kvm: configure: pass --with-patched-kernel to kernel/configure
[qemu-kvm/fedora.git] / cpu-exec.c
blobbf42318fbcf6e05c833cd98668744f5228d35b07
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
23 #if !defined(TARGET_IA64)
24 #include "tcg.h"
25 #endif
26 #include "kvm.h"
28 #if !defined(CONFIG_SOFTMMU)
29 #undef EAX
30 #undef ECX
31 #undef EDX
32 #undef EBX
33 #undef ESP
34 #undef EBP
35 #undef ESI
36 #undef EDI
37 #undef EIP
38 #include <signal.h>
39 #ifdef __linux__
40 #include <sys/ucontext.h>
41 #endif
42 #endif
44 #include "qemu-kvm.h"
46 #if defined(__sparc__) && !defined(HOST_SOLARIS)
47 // Work around ugly bugs in glibc that mangle global register contents
48 #undef env
49 #define env cpu_single_env
50 #endif
52 int tb_invalidated_flag;
54 //#define DEBUG_EXEC
55 //#define DEBUG_SIGNAL
57 void cpu_loop_exit(void)
59 /* NOTE: the register at this point must be saved by hand because
60 longjmp restore them */
61 regs_to_env();
62 longjmp(env->jmp_env, 1);
65 /* exit the current TB from a signal handler. The host registers are
66 restored in a state compatible with the CPU emulator
68 void cpu_resume_from_signal(CPUState *env1, void *puc)
70 #if !defined(CONFIG_SOFTMMU)
71 #ifdef __linux__
72 struct ucontext *uc = puc;
73 #elif defined(__OpenBSD__)
74 struct sigcontext *uc = puc;
75 #endif
76 #endif
78 env = env1;
80 /* XXX: restore cpu registers saved in host registers */
82 #if !defined(CONFIG_SOFTMMU)
83 if (puc) {
84 /* XXX: use siglongjmp ? */
85 #ifdef __linux__
86 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
87 #elif defined(__OpenBSD__)
88 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
89 #endif
91 #endif
92 env->exception_index = -1;
93 longjmp(env->jmp_env, 1);
96 /* Execute the code without caching the generated code. An interpreter
97 could be used if available. */
98 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
100 unsigned long next_tb;
101 TranslationBlock *tb;
103 /* Should never happen.
104 We only end up here when an existing TB is too long. */
105 if (max_cycles > CF_COUNT_MASK)
106 max_cycles = CF_COUNT_MASK;
108 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
109 max_cycles);
110 env->current_tb = tb;
111 /* execute the generated code */
112 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
114 if ((next_tb & 3) == 2) {
115 /* Restore PC. This may happen if async event occurs before
116 the TB starts executing. */
117 cpu_pc_from_tb(env, tb);
119 tb_phys_invalidate(tb, -1);
120 tb_free(tb);
123 static TranslationBlock *tb_find_slow(target_ulong pc,
124 target_ulong cs_base,
125 uint64_t flags)
127 TranslationBlock *tb, **ptb1;
128 unsigned int h;
129 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
131 tb_invalidated_flag = 0;
133 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
135 /* find translated block using physical mappings */
136 phys_pc = get_phys_addr_code(env, pc);
137 phys_page1 = phys_pc & TARGET_PAGE_MASK;
138 phys_page2 = -1;
139 h = tb_phys_hash_func(phys_pc);
140 ptb1 = &tb_phys_hash[h];
141 for(;;) {
142 tb = *ptb1;
143 if (!tb)
144 goto not_found;
145 if (tb->pc == pc &&
146 tb->page_addr[0] == phys_page1 &&
147 tb->cs_base == cs_base &&
148 tb->flags == flags) {
149 /* check next page if needed */
150 if (tb->page_addr[1] != -1) {
151 virt_page2 = (pc & TARGET_PAGE_MASK) +
152 TARGET_PAGE_SIZE;
153 phys_page2 = get_phys_addr_code(env, virt_page2);
154 if (tb->page_addr[1] == phys_page2)
155 goto found;
156 } else {
157 goto found;
160 ptb1 = &tb->phys_hash_next;
162 not_found:
163 /* if no translated code available, then translate it now */
164 tb = tb_gen_code(env, pc, cs_base, flags, 0);
166 found:
167 /* we add the TB in the virtual pc hash table */
168 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
169 return tb;
172 static inline TranslationBlock *tb_find_fast(void)
174 TranslationBlock *tb;
175 target_ulong cs_base, pc;
176 int flags;
178 /* we record a subset of the CPU state. It will
179 always be the same before a given translated block
180 is executed. */
181 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
182 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
183 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
184 tb->flags != flags)) {
185 tb = tb_find_slow(pc, cs_base, flags);
187 return tb;
190 static CPUDebugExcpHandler *debug_excp_handler;
192 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
194 CPUDebugExcpHandler *old_handler = debug_excp_handler;
196 debug_excp_handler = handler;
197 return old_handler;
200 static void cpu_handle_debug_exception(CPUState *env)
202 CPUWatchpoint *wp;
204 if (!env->watchpoint_hit)
205 TAILQ_FOREACH(wp, &env->watchpoints, entry)
206 wp->flags &= ~BP_WATCHPOINT_HIT;
208 if (debug_excp_handler)
209 debug_excp_handler(env);
212 /* main execution loop */
214 int cpu_exec(CPUState *env1)
216 #define DECLARE_HOST_REGS 1
217 #include "hostregs_helper.h"
218 int ret, interrupt_request;
219 TranslationBlock *tb;
220 uint8_t *tc_ptr;
221 unsigned long next_tb;
223 if (cpu_halted(env1) == EXCP_HALTED)
224 return EXCP_HALTED;
226 cpu_single_env = env1;
228 /* first we save global registers */
229 #define SAVE_HOST_REGS 1
230 #include "hostregs_helper.h"
231 env = env1;
233 env_to_regs();
234 #if defined(TARGET_I386)
235 /* put eflags in CPU temporary format */
236 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
237 DF = 1 - (2 * ((env->eflags >> 10) & 1));
238 CC_OP = CC_OP_EFLAGS;
239 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
240 #elif defined(TARGET_SPARC)
241 #elif defined(TARGET_M68K)
242 env->cc_op = CC_OP_FLAGS;
243 env->cc_dest = env->sr & 0xf;
244 env->cc_x = (env->sr >> 4) & 1;
245 #elif defined(TARGET_ALPHA)
246 #elif defined(TARGET_ARM)
247 #elif defined(TARGET_PPC)
248 #elif defined(TARGET_MIPS)
249 #elif defined(TARGET_SH4)
250 #elif defined(TARGET_CRIS)
251 #elif defined(TARGET_IA64)
252 /* XXXXX */
253 #else
254 #error unsupported target CPU
255 #endif
256 env->exception_index = -1;
258 /* prepare setjmp context for exception handling */
259 for(;;) {
260 if (setjmp(env->jmp_env) == 0) {
261 env->current_tb = NULL;
262 /* if an exception is pending, we execute it here */
263 if (env->exception_index >= 0) {
264 if (env->exception_index >= EXCP_INTERRUPT) {
265 /* exit request from the cpu execution loop */
266 ret = env->exception_index;
267 if (ret == EXCP_DEBUG)
268 cpu_handle_debug_exception(env);
269 break;
270 } else {
271 #if defined(CONFIG_USER_ONLY)
272 /* if user mode only, we simulate a fake exception
273 which will be handled outside the cpu execution
274 loop */
275 #if defined(TARGET_I386)
276 do_interrupt_user(env->exception_index,
277 env->exception_is_int,
278 env->error_code,
279 env->exception_next_eip);
280 /* successfully delivered */
281 env->old_exception = -1;
282 #endif
283 ret = env->exception_index;
284 break;
285 #else
286 #if defined(TARGET_I386)
287 /* simulate a real cpu exception. On i386, it can
288 trigger new exceptions, but we do not handle
289 double or triple faults yet. */
290 do_interrupt(env->exception_index,
291 env->exception_is_int,
292 env->error_code,
293 env->exception_next_eip, 0);
294 /* successfully delivered */
295 env->old_exception = -1;
296 #elif defined(TARGET_PPC)
297 do_interrupt(env);
298 #elif defined(TARGET_MIPS)
299 do_interrupt(env);
300 #elif defined(TARGET_SPARC)
301 do_interrupt(env);
302 #elif defined(TARGET_ARM)
303 do_interrupt(env);
304 #elif defined(TARGET_SH4)
305 do_interrupt(env);
306 #elif defined(TARGET_ALPHA)
307 do_interrupt(env);
308 #elif defined(TARGET_CRIS)
309 do_interrupt(env);
310 #elif defined(TARGET_M68K)
311 do_interrupt(0);
312 #elif defined(TARGET_IA64)
313 do_interrupt(env);
314 #endif
315 #endif
317 env->exception_index = -1;
319 #ifdef USE_KQEMU
320 if (kqemu_is_ok(env) && env->interrupt_request == 0 && env->exit_request == 0) {
321 int ret;
322 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
323 ret = kqemu_cpu_exec(env);
324 /* put eflags in CPU temporary format */
325 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
326 DF = 1 - (2 * ((env->eflags >> 10) & 1));
327 CC_OP = CC_OP_EFLAGS;
328 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
329 if (ret == 1) {
330 /* exception */
331 longjmp(env->jmp_env, 1);
332 } else if (ret == 2) {
333 /* softmmu execution needed */
334 } else {
335 if (env->interrupt_request != 0 || env->exit_request != 0) {
336 /* hardware interrupt will be executed just after */
337 } else {
338 /* otherwise, we restart */
339 longjmp(env->jmp_env, 1);
343 #endif
345 /* kvm vcpu threads */
346 if (kvm_enabled()) {
347 kvm_cpu_exec(env);
348 longjmp(env->jmp_env, 1);
351 if (kvm_enabled()) {
352 kvm_cpu_exec(env);
353 longjmp(env->jmp_env, 1);
356 next_tb = 0; /* force lookup of first TB */
357 for(;;) {
358 interrupt_request = env->interrupt_request;
359 if (unlikely(interrupt_request)) {
360 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
361 /* Mask out external interrupts for this step. */
362 interrupt_request &= ~(CPU_INTERRUPT_HARD |
363 CPU_INTERRUPT_FIQ |
364 CPU_INTERRUPT_SMI |
365 CPU_INTERRUPT_NMI);
367 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
368 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
369 env->exception_index = EXCP_DEBUG;
370 cpu_loop_exit();
372 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
373 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
374 if (interrupt_request & CPU_INTERRUPT_HALT) {
375 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
376 env->halted = 1;
377 env->exception_index = EXCP_HLT;
378 cpu_loop_exit();
380 #endif
381 #if defined(TARGET_I386)
382 if (env->hflags2 & HF2_GIF_MASK) {
383 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
384 !(env->hflags & HF_SMM_MASK)) {
385 svm_check_intercept(SVM_EXIT_SMI);
386 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
387 do_smm_enter();
388 next_tb = 0;
389 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
390 !(env->hflags2 & HF2_NMI_MASK)) {
391 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
392 env->hflags2 |= HF2_NMI_MASK;
393 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
394 next_tb = 0;
395 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
396 (((env->hflags2 & HF2_VINTR_MASK) &&
397 (env->hflags2 & HF2_HIF_MASK)) ||
398 (!(env->hflags2 & HF2_VINTR_MASK) &&
399 (env->eflags & IF_MASK &&
400 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
401 int intno;
402 svm_check_intercept(SVM_EXIT_INTR);
403 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
404 intno = cpu_get_pic_interrupt(env);
405 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
406 do_interrupt(intno, 0, 0, 0, 1);
407 /* ensure that no TB jump will be modified as
408 the program flow was changed */
409 next_tb = 0;
410 #if !defined(CONFIG_USER_ONLY)
411 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
412 (env->eflags & IF_MASK) &&
413 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
414 int intno;
415 /* FIXME: this should respect TPR */
416 svm_check_intercept(SVM_EXIT_VINTR);
417 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
418 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
419 do_interrupt(intno, 0, 0, 0, 1);
420 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
421 next_tb = 0;
422 #endif
425 #elif defined(TARGET_PPC)
426 #if 0
427 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
428 cpu_ppc_reset(env);
430 #endif
431 if (interrupt_request & CPU_INTERRUPT_HARD) {
432 ppc_hw_interrupt(env);
433 if (env->pending_interrupts == 0)
434 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
435 next_tb = 0;
437 #elif defined(TARGET_MIPS)
438 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
439 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
440 (env->CP0_Status & (1 << CP0St_IE)) &&
441 !(env->CP0_Status & (1 << CP0St_EXL)) &&
442 !(env->CP0_Status & (1 << CP0St_ERL)) &&
443 !(env->hflags & MIPS_HFLAG_DM)) {
444 /* Raise it */
445 env->exception_index = EXCP_EXT_INTERRUPT;
446 env->error_code = 0;
447 do_interrupt(env);
448 next_tb = 0;
450 #elif defined(TARGET_SPARC)
451 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
452 (env->psret != 0)) {
453 int pil = env->interrupt_index & 15;
454 int type = env->interrupt_index & 0xf0;
456 if (((type == TT_EXTINT) &&
457 (pil == 15 || pil > env->psrpil)) ||
458 type != TT_EXTINT) {
459 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
460 env->exception_index = env->interrupt_index;
461 do_interrupt(env);
462 env->interrupt_index = 0;
463 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
464 cpu_check_irqs(env);
465 #endif
466 next_tb = 0;
468 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
469 //do_interrupt(0, 0, 0, 0, 0);
470 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
472 #elif defined(TARGET_ARM)
473 if (interrupt_request & CPU_INTERRUPT_FIQ
474 && !(env->uncached_cpsr & CPSR_F)) {
475 env->exception_index = EXCP_FIQ;
476 do_interrupt(env);
477 next_tb = 0;
479 /* ARMv7-M interrupt return works by loading a magic value
480 into the PC. On real hardware the load causes the
481 return to occur. The qemu implementation performs the
482 jump normally, then does the exception return when the
483 CPU tries to execute code at the magic address.
484 This will cause the magic PC value to be pushed to
485 the stack if an interrupt occured at the wrong time.
486 We avoid this by disabling interrupts when
487 pc contains a magic address. */
488 if (interrupt_request & CPU_INTERRUPT_HARD
489 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
490 || !(env->uncached_cpsr & CPSR_I))) {
491 env->exception_index = EXCP_IRQ;
492 do_interrupt(env);
493 next_tb = 0;
495 #elif defined(TARGET_SH4)
496 if (interrupt_request & CPU_INTERRUPT_HARD) {
497 do_interrupt(env);
498 next_tb = 0;
500 #elif defined(TARGET_ALPHA)
501 if (interrupt_request & CPU_INTERRUPT_HARD) {
502 do_interrupt(env);
503 next_tb = 0;
505 #elif defined(TARGET_CRIS)
506 if (interrupt_request & CPU_INTERRUPT_HARD
507 && (env->pregs[PR_CCS] & I_FLAG)) {
508 env->exception_index = EXCP_IRQ;
509 do_interrupt(env);
510 next_tb = 0;
512 if (interrupt_request & CPU_INTERRUPT_NMI
513 && (env->pregs[PR_CCS] & M_FLAG)) {
514 env->exception_index = EXCP_NMI;
515 do_interrupt(env);
516 next_tb = 0;
518 #elif defined(TARGET_M68K)
519 if (interrupt_request & CPU_INTERRUPT_HARD
520 && ((env->sr & SR_I) >> SR_I_SHIFT)
521 < env->pending_level) {
522 /* Real hardware gets the interrupt vector via an
523 IACK cycle at this point. Current emulated
524 hardware doesn't rely on this, so we
525 provide/save the vector when the interrupt is
526 first signalled. */
527 env->exception_index = env->pending_vector;
528 do_interrupt(1);
529 next_tb = 0;
531 #endif
532 /* Don't use the cached interupt_request value,
533 do_interrupt may have updated the EXITTB flag. */
534 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
535 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
536 /* ensure that no TB jump will be modified as
537 the program flow was changed */
538 next_tb = 0;
541 if (unlikely(env->exit_request)) {
542 env->exit_request = 0;
543 env->exception_index = EXCP_INTERRUPT;
544 cpu_loop_exit();
546 #ifdef DEBUG_EXEC
547 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
548 /* restore flags in standard format */
549 regs_to_env();
550 #if defined(TARGET_I386)
551 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
552 log_cpu_state(env, X86_DUMP_CCOP);
553 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
554 #elif defined(TARGET_ARM)
555 log_cpu_state(env, 0);
556 #elif defined(TARGET_SPARC)
557 log_cpu_state(env, 0);
558 #elif defined(TARGET_PPC)
559 log_cpu_state(env, 0);
560 #elif defined(TARGET_M68K)
561 cpu_m68k_flush_flags(env, env->cc_op);
562 env->cc_op = CC_OP_FLAGS;
563 env->sr = (env->sr & 0xffe0)
564 | env->cc_dest | (env->cc_x << 4);
565 log_cpu_state(env, 0);
566 #elif defined(TARGET_MIPS)
567 log_cpu_state(env, 0);
568 #elif defined(TARGET_SH4)
569 log_cpu_state(env, 0);
570 #elif defined(TARGET_ALPHA)
571 log_cpu_state(env, 0);
572 #elif defined(TARGET_CRIS)
573 log_cpu_state(env, 0);
574 #else
575 #error unsupported target CPU
576 #endif
578 #endif
579 spin_lock(&tb_lock);
580 tb = tb_find_fast();
581 /* Note: we do it here to avoid a gcc bug on Mac OS X when
582 doing it in tb_find_slow */
583 if (tb_invalidated_flag) {
584 /* as some TB could have been invalidated because
585 of memory exceptions while generating the code, we
586 must recompute the hash index here */
587 next_tb = 0;
588 tb_invalidated_flag = 0;
590 #ifdef DEBUG_EXEC
591 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
592 (long)tb->tc_ptr, tb->pc,
593 lookup_symbol(tb->pc));
594 #endif
595 /* see if we can patch the calling TB. When the TB
596 spans two pages, we cannot safely do a direct
597 jump. */
599 if (next_tb != 0 &&
600 #ifdef USE_KQEMU
601 (env->kqemu_enabled != 2) &&
602 #endif
603 tb->page_addr[1] == -1) {
604 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
607 spin_unlock(&tb_lock);
608 env->current_tb = tb;
610 /* cpu_interrupt might be called while translating the
611 TB, but before it is linked into a potentially
612 infinite loop and becomes env->current_tb. Avoid
613 starting execution if there is a pending interrupt. */
614 if (unlikely (env->exit_request))
615 env->current_tb = NULL;
617 while (env->current_tb) {
618 tc_ptr = tb->tc_ptr;
619 /* execute the generated code */
620 #if defined(__sparc__) && !defined(HOST_SOLARIS)
621 #undef env
622 env = cpu_single_env;
623 #define env cpu_single_env
624 #endif
625 next_tb = tcg_qemu_tb_exec(tc_ptr);
626 env->current_tb = NULL;
627 if ((next_tb & 3) == 2) {
628 /* Instruction counter expired. */
629 int insns_left;
630 tb = (TranslationBlock *)(long)(next_tb & ~3);
631 /* Restore PC. */
632 cpu_pc_from_tb(env, tb);
633 insns_left = env->icount_decr.u32;
634 if (env->icount_extra && insns_left >= 0) {
635 /* Refill decrementer and continue execution. */
636 env->icount_extra += insns_left;
637 if (env->icount_extra > 0xffff) {
638 insns_left = 0xffff;
639 } else {
640 insns_left = env->icount_extra;
642 env->icount_extra -= insns_left;
643 env->icount_decr.u16.low = insns_left;
644 } else {
645 if (insns_left > 0) {
646 /* Execute remaining instructions. */
647 cpu_exec_nocache(insns_left, tb);
649 env->exception_index = EXCP_INTERRUPT;
650 next_tb = 0;
651 cpu_loop_exit();
655 /* reset soft MMU for next block (it can currently
656 only be set by a memory fault) */
657 #if defined(USE_KQEMU)
658 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
659 if (kqemu_is_ok(env) &&
660 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
661 cpu_loop_exit();
663 #endif
664 } /* for(;;) */
665 } else {
666 env_to_regs();
668 } /* for(;;) */
671 #if defined(TARGET_I386)
672 /* restore flags in standard format */
673 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
674 #elif defined(TARGET_ARM)
675 /* XXX: Save/restore host fpu exception state?. */
676 #elif defined(TARGET_SPARC)
677 #elif defined(TARGET_PPC)
678 #elif defined(TARGET_M68K)
679 cpu_m68k_flush_flags(env, env->cc_op);
680 env->cc_op = CC_OP_FLAGS;
681 env->sr = (env->sr & 0xffe0)
682 | env->cc_dest | (env->cc_x << 4);
683 #elif defined(TARGET_MIPS)
684 #elif defined(TARGET_SH4)
685 #elif defined(TARGET_IA64)
686 #elif defined(TARGET_ALPHA)
687 #elif defined(TARGET_CRIS)
688 /* XXXXX */
689 #else
690 #error unsupported target CPU
691 #endif
693 /* restore global registers */
694 #include "hostregs_helper.h"
696 /* fail safe : never use cpu_single_env outside cpu_exec() */
697 cpu_single_env = NULL;
698 return ret;
701 /* must only be called from the generated code as an exception can be
702 generated */
703 void tb_invalidate_page_range(target_ulong start, target_ulong end)
705 /* XXX: cannot enable it yet because it yields to MMU exception
706 where NIP != read address on PowerPC */
707 #if 0
708 target_ulong phys_addr;
709 phys_addr = get_phys_addr_code(env, start);
710 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
711 #endif
714 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
716 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
718 CPUX86State *saved_env;
720 saved_env = env;
721 env = s;
722 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
723 selector &= 0xffff;
724 cpu_x86_load_seg_cache(env, seg_reg, selector,
725 (selector << 4), 0xffff, 0);
726 } else {
727 helper_load_seg(seg_reg, selector);
729 env = saved_env;
732 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
734 CPUX86State *saved_env;
736 saved_env = env;
737 env = s;
739 helper_fsave(ptr, data32);
741 env = saved_env;
744 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
746 CPUX86State *saved_env;
748 saved_env = env;
749 env = s;
751 helper_frstor(ptr, data32);
753 env = saved_env;
756 #endif /* TARGET_I386 */
758 #if !defined(CONFIG_SOFTMMU)
760 #if defined(TARGET_I386)
762 /* 'pc' is the host PC at which the exception was raised. 'address' is
763 the effective address of the memory exception. 'is_write' is 1 if a
764 write caused the exception and otherwise 0'. 'old_set' is the
765 signal set which should be restored */
766 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
767 int is_write, sigset_t *old_set,
768 void *puc)
770 TranslationBlock *tb;
771 int ret;
773 if (cpu_single_env)
774 env = cpu_single_env; /* XXX: find a correct solution for multithread */
775 #if defined(DEBUG_SIGNAL)
776 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
777 pc, address, is_write, *(unsigned long *)old_set);
778 #endif
779 /* XXX: locking issue */
780 if (is_write && page_unprotect(h2g(address), pc, puc)) {
781 return 1;
784 /* see if it is an MMU fault */
785 ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
786 if (ret < 0)
787 return 0; /* not an MMU fault */
788 if (ret == 0)
789 return 1; /* the MMU fault was handled without causing real CPU fault */
790 /* now we have a real cpu fault */
791 tb = tb_find_pc(pc);
792 if (tb) {
793 /* the PC is inside the translated code. It means that we have
794 a virtual CPU fault */
795 cpu_restore_state(tb, env, pc, puc);
797 if (ret == 1) {
798 #if 0
799 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
800 env->eip, env->cr[2], env->error_code);
801 #endif
802 /* we restore the process signal mask as the sigreturn should
803 do it (XXX: use sigsetjmp) */
804 sigprocmask(SIG_SETMASK, old_set, NULL);
805 raise_exception_err(env->exception_index, env->error_code);
806 } else {
807 /* activate soft MMU for this block */
808 env->hflags |= HF_SOFTMMU_MASK;
809 cpu_resume_from_signal(env, puc);
811 /* never comes here */
812 return 1;
815 #elif defined(TARGET_ARM)
816 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
817 int is_write, sigset_t *old_set,
818 void *puc)
820 TranslationBlock *tb;
821 int ret;
823 if (cpu_single_env)
824 env = cpu_single_env; /* XXX: find a correct solution for multithread */
825 #if defined(DEBUG_SIGNAL)
826 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
827 pc, address, is_write, *(unsigned long *)old_set);
828 #endif
829 /* XXX: locking issue */
830 if (is_write && page_unprotect(h2g(address), pc, puc)) {
831 return 1;
833 /* see if it is an MMU fault */
834 ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
835 if (ret < 0)
836 return 0; /* not an MMU fault */
837 if (ret == 0)
838 return 1; /* the MMU fault was handled without causing real CPU fault */
839 /* now we have a real cpu fault */
840 tb = tb_find_pc(pc);
841 if (tb) {
842 /* the PC is inside the translated code. It means that we have
843 a virtual CPU fault */
844 cpu_restore_state(tb, env, pc, puc);
846 /* we restore the process signal mask as the sigreturn should
847 do it (XXX: use sigsetjmp) */
848 sigprocmask(SIG_SETMASK, old_set, NULL);
849 cpu_loop_exit();
850 /* never comes here */
851 return 1;
853 #elif defined(TARGET_SPARC)
854 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
855 int is_write, sigset_t *old_set,
856 void *puc)
858 TranslationBlock *tb;
859 int ret;
861 if (cpu_single_env)
862 env = cpu_single_env; /* XXX: find a correct solution for multithread */
863 #if defined(DEBUG_SIGNAL)
864 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
865 pc, address, is_write, *(unsigned long *)old_set);
866 #endif
867 /* XXX: locking issue */
868 if (is_write && page_unprotect(h2g(address), pc, puc)) {
869 return 1;
871 /* see if it is an MMU fault */
872 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
873 if (ret < 0)
874 return 0; /* not an MMU fault */
875 if (ret == 0)
876 return 1; /* the MMU fault was handled without causing real CPU fault */
877 /* now we have a real cpu fault */
878 tb = tb_find_pc(pc);
879 if (tb) {
880 /* the PC is inside the translated code. It means that we have
881 a virtual CPU fault */
882 cpu_restore_state(tb, env, pc, puc);
884 /* we restore the process signal mask as the sigreturn should
885 do it (XXX: use sigsetjmp) */
886 sigprocmask(SIG_SETMASK, old_set, NULL);
887 cpu_loop_exit();
888 /* never comes here */
889 return 1;
891 #elif defined (TARGET_PPC)
892 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
893 int is_write, sigset_t *old_set,
894 void *puc)
896 TranslationBlock *tb;
897 int ret;
899 if (cpu_single_env)
900 env = cpu_single_env; /* XXX: find a correct solution for multithread */
901 #if defined(DEBUG_SIGNAL)
902 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
903 pc, address, is_write, *(unsigned long *)old_set);
904 #endif
905 /* XXX: locking issue */
906 if (is_write && page_unprotect(h2g(address), pc, puc)) {
907 return 1;
910 /* see if it is an MMU fault */
911 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
912 if (ret < 0)
913 return 0; /* not an MMU fault */
914 if (ret == 0)
915 return 1; /* the MMU fault was handled without causing real CPU fault */
917 /* now we have a real cpu fault */
918 tb = tb_find_pc(pc);
919 if (tb) {
920 /* the PC is inside the translated code. It means that we have
921 a virtual CPU fault */
922 cpu_restore_state(tb, env, pc, puc);
924 if (ret == 1) {
925 #if 0
926 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
927 env->nip, env->error_code, tb);
928 #endif
929 /* we restore the process signal mask as the sigreturn should
930 do it (XXX: use sigsetjmp) */
931 sigprocmask(SIG_SETMASK, old_set, NULL);
932 cpu_loop_exit();
933 } else {
934 /* activate soft MMU for this block */
935 cpu_resume_from_signal(env, puc);
937 /* never comes here */
938 return 1;
941 #elif defined(TARGET_M68K)
942 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
943 int is_write, sigset_t *old_set,
944 void *puc)
946 TranslationBlock *tb;
947 int ret;
949 if (cpu_single_env)
950 env = cpu_single_env; /* XXX: find a correct solution for multithread */
951 #if defined(DEBUG_SIGNAL)
952 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
953 pc, address, is_write, *(unsigned long *)old_set);
954 #endif
955 /* XXX: locking issue */
956 if (is_write && page_unprotect(address, pc, puc)) {
957 return 1;
959 /* see if it is an MMU fault */
960 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
961 if (ret < 0)
962 return 0; /* not an MMU fault */
963 if (ret == 0)
964 return 1; /* the MMU fault was handled without causing real CPU fault */
965 /* now we have a real cpu fault */
966 tb = tb_find_pc(pc);
967 if (tb) {
968 /* the PC is inside the translated code. It means that we have
969 a virtual CPU fault */
970 cpu_restore_state(tb, env, pc, puc);
972 /* we restore the process signal mask as the sigreturn should
973 do it (XXX: use sigsetjmp) */
974 sigprocmask(SIG_SETMASK, old_set, NULL);
975 cpu_loop_exit();
976 /* never comes here */
977 return 1;
980 #elif defined (TARGET_MIPS)
981 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
982 int is_write, sigset_t *old_set,
983 void *puc)
985 TranslationBlock *tb;
986 int ret;
988 if (cpu_single_env)
989 env = cpu_single_env; /* XXX: find a correct solution for multithread */
990 #if defined(DEBUG_SIGNAL)
991 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
992 pc, address, is_write, *(unsigned long *)old_set);
993 #endif
994 /* XXX: locking issue */
995 if (is_write && page_unprotect(h2g(address), pc, puc)) {
996 return 1;
999 /* see if it is an MMU fault */
1000 ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1001 if (ret < 0)
1002 return 0; /* not an MMU fault */
1003 if (ret == 0)
1004 return 1; /* the MMU fault was handled without causing real CPU fault */
1006 /* now we have a real cpu fault */
1007 tb = tb_find_pc(pc);
1008 if (tb) {
1009 /* the PC is inside the translated code. It means that we have
1010 a virtual CPU fault */
1011 cpu_restore_state(tb, env, pc, puc);
1013 if (ret == 1) {
1014 #if 0
1015 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1016 env->PC, env->error_code, tb);
1017 #endif
1018 /* we restore the process signal mask as the sigreturn should
1019 do it (XXX: use sigsetjmp) */
1020 sigprocmask(SIG_SETMASK, old_set, NULL);
1021 cpu_loop_exit();
1022 } else {
1023 /* activate soft MMU for this block */
1024 cpu_resume_from_signal(env, puc);
1026 /* never comes here */
1027 return 1;
1030 #elif defined (TARGET_SH4)
1031 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1032 int is_write, sigset_t *old_set,
1033 void *puc)
1035 TranslationBlock *tb;
1036 int ret;
1038 if (cpu_single_env)
1039 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1040 #if defined(DEBUG_SIGNAL)
1041 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1042 pc, address, is_write, *(unsigned long *)old_set);
1043 #endif
1044 /* XXX: locking issue */
1045 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1046 return 1;
1049 /* see if it is an MMU fault */
1050 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1051 if (ret < 0)
1052 return 0; /* not an MMU fault */
1053 if (ret == 0)
1054 return 1; /* the MMU fault was handled without causing real CPU fault */
1056 /* now we have a real cpu fault */
1057 tb = tb_find_pc(pc);
1058 if (tb) {
1059 /* the PC is inside the translated code. It means that we have
1060 a virtual CPU fault */
1061 cpu_restore_state(tb, env, pc, puc);
1063 #if 0
1064 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1065 env->nip, env->error_code, tb);
1066 #endif
1067 /* we restore the process signal mask as the sigreturn should
1068 do it (XXX: use sigsetjmp) */
1069 sigprocmask(SIG_SETMASK, old_set, NULL);
1070 cpu_loop_exit();
1071 /* never comes here */
1072 return 1;
1075 #elif defined (TARGET_ALPHA)
1076 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1077 int is_write, sigset_t *old_set,
1078 void *puc)
1080 TranslationBlock *tb;
1081 int ret;
1083 if (cpu_single_env)
1084 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1085 #if defined(DEBUG_SIGNAL)
1086 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1087 pc, address, is_write, *(unsigned long *)old_set);
1088 #endif
1089 /* XXX: locking issue */
1090 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1091 return 1;
1094 /* see if it is an MMU fault */
1095 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1096 if (ret < 0)
1097 return 0; /* not an MMU fault */
1098 if (ret == 0)
1099 return 1; /* the MMU fault was handled without causing real CPU fault */
1101 /* now we have a real cpu fault */
1102 tb = tb_find_pc(pc);
1103 if (tb) {
1104 /* the PC is inside the translated code. It means that we have
1105 a virtual CPU fault */
1106 cpu_restore_state(tb, env, pc, puc);
1108 #if 0
1109 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1110 env->nip, env->error_code, tb);
1111 #endif
1112 /* we restore the process signal mask as the sigreturn should
1113 do it (XXX: use sigsetjmp) */
1114 sigprocmask(SIG_SETMASK, old_set, NULL);
1115 cpu_loop_exit();
1116 /* never comes here */
1117 return 1;
1119 #elif defined (TARGET_CRIS)
1120 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1121 int is_write, sigset_t *old_set,
1122 void *puc)
1124 TranslationBlock *tb;
1125 int ret;
1127 if (cpu_single_env)
1128 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1129 #if defined(DEBUG_SIGNAL)
1130 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1131 pc, address, is_write, *(unsigned long *)old_set);
1132 #endif
1133 /* XXX: locking issue */
1134 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1135 return 1;
1138 /* see if it is an MMU fault */
1139 ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1140 if (ret < 0)
1141 return 0; /* not an MMU fault */
1142 if (ret == 0)
1143 return 1; /* the MMU fault was handled without causing real CPU fault */
1145 /* now we have a real cpu fault */
1146 tb = tb_find_pc(pc);
1147 if (tb) {
1148 /* the PC is inside the translated code. It means that we have
1149 a virtual CPU fault */
1150 cpu_restore_state(tb, env, pc, puc);
1152 /* we restore the process signal mask as the sigreturn should
1153 do it (XXX: use sigsetjmp) */
1154 sigprocmask(SIG_SETMASK, old_set, NULL);
1155 cpu_loop_exit();
1156 /* never comes here */
1157 return 1;
1160 #else
1161 #error unsupported target CPU
1162 #endif
1164 #if defined(__i386__)
1166 #if defined(__APPLE__)
1167 # include <sys/ucontext.h>
1169 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1170 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1171 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1172 #else
1173 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1174 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1175 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1176 #endif
1178 int cpu_signal_handler(int host_signum, void *pinfo,
1179 void *puc)
1181 siginfo_t *info = pinfo;
1182 struct ucontext *uc = puc;
1183 unsigned long pc;
1184 int trapno;
1186 #ifndef REG_EIP
1187 /* for glibc 2.1 */
1188 #define REG_EIP EIP
1189 #define REG_ERR ERR
1190 #define REG_TRAPNO TRAPNO
1191 #endif
1192 pc = EIP_sig(uc);
1193 trapno = TRAP_sig(uc);
1194 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1195 trapno == 0xe ?
1196 (ERROR_sig(uc) >> 1) & 1 : 0,
1197 &uc->uc_sigmask, puc);
1200 #elif defined(__x86_64__)
1202 #ifdef __NetBSD__
1203 #define REG_ERR _REG_ERR
1204 #define REG_TRAPNO _REG_TRAPNO
1206 #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.__gregs[(reg)]
1207 #define QEMU_UC_MACHINE_PC(uc) _UC_MACHINE_PC(uc)
1208 #else
1209 #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.gregs[(reg)]
1210 #define QEMU_UC_MACHINE_PC(uc) QEMU_UC_MCONTEXT_GREGS(uc, REG_RIP)
1211 #endif
1213 int cpu_signal_handler(int host_signum, void *pinfo,
1214 void *puc)
1216 siginfo_t *info = pinfo;
1217 unsigned long pc;
1218 #ifdef __NetBSD__
1219 ucontext_t *uc = puc;
1220 #else
1221 struct ucontext *uc = puc;
1222 #endif
1224 pc = QEMU_UC_MACHINE_PC(uc);
1225 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1226 QEMU_UC_MCONTEXT_GREGS(uc, REG_TRAPNO) == 0xe ?
1227 (QEMU_UC_MCONTEXT_GREGS(uc, REG_ERR) >> 1) & 1 : 0,
1228 &uc->uc_sigmask, puc);
1231 #elif defined(_ARCH_PPC)
1233 /***********************************************************************
1234 * signal context platform-specific definitions
1235 * From Wine
1237 #ifdef linux
1238 /* All Registers access - only for local access */
1239 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1240 /* Gpr Registers access */
1241 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1242 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1243 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1244 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1245 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1246 # define LR_sig(context) REG_sig(link, context) /* Link register */
1247 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1248 /* Float Registers access */
1249 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1250 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1251 /* Exception Registers access */
1252 # define DAR_sig(context) REG_sig(dar, context)
1253 # define DSISR_sig(context) REG_sig(dsisr, context)
1254 # define TRAP_sig(context) REG_sig(trap, context)
1255 #endif /* linux */
1257 #ifdef __APPLE__
1258 # include <sys/ucontext.h>
1259 typedef struct ucontext SIGCONTEXT;
1260 /* All Registers access - only for local access */
1261 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1262 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1263 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1264 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1265 /* Gpr Registers access */
1266 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1267 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1268 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1269 # define CTR_sig(context) REG_sig(ctr, context)
1270 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1271 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1272 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1273 /* Float Registers access */
1274 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1275 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1276 /* Exception Registers access */
1277 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1278 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1279 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1280 #endif /* __APPLE__ */
1282 int cpu_signal_handler(int host_signum, void *pinfo,
1283 void *puc)
1285 siginfo_t *info = pinfo;
1286 struct ucontext *uc = puc;
1287 unsigned long pc;
1288 int is_write;
1290 pc = IAR_sig(uc);
1291 is_write = 0;
1292 #if 0
1293 /* ppc 4xx case */
1294 if (DSISR_sig(uc) & 0x00800000)
1295 is_write = 1;
1296 #else
1297 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1298 is_write = 1;
1299 #endif
1300 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1301 is_write, &uc->uc_sigmask, puc);
1304 #elif defined(__alpha__)
1306 int cpu_signal_handler(int host_signum, void *pinfo,
1307 void *puc)
1309 siginfo_t *info = pinfo;
1310 struct ucontext *uc = puc;
1311 uint32_t *pc = uc->uc_mcontext.sc_pc;
1312 uint32_t insn = *pc;
1313 int is_write = 0;
1315 /* XXX: need kernel patch to get write flag faster */
1316 switch (insn >> 26) {
1317 case 0x0d: // stw
1318 case 0x0e: // stb
1319 case 0x0f: // stq_u
1320 case 0x24: // stf
1321 case 0x25: // stg
1322 case 0x26: // sts
1323 case 0x27: // stt
1324 case 0x2c: // stl
1325 case 0x2d: // stq
1326 case 0x2e: // stl_c
1327 case 0x2f: // stq_c
1328 is_write = 1;
1331 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1332 is_write, &uc->uc_sigmask, puc);
1334 #elif defined(__sparc__)
1336 int cpu_signal_handler(int host_signum, void *pinfo,
1337 void *puc)
1339 siginfo_t *info = pinfo;
1340 int is_write;
1341 uint32_t insn;
1342 #if !defined(__arch64__) || defined(HOST_SOLARIS)
1343 uint32_t *regs = (uint32_t *)(info + 1);
1344 void *sigmask = (regs + 20);
1345 /* XXX: is there a standard glibc define ? */
1346 unsigned long pc = regs[1];
1347 #else
1348 #ifdef __linux__
1349 struct sigcontext *sc = puc;
1350 unsigned long pc = sc->sigc_regs.tpc;
1351 void *sigmask = (void *)sc->sigc_mask;
1352 #elif defined(__OpenBSD__)
1353 struct sigcontext *uc = puc;
1354 unsigned long pc = uc->sc_pc;
1355 void *sigmask = (void *)(long)uc->sc_mask;
1356 #endif
1357 #endif
1359 /* XXX: need kernel patch to get write flag faster */
1360 is_write = 0;
1361 insn = *(uint32_t *)pc;
1362 if ((insn >> 30) == 3) {
1363 switch((insn >> 19) & 0x3f) {
1364 case 0x05: // stb
1365 case 0x06: // sth
1366 case 0x04: // st
1367 case 0x07: // std
1368 case 0x24: // stf
1369 case 0x27: // stdf
1370 case 0x25: // stfsr
1371 is_write = 1;
1372 break;
1375 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1376 is_write, sigmask, NULL);
1379 #elif defined(__arm__)
1381 int cpu_signal_handler(int host_signum, void *pinfo,
1382 void *puc)
1384 siginfo_t *info = pinfo;
1385 struct ucontext *uc = puc;
1386 unsigned long pc;
1387 int is_write;
1389 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1390 pc = uc->uc_mcontext.gregs[R15];
1391 #else
1392 pc = uc->uc_mcontext.arm_pc;
1393 #endif
1394 /* XXX: compute is_write */
1395 is_write = 0;
1396 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1397 is_write,
1398 &uc->uc_sigmask, puc);
1401 #elif defined(__mc68000)
1403 int cpu_signal_handler(int host_signum, void *pinfo,
1404 void *puc)
1406 siginfo_t *info = pinfo;
1407 struct ucontext *uc = puc;
1408 unsigned long pc;
1409 int is_write;
1411 pc = uc->uc_mcontext.gregs[16];
1412 /* XXX: compute is_write */
1413 is_write = 0;
1414 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1415 is_write,
1416 &uc->uc_sigmask, puc);
1419 #elif defined(__ia64)
1421 #ifndef __ISR_VALID
1422 /* This ought to be in <bits/siginfo.h>... */
1423 # define __ISR_VALID 1
1424 #endif
1426 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1428 siginfo_t *info = pinfo;
1429 struct ucontext *uc = puc;
1430 unsigned long ip;
1431 int is_write = 0;
1433 ip = uc->uc_mcontext.sc_ip;
1434 switch (host_signum) {
1435 case SIGILL:
1436 case SIGFPE:
1437 case SIGSEGV:
1438 case SIGBUS:
1439 case SIGTRAP:
1440 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1441 /* ISR.W (write-access) is bit 33: */
1442 is_write = (info->si_isr >> 33) & 1;
1443 break;
1445 default:
1446 break;
1448 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1449 is_write,
1450 &uc->uc_sigmask, puc);
1453 #elif defined(__s390__)
1455 int cpu_signal_handler(int host_signum, void *pinfo,
1456 void *puc)
1458 siginfo_t *info = pinfo;
1459 struct ucontext *uc = puc;
1460 unsigned long pc;
1461 int is_write;
1463 pc = uc->uc_mcontext.psw.addr;
1464 /* XXX: compute is_write */
1465 is_write = 0;
1466 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1467 is_write, &uc->uc_sigmask, puc);
1470 #elif defined(__mips__)
1472 int cpu_signal_handler(int host_signum, void *pinfo,
1473 void *puc)
1475 siginfo_t *info = pinfo;
1476 struct ucontext *uc = puc;
1477 greg_t pc = uc->uc_mcontext.pc;
1478 int is_write;
1480 /* XXX: compute is_write */
1481 is_write = 0;
1482 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1483 is_write, &uc->uc_sigmask, puc);
1486 #elif defined(__hppa__)
1488 int cpu_signal_handler(int host_signum, void *pinfo,
1489 void *puc)
1491 struct siginfo *info = pinfo;
1492 struct ucontext *uc = puc;
1493 unsigned long pc;
1494 int is_write;
1496 pc = uc->uc_mcontext.sc_iaoq[0];
1497 /* FIXME: compute is_write */
1498 is_write = 0;
1499 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1500 is_write,
1501 &uc->uc_sigmask, puc);
1504 #else
1506 #error host CPU specific signal handler needed
1508 #endif
1510 #endif /* !defined(CONFIG_SOFTMMU) */