2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
22 #define WIN32_LEAN_AND_MEAN
25 #include <sys/types.h>
38 #include "qemu-common.h"
40 #if !defined(TARGET_IA64)
48 #if defined(CONFIG_USER_ONLY)
52 //#define DEBUG_TB_INVALIDATE
55 //#define DEBUG_UNASSIGNED
57 /* make various TB consistency checks */
58 //#define DEBUG_TB_CHECK
59 //#define DEBUG_TLB_CHECK
61 //#define DEBUG_IOPORT
62 //#define DEBUG_SUBPAGE
64 #if !defined(CONFIG_USER_ONLY)
65 /* TB consistency checks only implemented for usermode emulation. */
69 #define SMC_BITMAP_USE_THRESHOLD 10
71 #define MMAP_AREA_START 0x00000000
72 #define MMAP_AREA_END 0xa8000000
74 #if defined(TARGET_SPARC64)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 41
76 #elif defined(TARGET_SPARC)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 36
78 #elif defined(TARGET_ALPHA)
79 #define TARGET_PHYS_ADDR_SPACE_BITS 42
80 #define TARGET_VIRT_ADDR_SPACE_BITS 42
81 #elif defined(TARGET_PPC64)
82 #define TARGET_PHYS_ADDR_SPACE_BITS 42
83 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
84 #define TARGET_PHYS_ADDR_SPACE_BITS 42
85 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
86 #define TARGET_PHYS_ADDR_SPACE_BITS 36
87 #elif defined(TARGET_IA64)
88 #define TARGET_PHYS_ADDR_SPACE_BITS 36
90 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
91 #define TARGET_PHYS_ADDR_SPACE_BITS 32
94 static TranslationBlock
*tbs
;
95 int code_gen_max_blocks
;
96 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
98 /* any access to the tbs or the page table must use this lock */
99 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
101 #if defined(__arm__) || defined(__sparc_v9__)
102 /* The prologue must be reachable with a direct jump. ARM and Sparc64
103 have limited branch ranges (possibly also PPC) so place it in a
104 section close to code segment. */
105 #define code_gen_section \
106 __attribute__((__section__(".gen_code"))) \
107 __attribute__((aligned (32)))
109 #define code_gen_section \
110 __attribute__((aligned (32)))
113 uint8_t code_gen_prologue
[1024] code_gen_section
;
114 static uint8_t *code_gen_buffer
;
115 static unsigned long code_gen_buffer_size
;
116 /* threshold to flush the translated code buffer */
117 static unsigned long code_gen_buffer_max_size
;
118 uint8_t *code_gen_ptr
;
120 #if !defined(CONFIG_USER_ONLY)
121 ram_addr_t phys_ram_size
;
123 uint8_t *phys_ram_base
;
124 uint8_t *phys_ram_dirty
;
126 static int in_migration
;
127 static ram_addr_t phys_ram_alloc_offset
= 0;
131 /* current CPU in the current thread. It is only valid inside
133 CPUState
*cpu_single_env
;
134 /* 0 = Do not count executed instructions.
135 1 = Precise instruction counting.
136 2 = Adaptive rate instruction counting. */
138 /* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
142 typedef struct PageDesc
{
143 /* list of TBs intersecting this ram page */
144 TranslationBlock
*first_tb
;
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count
;
148 uint8_t *code_bitmap
;
149 #if defined(CONFIG_USER_ONLY)
154 typedef struct PhysPageDesc
{
155 /* offset in host memory of the page + io_index in the low bits */
156 ram_addr_t phys_offset
;
157 ram_addr_t region_offset
;
161 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
162 /* XXX: this is a temporary hack for alpha target.
163 * In the future, this is to be replaced by a multi-level table
164 * to actually be able to handle the complete 64 bits address space.
166 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
171 #define L1_SIZE (1 << L1_BITS)
172 #define L2_SIZE (1 << L2_BITS)
174 unsigned long qemu_real_host_page_size
;
175 unsigned long qemu_host_page_bits
;
176 unsigned long qemu_host_page_size
;
177 unsigned long qemu_host_page_mask
;
179 /* XXX: for system emulation, it could just be an array */
180 static PageDesc
*l1_map
[L1_SIZE
];
181 static PhysPageDesc
**l1_phys_map
;
183 #if !defined(CONFIG_USER_ONLY)
184 static void io_mem_init(void);
186 /* io memory support */
187 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
188 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
189 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
190 char io_mem_used
[IO_MEM_NB_ENTRIES
];
191 static int io_mem_watch
;
195 static const char *logfilename
= "/tmp/qemu.log";
198 static int log_append
= 0;
201 static int tlb_flush_count
;
202 static int tb_flush_count
;
203 static int tb_phys_invalidate_count
;
205 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
206 typedef struct subpage_t
{
207 target_phys_addr_t base
;
208 CPUReadMemoryFunc
**mem_read
[TARGET_PAGE_SIZE
][4];
209 CPUWriteMemoryFunc
**mem_write
[TARGET_PAGE_SIZE
][4];
210 void *opaque
[TARGET_PAGE_SIZE
][2][4];
211 ram_addr_t region_offset
[TARGET_PAGE_SIZE
][2][4];
215 static void map_exec(void *addr
, long size
)
218 VirtualProtect(addr
, size
,
219 PAGE_EXECUTE_READWRITE
, &old_protect
);
223 static void map_exec(void *addr
, long size
)
225 unsigned long start
, end
, page_size
;
227 page_size
= getpagesize();
228 start
= (unsigned long)addr
;
229 start
&= ~(page_size
- 1);
231 end
= (unsigned long)addr
+ size
;
232 end
+= page_size
- 1;
233 end
&= ~(page_size
- 1);
235 mprotect((void *)start
, end
- start
,
236 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
240 static void page_init(void)
242 /* NOTE: we can always suppose that qemu_host_page_size >=
246 SYSTEM_INFO system_info
;
248 GetSystemInfo(&system_info
);
249 qemu_real_host_page_size
= system_info
.dwPageSize
;
252 qemu_real_host_page_size
= getpagesize();
254 if (qemu_host_page_size
== 0)
255 qemu_host_page_size
= qemu_real_host_page_size
;
256 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
257 qemu_host_page_size
= TARGET_PAGE_SIZE
;
258 qemu_host_page_bits
= 0;
259 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
260 qemu_host_page_bits
++;
261 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
262 l1_phys_map
= qemu_vmalloc(L1_SIZE
* sizeof(void *));
263 memset(l1_phys_map
, 0, L1_SIZE
* sizeof(void *));
265 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
267 long long startaddr
, endaddr
;
272 last_brk
= (unsigned long)sbrk(0);
273 f
= fopen("/proc/self/maps", "r");
276 n
= fscanf (f
, "%llx-%llx %*[^\n]\n", &startaddr
, &endaddr
);
278 startaddr
= MIN(startaddr
,
279 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
280 endaddr
= MIN(endaddr
,
281 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
282 page_set_flags(startaddr
& TARGET_PAGE_MASK
,
283 TARGET_PAGE_ALIGN(endaddr
),
294 static inline PageDesc
**page_l1_map(target_ulong index
)
296 #if TARGET_LONG_BITS > 32
297 /* Host memory outside guest VM. For 32-bit targets we have already
298 excluded high addresses. */
299 if (index
> ((target_ulong
)L2_SIZE
* L1_SIZE
))
302 return &l1_map
[index
>> L2_BITS
];
305 static inline PageDesc
*page_find_alloc(target_ulong index
)
308 lp
= page_l1_map(index
);
314 /* allocate if not found */
315 #if defined(CONFIG_USER_ONLY)
316 size_t len
= sizeof(PageDesc
) * L2_SIZE
;
317 /* Don't use qemu_malloc because it may recurse. */
318 p
= mmap(0, len
, PROT_READ
| PROT_WRITE
,
319 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
322 unsigned long addr
= h2g(p
);
323 page_set_flags(addr
& TARGET_PAGE_MASK
,
324 TARGET_PAGE_ALIGN(addr
+ len
),
328 p
= qemu_mallocz(sizeof(PageDesc
) * L2_SIZE
);
332 return p
+ (index
& (L2_SIZE
- 1));
335 static inline PageDesc
*page_find(target_ulong index
)
338 lp
= page_l1_map(index
);
345 return p
+ (index
& (L2_SIZE
- 1));
348 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
353 p
= (void **)l1_phys_map
;
354 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
356 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
357 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
359 lp
= p
+ ((index
>> (L1_BITS
+ L2_BITS
)) & (L1_SIZE
- 1));
362 /* allocate if not found */
365 p
= qemu_vmalloc(sizeof(void *) * L1_SIZE
);
366 memset(p
, 0, sizeof(void *) * L1_SIZE
);
370 lp
= p
+ ((index
>> L2_BITS
) & (L1_SIZE
- 1));
374 /* allocate if not found */
377 pd
= qemu_vmalloc(sizeof(PhysPageDesc
) * L2_SIZE
);
379 for (i
= 0; i
< L2_SIZE
; i
++)
380 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
382 return ((PhysPageDesc
*)pd
) + (index
& (L2_SIZE
- 1));
385 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
387 return phys_page_find_alloc(index
, 0);
390 #if !defined(CONFIG_USER_ONLY)
391 static void tlb_protect_code(ram_addr_t ram_addr
);
392 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
394 #define mmap_lock() do { } while(0)
395 #define mmap_unlock() do { } while(0)
398 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
400 #if defined(CONFIG_USER_ONLY)
401 /* Currently it is not recommanded to allocate big chunks of data in
402 user mode. It will change when a dedicated libc will be used */
403 #define USE_STATIC_CODE_GEN_BUFFER
406 #ifdef USE_STATIC_CODE_GEN_BUFFER
407 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
];
410 static void code_gen_alloc(unsigned long tb_size
)
415 #ifdef USE_STATIC_CODE_GEN_BUFFER
416 code_gen_buffer
= static_code_gen_buffer
;
417 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
418 map_exec(code_gen_buffer
, code_gen_buffer_size
);
420 code_gen_buffer_size
= tb_size
;
421 if (code_gen_buffer_size
== 0) {
422 #if defined(CONFIG_USER_ONLY)
423 /* in user mode, phys_ram_size is not meaningful */
424 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
426 /* XXX: needs ajustments */
427 code_gen_buffer_size
= (unsigned long)(phys_ram_size
/ 4);
430 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
431 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
432 /* The code gen buffer location may have constraints depending on
433 the host cpu and OS */
434 #if defined(__linux__)
439 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
440 #if defined(__x86_64__)
442 /* Cannot map more than that */
443 if (code_gen_buffer_size
> (800 * 1024 * 1024))
444 code_gen_buffer_size
= (800 * 1024 * 1024);
445 #elif defined(__sparc_v9__)
446 // Map the buffer below 2G, so we can use direct calls and branches
448 start
= (void *) 0x60000000UL
;
449 if (code_gen_buffer_size
> (512 * 1024 * 1024))
450 code_gen_buffer_size
= (512 * 1024 * 1024);
451 #elif defined(__arm__)
452 /* Map the buffer below 32M, so we can use direct calls and branches */
454 start
= (void *) 0x01000000UL
;
455 if (code_gen_buffer_size
> 16 * 1024 * 1024)
456 code_gen_buffer_size
= 16 * 1024 * 1024;
458 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
459 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
461 if (code_gen_buffer
== MAP_FAILED
) {
462 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
466 #elif defined(__FreeBSD__)
470 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
471 #if defined(__x86_64__)
472 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
473 * 0x40000000 is free */
475 addr
= (void *)0x40000000;
476 /* Cannot map more than that */
477 if (code_gen_buffer_size
> (800 * 1024 * 1024))
478 code_gen_buffer_size
= (800 * 1024 * 1024);
480 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
481 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
483 if (code_gen_buffer
== MAP_FAILED
) {
484 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
489 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
490 if (!code_gen_buffer
) {
491 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
494 map_exec(code_gen_buffer
, code_gen_buffer_size
);
496 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
497 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
498 code_gen_buffer_max_size
= code_gen_buffer_size
-
499 code_gen_max_block_size();
500 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
501 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
504 /* Must be called before using the QEMU cpus. 'tb_size' is the size
505 (in bytes) allocated to the translation buffer. Zero means default
507 void cpu_exec_init_all(unsigned long tb_size
)
510 code_gen_alloc(tb_size
);
511 code_gen_ptr
= code_gen_buffer
;
513 #if !defined(CONFIG_USER_ONLY)
518 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
520 #define CPU_COMMON_SAVE_VERSION 1
522 static void cpu_common_save(QEMUFile
*f
, void *opaque
)
524 CPUState
*env
= opaque
;
526 qemu_put_be32s(f
, &env
->halted
);
527 qemu_put_be32s(f
, &env
->interrupt_request
);
530 static int cpu_common_load(QEMUFile
*f
, void *opaque
, int version_id
)
532 CPUState
*env
= opaque
;
534 if (version_id
!= CPU_COMMON_SAVE_VERSION
)
537 qemu_get_be32s(f
, &env
->halted
);
538 qemu_get_be32s(f
, &env
->interrupt_request
);
545 void cpu_exec_init(CPUState
*env
)
550 env
->next_cpu
= NULL
;
553 while (*penv
!= NULL
) {
554 penv
= (CPUState
**)&(*penv
)->next_cpu
;
557 env
->cpu_index
= cpu_index
;
558 TAILQ_INIT(&env
->breakpoints
);
559 TAILQ_INIT(&env
->watchpoints
);
561 env
->thread_id
= GetCurrentProcessId();
563 env
->thread_id
= getpid();
566 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
567 register_savevm("cpu_common", cpu_index
, CPU_COMMON_SAVE_VERSION
,
568 cpu_common_save
, cpu_common_load
, env
);
569 register_savevm("cpu", cpu_index
, CPU_SAVE_VERSION
,
570 cpu_save
, cpu_load
, env
);
574 static inline void invalidate_page_bitmap(PageDesc
*p
)
576 if (p
->code_bitmap
) {
577 qemu_free(p
->code_bitmap
);
578 p
->code_bitmap
= NULL
;
580 p
->code_write_count
= 0;
583 /* set to NULL all the 'first_tb' fields in all PageDescs */
584 static void page_flush_tb(void)
589 for(i
= 0; i
< L1_SIZE
; i
++) {
592 for(j
= 0; j
< L2_SIZE
; j
++) {
594 invalidate_page_bitmap(p
);
601 /* flush all the translation blocks */
602 /* XXX: tb_flush is currently not thread safe */
603 void tb_flush(CPUState
*env1
)
606 #if defined(DEBUG_FLUSH)
607 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
608 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
610 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
612 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
613 cpu_abort(env1
, "Internal error: code buffer overflow\n");
617 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
618 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
621 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
624 code_gen_ptr
= code_gen_buffer
;
625 /* XXX: flush processor icache at this point if cache flush is
630 #ifdef DEBUG_TB_CHECK
632 static void tb_invalidate_check(target_ulong address
)
634 TranslationBlock
*tb
;
636 address
&= TARGET_PAGE_MASK
;
637 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
638 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
639 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
640 address
>= tb
->pc
+ tb
->size
)) {
641 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
642 address
, (long)tb
->pc
, tb
->size
);
648 /* verify that all the pages have correct rights for code */
649 static void tb_page_check(void)
651 TranslationBlock
*tb
;
652 int i
, flags1
, flags2
;
654 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
655 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
656 flags1
= page_get_flags(tb
->pc
);
657 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
658 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
659 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
660 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
666 static void tb_jmp_check(TranslationBlock
*tb
)
668 TranslationBlock
*tb1
;
671 /* suppress any remaining jumps to this TB */
675 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
678 tb1
= tb1
->jmp_next
[n1
];
680 /* check end of list */
682 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb
);
688 /* invalidate one TB */
689 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
692 TranslationBlock
*tb1
;
696 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
699 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
703 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
705 TranslationBlock
*tb1
;
711 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
713 *ptb
= tb1
->page_next
[n1
];
716 ptb
= &tb1
->page_next
[n1
];
720 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
722 TranslationBlock
*tb1
, **ptb
;
725 ptb
= &tb
->jmp_next
[n
];
728 /* find tb(n) in circular list */
732 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
733 if (n1
== n
&& tb1
== tb
)
736 ptb
= &tb1
->jmp_first
;
738 ptb
= &tb1
->jmp_next
[n1
];
741 /* now we can suppress tb(n) from the list */
742 *ptb
= tb
->jmp_next
[n
];
744 tb
->jmp_next
[n
] = NULL
;
748 /* reset the jump entry 'n' of a TB so that it is not chained to
750 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
752 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
755 void tb_phys_invalidate(TranslationBlock
*tb
, target_ulong page_addr
)
760 target_phys_addr_t phys_pc
;
761 TranslationBlock
*tb1
, *tb2
;
763 /* remove the TB from the hash list */
764 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
765 h
= tb_phys_hash_func(phys_pc
);
766 tb_remove(&tb_phys_hash
[h
], tb
,
767 offsetof(TranslationBlock
, phys_hash_next
));
769 /* remove the TB from the page list */
770 if (tb
->page_addr
[0] != page_addr
) {
771 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
772 tb_page_remove(&p
->first_tb
, tb
);
773 invalidate_page_bitmap(p
);
775 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
776 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
777 tb_page_remove(&p
->first_tb
, tb
);
778 invalidate_page_bitmap(p
);
781 tb_invalidated_flag
= 1;
783 /* remove the TB from the hash list */
784 h
= tb_jmp_cache_hash_func(tb
->pc
);
785 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
786 if (env
->tb_jmp_cache
[h
] == tb
)
787 env
->tb_jmp_cache
[h
] = NULL
;
790 /* suppress this TB from the two jump lists */
791 tb_jmp_remove(tb
, 0);
792 tb_jmp_remove(tb
, 1);
794 /* suppress any remaining jumps to this TB */
800 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
801 tb2
= tb1
->jmp_next
[n1
];
802 tb_reset_jump(tb1
, n1
);
803 tb1
->jmp_next
[n1
] = NULL
;
806 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
808 tb_phys_invalidate_count
++;
811 static inline void set_bits(uint8_t *tab
, int start
, int len
)
817 mask
= 0xff << (start
& 7);
818 if ((start
& ~7) == (end
& ~7)) {
820 mask
&= ~(0xff << (end
& 7));
825 start
= (start
+ 8) & ~7;
827 while (start
< end1
) {
832 mask
= ~(0xff << (end
& 7));
838 static void build_page_bitmap(PageDesc
*p
)
840 int n
, tb_start
, tb_end
;
841 TranslationBlock
*tb
;
843 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
850 tb
= (TranslationBlock
*)((long)tb
& ~3);
851 /* NOTE: this is subtle as a TB may span two physical pages */
853 /* NOTE: tb_end may be after the end of the page, but
854 it is not a problem */
855 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
856 tb_end
= tb_start
+ tb
->size
;
857 if (tb_end
> TARGET_PAGE_SIZE
)
858 tb_end
= TARGET_PAGE_SIZE
;
861 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
863 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
864 tb
= tb
->page_next
[n
];
868 TranslationBlock
*tb_gen_code(CPUState
*env
,
869 target_ulong pc
, target_ulong cs_base
,
870 int flags
, int cflags
)
872 TranslationBlock
*tb
;
874 target_ulong phys_pc
, phys_page2
, virt_page2
;
877 phys_pc
= get_phys_addr_code(env
, pc
);
880 /* flush must be done */
882 /* cannot fail at this point */
884 /* Don't forget to invalidate previous TB info. */
885 tb_invalidated_flag
= 1;
887 tc_ptr
= code_gen_ptr
;
889 tb
->cs_base
= cs_base
;
892 cpu_gen_code(env
, tb
, &code_gen_size
);
893 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
895 /* check next page if needed */
896 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
898 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
899 phys_page2
= get_phys_addr_code(env
, virt_page2
);
901 tb_link_phys(tb
, phys_pc
, phys_page2
);
905 /* invalidate all TBs which intersect with the target physical page
906 starting in range [start;end[. NOTE: start and end must refer to
907 the same physical page. 'is_cpu_write_access' should be true if called
908 from a real cpu write access: the virtual CPU will exit the current
909 TB if code is modified inside this TB. */
910 void tb_invalidate_phys_page_range(target_phys_addr_t start
, target_phys_addr_t end
,
911 int is_cpu_write_access
)
913 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
914 CPUState
*env
= cpu_single_env
;
915 target_ulong tb_start
, tb_end
;
918 #ifdef TARGET_HAS_PRECISE_SMC
919 int current_tb_not_found
= is_cpu_write_access
;
920 TranslationBlock
*current_tb
= NULL
;
921 int current_tb_modified
= 0;
922 target_ulong current_pc
= 0;
923 target_ulong current_cs_base
= 0;
924 int current_flags
= 0;
925 #endif /* TARGET_HAS_PRECISE_SMC */
927 p
= page_find(start
>> TARGET_PAGE_BITS
);
930 if (!p
->code_bitmap
&&
931 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
932 is_cpu_write_access
) {
933 /* build code bitmap */
934 build_page_bitmap(p
);
937 /* we remove all the TBs in the range [start, end[ */
938 /* XXX: see if in some cases it could be faster to invalidate all the code */
942 tb
= (TranslationBlock
*)((long)tb
& ~3);
943 tb_next
= tb
->page_next
[n
];
944 /* NOTE: this is subtle as a TB may span two physical pages */
946 /* NOTE: tb_end may be after the end of the page, but
947 it is not a problem */
948 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
949 tb_end
= tb_start
+ tb
->size
;
951 tb_start
= tb
->page_addr
[1];
952 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
954 if (!(tb_end
<= start
|| tb_start
>= end
)) {
955 #ifdef TARGET_HAS_PRECISE_SMC
956 if (current_tb_not_found
) {
957 current_tb_not_found
= 0;
959 if (env
->mem_io_pc
) {
960 /* now we have a real cpu fault */
961 current_tb
= tb_find_pc(env
->mem_io_pc
);
964 if (current_tb
== tb
&&
965 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
966 /* If we are modifying the current TB, we must stop
967 its execution. We could be more precise by checking
968 that the modification is after the current PC, but it
969 would require a specialized function to partially
970 restore the CPU state */
972 current_tb_modified
= 1;
973 cpu_restore_state(current_tb
, env
,
974 env
->mem_io_pc
, NULL
);
975 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
978 #endif /* TARGET_HAS_PRECISE_SMC */
979 /* we need to do that to handle the case where a signal
980 occurs while doing tb_phys_invalidate() */
983 saved_tb
= env
->current_tb
;
984 env
->current_tb
= NULL
;
986 tb_phys_invalidate(tb
, -1);
988 env
->current_tb
= saved_tb
;
989 if (env
->interrupt_request
&& env
->current_tb
)
990 cpu_interrupt(env
, env
->interrupt_request
);
995 #if !defined(CONFIG_USER_ONLY)
996 /* if no code remaining, no need to continue to use slow writes */
998 invalidate_page_bitmap(p
);
999 if (is_cpu_write_access
) {
1000 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1004 #ifdef TARGET_HAS_PRECISE_SMC
1005 if (current_tb_modified
) {
1006 /* we generate a block containing just the instruction
1007 modifying the memory. It will ensure that it cannot modify
1009 env
->current_tb
= NULL
;
1010 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1011 cpu_resume_from_signal(env
, NULL
);
1016 /* len must be <= 8 and start must be a multiple of len */
1017 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start
, int len
)
1023 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1024 cpu_single_env
->mem_io_vaddr
, len
,
1025 cpu_single_env
->eip
,
1026 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1029 p
= page_find(start
>> TARGET_PAGE_BITS
);
1032 if (p
->code_bitmap
) {
1033 offset
= start
& ~TARGET_PAGE_MASK
;
1034 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1035 if (b
& ((1 << len
) - 1))
1039 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1043 #if !defined(CONFIG_SOFTMMU)
1044 static void tb_invalidate_phys_page(target_phys_addr_t addr
,
1045 unsigned long pc
, void *puc
)
1047 TranslationBlock
*tb
;
1050 #ifdef TARGET_HAS_PRECISE_SMC
1051 TranslationBlock
*current_tb
= NULL
;
1052 CPUState
*env
= cpu_single_env
;
1053 int current_tb_modified
= 0;
1054 target_ulong current_pc
= 0;
1055 target_ulong current_cs_base
= 0;
1056 int current_flags
= 0;
1059 addr
&= TARGET_PAGE_MASK
;
1060 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1064 #ifdef TARGET_HAS_PRECISE_SMC
1065 if (tb
&& pc
!= 0) {
1066 current_tb
= tb_find_pc(pc
);
1069 while (tb
!= NULL
) {
1071 tb
= (TranslationBlock
*)((long)tb
& ~3);
1072 #ifdef TARGET_HAS_PRECISE_SMC
1073 if (current_tb
== tb
&&
1074 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1075 /* If we are modifying the current TB, we must stop
1076 its execution. We could be more precise by checking
1077 that the modification is after the current PC, but it
1078 would require a specialized function to partially
1079 restore the CPU state */
1081 current_tb_modified
= 1;
1082 cpu_restore_state(current_tb
, env
, pc
, puc
);
1083 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1086 #endif /* TARGET_HAS_PRECISE_SMC */
1087 tb_phys_invalidate(tb
, addr
);
1088 tb
= tb
->page_next
[n
];
1091 #ifdef TARGET_HAS_PRECISE_SMC
1092 if (current_tb_modified
) {
1093 /* we generate a block containing just the instruction
1094 modifying the memory. It will ensure that it cannot modify
1096 env
->current_tb
= NULL
;
1097 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1098 cpu_resume_from_signal(env
, puc
);
1104 /* add the tb in the target page and protect it if necessary */
1105 static inline void tb_alloc_page(TranslationBlock
*tb
,
1106 unsigned int n
, target_ulong page_addr
)
1109 TranslationBlock
*last_first_tb
;
1111 tb
->page_addr
[n
] = page_addr
;
1112 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
);
1113 tb
->page_next
[n
] = p
->first_tb
;
1114 last_first_tb
= p
->first_tb
;
1115 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1116 invalidate_page_bitmap(p
);
1118 #if defined(TARGET_HAS_SMC) || 1
1120 #if defined(CONFIG_USER_ONLY)
1121 if (p
->flags
& PAGE_WRITE
) {
1126 /* force the host page as non writable (writes will have a
1127 page fault + mprotect overhead) */
1128 page_addr
&= qemu_host_page_mask
;
1130 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1131 addr
+= TARGET_PAGE_SIZE
) {
1133 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1137 p2
->flags
&= ~PAGE_WRITE
;
1138 page_get_flags(addr
);
1140 mprotect(g2h(page_addr
), qemu_host_page_size
,
1141 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1142 #ifdef DEBUG_TB_INVALIDATE
1143 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1148 /* if some code is already present, then the pages are already
1149 protected. So we handle the case where only the first TB is
1150 allocated in a physical page */
1151 if (!last_first_tb
) {
1152 tlb_protect_code(page_addr
);
1156 #endif /* TARGET_HAS_SMC */
1159 /* Allocate a new translation block. Flush the translation buffer if
1160 too many translation blocks or too much generated code. */
1161 TranslationBlock
*tb_alloc(target_ulong pc
)
1163 TranslationBlock
*tb
;
1165 if (nb_tbs
>= code_gen_max_blocks
||
1166 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
1168 tb
= &tbs
[nb_tbs
++];
1174 void tb_free(TranslationBlock
*tb
)
1176 /* In practice this is mostly used for single use temporary TB
1177 Ignore the hard cases and just back up if this TB happens to
1178 be the last one generated. */
1179 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
1180 code_gen_ptr
= tb
->tc_ptr
;
1185 /* add a new TB and link it to the physical page tables. phys_page2 is
1186 (-1) to indicate that only one page contains the TB. */
1187 void tb_link_phys(TranslationBlock
*tb
,
1188 target_ulong phys_pc
, target_ulong phys_page2
)
1191 TranslationBlock
**ptb
;
1193 /* Grab the mmap lock to stop another thread invalidating this TB
1194 before we are done. */
1196 /* add in the physical hash table */
1197 h
= tb_phys_hash_func(phys_pc
);
1198 ptb
= &tb_phys_hash
[h
];
1199 tb
->phys_hash_next
= *ptb
;
1202 /* add in the page list */
1203 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1204 if (phys_page2
!= -1)
1205 tb_alloc_page(tb
, 1, phys_page2
);
1207 tb
->page_addr
[1] = -1;
1209 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1210 tb
->jmp_next
[0] = NULL
;
1211 tb
->jmp_next
[1] = NULL
;
1213 /* init original jump addresses */
1214 if (tb
->tb_next_offset
[0] != 0xffff)
1215 tb_reset_jump(tb
, 0);
1216 if (tb
->tb_next_offset
[1] != 0xffff)
1217 tb_reset_jump(tb
, 1);
1219 #ifdef DEBUG_TB_CHECK
1225 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1226 tb[1].tc_ptr. Return NULL if not found */
1227 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1229 int m_min
, m_max
, m
;
1231 TranslationBlock
*tb
;
1235 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1236 tc_ptr
>= (unsigned long)code_gen_ptr
)
1238 /* binary search (cf Knuth) */
1241 while (m_min
<= m_max
) {
1242 m
= (m_min
+ m_max
) >> 1;
1244 v
= (unsigned long)tb
->tc_ptr
;
1247 else if (tc_ptr
< v
) {
1256 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1258 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1260 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1263 tb1
= tb
->jmp_next
[n
];
1265 /* find head of list */
1268 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1271 tb1
= tb1
->jmp_next
[n1
];
1273 /* we are now sure now that tb jumps to tb1 */
1276 /* remove tb from the jmp_first list */
1277 ptb
= &tb_next
->jmp_first
;
1281 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1282 if (n1
== n
&& tb1
== tb
)
1284 ptb
= &tb1
->jmp_next
[n1
];
1286 *ptb
= tb
->jmp_next
[n
];
1287 tb
->jmp_next
[n
] = NULL
;
1289 /* suppress the jump to next tb in generated code */
1290 tb_reset_jump(tb
, n
);
1292 /* suppress jumps in the tb on which we could have jumped */
1293 tb_reset_jump_recursive(tb_next
);
1297 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1299 tb_reset_jump_recursive2(tb
, 0);
1300 tb_reset_jump_recursive2(tb
, 1);
1303 #if defined(TARGET_HAS_ICE)
1304 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1306 target_phys_addr_t addr
;
1308 ram_addr_t ram_addr
;
1311 addr
= cpu_get_phys_page_debug(env
, pc
);
1312 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1314 pd
= IO_MEM_UNASSIGNED
;
1316 pd
= p
->phys_offset
;
1318 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1319 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1323 /* Add a watchpoint. */
1324 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1325 int flags
, CPUWatchpoint
**watchpoint
)
1327 target_ulong len_mask
= ~(len
- 1);
1330 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1331 if ((len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8) || (addr
& ~len_mask
)) {
1332 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1333 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1336 wp
= qemu_malloc(sizeof(*wp
));
1341 wp
->len_mask
= len_mask
;
1344 /* keep all GDB-injected watchpoints in front */
1346 TAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1348 TAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1350 tlb_flush_page(env
, addr
);
1357 /* Remove a specific watchpoint. */
1358 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
, target_ulong len
,
1361 target_ulong len_mask
= ~(len
- 1);
1364 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1365 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1366 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1367 cpu_watchpoint_remove_by_ref(env
, wp
);
1374 /* Remove a specific watchpoint by reference. */
1375 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
)
1377 TAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1379 tlb_flush_page(env
, watchpoint
->vaddr
);
1381 qemu_free(watchpoint
);
1384 /* Remove all matching watchpoints. */
1385 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1387 CPUWatchpoint
*wp
, *next
;
1389 TAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1390 if (wp
->flags
& mask
)
1391 cpu_watchpoint_remove_by_ref(env
, wp
);
1395 /* Add a breakpoint. */
1396 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
1397 CPUBreakpoint
**breakpoint
)
1399 #if defined(TARGET_HAS_ICE)
1402 bp
= qemu_malloc(sizeof(*bp
));
1409 /* keep all GDB-injected breakpoints in front */
1411 TAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1413 TAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1415 breakpoint_invalidate(env
, pc
);
1425 /* Remove a specific breakpoint. */
1426 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
)
1428 #if defined(TARGET_HAS_ICE)
1431 TAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1432 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1433 cpu_breakpoint_remove_by_ref(env
, bp
);
1443 /* Remove a specific breakpoint by reference. */
1444 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
)
1446 #if defined(TARGET_HAS_ICE)
1447 TAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1449 breakpoint_invalidate(env
, breakpoint
->pc
);
1451 qemu_free(breakpoint
);
1455 /* Remove all matching breakpoints. */
1456 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
)
1458 #if defined(TARGET_HAS_ICE)
1459 CPUBreakpoint
*bp
, *next
;
1461 TAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1462 if (bp
->flags
& mask
)
1463 cpu_breakpoint_remove_by_ref(env
, bp
);
1468 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1469 CPU loop after each instruction */
1470 void cpu_single_step(CPUState
*env
, int enabled
)
1472 #if defined(TARGET_HAS_ICE)
1473 if (env
->singlestep_enabled
!= enabled
) {
1474 env
->singlestep_enabled
= enabled
;
1476 kvm_update_guest_debug(env
, 0);
1478 /* must flush all the translated code to avoid inconsistancies */
1479 /* XXX: only flush what is necessary */
1486 /* enable or disable low levels log */
1487 void cpu_set_log(int log_flags
)
1489 loglevel
= log_flags
;
1490 if (loglevel
&& !logfile
) {
1491 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1493 perror(logfilename
);
1496 #if !defined(CONFIG_SOFTMMU)
1497 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1499 static char logfile_buf
[4096];
1500 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1503 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1507 if (!loglevel
&& logfile
) {
1513 void cpu_set_log_filename(const char *filename
)
1515 logfilename
= strdup(filename
);
1520 cpu_set_log(loglevel
);
1523 /* mask must never be zero, except for A20 change call */
1524 void cpu_interrupt(CPUState
*env
, int mask
)
1526 #if !defined(USE_NPTL)
1527 TranslationBlock
*tb
;
1528 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1532 old_mask
= env
->interrupt_request
;
1533 /* FIXME: This is probably not threadsafe. A different thread could
1534 be in the middle of a read-modify-write operation. */
1535 env
->interrupt_request
|= mask
;
1536 if (kvm_enabled() && !qemu_kvm_irqchip_in_kernel())
1537 kvm_update_interrupt_request(env
);
1538 #if defined(USE_NPTL)
1539 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1540 problem and hope the cpu will stop of its own accord. For userspace
1541 emulation this often isn't actually as bad as it sounds. Often
1542 signals are used primarily to interrupt blocking syscalls. */
1545 env
->icount_decr
.u16
.high
= 0xffff;
1546 #ifndef CONFIG_USER_ONLY
1547 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1548 an async event happened and we need to process it. */
1550 && (mask
& ~(old_mask
| CPU_INTERRUPT_EXIT
)) != 0) {
1551 cpu_abort(env
, "Raised interrupt while not in I/O function");
1555 tb
= env
->current_tb
;
1556 /* if the cpu is currently executing code, we must unlink it and
1557 all the potentially executing TB */
1558 if (tb
&& !testandset(&interrupt_lock
)) {
1559 env
->current_tb
= NULL
;
1560 tb_reset_jump_recursive(tb
);
1561 resetlock(&interrupt_lock
);
1567 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1569 env
->interrupt_request
&= ~mask
;
1572 const CPULogItem cpu_log_items
[] = {
1573 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1574 "show generated host assembly code for each compiled TB" },
1575 { CPU_LOG_TB_IN_ASM
, "in_asm",
1576 "show target assembly code for each compiled TB" },
1577 { CPU_LOG_TB_OP
, "op",
1578 "show micro ops for each compiled TB" },
1579 { CPU_LOG_TB_OP_OPT
, "op_opt",
1582 "before eflags optimization and "
1584 "after liveness analysis" },
1585 { CPU_LOG_INT
, "int",
1586 "show interrupts/exceptions in short format" },
1587 { CPU_LOG_EXEC
, "exec",
1588 "show trace before each executed TB (lots of logs)" },
1589 { CPU_LOG_TB_CPU
, "cpu",
1590 "show CPU state before block translation" },
1592 { CPU_LOG_PCALL
, "pcall",
1593 "show protected mode far calls/returns/exceptions" },
1596 { CPU_LOG_IOPORT
, "ioport",
1597 "show all i/o ports accesses" },
1602 static int cmp1(const char *s1
, int n
, const char *s2
)
1604 if (strlen(s2
) != n
)
1606 return memcmp(s1
, s2
, n
) == 0;
1609 /* takes a comma separated list of log masks. Return 0 if error. */
1610 int cpu_str_to_log_mask(const char *str
)
1612 const CPULogItem
*item
;
1619 p1
= strchr(p
, ',');
1622 if(cmp1(p
,p1
-p
,"all")) {
1623 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1627 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1628 if (cmp1(p
, p1
- p
, item
->name
))
1642 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1649 fprintf(stderr
, "qemu: fatal: ");
1650 vfprintf(stderr
, fmt
, ap
);
1651 fprintf(stderr
, "\n");
1653 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1655 cpu_dump_state(env
, stderr
, fprintf
, 0);
1657 if (qemu_log_enabled()) {
1658 qemu_log("qemu: fatal: ");
1659 qemu_log_vprintf(fmt
, ap2
);
1662 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1664 log_cpu_state(env
, 0);
1674 CPUState
*cpu_copy(CPUState
*env
)
1676 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1677 CPUState
*next_cpu
= new_env
->next_cpu
;
1678 int cpu_index
= new_env
->cpu_index
;
1679 #if defined(TARGET_HAS_ICE)
1684 memcpy(new_env
, env
, sizeof(CPUState
));
1686 /* Preserve chaining and index. */
1687 new_env
->next_cpu
= next_cpu
;
1688 new_env
->cpu_index
= cpu_index
;
1690 /* Clone all break/watchpoints.
1691 Note: Once we support ptrace with hw-debug register access, make sure
1692 BP_CPU break/watchpoints are handled correctly on clone. */
1693 TAILQ_INIT(&env
->breakpoints
);
1694 TAILQ_INIT(&env
->watchpoints
);
1695 #if defined(TARGET_HAS_ICE)
1696 TAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1697 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1699 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1700 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1708 #if !defined(CONFIG_USER_ONLY)
1710 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1714 /* Discard jump cache entries for any tb which might potentially
1715 overlap the flushed page. */
1716 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1717 memset (&env
->tb_jmp_cache
[i
], 0,
1718 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1720 i
= tb_jmp_cache_hash_page(addr
);
1721 memset (&env
->tb_jmp_cache
[i
], 0,
1722 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1725 /* NOTE: if flush_global is true, also flush global entries (not
1727 void tlb_flush(CPUState
*env
, int flush_global
)
1731 #if defined(DEBUG_TLB)
1732 printf("tlb_flush:\n");
1734 /* must reset current TB so that interrupts cannot modify the
1735 links while we are modifying them */
1736 env
->current_tb
= NULL
;
1738 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1739 env
->tlb_table
[0][i
].addr_read
= -1;
1740 env
->tlb_table
[0][i
].addr_write
= -1;
1741 env
->tlb_table
[0][i
].addr_code
= -1;
1742 env
->tlb_table
[1][i
].addr_read
= -1;
1743 env
->tlb_table
[1][i
].addr_write
= -1;
1744 env
->tlb_table
[1][i
].addr_code
= -1;
1745 #if (NB_MMU_MODES >= 3)
1746 env
->tlb_table
[2][i
].addr_read
= -1;
1747 env
->tlb_table
[2][i
].addr_write
= -1;
1748 env
->tlb_table
[2][i
].addr_code
= -1;
1749 #if (NB_MMU_MODES == 4)
1750 env
->tlb_table
[3][i
].addr_read
= -1;
1751 env
->tlb_table
[3][i
].addr_write
= -1;
1752 env
->tlb_table
[3][i
].addr_code
= -1;
1757 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1760 if (env
->kqemu_enabled
) {
1761 kqemu_flush(env
, flush_global
);
1767 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1769 if (addr
== (tlb_entry
->addr_read
&
1770 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1771 addr
== (tlb_entry
->addr_write
&
1772 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1773 addr
== (tlb_entry
->addr_code
&
1774 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1775 tlb_entry
->addr_read
= -1;
1776 tlb_entry
->addr_write
= -1;
1777 tlb_entry
->addr_code
= -1;
1781 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1785 #if defined(DEBUG_TLB)
1786 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1788 /* must reset current TB so that interrupts cannot modify the
1789 links while we are modifying them */
1790 env
->current_tb
= NULL
;
1792 addr
&= TARGET_PAGE_MASK
;
1793 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1794 tlb_flush_entry(&env
->tlb_table
[0][i
], addr
);
1795 tlb_flush_entry(&env
->tlb_table
[1][i
], addr
);
1796 #if (NB_MMU_MODES >= 3)
1797 tlb_flush_entry(&env
->tlb_table
[2][i
], addr
);
1798 #if (NB_MMU_MODES == 4)
1799 tlb_flush_entry(&env
->tlb_table
[3][i
], addr
);
1803 tlb_flush_jmp_cache(env
, addr
);
1806 if (env
->kqemu_enabled
) {
1807 kqemu_flush_page(env
, addr
);
1812 /* update the TLBs so that writes to code in the virtual page 'addr'
1814 static void tlb_protect_code(ram_addr_t ram_addr
)
1816 cpu_physical_memory_reset_dirty(ram_addr
,
1817 ram_addr
+ TARGET_PAGE_SIZE
,
1821 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1822 tested for self modifying code */
1823 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
1826 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] |= CODE_DIRTY_FLAG
;
1829 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
1830 unsigned long start
, unsigned long length
)
1833 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1834 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
1835 if ((addr
- start
) < length
) {
1836 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
1841 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
1845 unsigned long length
, start1
;
1849 start
&= TARGET_PAGE_MASK
;
1850 end
= TARGET_PAGE_ALIGN(end
);
1852 length
= end
- start
;
1855 len
= length
>> TARGET_PAGE_BITS
;
1857 /* XXX: should not depend on cpu context */
1859 if (env
->kqemu_enabled
) {
1862 for(i
= 0; i
< len
; i
++) {
1863 kqemu_set_notdirty(env
, addr
);
1864 addr
+= TARGET_PAGE_SIZE
;
1868 mask
= ~dirty_flags
;
1869 p
= phys_ram_dirty
+ (start
>> TARGET_PAGE_BITS
);
1870 for(i
= 0; i
< len
; i
++)
1873 /* we modify the TLB cache so that the dirty bit will be set again
1874 when accessing the range */
1875 start1
= start
+ (unsigned long)phys_ram_base
;
1876 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1877 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1878 tlb_reset_dirty_range(&env
->tlb_table
[0][i
], start1
, length
);
1879 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1880 tlb_reset_dirty_range(&env
->tlb_table
[1][i
], start1
, length
);
1881 #if (NB_MMU_MODES >= 3)
1882 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1883 tlb_reset_dirty_range(&env
->tlb_table
[2][i
], start1
, length
);
1884 #if (NB_MMU_MODES == 4)
1885 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1886 tlb_reset_dirty_range(&env
->tlb_table
[3][i
], start1
, length
);
1892 int cpu_physical_memory_set_dirty_tracking(int enable
)
1897 r
= kvm_physical_memory_set_dirty_tracking(enable
);
1898 in_migration
= enable
;
1902 int cpu_physical_memory_get_dirty_tracking(void)
1904 return in_migration
;
1907 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
, target_phys_addr_t end_addr
)
1910 kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
1913 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
1915 ram_addr_t ram_addr
;
1917 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1918 ram_addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) +
1919 tlb_entry
->addend
- (unsigned long)phys_ram_base
;
1920 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
1921 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
1926 /* update the TLB according to the current state of the dirty bits */
1927 void cpu_tlb_update_dirty(CPUState
*env
)
1930 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1931 tlb_update_dirty(&env
->tlb_table
[0][i
]);
1932 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1933 tlb_update_dirty(&env
->tlb_table
[1][i
]);
1934 #if (NB_MMU_MODES >= 3)
1935 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1936 tlb_update_dirty(&env
->tlb_table
[2][i
]);
1937 #if (NB_MMU_MODES == 4)
1938 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1939 tlb_update_dirty(&env
->tlb_table
[3][i
]);
1944 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
1946 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
1947 tlb_entry
->addr_write
= vaddr
;
1950 /* update the TLB corresponding to virtual page vaddr
1951 so that it is no longer dirty */
1952 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
1956 vaddr
&= TARGET_PAGE_MASK
;
1957 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1958 tlb_set_dirty1(&env
->tlb_table
[0][i
], vaddr
);
1959 tlb_set_dirty1(&env
->tlb_table
[1][i
], vaddr
);
1960 #if (NB_MMU_MODES >= 3)
1961 tlb_set_dirty1(&env
->tlb_table
[2][i
], vaddr
);
1962 #if (NB_MMU_MODES == 4)
1963 tlb_set_dirty1(&env
->tlb_table
[3][i
], vaddr
);
1968 /* add a new TLB entry. At most one entry for a given virtual address
1969 is permitted. Return 0 if OK or 2 if the page could not be mapped
1970 (can only happen in non SOFTMMU mode for I/O pages or pages
1971 conflicting with the host address space). */
1972 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
1973 target_phys_addr_t paddr
, int prot
,
1974 int mmu_idx
, int is_softmmu
)
1979 target_ulong address
;
1980 target_ulong code_address
;
1981 target_phys_addr_t addend
;
1985 target_phys_addr_t iotlb
;
1987 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
1989 pd
= IO_MEM_UNASSIGNED
;
1991 pd
= p
->phys_offset
;
1993 #if defined(DEBUG_TLB)
1994 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1995 vaddr
, (int)paddr
, prot
, mmu_idx
, is_softmmu
, pd
);
2000 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
2001 /* IO memory case (romd handled later) */
2002 address
|= TLB_MMIO
;
2004 addend
= (unsigned long)phys_ram_base
+ (pd
& TARGET_PAGE_MASK
);
2005 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
2007 iotlb
= pd
& TARGET_PAGE_MASK
;
2008 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
2009 iotlb
|= IO_MEM_NOTDIRTY
;
2011 iotlb
|= IO_MEM_ROM
;
2013 /* IO handlers are currently passed a phsical address.
2014 It would be nice to pass an offset from the base address
2015 of that region. This would avoid having to special case RAM,
2016 and avoid full address decoding in every device.
2017 We can't use the high bits of pd for this because
2018 IO_MEM_ROMD uses these as a ram address. */
2019 iotlb
= (pd
& ~TARGET_PAGE_MASK
);
2021 iotlb
+= p
->region_offset
;
2027 code_address
= address
;
2028 /* Make accesses to pages with watchpoints go via the
2029 watchpoint trap routines. */
2030 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2031 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
2032 iotlb
= io_mem_watch
+ paddr
;
2033 /* TODO: The memory case can be optimized by not trapping
2034 reads of pages with a write breakpoint. */
2035 address
|= TLB_MMIO
;
2039 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2040 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
2041 te
= &env
->tlb_table
[mmu_idx
][index
];
2042 te
->addend
= addend
- vaddr
;
2043 if (prot
& PAGE_READ
) {
2044 te
->addr_read
= address
;
2049 if (prot
& PAGE_EXEC
) {
2050 te
->addr_code
= code_address
;
2054 if (prot
& PAGE_WRITE
) {
2055 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
2056 (pd
& IO_MEM_ROMD
)) {
2057 /* Write access calls the I/O callback. */
2058 te
->addr_write
= address
| TLB_MMIO
;
2059 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
2060 !cpu_physical_memory_is_dirty(pd
)) {
2061 te
->addr_write
= address
| TLB_NOTDIRTY
;
2063 te
->addr_write
= address
;
2066 te
->addr_write
= -1;
2073 void tlb_flush(CPUState
*env
, int flush_global
)
2077 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2081 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
2082 target_phys_addr_t paddr
, int prot
,
2083 int mmu_idx
, int is_softmmu
)
2088 /* dump memory mappings */
2089 void page_dump(FILE *f
)
2091 unsigned long start
, end
;
2092 int i
, j
, prot
, prot1
;
2095 fprintf(f
, "%-8s %-8s %-8s %s\n",
2096 "start", "end", "size", "prot");
2100 for(i
= 0; i
<= L1_SIZE
; i
++) {
2105 for(j
= 0;j
< L2_SIZE
; j
++) {
2110 if (prot1
!= prot
) {
2111 end
= (i
<< (32 - L1_BITS
)) | (j
<< TARGET_PAGE_BITS
);
2113 fprintf(f
, "%08lx-%08lx %08lx %c%c%c\n",
2114 start
, end
, end
- start
,
2115 prot
& PAGE_READ
? 'r' : '-',
2116 prot
& PAGE_WRITE
? 'w' : '-',
2117 prot
& PAGE_EXEC
? 'x' : '-');
2131 int page_get_flags(target_ulong address
)
2135 p
= page_find(address
>> TARGET_PAGE_BITS
);
2141 /* modify the flags of a page and invalidate the code if
2142 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2143 depending on PAGE_WRITE */
2144 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2149 /* mmap_lock should already be held. */
2150 start
= start
& TARGET_PAGE_MASK
;
2151 end
= TARGET_PAGE_ALIGN(end
);
2152 if (flags
& PAGE_WRITE
)
2153 flags
|= PAGE_WRITE_ORG
;
2154 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2155 p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
);
2156 /* We may be called for host regions that are outside guest
2160 /* if the write protection is set, then we invalidate the code
2162 if (!(p
->flags
& PAGE_WRITE
) &&
2163 (flags
& PAGE_WRITE
) &&
2165 tb_invalidate_phys_page(addr
, 0, NULL
);
2171 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2177 if (start
+ len
< start
)
2178 /* we've wrapped around */
2181 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2182 start
= start
& TARGET_PAGE_MASK
;
2184 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2185 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2188 if( !(p
->flags
& PAGE_VALID
) )
2191 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2193 if (flags
& PAGE_WRITE
) {
2194 if (!(p
->flags
& PAGE_WRITE_ORG
))
2196 /* unprotect the page if it was put read-only because it
2197 contains translated code */
2198 if (!(p
->flags
& PAGE_WRITE
)) {
2199 if (!page_unprotect(addr
, 0, NULL
))
2208 /* called from signal handler: invalidate the code and unprotect the
2209 page. Return TRUE if the fault was succesfully handled. */
2210 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2212 unsigned int page_index
, prot
, pindex
;
2214 target_ulong host_start
, host_end
, addr
;
2216 /* Technically this isn't safe inside a signal handler. However we
2217 know this only ever happens in a synchronous SEGV handler, so in
2218 practice it seems to be ok. */
2221 host_start
= address
& qemu_host_page_mask
;
2222 page_index
= host_start
>> TARGET_PAGE_BITS
;
2223 p1
= page_find(page_index
);
2228 host_end
= host_start
+ qemu_host_page_size
;
2231 for(addr
= host_start
;addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2235 /* if the page was really writable, then we change its
2236 protection back to writable */
2237 if (prot
& PAGE_WRITE_ORG
) {
2238 pindex
= (address
- host_start
) >> TARGET_PAGE_BITS
;
2239 if (!(p1
[pindex
].flags
& PAGE_WRITE
)) {
2240 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2241 (prot
& PAGE_BITS
) | PAGE_WRITE
);
2242 p1
[pindex
].flags
|= PAGE_WRITE
;
2243 /* and since the content will be modified, we must invalidate
2244 the corresponding translated code. */
2245 tb_invalidate_phys_page(address
, pc
, puc
);
2246 #ifdef DEBUG_TB_CHECK
2247 tb_invalidate_check(address
);
2257 static inline void tlb_set_dirty(CPUState
*env
,
2258 unsigned long addr
, target_ulong vaddr
)
2261 #endif /* defined(CONFIG_USER_ONLY) */
2263 #if !defined(CONFIG_USER_ONLY)
2265 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2266 ram_addr_t memory
, ram_addr_t region_offset
);
2267 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2268 ram_addr_t orig_memory
, ram_addr_t region_offset
);
2269 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2272 if (addr > start_addr) \
2275 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2276 if (start_addr2 > 0) \
2280 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2281 end_addr2 = TARGET_PAGE_SIZE - 1; \
2283 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2284 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2289 /* register physical memory. 'size' must be a multiple of the target
2290 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2291 io memory page. The address used when calling the IO function is
2292 the offset from the start of the region, plus region_offset. Both
2293 start_region and regon_offset are rounded down to a page boundary
2294 before calculating this offset. This should not be a problem unless
2295 the low bits of start_addr and region_offset differ. */
2296 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr
,
2298 ram_addr_t phys_offset
,
2299 ram_addr_t region_offset
)
2301 target_phys_addr_t addr
, end_addr
;
2304 ram_addr_t orig_size
= size
;
2308 /* XXX: should not depend on cpu context */
2310 if (env
->kqemu_enabled
) {
2311 kqemu_set_phys_mem(start_addr
, size
, phys_offset
);
2315 kvm_set_phys_mem(start_addr
, size
, phys_offset
);
2317 region_offset
&= TARGET_PAGE_MASK
;
2318 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2319 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2320 for(addr
= start_addr
; addr
!= end_addr
; addr
+= TARGET_PAGE_SIZE
) {
2321 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2322 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2323 ram_addr_t orig_memory
= p
->phys_offset
;
2324 target_phys_addr_t start_addr2
, end_addr2
;
2325 int need_subpage
= 0;
2327 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2329 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2330 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2331 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2332 &p
->phys_offset
, orig_memory
,
2335 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2338 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
,
2340 p
->region_offset
= 0;
2342 p
->phys_offset
= phys_offset
;
2343 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2344 (phys_offset
& IO_MEM_ROMD
))
2345 phys_offset
+= TARGET_PAGE_SIZE
;
2348 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2349 p
->phys_offset
= phys_offset
;
2350 p
->region_offset
= region_offset
;
2351 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2352 (phys_offset
& IO_MEM_ROMD
)) {
2353 phys_offset
+= TARGET_PAGE_SIZE
;
2355 target_phys_addr_t start_addr2
, end_addr2
;
2356 int need_subpage
= 0;
2358 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2359 end_addr2
, need_subpage
);
2361 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2362 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2363 &p
->phys_offset
, IO_MEM_UNASSIGNED
,
2365 subpage_register(subpage
, start_addr2
, end_addr2
,
2366 phys_offset
, region_offset
);
2367 p
->region_offset
= 0;
2371 region_offset
+= TARGET_PAGE_SIZE
;
2374 /* since each CPU stores ram addresses in its TLB cache, we must
2375 reset the modified entries */
2377 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2382 /* XXX: temporary until new memory mapping API */
2383 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2387 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2389 return IO_MEM_UNASSIGNED
;
2390 return p
->phys_offset
;
2393 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2396 kvm_coalesce_mmio_region(addr
, size
);
2399 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2402 kvm_uncoalesce_mmio_region(addr
, size
);
2405 /* XXX: better than nothing */
2406 ram_addr_t
qemu_ram_alloc(ram_addr_t size
)
2409 if ((phys_ram_alloc_offset
+ size
) > phys_ram_size
) {
2410 fprintf(stderr
, "Not enough memory (requested_size = %" PRIu64
", max memory = %" PRIu64
")\n",
2411 (uint64_t)size
, (uint64_t)phys_ram_size
);
2414 addr
= phys_ram_alloc_offset
;
2415 phys_ram_alloc_offset
= TARGET_PAGE_ALIGN(phys_ram_alloc_offset
+ size
);
2419 void qemu_ram_free(ram_addr_t addr
)
2423 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
2425 #ifdef DEBUG_UNASSIGNED
2426 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2428 #if defined(TARGET_SPARC)
2429 do_unassigned_access(addr
, 0, 0, 0, 1);
2434 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
2436 #ifdef DEBUG_UNASSIGNED
2437 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2439 #if defined(TARGET_SPARC)
2440 do_unassigned_access(addr
, 0, 0, 0, 2);
2445 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
2447 #ifdef DEBUG_UNASSIGNED
2448 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2450 #if defined(TARGET_SPARC)
2451 do_unassigned_access(addr
, 0, 0, 0, 4);
2456 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2458 #ifdef DEBUG_UNASSIGNED
2459 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2461 #if defined(TARGET_SPARC)
2462 do_unassigned_access(addr
, 1, 0, 0, 1);
2466 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2468 #ifdef DEBUG_UNASSIGNED
2469 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2471 #if defined(TARGET_SPARC)
2472 do_unassigned_access(addr
, 1, 0, 0, 2);
2476 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2478 #ifdef DEBUG_UNASSIGNED
2479 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2481 #if defined(TARGET_SPARC)
2482 do_unassigned_access(addr
, 1, 0, 0, 4);
2486 static CPUReadMemoryFunc
*unassigned_mem_read
[3] = {
2487 unassigned_mem_readb
,
2488 unassigned_mem_readw
,
2489 unassigned_mem_readl
,
2492 static CPUWriteMemoryFunc
*unassigned_mem_write
[3] = {
2493 unassigned_mem_writeb
,
2494 unassigned_mem_writew
,
2495 unassigned_mem_writel
,
2498 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
2502 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2503 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2504 #if !defined(CONFIG_USER_ONLY)
2505 tb_invalidate_phys_page_fast(ram_addr
, 1);
2506 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2509 stb_p(phys_ram_base
+ ram_addr
, val
);
2511 if (cpu_single_env
->kqemu_enabled
&&
2512 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2513 kqemu_modify_page(cpu_single_env
, ram_addr
);
2515 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2516 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2517 /* we remove the notdirty callback only if the code has been
2519 if (dirty_flags
== 0xff)
2520 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2523 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
2527 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2528 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2529 #if !defined(CONFIG_USER_ONLY)
2530 tb_invalidate_phys_page_fast(ram_addr
, 2);
2531 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2534 stw_p(phys_ram_base
+ ram_addr
, val
);
2536 if (cpu_single_env
->kqemu_enabled
&&
2537 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2538 kqemu_modify_page(cpu_single_env
, ram_addr
);
2540 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2541 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2542 /* we remove the notdirty callback only if the code has been
2544 if (dirty_flags
== 0xff)
2545 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2548 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
2552 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2553 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2554 #if !defined(CONFIG_USER_ONLY)
2555 tb_invalidate_phys_page_fast(ram_addr
, 4);
2556 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2559 stl_p(phys_ram_base
+ ram_addr
, val
);
2561 if (cpu_single_env
->kqemu_enabled
&&
2562 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2563 kqemu_modify_page(cpu_single_env
, ram_addr
);
2565 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2566 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2567 /* we remove the notdirty callback only if the code has been
2569 if (dirty_flags
== 0xff)
2570 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2573 static CPUReadMemoryFunc
*error_mem_read
[3] = {
2574 NULL
, /* never used */
2575 NULL
, /* never used */
2576 NULL
, /* never used */
2579 static CPUWriteMemoryFunc
*notdirty_mem_write
[3] = {
2580 notdirty_mem_writeb
,
2581 notdirty_mem_writew
,
2582 notdirty_mem_writel
,
2585 /* Generate a debug exception if a watchpoint has been hit. */
2586 static void check_watchpoint(int offset
, int len_mask
, int flags
)
2588 CPUState
*env
= cpu_single_env
;
2589 target_ulong pc
, cs_base
;
2590 TranslationBlock
*tb
;
2595 if (env
->watchpoint_hit
) {
2596 /* We re-entered the check after replacing the TB. Now raise
2597 * the debug interrupt so that is will trigger after the
2598 * current instruction. */
2599 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
2602 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2603 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2604 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
2605 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
2606 wp
->flags
|= BP_WATCHPOINT_HIT
;
2607 if (!env
->watchpoint_hit
) {
2608 env
->watchpoint_hit
= wp
;
2609 tb
= tb_find_pc(env
->mem_io_pc
);
2611 cpu_abort(env
, "check_watchpoint: could not find TB for "
2612 "pc=%p", (void *)env
->mem_io_pc
);
2614 cpu_restore_state(tb
, env
, env
->mem_io_pc
, NULL
);
2615 tb_phys_invalidate(tb
, -1);
2616 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2617 env
->exception_index
= EXCP_DEBUG
;
2619 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2620 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
2622 cpu_resume_from_signal(env
, NULL
);
2625 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2630 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2631 so these check for a hit then pass through to the normal out-of-line
2633 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
2635 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_READ
);
2636 return ldub_phys(addr
);
2639 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
2641 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_READ
);
2642 return lduw_phys(addr
);
2645 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
2647 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_READ
);
2648 return ldl_phys(addr
);
2651 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
2654 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_WRITE
);
2655 stb_phys(addr
, val
);
2658 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
2661 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_WRITE
);
2662 stw_phys(addr
, val
);
2665 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
2668 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_WRITE
);
2669 stl_phys(addr
, val
);
2672 static CPUReadMemoryFunc
*watch_mem_read
[3] = {
2678 static CPUWriteMemoryFunc
*watch_mem_write
[3] = {
2684 static inline uint32_t subpage_readlen (subpage_t
*mmio
, target_phys_addr_t addr
,
2690 idx
= SUBPAGE_IDX(addr
);
2691 #if defined(DEBUG_SUBPAGE)
2692 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
2693 mmio
, len
, addr
, idx
);
2695 ret
= (**mmio
->mem_read
[idx
][len
])(mmio
->opaque
[idx
][0][len
],
2696 addr
+ mmio
->region_offset
[idx
][0][len
]);
2701 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
2702 uint32_t value
, unsigned int len
)
2706 idx
= SUBPAGE_IDX(addr
);
2707 #if defined(DEBUG_SUBPAGE)
2708 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n", __func__
,
2709 mmio
, len
, addr
, idx
, value
);
2711 (**mmio
->mem_write
[idx
][len
])(mmio
->opaque
[idx
][1][len
],
2712 addr
+ mmio
->region_offset
[idx
][1][len
],
2716 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
2718 #if defined(DEBUG_SUBPAGE)
2719 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2722 return subpage_readlen(opaque
, addr
, 0);
2725 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
2728 #if defined(DEBUG_SUBPAGE)
2729 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2731 subpage_writelen(opaque
, addr
, value
, 0);
2734 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
2736 #if defined(DEBUG_SUBPAGE)
2737 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2740 return subpage_readlen(opaque
, addr
, 1);
2743 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
2746 #if defined(DEBUG_SUBPAGE)
2747 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2749 subpage_writelen(opaque
, addr
, value
, 1);
2752 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
2754 #if defined(DEBUG_SUBPAGE)
2755 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2758 return subpage_readlen(opaque
, addr
, 2);
2761 static void subpage_writel (void *opaque
,
2762 target_phys_addr_t addr
, uint32_t value
)
2764 #if defined(DEBUG_SUBPAGE)
2765 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2767 subpage_writelen(opaque
, addr
, value
, 2);
2770 static CPUReadMemoryFunc
*subpage_read
[] = {
2776 static CPUWriteMemoryFunc
*subpage_write
[] = {
2782 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2783 ram_addr_t memory
, ram_addr_t region_offset
)
2788 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2790 idx
= SUBPAGE_IDX(start
);
2791 eidx
= SUBPAGE_IDX(end
);
2792 #if defined(DEBUG_SUBPAGE)
2793 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__
,
2794 mmio
, start
, end
, idx
, eidx
, memory
);
2796 memory
>>= IO_MEM_SHIFT
;
2797 for (; idx
<= eidx
; idx
++) {
2798 for (i
= 0; i
< 4; i
++) {
2799 if (io_mem_read
[memory
][i
]) {
2800 mmio
->mem_read
[idx
][i
] = &io_mem_read
[memory
][i
];
2801 mmio
->opaque
[idx
][0][i
] = io_mem_opaque
[memory
];
2802 mmio
->region_offset
[idx
][0][i
] = region_offset
;
2804 if (io_mem_write
[memory
][i
]) {
2805 mmio
->mem_write
[idx
][i
] = &io_mem_write
[memory
][i
];
2806 mmio
->opaque
[idx
][1][i
] = io_mem_opaque
[memory
];
2807 mmio
->region_offset
[idx
][1][i
] = region_offset
;
2815 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2816 ram_addr_t orig_memory
, ram_addr_t region_offset
)
2821 mmio
= qemu_mallocz(sizeof(subpage_t
));
2824 subpage_memory
= cpu_register_io_memory(0, subpage_read
, subpage_write
, mmio
);
2825 #if defined(DEBUG_SUBPAGE)
2826 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
2827 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
2829 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
2830 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
- 1, orig_memory
,
2837 static int get_free_io_mem_idx(void)
2841 for (i
= 0; i
<IO_MEM_NB_ENTRIES
; i
++)
2842 if (!io_mem_used
[i
]) {
2850 static void io_mem_init(void)
2854 cpu_register_io_memory(IO_MEM_ROM
>> IO_MEM_SHIFT
, error_mem_read
, unassigned_mem_write
, NULL
);
2855 cpu_register_io_memory(IO_MEM_UNASSIGNED
>> IO_MEM_SHIFT
, unassigned_mem_read
, unassigned_mem_write
, NULL
);
2856 cpu_register_io_memory(IO_MEM_NOTDIRTY
>> IO_MEM_SHIFT
, error_mem_read
, notdirty_mem_write
, NULL
);
2860 io_mem_watch
= cpu_register_io_memory(0, watch_mem_read
,
2861 watch_mem_write
, NULL
);
2862 /* alloc dirty bits array */
2863 phys_ram_dirty
= qemu_vmalloc(phys_ram_size
>> TARGET_PAGE_BITS
);
2864 memset(phys_ram_dirty
, 0xff, phys_ram_size
>> TARGET_PAGE_BITS
);
2867 /* mem_read and mem_write are arrays of functions containing the
2868 function to access byte (index 0), word (index 1) and dword (index
2869 2). Functions can be omitted with a NULL function pointer. The
2870 registered functions may be modified dynamically later.
2871 If io_index is non zero, the corresponding io zone is
2872 modified. If it is zero, a new io zone is allocated. The return
2873 value can be used with cpu_register_physical_memory(). (-1) is
2874 returned if error. */
2875 int cpu_register_io_memory(int io_index
,
2876 CPUReadMemoryFunc
**mem_read
,
2877 CPUWriteMemoryFunc
**mem_write
,
2880 int i
, subwidth
= 0;
2882 if (io_index
<= 0) {
2883 io_index
= get_free_io_mem_idx();
2887 if (io_index
>= IO_MEM_NB_ENTRIES
)
2891 for(i
= 0;i
< 3; i
++) {
2892 if (!mem_read
[i
] || !mem_write
[i
])
2893 subwidth
= IO_MEM_SUBWIDTH
;
2894 io_mem_read
[io_index
][i
] = mem_read
[i
];
2895 io_mem_write
[io_index
][i
] = mem_write
[i
];
2897 io_mem_opaque
[io_index
] = opaque
;
2898 return (io_index
<< IO_MEM_SHIFT
) | subwidth
;
2901 void cpu_unregister_io_memory(int io_table_address
)
2904 int io_index
= io_table_address
>> IO_MEM_SHIFT
;
2906 for (i
=0;i
< 3; i
++) {
2907 io_mem_read
[io_index
][i
] = unassigned_mem_read
[i
];
2908 io_mem_write
[io_index
][i
] = unassigned_mem_write
[i
];
2910 io_mem_opaque
[io_index
] = NULL
;
2911 io_mem_used
[io_index
] = 0;
2914 CPUWriteMemoryFunc
**cpu_get_io_memory_write(int io_index
)
2916 return io_mem_write
[io_index
>> IO_MEM_SHIFT
];
2919 CPUReadMemoryFunc
**cpu_get_io_memory_read(int io_index
)
2921 return io_mem_read
[io_index
>> IO_MEM_SHIFT
];
2924 #endif /* !defined(CONFIG_USER_ONLY) */
2926 /* physical memory access (slow version, mainly for debug) */
2927 #if defined(CONFIG_USER_ONLY)
2928 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
2929 int len
, int is_write
)
2936 page
= addr
& TARGET_PAGE_MASK
;
2937 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2940 flags
= page_get_flags(page
);
2941 if (!(flags
& PAGE_VALID
))
2944 if (!(flags
& PAGE_WRITE
))
2946 /* XXX: this code should not depend on lock_user */
2947 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2948 /* FIXME - should this return an error rather than just fail? */
2951 unlock_user(p
, addr
, l
);
2953 if (!(flags
& PAGE_READ
))
2955 /* XXX: this code should not depend on lock_user */
2956 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2957 /* FIXME - should this return an error rather than just fail? */
2960 unlock_user(p
, addr
, 0);
2969 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
2970 int len
, int is_write
)
2975 target_phys_addr_t page
;
2980 page
= addr
& TARGET_PAGE_MASK
;
2981 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2984 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
2986 pd
= IO_MEM_UNASSIGNED
;
2988 pd
= p
->phys_offset
;
2992 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
2993 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2995 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
2996 /* XXX: could force cpu_single_env to NULL to avoid
2998 if (l
>= 4 && ((addr
& 3) == 0)) {
2999 /* 32 bit write access */
3001 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3003 } else if (l
>= 2 && ((addr
& 1) == 0)) {
3004 /* 16 bit write access */
3006 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr
, val
);
3009 /* 8 bit write access */
3011 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr
, val
);
3015 unsigned long addr1
;
3016 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3018 ptr
= phys_ram_base
+ addr1
;
3019 memcpy(ptr
, buf
, l
);
3020 if (!cpu_physical_memory_is_dirty(addr1
)) {
3021 /* invalidate code */
3022 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3024 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3025 (0xff & ~CODE_DIRTY_FLAG
);
3027 /* qemu doesn't execute guest code directly, but kvm does
3028 therefore fluch instruction caches */
3030 flush_icache_range((unsigned long)ptr
,
3031 ((unsigned long)ptr
)+l
);
3034 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3035 !(pd
& IO_MEM_ROMD
)) {
3037 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3039 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3040 if (l
>= 4 && ((addr
& 3) == 0)) {
3041 /* 32 bit read access */
3042 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3045 } else if (l
>= 2 && ((addr
& 1) == 0)) {
3046 /* 16 bit read access */
3047 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr
);
3051 /* 8 bit read access */
3052 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr
);
3058 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3059 (addr
& ~TARGET_PAGE_MASK
);
3060 memcpy(buf
, ptr
, l
);
3069 /* used for ROM loading : can write in RAM and ROM */
3070 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3071 const uint8_t *buf
, int len
)
3075 target_phys_addr_t page
;
3080 page
= addr
& TARGET_PAGE_MASK
;
3081 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3084 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3086 pd
= IO_MEM_UNASSIGNED
;
3088 pd
= p
->phys_offset
;
3091 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
3092 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
3093 !(pd
& IO_MEM_ROMD
)) {
3096 unsigned long addr1
;
3097 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3099 ptr
= phys_ram_base
+ addr1
;
3100 memcpy(ptr
, buf
, l
);
3109 /* warning: addr must be aligned */
3110 uint32_t ldl_phys(target_phys_addr_t addr
)
3118 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3120 pd
= IO_MEM_UNASSIGNED
;
3122 pd
= p
->phys_offset
;
3125 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3126 !(pd
& IO_MEM_ROMD
)) {
3128 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3130 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3131 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3134 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3135 (addr
& ~TARGET_PAGE_MASK
);
3141 /* warning: addr must be aligned */
3142 uint64_t ldq_phys(target_phys_addr_t addr
)
3150 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3152 pd
= IO_MEM_UNASSIGNED
;
3154 pd
= p
->phys_offset
;
3157 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3158 !(pd
& IO_MEM_ROMD
)) {
3160 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3162 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3163 #ifdef TARGET_WORDS_BIGENDIAN
3164 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
3165 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
3167 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3168 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
3172 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3173 (addr
& ~TARGET_PAGE_MASK
);
3180 uint32_t ldub_phys(target_phys_addr_t addr
)
3183 cpu_physical_memory_read(addr
, &val
, 1);
3188 uint32_t lduw_phys(target_phys_addr_t addr
)
3191 cpu_physical_memory_read(addr
, (uint8_t *)&val
, 2);
3192 return tswap16(val
);
3196 #define likely(x) __builtin_expect(!!(x), 1)
3197 #define unlikely(x) __builtin_expect(!!(x), 0)
3200 #define unlikely(x) x
3203 /* warning: addr must be aligned. The ram page is not masked as dirty
3204 and the code inside is not invalidated. It is useful if the dirty
3205 bits are used to track modified PTEs */
3206 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
3213 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3215 pd
= IO_MEM_UNASSIGNED
;
3217 pd
= p
->phys_offset
;
3220 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3221 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3223 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3224 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3226 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3227 ptr
= phys_ram_base
+ addr1
;
3230 if (unlikely(in_migration
)) {
3231 if (!cpu_physical_memory_is_dirty(addr1
)) {
3232 /* invalidate code */
3233 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3235 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3236 (0xff & ~CODE_DIRTY_FLAG
);
3242 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
3249 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3251 pd
= IO_MEM_UNASSIGNED
;
3253 pd
= p
->phys_offset
;
3256 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3257 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3259 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3260 #ifdef TARGET_WORDS_BIGENDIAN
3261 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
3262 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
3264 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3265 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
3268 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3269 (addr
& ~TARGET_PAGE_MASK
);
3274 /* warning: addr must be aligned */
3275 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
3282 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3284 pd
= IO_MEM_UNASSIGNED
;
3286 pd
= p
->phys_offset
;
3289 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3290 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3292 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3293 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3295 unsigned long addr1
;
3296 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3298 ptr
= phys_ram_base
+ addr1
;
3300 if (!cpu_physical_memory_is_dirty(addr1
)) {
3301 /* invalidate code */
3302 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3304 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3305 (0xff & ~CODE_DIRTY_FLAG
);
3311 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
3314 cpu_physical_memory_write(addr
, &v
, 1);
3318 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
3320 uint16_t v
= tswap16(val
);
3321 cpu_physical_memory_write(addr
, (const uint8_t *)&v
, 2);
3325 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
3328 cpu_physical_memory_write(addr
, (const uint8_t *)&val
, 8);
3333 /* virtual memory access for debug */
3334 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3335 uint8_t *buf
, int len
, int is_write
)
3338 target_phys_addr_t phys_addr
;
3342 page
= addr
& TARGET_PAGE_MASK
;
3343 phys_addr
= cpu_get_phys_page_debug(env
, page
);
3344 /* if no physical page mapped, return an error */
3345 if (phys_addr
== -1)
3347 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3350 cpu_physical_memory_rw(phys_addr
+ (addr
& ~TARGET_PAGE_MASK
),
3359 /* in deterministic execution mode, instructions doing device I/Os
3360 must be at the end of the TB */
3361 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
3363 TranslationBlock
*tb
;
3365 target_ulong pc
, cs_base
;
3368 tb
= tb_find_pc((unsigned long)retaddr
);
3370 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
3373 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
3374 cpu_restore_state(tb
, env
, (unsigned long)retaddr
, NULL
);
3375 /* Calculate how many instructions had been executed before the fault
3377 n
= n
- env
->icount_decr
.u16
.low
;
3378 /* Generate a new TB ending on the I/O insn. */
3380 /* On MIPS and SH, delay slot instructions can only be restarted if
3381 they were already the first instruction in the TB. If this is not
3382 the first instruction in a TB then re-execute the preceding
3384 #if defined(TARGET_MIPS)
3385 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
3386 env
->active_tc
.PC
-= 4;
3387 env
->icount_decr
.u16
.low
++;
3388 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
3390 #elif defined(TARGET_SH4)
3391 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
3394 env
->icount_decr
.u16
.low
++;
3395 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
3398 /* This should never happen. */
3399 if (n
> CF_COUNT_MASK
)
3400 cpu_abort(env
, "TB too big during recompile");
3402 cflags
= n
| CF_LAST_IO
;
3404 cs_base
= tb
->cs_base
;
3406 tb_phys_invalidate(tb
, -1);
3407 /* FIXME: In theory this could raise an exception. In practice
3408 we have already translated the block once so it's probably ok. */
3409 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
3410 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3411 the first in the TB) then we end up generating a whole new TB and
3412 repeating the fault, which is horribly inefficient.
3413 Better would be to execute just this insn uncached, or generate a
3415 cpu_resume_from_signal(env
, NULL
);
3418 void dump_exec_info(FILE *f
,
3419 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
3421 int i
, target_code_size
, max_target_code_size
;
3422 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
3423 TranslationBlock
*tb
;
3425 target_code_size
= 0;
3426 max_target_code_size
= 0;
3428 direct_jmp_count
= 0;
3429 direct_jmp2_count
= 0;
3430 for(i
= 0; i
< nb_tbs
; i
++) {
3432 target_code_size
+= tb
->size
;
3433 if (tb
->size
> max_target_code_size
)
3434 max_target_code_size
= tb
->size
;
3435 if (tb
->page_addr
[1] != -1)
3437 if (tb
->tb_next_offset
[0] != 0xffff) {
3439 if (tb
->tb_next_offset
[1] != 0xffff) {
3440 direct_jmp2_count
++;
3444 /* XXX: avoid using doubles ? */
3445 cpu_fprintf(f
, "Translation buffer state:\n");
3446 cpu_fprintf(f
, "gen code size %ld/%ld\n",
3447 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
3448 cpu_fprintf(f
, "TB count %d/%d\n",
3449 nb_tbs
, code_gen_max_blocks
);
3450 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
3451 nb_tbs
? target_code_size
/ nb_tbs
: 0,
3452 max_target_code_size
);
3453 cpu_fprintf(f
, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3454 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
3455 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
3456 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
3458 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
3459 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3461 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
3463 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
3464 cpu_fprintf(f
, "\nStatistics:\n");
3465 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
3466 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
3467 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
3468 tcg_dump_info(f
, cpu_fprintf
);
3471 #if !defined(CONFIG_USER_ONLY)
3473 #define MMUSUFFIX _cmmu
3474 #define GETPC() NULL
3475 #define env cpu_single_env
3476 #define SOFTMMU_CODE_ACCESS
3479 #include "softmmu_template.h"
3482 #include "softmmu_template.h"
3485 #include "softmmu_template.h"
3488 #include "softmmu_template.h"