167 /* we add the TB in the virtual pc hash table */
168 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
172 static inline TranslationBlock
*tb_find_fast(void)
174 TranslationBlock
*tb
;
175 target_ulong cs_base
, pc
;
178 /* we record a subset of the CPU state. It will
179 always be the same before a given translated block
181 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
182 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
183 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
184 tb
->flags
!= flags
)) {
185 tb
= tb_find_slow(pc
, cs_base
, flags
);
190 static CPUDebugExcpHandler
*debug_excp_handler
;
192 CPUDebugExcpHandler
*cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
194 CPUDebugExcpHandler
*old_handler
= debug_excp_handler
;
196 debug_excp_handler
= handler
;
200 static void cpu_handle_debug_exception(CPUState
*env
)
204 if (!env
->watchpoint_hit
)
205 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
)
206 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
208 if (debug_excp_handler
)
209 debug_excp_handler(env
);
212 /* main execution loop */
214 int cpu_exec(CPUState
*env1
)
216 #define DECLARE_HOST_REGS 1
217 #include "hostregs_helper.h"
218 int ret
, interrupt_request
;
219 TranslationBlock
*tb
;
221 unsigned long next_tb
;
223 if (cpu_halted(env1
) == EXCP_HALTED
)
226 cpu_single_env
= env1
;
228 /* first we save global registers */
229 #define SAVE_HOST_REGS 1
230 #include "hostregs_helper.h"
234 #if defined(TARGET_I386)
235 /* put eflags in CPU temporary format */
236 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
237 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
238 CC_OP
= CC_OP_EFLAGS
;
239 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
240 #elif defined(TARGET_SPARC)
241 #elif defined(TARGET_M68K)
242 env
->cc_op
= CC_OP_FLAGS
;
243 env
->cc_dest
= env
->sr
& 0xf;
244 env
->cc_x
= (env
->sr
>> 4) & 1;
245 #elif defined(TARGET_ALPHA)
246 #elif defined(TARGET_ARM)
247 #elif defined(TARGET_PPC)
248 #elif defined(TARGET_MIPS)
249 #elif defined(TARGET_SH4)
250 #elif defined(TARGET_CRIS)
251 #elif defined(TARGET_IA64)
254 #error unsupported target CPU
256 env
->exception_index
= -1;
258 /* prepare setjmp context for exception handling */
260 if (setjmp(env
->jmp_env
) == 0) {
261 env
->current_tb
= NULL
;
262 /* if an exception is pending, we execute it here */
263 if (env
->exception_index
>= 0) {
264 if (env
->exception_index
>= EXCP_INTERRUPT
) {
265 /* exit request from the cpu execution loop */
266 ret
= env
->exception_index
;
267 if (ret
== EXCP_DEBUG
)
268 cpu_handle_debug_exception(env
);
271 #if defined(CONFIG_USER_ONLY)
272 /* if user mode only, we simulate a fake exception
273 which will be handled outside the cpu execution
275 #if defined(TARGET_I386)
276 do_interrupt_user(env
->exception_index
,
277 env
->exception_is_int
,
279 env
->exception_next_eip
);
280 /* successfully delivered */
281 env
->old_exception
= -1;
283 ret
= env
->exception_index
;
286 #if defined(TARGET_I386)
287 /* simulate a real cpu exception. On i386, it can
288 trigger new exceptions, but we do not handle
289 double or triple faults yet. */
290 do_interrupt(env
->exception_index
,
291 env
->exception_is_int
,
293 env
->exception_next_eip
, 0);
294 /* successfully delivered */
295 env
->old_exception
= -1;
296 #elif defined(TARGET_PPC)
298 #elif defined(TARGET_MIPS)
300 #elif defined(TARGET_SPARC)
302 #elif defined(TARGET_ARM)
304 #elif defined(TARGET_SH4)
306 #elif defined(TARGET_ALPHA)
308 #elif defined(TARGET_CRIS)
310 #elif defined(TARGET_M68K)
312 #elif defined(TARGET_IA64)
317 env
->exception_index
= -1;
320 if (kqemu_is_ok(env
) && env
->interrupt_request
== 0 && env
->exit_request
== 0) {
322 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
323 ret
= kqemu_cpu_exec(env
);
324 /* put eflags in CPU temporary format */
325 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
326 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
327 CC_OP
= CC_OP_EFLAGS
;
328 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
331 longjmp(env
->jmp_env
, 1);
332 } else if (ret
== 2) {
333 /* softmmu execution needed */
335 if (env
->interrupt_request
!= 0 || env
->exit_request
!= 0) {
336 /* hardware interrupt will be executed just after */
338 /* otherwise, we restart */
339 longjmp(env
->jmp_env
, 1);
345 /* kvm vcpu threads */
348 longjmp(env
->jmp_env
, 1);
353 longjmp(env
->jmp_env
, 1);
356 next_tb
= 0; /* force lookup of first TB */
358 interrupt_request
= env
->interrupt_request
;
359 if (unlikely(interrupt_request
)) {
360 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
361 /* Mask out external interrupts for this step. */
362 interrupt_request
&= ~(CPU_INTERRUPT_HARD
|
367 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
368 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
369 env
->exception_index
= EXCP_DEBUG
;
372 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
373 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
374 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
375 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
377 env
->exception_index
= EXCP_HLT
;
381 #if defined(TARGET_I386)
382 if (env
->hflags2
& HF2_GIF_MASK
) {
383 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
384 !(env
->hflags
& HF_SMM_MASK
)) {
385 svm_check_intercept(SVM_EXIT_SMI
);
386 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
389 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
390 !(env
->hflags2
& HF2_NMI_MASK
)) {
391 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
392 env
->hflags2
|= HF2_NMI_MASK
;
393 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
395 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
396 (((env
->hflags2
& HF2_VINTR_MASK
) &&
397 (env
->hflags2
& HF2_HIF_MASK
)) ||
398 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
399 (env
->eflags
& IF_MASK
&&
400 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
402 svm_check_intercept(SVM_EXIT_INTR
);
403 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
404 intno
= cpu_get_pic_interrupt(env
);
405 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
406 do_interrupt(intno
, 0, 0, 0, 1);
407 /* ensure that no TB jump will be modified as
408 the program flow was changed */
410 #if !defined(CONFIG_USER_ONLY)
411 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
412 (env
->eflags
& IF_MASK
) &&
413 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
415 /* FIXME: this should respect TPR */
416 svm_check_intercept(SVM_EXIT_VINTR
);
417 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
418 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
419 do_interrupt(intno
, 0, 0, 0, 1);
420 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
425 #elif defined(TARGET_PPC)
427 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
431 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
432 ppc_hw_interrupt(env
);
433 if (env
->pending_interrupts
== 0)
434 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
437 #elif defined(TARGET_MIPS)
438 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
439 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
) &&
440 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
441 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
442 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
443 !(env
->hflags
& MIPS_HFLAG_DM
)) {
445 env
->exception_index
= EXCP_EXT_INTERRUPT
;
450 #elif defined(TARGET_SPARC)
451 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
453 int pil
= env
->interrupt_index
& 15;
454 int type
= env
->interrupt_index
& 0xf0;
456 if (((type
== TT_EXTINT
) &&
457 (pil
== 15 || pil
> env
->psrpil
)) ||
459 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
460 env
->exception_index
= env
->interrupt_index
;
462 env
->interrupt_index
= 0;
463 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
468 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
469 //do_interrupt(0, 0, 0, 0, 0);
470 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
472 #elif defined(TARGET_ARM)
473 if (interrupt_request
& CPU_INTERRUPT_FIQ
474 && !(env
->uncached_cpsr
& CPSR_F
)) {
475 env
->exception_index
= EXCP_FIQ
;
479 /* ARMv7-M interrupt return works by loading a magic value
480 into the PC. On real hardware the load causes the
481 return to occur. The qemu implementation performs the
482 jump normally, then does the exception return when the
483 CPU tries to execute code at the magic address.
484 This will cause the magic PC value to be pushed to
485 the stack if an interrupt occured at the wrong time.
486 We avoid this by disabling interrupts when
487 pc contains a magic address. */
488 if (interrupt_request
& CPU_INTERRUPT_HARD
489 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
490 || !(env
->uncached_cpsr
& CPSR_I
))) {
491 env
->exception_index
= EXCP_IRQ
;
495 #elif defined(TARGET_SH4)
496 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
500 #elif defined(TARGET_ALPHA)
501 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
505 #elif defined(TARGET_CRIS)
506 if (interrupt_request
& CPU_INTERRUPT_HARD
507 && (env
->pregs
[PR_CCS
] & I_FLAG
)) {
508 env
->exception_index
= EXCP_IRQ
;
512 if (interrupt_request
& CPU_INTERRUPT_NMI
513 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
514 env
->exception_index
= EXCP_NMI
;
518 #elif defined(TARGET_M68K)
519 if (interrupt_request
& CPU_INTERRUPT_HARD
520 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
521 < env
->pending_level
) {
522 /* Real hardware gets the interrupt vector via an
523 IACK cycle at this point. Current emulated
524 hardware doesn't rely on this, so we
525 provide/save the vector when the interrupt is
527 env
->exception_index
= env
->pending_vector
;
532 /* Don't use the cached interupt_request value,
533 do_interrupt may have updated the EXITTB flag. */
534 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
535 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
536 /* ensure that no TB jump will be modified as
537 the program flow was changed */
541 if (unlikely(env
->exit_request
)) {
542 env
->exit_request
= 0;
543 env
->exception_index
= EXCP_INTERRUPT
;
547 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
548 /* restore flags in standard format */
550 #if defined(TARGET_I386)
551 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
552 log_cpu_state(env
, X86_DUMP_CCOP
);
553 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
554 #elif defined(TARGET_ARM)
555 log_cpu_state(env
, 0);
556 #elif defined(TARGET_SPARC)
557 log_cpu_state(env
, 0);
558 #elif defined(TARGET_PPC)
559 log_cpu_state(env
, 0);
560 #elif defined(TARGET_M68K)
561 cpu_m68k_flush_flags(env
, env
->cc_op
);
562 env
->cc_op
= CC_OP_FLAGS
;
563 env
->sr
= (env
->sr
& 0xffe0)
564 | env
->cc_dest
| (env
->cc_x
<< 4);
565 log_cpu_state(env
, 0);
566 #elif defined(TARGET_MIPS)
567 log_cpu_state(env
, 0);
568 #elif defined(TARGET_SH4)
569 log_cpu_state(env
, 0);
570 #elif defined(TARGET_ALPHA)
571 log_cpu_state(env
, 0);
572 #elif defined(TARGET_CRIS)
573 log_cpu_state(env
, 0);
575 #error unsupported target CPU
581 /* Note: we do it here to avoid a gcc bug on Mac OS X when
582 doing it in tb_find_slow */
583 if (tb_invalidated_flag
) {
584 /* as some TB could have been invalidated because
585 of memory exceptions while generating the code, we
586 must recompute the hash index here */
588 tb_invalidated_flag
= 0;
591 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
592 (long)tb
->tc_ptr
, tb
->pc
,
593 lookup_symbol(tb
->pc
));
595 /* see if we can patch the calling TB. When the TB
596 spans two pages, we cannot safely do a direct
601 (env
->kqemu_enabled
!= 2) &&
603 tb
->page_addr
[1] == -1) {
604 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
607 spin_unlock(&tb_lock
);
608 env
->current_tb
= tb
;
610 /* cpu_interrupt might be called while translating the
611 TB, but before it is linked into a potentially
612 infinite loop and becomes env->current_tb. Avoid
613 starting execution if there is a pending interrupt. */
614 if (unlikely (env
->exit_request
))
615 env
->current_tb
= NULL
;
617 while (env
->current_tb
) {
619 /* execute the generated code */
620 #if defined(__sparc__) && !defined(HOST_SOLARIS)
622 env
= cpu_single_env
;
623 #define env cpu_single_env
625 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
626 env
->current_tb
= NULL
;
627 if ((next_tb
& 3) == 2) {
628 /* Instruction counter expired. */
630 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
632 cpu_pc_from_tb(env
, tb
);
633 insns_left
= env
->icount_decr
.u32
;
634 if (env
->icount_extra
&& insns_left
>= 0) {
635 /* Refill decrementer and continue execution. */
636 env
->icount_extra
+= insns_left
;
637 if (env
->icount_extra
> 0xffff) {
640 insns_left
= env
->icount_extra
;
642 env
->icount_extra
-= insns_left
;
643 env
->icount_decr
.u16
.low
= insns_left
;
645 if (insns_left
> 0) {
646 /* Execute remaining instructions. */
647 cpu_exec_nocache(insns_left
, tb
);
649 env
->exception_index
= EXCP_INTERRUPT
;
655 /* reset soft MMU for next block (it can currently
656 only be set by a memory fault) */
657 #if defined(USE_KQEMU)
658 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
659 if (kqemu_is_ok(env
) &&
660 (cpu_get_time_fast() - env
->last_io_time
) >= MIN_CYCLE_BEFORE_SWITCH
) {
671 #if defined(TARGET_I386)
672 /* restore flags in standard format */
673 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
674 #elif defined(TARGET_ARM)
675 /* XXX: Save/restore host fpu exception state?. */
676 #elif defined(TARGET_SPARC)
677 #elif defined(TARGET_PPC)
678 #elif defined(TARGET_M68K)
679 cpu_m68k_flush_flags(env
, env
->cc_op
);
680 env
->cc_op
= CC_OP_FLAGS
;
681 env
->sr
= (env
->sr
& 0xffe0)
682 | env
->cc_dest
| (env
->cc_x
<< 4);
683 #elif defined(TARGET_MIPS)
684 #elif defined(TARGET_SH4)
685 #elif defined(TARGET_IA64)
686 #elif defined(TARGET_ALPHA)
687 #elif defined(TARGET_CRIS)
690 #error unsupported target CPU
693 /* restore global registers */
694 #include "hostregs_helper.h"
696 /* fail safe : never use cpu_single_env outside cpu_exec() */
697 cpu_single_env
= NULL
;
701 /* must only be called from the generated code as an exception can be
703 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
705 /* XXX: cannot enable it yet because it yields to MMU exception
706 where NIP != read address on PowerPC */
708 target_ulong phys_addr
;
709 phys_addr
= get_phys_addr_code(env
, start
);
710 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
714 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
716 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
718 CPUX86State
*saved_env
;
722 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
724 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
725 (selector
<< 4), 0xffff, 0);
727 helper_load_seg(seg_reg
, selector
);
732 void cpu_x86_fsave(CPUX86State
*s
, target_ulong ptr
, int data32
)
734 CPUX86State
*saved_env
;
739 helper_fsave(ptr
, data32
);
744 void cpu_x86_frstor(CPUX86State
*s
, target_ulong ptr
, int data32
)
746 CPUX86State
*saved_env
;
751 helper_frstor(ptr
, data32
);
756 #endif /* TARGET_I386 */
758 #if !defined(CONFIG_SOFTMMU)
760 #if defined(TARGET_I386)
762 /* 'pc' is the host PC at which the exception was raised. 'address' is
763 the effective address of the memory exception. 'is_write' is 1 if a
764 write caused the exception and otherwise 0'. 'old_set' is the
765 signal set which should be restored */
766 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
767 int is_write
, sigset_t
*old_set
,
770 TranslationBlock
*tb
;
774 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
775 #if defined(DEBUG_SIGNAL)
776 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
777 pc
, address
, is_write
, *(unsigned long *)old_set
);
779 /* XXX: locking issue */
780 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
784 /* see if it is an MMU fault */
785 ret
= cpu_x86_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
787 return 0; /* not an MMU fault */
789 return 1; /* the MMU fault was handled without causing real CPU fault */
790 /* now we have a real cpu fault */
793 /* the PC is inside the translated code. It means that we have
794 a virtual CPU fault */
795 cpu_restore_state(tb
, env
, pc
, puc
);
799 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
800 env
->eip
, env
->cr
[2], env
->error_code
);
802 /* we restore the process signal mask as the sigreturn should
803 do it (XXX: use sigsetjmp) */
804 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
805 raise_exception_err(env
->exception_index
, env
->error_code
);
807 /* activate soft MMU for this block */
808 env
->hflags
|= HF_SOFTMMU_MASK
;
809 cpu_resume_from_signal(env
, puc
);
811 /* never comes here */
815 #elif defined(TARGET_ARM)
816 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
817 int is_write
, sigset_t
*old_set
,
820 TranslationBlock
*tb
;
824 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
825 #if defined(DEBUG_SIGNAL)
826 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
827 pc
, address
, is_write
, *(unsigned long *)old_set
);
829 /* XXX: locking issue */
830 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
833 /* see if it is an MMU fault */
834 ret
= cpu_arm_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
836 return 0; /* not an MMU fault */
838 return 1; /* the MMU fault was handled without causing real CPU fault */
839 /* now we have a real cpu fault */
842 /* the PC is inside the translated code. It means that we have
843 a virtual CPU fault */
844 cpu_restore_state(tb
, env
, pc
, puc
);
846 /* we restore the process signal mask as the sigreturn should
847 do it (XXX: use sigsetjmp) */
848 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
850 /* never comes here */
853 #elif defined(TARGET_SPARC)
854 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
855 int is_write
, sigset_t
*old_set
,
858 TranslationBlock
*tb
;
862 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
863 #if defined(DEBUG_SIGNAL)
864 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
865 pc
, address
, is_write
, *(unsigned long *)old_set
);
867 /* XXX: locking issue */
868 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
871 /* see if it is an MMU fault */
872 ret
= cpu_sparc_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
874 return 0; /* not an MMU fault */
876 return 1; /* the MMU fault was handled without causing real CPU fault */
877 /* now we have a real cpu fault */
880 /* the PC is inside the translated code. It means that we have
881 a virtual CPU fault */
882 cpu_restore_state(tb
, env
, pc
, puc
);
884 /* we restore the process signal mask as the sigreturn should
885 do it (XXX: use sigsetjmp) */
886 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
888 /* never comes here */
891 #elif defined (TARGET_PPC)
892 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
893 int is_write
, sigset_t
*old_set
,
896 TranslationBlock
*tb
;
900 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
901 #if defined(DEBUG_SIGNAL)
902 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
903 pc
, address
, is_write
, *(unsigned long *)old_set
);
905 /* XXX: locking issue */
906 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
910 /* see if it is an MMU fault */
911 ret
= cpu_ppc_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
913 return 0; /* not an MMU fault */
915 return 1; /* the MMU fault was handled without causing real CPU fault */
917 /* now we have a real cpu fault */
920 /* the PC is inside the translated code. It means that we have
921 a virtual CPU fault */
922 cpu_restore_state(tb
, env
, pc
, puc
);
926 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
927 env
->nip
, env
->error_code
, tb
);
929 /* we restore the process signal mask as the sigreturn should
930 do it (XXX: use sigsetjmp) */
931 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
934 /* activate soft MMU for this block */
935 cpu_resume_from_signal(env
, puc
);
937 /* never comes here */
941 #elif defined(TARGET_M68K)
942 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
943 int is_write
, sigset_t
*old_set
,
946 TranslationBlock
*tb
;
950 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
951 #if defined(DEBUG_SIGNAL)
952 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
953 pc
, address
, is_write
, *(unsigned long *)old_set
);
955 /* XXX: locking issue */
956 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
959 /* see if it is an MMU fault */
960 ret
= cpu_m68k_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
962 return 0; /* not an MMU fault */
964 return 1; /* the MMU fault was handled without causing real CPU fault */
965 /* now we have a real cpu fault */
968 /* the PC is inside the translated code. It means that we have
969 a virtual CPU fault */
970 cpu_restore_state(tb
, env
, pc
, puc
);
972 /* we restore the process signal mask as the sigreturn should
973 do it (XXX: use sigsetjmp) */
974 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
976 /* never comes here */
980 #elif defined (TARGET_MIPS)
981 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
982 int is_write
, sigset_t
*old_set
,
985 TranslationBlock
*tb
;
989 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
990 #if defined(DEBUG_SIGNAL)
991 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
992 pc
, address
, is_write
, *(unsigned long *)old_set
);
994 /* XXX: locking issue */
995 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
999 /* see if it is an MMU fault */
1000 ret
= cpu_mips_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1002 return 0; /* not an MMU fault */
1004 return 1; /* the MMU fault was handled without causing real CPU fault */
1006 /* now we have a real cpu fault */
1007 tb
= tb_find_pc(pc
);
1009 /* the PC is inside the translated code. It means that we have
1010 a virtual CPU fault */
1011 cpu_restore_state(tb
, env
, pc
, puc
);
1015 printf("PF exception: PC=0x" TARGET_FMT_lx
" error=0x%x %p\n",
1016 env
->PC
, env
->error_code
, tb
);
1018 /* we restore the process signal mask as the sigreturn should
1019 do it (XXX: use sigsetjmp) */
1020 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1023 /* activate soft MMU for this block */
1024 cpu_resume_from_signal(env
, puc
);
1026 /* never comes here */
1030 #elif defined (TARGET_SH4)
1031 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1032 int is_write
, sigset_t
*old_set
,
1035 TranslationBlock
*tb
;
1039 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1040 #if defined(DEBUG_SIGNAL)
1041 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1042 pc
, address
, is_write
, *(unsigned long *)old_set
);
1044 /* XXX: locking issue */
1045 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1049 /* see if it is an MMU fault */
1050 ret
= cpu_sh4_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1052 return 0; /* not an MMU fault */
1054 return 1; /* the MMU fault was handled without causing real CPU fault */
1056 /* now we have a real cpu fault */
1057 tb
= tb_find_pc(pc
);
1059 /* the PC is inside the translated code. It means that we have
1060 a virtual CPU fault */
1061 cpu_restore_state(tb
, env
, pc
, puc
);
1064 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1065 env
->nip
, env
->error_code
, tb
);
1067 /* we restore the process signal mask as the sigreturn should
1068 do it (XXX: use sigsetjmp) */
1069 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1071 /* never comes here */
1075 #elif defined (TARGET_ALPHA)
1076 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1077 int is_write
, sigset_t
*old_set
,
1080 TranslationBlock
*tb
;
1084 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1085 #if defined(DEBUG_SIGNAL)
1086 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1087 pc
, address
, is_write
, *(unsigned long *)old_set
);
1089 /* XXX: locking issue */
1090 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1094 /* see if it is an MMU fault */
1095 ret
= cpu_alpha_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1097 return 0; /* not an MMU fault */
1099 return 1; /* the MMU fault was handled without causing real CPU fault */
1101 /* now we have a real cpu fault */
1102 tb
= tb_find_pc(pc
);
1104 /* the PC is inside the translated code. It means that we have
1105 a virtual CPU fault */
1106 cpu_restore_state(tb
, env
, pc
, puc
);
1109 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1110 env
->nip
, env
->error_code
, tb
);
1112 /* we restore the process signal mask as the sigreturn should
1113 do it (XXX: use sigsetjmp) */
1114 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1116 /* never comes here */
1119 #elif defined (TARGET_CRIS)
1120 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1121 int is_write
, sigset_t
*old_set
,
1124 TranslationBlock
*tb
;
1128 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1129 #if defined(DEBUG_SIGNAL)
1130 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1131 pc
, address
, is_write
, *(unsigned long *)old_set
);
1133 /* XXX: locking issue */
1134 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1138 /* see if it is an MMU fault */
1139 ret
= cpu_cris_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1141 return 0; /* not an MMU fault */
1143 return 1; /* the MMU fault was handled without causing real CPU fault */
1145 /* now we have a real cpu fault */
1146 tb
= tb_find_pc(pc
);
1148 /* the PC is inside the translated code. It means that we have
1149 a virtual CPU fault */
1150 cpu_restore_state(tb
, env
, pc
, puc
);
1152 /* we restore the process signal mask as the sigreturn should
1153 do it (XXX: use sigsetjmp) */
1154 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1156 /* never comes here */
1161 #error unsupported target CPU
1164 #if defined(__i386__)
1166 #if defined(__APPLE__)
1167 # include <sys/ucontext.h>
1169 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1170 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1171 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1173 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1174 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1175 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1178 int cpu_signal_handler(int host_signum
, void *pinfo
,
1181 siginfo_t
*info
= pinfo
;
1182 struct ucontext
*uc
= puc
;
1190 #define REG_TRAPNO TRAPNO
1193 trapno
= TRAP_sig(uc
);
1194 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1196 (ERROR_sig(uc
) >> 1) & 1 : 0,
1197 &uc
->uc_sigmask
, puc
);
1200 #elif defined(__x86_64__)
1203 #define REG_ERR _REG_ERR
1204 #define REG_TRAPNO _REG_TRAPNO
1206 #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.__gregs[(reg)]
1207 #define QEMU_UC_MACHINE_PC(uc) _UC_MACHINE_PC(uc)
1209 #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.gregs[(reg)]
1210 #define QEMU_UC_MACHINE_PC(uc) QEMU_UC_MCONTEXT_GREGS(uc, REG_RIP)
1213 int cpu_signal_handler(int host_signum
, void *pinfo
,
1216 siginfo_t
*info
= pinfo
;
1219 ucontext_t
*uc
= puc
;
1221 struct ucontext
*uc
= puc
;
1224 pc
= QEMU_UC_MACHINE_PC(uc
);
1225 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1226 QEMU_UC_MCONTEXT_GREGS(uc
, REG_TRAPNO
) == 0xe ?
1227 (QEMU_UC_MCONTEXT_GREGS(uc
, REG_ERR
) >> 1) & 1 : 0,
1228 &uc
->uc_sigmask
, puc
);
1231 #elif defined(_ARCH_PPC)
1233 /***********************************************************************
1234 * signal context platform-specific definitions
1238 /* All Registers access - only for local access */
1239 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1240 /* Gpr Registers access */
1241 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1242 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1243 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1244 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1245 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1246 # define LR_sig(context) REG_sig(link, context) /* Link register */
1247 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1248 /* Float Registers access */
1249 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1250 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1251 /* Exception Registers access */
1252 # define DAR_sig(context) REG_sig(dar, context)
1253 # define DSISR_sig(context) REG_sig(dsisr, context)
1254 # define TRAP_sig(context) REG_sig(trap, context)
1258 # include <sys/ucontext.h>
1259 typedef struct ucontext SIGCONTEXT
;
1260 /* All Registers access - only for local access */
1261 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1262 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1263 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1264 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1265 /* Gpr Registers access */
1266 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1267 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1268 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1269 # define CTR_sig(context) REG_sig(ctr, context)
1270 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1271 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1272 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1273 /* Float Registers access */
1274 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1275 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1276 /* Exception Registers access */
1277 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1278 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1279 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1280 #endif /* __APPLE__ */
1282 int cpu_signal_handler(int host_signum
, void *pinfo
,
1285 siginfo_t
*info
= pinfo
;
1286 struct ucontext
*uc
= puc
;
1294 if (DSISR_sig(uc
) & 0x00800000)
1297 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
1300 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1301 is_write
, &uc
->uc_sigmask
, puc
);
1304 #elif defined(__alpha__)
1306 int cpu_signal_handler(int host_signum
, void *pinfo
,
1309 siginfo_t
*info
= pinfo
;
1310 struct ucontext
*uc
= puc
;
1311 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
1312 uint32_t insn
= *pc
;
1315 /* XXX: need kernel patch to get write flag faster */
1316 switch (insn
>> 26) {
1331 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1332 is_write
, &uc
->uc_sigmask
, puc
);
1334 #elif defined(__sparc__)
1336 int cpu_signal_handler(int host_signum
, void *pinfo
,
1339 siginfo_t
*info
= pinfo
;
1342 #if !defined(__arch64__) || defined(HOST_SOLARIS)
1343 uint32_t *regs
= (uint32_t *)(info
+ 1);
1344 void *sigmask
= (regs
+ 20);
1345 /* XXX: is there a standard glibc define ? */
1346 unsigned long pc
= regs
[1];
1349 struct sigcontext
*sc
= puc
;
1350 unsigned long pc
= sc
->sigc_regs
.tpc
;
1351 void *sigmask
= (void *)sc
->sigc_mask
;
1352 #elif defined(__OpenBSD__)
1353 struct sigcontext
*uc
= puc
;
1354 unsigned long pc
= uc
->sc_pc
;
1355 void *sigmask
= (void *)(long)uc
->sc_mask
;
1359 /* XXX: need kernel patch to get write flag faster */
1361 insn
= *(uint32_t *)pc
;
1362 if ((insn
>> 30) == 3) {
1363 switch((insn
>> 19) & 0x3f) {
1375 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1376 is_write
, sigmask
, NULL
);
1379 #elif defined(__arm__)
1381 int cpu_signal_handler(int host_signum
, void *pinfo
,
1384 siginfo_t
*info
= pinfo
;
1385 struct ucontext
*uc
= puc
;
1389 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1390 pc
= uc
->uc_mcontext
.gregs
[R15
];
1392 pc
= uc
->uc_mcontext
.arm_pc
;
1394 /* XXX: compute is_write */
1396 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1398 &uc
->uc_sigmask
, puc
);
1401 #elif defined(__mc68000)
1403 int cpu_signal_handler(int host_signum
, void *pinfo
,
1406 siginfo_t
*info
= pinfo
;
1407 struct ucontext
*uc
= puc
;
1411 pc
= uc
->uc_mcontext
.gregs
[16];
1412 /* XXX: compute is_write */
1414 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1416 &uc
->uc_sigmask
, puc
);
1419 #elif defined(__ia64)
1422 /* This ought to be in <bits/siginfo.h>... */
1423 # define __ISR_VALID 1
1426 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1428 siginfo_t
*info
= pinfo
;
1429 struct ucontext
*uc
= puc
;
1433 ip
= uc
->uc_mcontext
.sc_ip
;
1434 switch (host_signum
) {
1440 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1441 /* ISR.W (write-access) is bit 33: */
1442 is_write
= (info
->si_isr
>> 33) & 1;
1448 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1450 &uc
->uc_sigmask
, puc
);
1453 #elif defined(__s390__)
1455 int cpu_signal_handler(int host_signum
, void *pinfo
,
1458 siginfo_t
*info
= pinfo
;
1459 struct ucontext
*uc
= puc
;
1463 pc
= uc
->uc_mcontext
.psw
.addr
;
1464 /* XXX: compute is_write */
1466 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1467 is_write
, &uc
->uc_sigmask
, puc
);
1470 #elif defined(__mips__)
1472 int cpu_signal_handler(int host_signum
, void *pinfo
,
1475 siginfo_t
*info
= pinfo
;
1476 struct ucontext
*uc
= puc
;
1477 greg_t pc
= uc
->uc_mcontext
.pc
;
1480 /* XXX: compute is_write */
1482 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1483 is_write
, &uc
->uc_sigmask
, puc
);
1486 #elif defined(__hppa__)
1488 int cpu_signal_handler(int host_signum
, void *pinfo
,
1491 struct siginfo
*info
= pinfo
;
1492 struct ucontext
*uc
= puc
;
1496 pc
= uc
->uc_mcontext
.sc_iaoq
[0];
1497 /* FIXME: compute is_write */
1499 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1501 &uc
->uc_sigmask
, puc
);
1506 #error host CPU specific signal handler needed
1510 #endif /* !defined(CONFIG_SOFTMMU) */